
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 415 (2023) 116219

www.elsevier.com/locate/cma

Geometric learning for computational mechanics, Part III:

Physics-constrained response surface of geometrically nonlinear

shells

Mian Xiao, Ran Ma, WaiChing Sun∗

Department of Civil Engineering and Engineering Mechanics, Columbia University, 614 SW Mudd, Mail Code: 4709,

New York, NY 10027, United States of America

Received 19 March 2023; received in revised form 25 June 2023; accepted 27 June 2023

Available online 3 August 2023

Abstract

This paper presents a graph-manifold iterative algorithm to predict the configurations of geometrically exact shells subjected

to external loading. The finite element solutions are first stored in a weighted graph where each graph node stores the nodal

displacement and nodal director. This collection of solutions is embedded onto a low-dimensional latent space through a graph

isomorphism encoder. This graph embedding step reduces the dimensionality of the nonlinear data and makes it easier for the

response surface to be constructed. The decoder, in return, converts an element in the latent space back to a weighted graph

that represents a finite element solution. As such, the deformed configuration of the shell can be obtained by decoding the

predictions in the latent space without running extra finite element simulations. For engineering applications where the shell

is often subjected to concentrated loads or a local portion of the shell structure is of particular interest, we use the solutions

stored in a graph to reconstruct a smooth manifold where the balance laws are enforced to control the curvature of the shell.

The resultant computer algorithm enjoys both the speed of the nonlinear dimensional reduced solver and the fidelity of the

solutions at locations where it matters.

© 2023 Elsevier B.V. All rights reserved.

Keywords: Machine learning; Graph neural network; Shell; Reduced order modeling

1. Introduction

Shells are structural elements commonly found in numerous applications, such as the roof of a building

[1±4], the wings of airplanes and space structures [5], wind turbine blades [6], as well as deployable structures

like parachutes [7] and papers [8]. In fact, shell structures all share one geometric feature Ð the kinematics of the

mid-surface of the structure is sufficient to represent the kinematics of the deformed configurations.

To enforce the kinematics constraint in a finite element shell model, the degenerated solid approach [9±12] was

widely adopted in the early 80 s. Meanwhile, capturing the geometrical nonlinearity becomes necessary for shells

that undergo significant deformation to maintain the accuracy of predictions. In those cases, geometrically consistent

shell models, such as [13,14], are often used such that the balance laws are parametrized in a way that avoids the

∗ Corresponding author.

E-mail address: wsun@columbia.edu (W. Sun).

https://doi.org/10.1016/j.cma.2023.116219

0045-7825/© 2023 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2023.116219
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116219&domain=pdf
mailto:wsun@columbia.edu
https://doi.org/10.1016/j.cma.2023.116219

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

explicit appearance of the Riemannian connection of the mid-surface but captures the geometrical effects (cf. l Simo

and Fox [15], Simo et al. [16], IbrahimbegoviÂc [17], Roh and Cho [18]).

A key technical barrier in the computational modeling of the Reissner±Mindlin shell is to effectively represent the

shell configuration in the geometrically nonlinear regime with a singularity-free parametrization expressed relative

to an intrinsic frame for the surface displacement and director. Simo and Fox [15] resolved this issue by idealizing a

shell as a Riemannian manifold, a subclass of differentiable manifolds with Euclidean tangential spaces [19]. Apart

from shell structures, the Riemannian manifold has been used to represent a large variety of objects and defects

of materials commonly encountered in engineering applications, including but not limited to films [20,21], crack

surfaces [22,23], and lower-dimensional substructures in metamaterials or composites [24±27].

While geometrically exact shell finite elements may provide an improvement in computational efficiency over

conventional 3D continuum finite element in the finite deformation regime, many applications of the shell, such

as those used in generating vehicle crashing tests or response surface, often requires a proper dimensional

reduction strategy to generate a large number of numerical solutions within limited time. The existing reduced-

order models (ROM) for shell theory are classified into linear methods and nonlinear methods [28]. The linear

model reduction method typically uses a set of orthogonal basis obtained via linear embedding techniques, such

as the principal component analysis, or singular value decomposition [29,30], to reduce the dimensionality of the

system of equations [31]. The hyper-reduction approaches, for example, the discrete empirical interpolation method

(DEIM) [32] and the Gappy-POD scheme [33], further reduce the computation cost of nonlinear problems by

selecting a subset of finite elements to perform stress update and assembly. The major disadvantage of linear model

reduction methods is that the quality of the predictions often depends on the choices of the orthogonal basis used to

perform the projection [34]. As such, a successful reduced order model often requires a good sampling strategy [31]

as well as the inclusion of additional vectors in the basis, such as modal derivatives [35] and dual modes [36]. The

nonlinear methods, for example, the invariant manifold theory [28], construct a curved manifold instead of a linear

space in the phase space to approximate the trajectories of the dynamic system.

On the other hand, the dataset used for generating the orthogonal bases (through, for instance, the method of

snapshot [37±39]) could sufficiently populate the parametric space. In this sense, this dataset may contain sufficient

information to generate a solution manifold so that without any further full-scale or reduced-order simulations, we

may obtain any element within a class of solution with respect to a parametric domain (say different tractions applied

at the same area of the shell). This solution manifold can be regarded as a hypersurface in a (N + P)-dimensional

Euclidean space where N is the dimension of the finite element space, and P is the total number of parameters

necessary to parametrize the external loading. Such a solution manifold can then serve as digital twins where the

solution manifold may directly predict the responses of the shell structures from a specific class of external loadings.

This paper is the Part III of the geometric learning for computational mechanics series in which we continue to

leverage geometric learning techniques showcased in Vlassis et al. [40], Vlassis and Sun [41] for solid mechanics

problems. The purpose of this paper is to build a response surface model that forecasts behaviors of geometrical

nonlinear shells. To simplify the problem, we restrict our attention to the problems where bifurcations or instability,

such as buckling, do not occur [42]. This assumption eliminates the branching of the solution and ensures that each

deformed configuration corresponds to a particular external loading represented as a point in the parametric space.

We then use a predictor±corrector algorithm to generate the solution manifold/hypersurface in a (N+P)-dimensional

Euclidean space. In the predictor step, we first reduce the complexity of the learning problems by translating the

finite element solution of the Simo-Fox-Rafai shell as a weighted graph. This graph representation provides us

another opportunity to perform nonlinear dimensional reduction through graph embedding. As the graph embedding

maps each solution graph onto a point in the latent space, we then use neural networks to create a hypersurface in a

(N + P)-dimensional Euclidean space where all the solution data is supposed to be lied on. In the corrector step, we

introduce corrections to ensure the admissibility of the solution predicted by the neural network. This correction is

done by applying a physics-informed correction that re-parametrizes a small domain of interest such that enforcing

the balance principles would not lead to a difficult high-dimensional non-convex optimization problem that is often

attributed to the failures of some physics-informed neural network in the literature (cf. Krishnapriyan et al. [43]).

The rest of the paper is organized as follows: Section 2 presents a detailed graph representation of the shell

manifold and the graph-manifold learning formulation. Section 3 introduces the enforcement of physical governing

equations with implementation perspectives. Section 4 shows two numerical examples with problem configurations

to demonstrate how the dataset is collected from finite element simulation results. Section 5 lists prediction results

for the two examples of interest that justify the correctness and applicability of the proposed geometric learning

model. Section 6 summarizes our findings.

2

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

2. Deep geometric learning with graph neural networks

In this section, we present the predictor part of the predictor±corrector algorithm, where the deformed shell

configuration is predicted directly from the graph autoencoder architecture without any online simulation. In

Section 2.1, we explain the interpretation of the deformed shell fields as an undirected node-weighted graph and the

setting of the neural network for multi-fidelity data augmentation. In Section 2.2, we demonstrate how the graph

autoencoder embeds the deformed shell configurations onto a lower-dimensional latent space for reduced-order

predictions through the graph isomorphism layers. The node embedding is performed by considering nodes within

the same finite element as a one-hop neighborhood. In summary, we obtain the solution manifold by performing

the following three tasks, i.e.,

1. Generate an augmented high fidelity set
h
G̃ = {

h
G̃ ′

1, . . . ,
h
G̃ ′

Tl
} with data consisting of fine-mesh data

h
G̃ ′

j

and interpolated data from the coarse mesh
l
G ′

j , such that
h
G̃ ′

j ∼
l
G ′

j . (see Section 2.2.2)

2. Perform graph embedding based on the combined high fidelity set
h
G̃. (see Section 2.2.2)

3. Learn the governing dynamics that maps p to the lower-ordered latent space (See Section 2.3).

where ∼ indicates that
h
G̃ ′

j is the high fidelity result on the finer mesh corresponding to the low fidelity result
l
G ′

j of the same loading condition. For simplicity, we assume that all snapshots in h
G come from results on the

same fine mesh, while all snapshots in l
G come from results on the same mesh that is much coarser than their fine

counterpart.

2.1. Graph representation for shells discretized by different meshes

To ensure the robustness of the response surface without exhausting our resources for high-fidelity simulations,

we introduce a data augmentation technique in which we may run a limited amount of high-fidelity simulations (or

experimental tests) for the important parametric domains while utilizing more cost-efficient low-fidelity simulations

(in our cases, the same finite element simulations with a coarser mesh) to populate the less critical regions of the

parametric domain.

We consider each node of the finite elements as a graph vertex. Graph edges are assigned for each pair of vertices

that are nodes of a finite element edge [41]. accordingly, each nodal solution can be stored as the weight of the

corresponding vertex such that the finite element solution can be stored as an undirected node-weighted graph. By

assuming that we only use the same set of bases for the testing and interpolating functions of all finite elements,

we eliminate the need to introduce edge weights doe the edge set. This setting simplifies the graph representation

of the finite element solutions.

In the following part of this section, we will introduce the mathematical expression of finite element node graph

as a foundation for our machine learning model. A finite element node graph is an undirected graph G = (V, E),

where V = {vi | i = 1, . . . , N } is the node set of the graph as vi corresponding to individual finite element nodes,

and E = {(v1 j , v2 j)| j = 1, . . . ,M; v1 j , v2 j ∈ V} is the edge set where the existence of each individual edge

indicates that node v1 j and v2 j belong to the same element, as shown in Fig. 1. N and M indicate the size of the

node set and edge set. In order to deal with geometrical features to be incorporated in the machine learning model,

we enrich the graph representation as a node-weighted graph: G ′ = (V, E,X) where X = {xi ∈ R
D|i = 1, . . . , N }

is the nodal feature set as xi indicates the geometrical feature vector at node vi with a dimension of D. We may

enforce D ≥ 3 as the manifold reconstruction task requires at least the three spatial coordinates of the finite element

point cloud.

With the finite element node graph defined, the fundamental geometric learning task for the reduced order

modeling on the shell can be stated as follows: given a series of snapshots of the deformed shell manifold of

the same initial configuration and path-independent material properties G = {G ′
1, . . . ,G

′
T } sampled by a subset of

the parametrized load p ∈ R
P , we would like to predict the shell manifold geometry G ′ deformed by any element

of p ∈ R
P via the reduced-order latent space of G.

In the geometric learning literature, the embedding that performs the feature engineering or nonlinear dimensional

reduction is often referred to as the upstream task, whereas the predictions that leverage the feature to make

predictions is called the downstream application [44,45]. In our case, we follow the same workflow. We first embed

3

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 1. Node graph interpretation of a finite element mesh.

these shell manifold snapshots represented by node-weighted graphs onto a low-dimensional latent space R
Denc

(upstream task), then we learn how p governs the shell configuration not via the graph or the original finite element

space, but in the low-dimensional latent space R
Denc , where Denc ≪ N is the dimension of the latent space.

To establish a trade-off between fidelity and cost efficiency, the collection of snapshots in G that constitute

the database for training the digital twins may come from finite element meshes of different resolutions. In our

numerical experiments, we collect data from two finite element meshes, i.e.,

± High-fidelity set: h
G = {

h
G ′

1, . . . ,
h
G ′

Th
}.

± Low-fidelity set l
G = {

l
G ′

1, . . . ,
l
G ′

Tl
}

where Th ≪ Tl and h
G ∩ l

G = ∅ and h
G ∪ l

G = G.

Here we leverage the fact that message-passing GIN may enable embedding graphs of different sizes to design

an algorithm capable of inferring the unseen fine-mesh finite element solutions from a multi-fidelity database. To

achieve this objective, we introduce a neural network augmentation mechanism to pre-process the coarse mesh data

before embedded in the graph autoencoder architecture such that the reconstructed graph is corresponding to the fine

mesh used to generate h
G. (see Fig. 2). In analog to a prolongation of a multigrid solver, we train a neural network

to perform a nonlinear mapping that maps the node features of the coarse-mesh graphs onto those of the fine-mesh

graphs. This step then enables us to combine the actual fine-mesh data and the fine-mesh data interpolated from the

coarse mesh to perform the graph embedding such that a single unified latent space can be used to represent both

sets of data. Provided that the mapping is successful, this step enables us to reduce the cost of data generation by

only administrating fine-mesh simulations in the domain of interest.

Remark 1. Other feasible choices of representing finite element solutions in a mesh may include node graph, dual

graph, communication graph [46] as well as tree [47].

2.2. The geometric learning model with graph neural networks

This section demonstrates how we resolve the aforementioned geometric learning subtasks. We first introduce

the neural network architecture used in Section 2.2.1. Then, we present the formulation of these learning tasks:

Section 2.2.2 shows how we learn the mapping for building
h
G̃ and then find the reduced ordered latent space;

Section 2.3 shows how to predict the shell geometry with p based on the latent space. A sketch of the modeling

procedures in this section is summarized in Fig. 2.

2.2.1. The graph autoencoder architecture

We adopt the graph isomorphism network (GIN) (cf. Xu et al. [48]) to perform the embedding task. We use

GIN because it is a message-passing model capable of discriminating different graph structures identified by the

Weisfeiler±Leman isomorphism test [49]. Providing that we use a proper graph pooling layer, the embedding of

GIN is inherently permutation invariance, which means that the ordering of the nodes will not affect the predictions.

More importantly, the fact that GIN passes the isomorphism test enables us to distinguish non-isomorphic subgraphs

4

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 2. Procedure sketch of the proposed geometric model. Notice that the portion number (90% low-fidelity data and 10% high-fidelity

data) in Step 1 is not strict but related to the capacity to acquire high-fidelity simulation results.

Fig. 3. Graph autoencoder architecture. Notice that the input and output graphs are not necessarily sharing the same adjacency matrix.

by mapping them onto different encoded latent vectors and vice versa ± a feat that cannot be achieved by

the conventional graph convolutional network and GraphSAGE [48]. These two features combined improve the

expressive power of the GIN such that the relationships among finite element nodes can be captured by the neural

network. Fig. 3 shows the architecture of the graph autoencoder designed for the shell problems. The encoder part

of this architecture takes in the adjacency matrix and feature matrix of the input graph G ′
in : (Ain, X in) and produces

an encoded feature vector henc, which is denoted as a functional expression: henc = Enc(X in, Ain). The decoder part

of this architecture then utilizes the encoder output to produce a decoded feature matrix X̃ . The adjacency matrix

of the output graph Aout can be assumed as a prior (since each dataset shares one same A) in order to complete an

output graph G ′
out : (Aout, X̃), which could be written as X̃ = Dec(henc). Problem formulation is generally based

on supervision of the decoded output X̃ , which will be the focus of the following sections. The rest of this section

will present details about how the layer components shown in Fig. 3 operate.

We first introduce one of the most widely-used architectures called multi-layer perceptron (MLP), which is

included as a substructure in our graph autoencoder architecture. MLP is a functional approximation expressed as

follows:

MLP(X) = W (K) · act(W (K−1) · act(...act(W (1) · X + b(1))...) + b(K−1)) + b(K) (1)

5

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

where W and b are called the weight matrix and the bias vector of the MLP substructure, respectively. The

superscript (K) indicates the K th layer of the MLP substructure. Meanwhile, act(·) denotes the activation function

of individual layers. In this work, we adopt the rectified linear unit (ReLU) for act(·) such that ReLU(x) = x if

x > 0; otherwise, ReLU(x) = 0.

We then focus on the GIN convolution layers, which take in both the adjacency matrix and feature matrix and

output an embedded feature matrix. The matrix formulation of a GIN layer is:

H (k) = MLP(k)
(

(A + (1 + ϵ)I) · H (k−1)
)

(2)

where the superscript (k) indicates the kth layer in the architecture; H is the embedded nodal feature matrix coming

from the output of the previous layer with H (1) = X at the input layer. ϵ is a learnable parameter. For consecutive

GIN convolution layers, the following layer accepts the same A as the previous layer. For the beginning GIN layer

in both the encoder and the decoder, A should be prescribed as either Ain or Aout.

Our architecture also includes global operations on the graph. The graph global mean pooling operation in the

encoder performs the following computation:

havg =
1

N

N
∑

i=1

hi (3)

where hi is the embedded nodal feature of vi corresponding to the i th row of H , and havg is the resultant graph

feature vector from global mean pooling.

The broadcasting operation in the decoder is a matrix reshape operation that converts a row vector hdec of size

N Denc obtained from the output of the MLP substructure in the decoder to the corresponding embedded nodal

feature matrix of size N × Denc such that:

hi j = (hdec) j+(i−1)Denc
(4)

where hi j indicates the j th component of the embedded nodal feature vector hi after broadcasting.

2.2.2. The learning problem for the high-fidelity shell responses

In the previous section, we discuss the strategy to construct the mapping F(
l
G ′

j) =
h
G̃ ′

j such that
h
G̃ ′

j ∼
l
G ′

j to

establish an augmented data set
h
G̃. We assume that F is learned in a supervised manner: we aim to minimize the

discrepancy between the nodal feature matrix of training labels and the approximated nodal feature matrix output

by the neural network. We intuitively construct the training labels with h
G, and thus we required that for each

snapshot in h
G there exist some snapshot in l

G corresponding to the results with the same loading condition, which

is summarized as follows:

∃ lh
G ⊂ l

G s.t. h
G =

{

F(
lh
G ′

j)|
lh
G ′

j ∈ lh
G

}

(5)

The subset lh
G then constructs the training input set. We next approximate F with the graph autoencoder

(proposed in Section 2.2.1) by computing the decoded nodal features as X̃ = F̂(X). The loss function is adopted

as the node-wise mean square error of the nodal feature matrix, which leads to the following training objective:

min
ΘF

1

N lh
s

N lh
s

∑

i=1






F̂(X lh

(i)) − Xh
(i)







2

fro
, F̂(X) = DecF (EncF (X, Al)) (6)

where Θ
F is the collection of all trainable network parameters of F̂(·). N lh

s is the size of lh
G as well as h

G.

The subscript (i) indicates the i th sample in h
G or lh

G, while the sample sequence satisfies
h
G ′

i ∼
lh
G ′

i with
h
G ′

i : (Ah, Xh
(i)) and

lh
G ′

i : (Al , X lh
(i)). The operator ∥ · ∥fro indicates the Frobenius norm of a matrix. The subscript

F of Dec and Enc indicates the decoder and encoder function for the graph autoencoder approximating F , in order

to differentiate from the reconstruction autoencoder mentioned in the following part. The approximated mapping

F̂(·) helps us to enrich the high-fidelity dataset as follows:

h
G̃ =

{

h
G̃ ′

j : (Ah, X̃
h

(j)) | X̃
h

(j) =

{

F̂(X l
(j)),

l
G ′

j : (Al , X l
(j)) ∈ l

G \ lh
G,

X l
(j),

l
G ′

j : (Al , X l
(j)) ∈ lh

G.

}

(7)

6

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Here we realize the significance of having a low-fidelity dataset l
G and the mapping F : we are now able to

construct a relatively large high-fidelity dataset to improve the reduced ordered model without spending too much

effort performing experiments on the high-fidelity scales.

With
h
G̃ populated from l

G, we are ready to formulate the graph embedding problem that determines the reduced

ordered latent space. The general idea is to construct a graph autoencoder function R̂(·) whose output approximates

its input itself. We still adopt the loss function as the node-wise mean square error for the feature matrix between

the labels in
h
G̃ and the output from R̂(·), which yields the following training objective:

min
Θ R

1

N hh
s

N hh
s

∑

i=1






R̂(X̃

h

(i)) − X̃
h

(i)







2

fro
, R̂(X) = DecR(EncR(X, Ah)) (8)

where Θ
R is the collection of all trainable network parameters of R̂(·). N hh

s is the size of
h
G̃ as well as l

G. The

subscript R indicates the encoder and decoder function of the reconstruction autoencoder. The reduced ordered latent

space L is then defined as the space spanned by henc = EncR(X, Ah) for arbitrary X coming from an admissible

deformed shell configuration G ′, where L ⊂ R
Denc .

2.3. Predicting the high-fidelity results without full-scale simulations

This section presents how we utilize the parametrized load p to predict the actual deformed shell configuration G ′.

As we find the reduced ordered latent space L in the previous section, we may notice that L is generally entangled,

which does not ideally captures the reduced ordered dynamics in the maximum sense. We here propose to construct

a response controlling law on L based on p corresponding to the shell configuration of interest to disentangle the

reduced ordered latent space, denoted as a functional expression henc = f (p). We then approximately parametrize

the response controlling law function as f̂ (·) by a simple feed-forward neural network with MLP architecture. We

fit f̂ (·) with the mean square error loss between the encoded feature vector obtained from the graph autoencoder

and that computed by f̂ (·), which yields the following learning objective:

min
Θ f

1

N hh
s

N hh
s

∑

i=1






f̂ (p(i)) − EncR(X̃

h

(i), Ah)







2

2
(9)

where Θ
f is the collection of all trainable network parameters of f̂ (·). p(i) is the loading condition corresponding

to the i th snapshot
h
G̃ ′

i : (Ah, X̃
h

(i)). The operator ∥ · ∥2 is the vector Euclidean norm.

After we learn the neural network approximation of f (·), the prediction of high-fidelity results is to determine

the nodal feature matrix X̄ given some loading condition p̄ as follows:

X̄ = DecR(f̂ (p̄)) (10)

In essence, we introduce a graph neural network approach to construct a response surface. Since (1) the data are

obtained from the simulations that obey the balance principles and (2) a successful embedding should be capable of

preserving the relationships among nodes, we hypothesize that this will give us more accurate and robust predictions

than other alternatives that employ basis functions that directly interpolate the hypersurface in the ambient space

R
N+P . This hypothesis will be tested in Section 5. For the domain of interest where the balance principle must

be precisely enforced, we introduce a locally-enhancement technique that can improve the fidelity via the tangent

space of the nonlinear solution manifold.

3. Local enrichment with geometrical and physical constraints on the machine learning prediction

The previous section shows how the graph representation of a deformed shell manifold is predicted. For

applications where the mechanical response at a specific location is of interest (potential singularity, extreme

deformation), the validity of the machine learning predictions for mechanics problems should be verified by the

physical laws. They can be enforced with a regularization term in the training objective [50±52], where a notable

example is the physics-informed learning [53], or with prior assumptions in the solution functions [54,55], where

a notable example is the neural operator [56].

7

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

In this work, the physics-based corrector is implemented in a reduced-order fashion instead of traditional loss

regularization. We reparametrize a local region of interest on the shell configuration as a linear combination of

functional basis derived from the direct neural network prediction. We then determine the correction of neural

network predictions from Section 2 by computing physical properties (e.g., value of the residual equation) and

formulate the optimization problem accordingly. Note that directly imposing this additional constraint into the loss

function of the autoencoder may significantly increase the time required to train the autoencoder. As such, we decide

to introduce this extra postprocessing step, which improves the fidelity at the cost of longer execution time in the

online simulation. An alternative where the constraint is directly incorporated into the training of the autoencoder

will be considered in the future but is out of the scope of this study.

3.1. Physical constraints for geometrically nonlinear shell

This section briefly summarizes the geometrically exact shell model we adopt [15], for the convenience of

introducing the governing equations as physical constraints. In this model, we consider the shell configuration as

a 2D Riemann manifold with finite extent in the actual 3D space, where the positional information of the shell is

indicated by the mid-surface location ϕ. The geometrically exact feature is achieved by introducing a vector field t ,

also called director, to account for the bending and shear effect of the shell. These vector fields ϕ and t formulate

the basic representation of the shell geometry and facilitate the definition of shell strain measures and the evaluation

of shell stress measures. Due to this two-field mixed formulation, there exist two residual equations as the target

of the physical constraint evaluation: one is associated with linear momentum balance, denoted as R
n; the other is

associated with the director momentum balance, denoted as R
m . The necessary ingredients for evaluating physical

constraints are summarized in Table 1. Meanwhile, the shell response is assumed quasi-static.

Remark 2. ϕ and t are deformable mappings from a static 2D parametric space A ⊂ R
2 to the actual 3D space R

3

and the unit sphere S2. For notational convenience, we use (ξ, η) to denote the parametric coordinates in A from

now on. This enables us to express the shell configuration mappings in functional forms:

ϕ(ξ, η) = [ϕ1(ξ, η) ϕ2(ξ, η) ϕ3(ξ, η)]T (11)

and

t(ξ, η) = [t1(ξ, η) t2(ξ, η) t3(ξ, η)]T , (12)

where ϕi and ti (i = 1, 2, 3) indicate the componentwise location and director fields, respectively. All super and

subscripts α, β, µ listed in Table 1 are associated with these parametric coordinates implicitly, where the number 1

corresponds to ξ and the number 2 corresponds to η.

3.2. Reduced-order modeling via tangential space of the solution manifold

In the previous section, we argue that the shell configuration vector fields ϕ and t provide sufficient information

for evaluating the geometric and physical constraint equations. One possible remedy to improve the compatibility

of the balance principles without sufficiently slowing down the prediction is to introduce Galerkin projection via

a collection of orthogonal bases. In theory, these orthogonal bases can be generated through principal component

analysis performed on the entire collection of solutions, and the fidelity can be improved by incorporating more

orthogonal bases at the expense of computational speed. However, this global linear embedding strategy is known

to yield an unsatisfactory fidelity-speed tradeoff for highly nonlinear problems. As such, we introduce an empirical

approach in which we establish a locally linear embedding where we identify the tangential space at the parametric

load p where we sought the solution. Then we use the basis of this tangential space to establish the Galerkin

projection such that the resultant Gakerlin projection may vary according to the types of loadings p, a technique

commonly used to model high-dimensional data (see, for instance, Donoho and Grimes [57]). A similar strategy

has also been used in He et al. [58], He and Chen [59] where a locally convex space is established via points in a

constitutive manifold for data-driven simulations.

8

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Table 1

Summary of the governing equations of the quasi-static geometrically exact shell model adopted for verifying the physical constraints locally.

All super and subscripts α, β, µ = 1, 2.

Governing equations Nomenclature or explanation

Surface frame

and Jacobian

a0α = ϕ0,α, aα = ϕ,α a0α, aα initial and convected surface frame

vector (tangential basis)

J = ∥a1 × a2∥2 J surface Jacobian

Kinematic relationships
aαβ = aα · aβ γα = aα · t

καβ = aα · t ,β

aαβ
γαβ
καβ

kinematic variables for computing

the effective strain measures

in the following equations

Effective strains
εαβ = 1

2
(aαβ − a0αβ)

δα = γα − γ0α

ραβ = καβ − κ0αβ

εαβ effective membrane strain

δα effective shear strain

ραβ effective coupled strain

Frame vector constraint
t ,α = λ

µ
α aµ + λ3

α t

t · t ,α = 0

λ3
α = −λ

µ
αγµ

λ
µ
α coefficients of the frame vectors

aµ, t after the

vector decomposition of t ,α

Linear momentum balance R
n = 1

J
(J nα),α = 0 nα stress resultant

the director momentum

balance

R
m = 1

J
(J m̃α),α − l̄ = 0 m̃α, l̄ stress couple, across-the-thickness

stress resultant

Decomposition of stress

resultants and stress couples

nα = nβαaβ + qα t

m̃α = m̃βαaβ + m̃3α t

l̄ = λ̄t + (q̃α + λαµm̃3µ)aα

nβα , qα
m̃βα , m̃3α

λ̄

stress resultant components

effective stress couple components

Lagrange multiplier of t

Effective stress resultants
ñβα = nβα − λ

β
µm̃αµ

q̃α = qα + λ
β
µγβ m̃αµ

ñβα
q̃α

effective membrane stress

effective shear stress

Constitutive laws
ψ(εβα, δα, ρβα)

ñβα = ∂ψ/∂εβα
q̃α = ∂ψ/∂δα
m̃βα = ∂ψ/∂ρβα

ψ assumed elastic energy functional

As a result, we may formulate the problem for enforcing physical constraints as an optimization problem to

minimize the norm of residual vectors R
n , Rm with ϕ and t as governing variables. Functional variables ϕ and t

are parametrized as a linear combination of functional basis that is perturbed from the predicted solution:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ = c0ϕ̂| p +
∑K̃

k ck ϕ̂| p+δ pk

t = c0 t̂| p +
∑K̃

k ck t̂| p+δ pk

1 = c0 +
∑K̃

k ck

(13)

where K̃ is the number of functional basis. ϕ̂ and t̂ are trained neural network functions for the local solution

predicted at the load specified by the load vector in the subscript (p + δ pk), and non-degenerated basis is preferred

such that: Rank(span{ϕ̂| p+δ p1
, . . . ϕ̂| p+δ p

K̃
}) = K̃ , Rank(span{ϕ̂|t+δ t1

, . . . ϕ̂|t+δ t
K̃
}) = K̃ . With this parametrization

of the target function, we can formulate the physics-based solution adjustment as an optimization problem with

coefficients ck as governing variables instead of the infinite-dimensional functional space:

min
c0,c1,...,cK̃

∥Rn∥2 + w̃∥[t ,β · Rm]∥2 s.t. c0 +

K̃
∑

k

ck = 1 (14)

where w̃ is a tunable factor that controls the relative importance of the director momentum residual in the

minimization progress with respect to the linear momentum residual. Instead of adopting R
m in the optimization

objective, we use a 2D vector [t ,β · Rm](β = 1, 2) for the consideration of director momentum equation, which

will be explained in the rest of this section.

We next focus on deriving the balance laws listed in Table 1 and implementing them based on the locally

approximated manifold expressions. We notice that the variables m̃3α, λ̄ cannot be derived from either kinematic

relationships or constitutive relationships. In this sense, we aim to clear out the terms with m̃3α, λ̄ in the expanded

9

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Algorithm 1 Improve model predictions with physical constraints around a neighborhood of one finite element

node v̄0

1: Prescribe δ p1, · · · , δ pK̃ and predict the deformed shell configurations at the five different loading conditions

p, p + δ p1, · · · , p + δ pK̃ with Eq. (10). K̃ is generally selected according to the dimension of the loading

parametric space.

2: Find a set of neighborhood nodes v̄0, and extract the local ϕ̂ and t̂ field based on the neighborhood node set

for the K̃ + 1 loading conditions in step 1.

3: Train five different MLP functions to approximate the perturbed local solutions. Notice that fitting five

components are sufficient: ϕ1, ϕ2, ϕ3, t1, t2, since we can determine t3 by t3 = ±

√

1 − t2
1 − t2

2 where the

sign is up to the orientation of the shell configuration.

4: Establish a nonlinear optimizer to solve the problem described by Eq. (14).

expression of R
m . We accomplish it by taking the dot product of R

m with respect to t ,β , where we first expand

R
m as follows:

R
m = (m̃µα,αaµ + m̃3α,α t + m̃µαaµ,α + m̃3α t ,α) +

J,α

J
(m̃µαaµ + m̃3α t) − λ̄t − (q̃α + λαµm̃3µ)aα (15)

We then compute t ,β · Rm and simplify it with t ,β · t = 0 and t ,β · aα = καβ :

t ,β · Rm = (m̃µα,ακµβ + m̃αµ t ,β · aµ,α + m̃3α t ,β · t ,α) +
J,α

J
m̃µακµβ − (q̃α + λαµm̃3µ)καβ (16)

The frame vector decomposition expression in Table 1 shows us t ,α · t ,β = λµα aµ · t ,β + λ3
α t · t ,β =

λµακµβ . This concludes the equivalence between two terms in (16): m̃3α t ,β · t ,α = λαµm̃3µκαβ . As a result, the

director-gradient-weighted director momentum residual in (16) is finally computed as follows:

t ,β · Rm = m̃µα,ακµβ + m̃µα t ,β · aµ,α +
J,α

J
m̃µακµβ − q̃ακαβ (17)

In contrast to R
m , Rn possesses an expanded expression consisting of ñαβ, q̃α, m̃αβ, λ

β
µ, γβ, aα, t and some of

their gradient or divergence with respect to the parametric coordinates. These variables can be computed via the

constitutive/kinematic equations or other geometric constraints listed in Table 1. Hence we no longer perform further

derivation on R
n for numerical implementation purposes. The procedures for computing the residuals of the linear

and director momentum balance are then summarized in Algorithm 2:

Algorithm 2 Compute the residual around a neighborhood of one finite element node v̄0

Given: ϕ and t around v̄0 in the form of Eq. (13) with coefficients c0 · · · c4 determined.

1: Compute the surface frame vectors a0α, aα , and the surface Jacobian J .

2: Compute the t ,α with the director field obtained in Step 2.

3: Compute the kinematic variables aαβ, γα, καβ in both the current and the initial configuration.

4: Compute effective strain measures εαβ, δα, ραβ .

5: Find the coefficients λµα from vector decomposition of t ,α .

6: Evaluate the effective stress measures ñαβ, q̃α, m̃αβ with the constitutive equations (ref constitutive eqn)

7: Compute R
n = 1

J
(J nα),α and t ,β · Rm with Eq. (17).

4. Training of the geometric learning model

In this section, we present numerical examples that demonstrate the correctness and applicability of our model,

and the procedures to generate the dataset with different levels of fidelity via finite element simulation. In

Section 4.1, we introduce three shell problems of interest. We first show the shell geometries and the corresponding

mesh discretizations with multiple resolutions. Then we demonstrate the simulation setup to demonstrate how data

are sampled within load parametric space. We additionally list the hyperparameters assumed at the model training

phase in Section 4.2.

10

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 4. Computational domain and boundary conditions of the initial configuration of the hemispherical shell holed at the pole.

4.1. Generation of the graph database for deformed shell fields

4.1.1. A hemispherical shell holed at the pole

The shell problem configuration presented in this subsection is in a hemispherical shape but with a circular hole

punched at the pole. The edge of the hole coincides with a latitude line at a zenith angle of 18◦. According to the

symmetry of this configuration, we take one-quarter of the holed hemisphere as the computation domain. The initial

shell configuration can be expressed as follows, assuming that the initial director field matches the outward normal

vector field of the shell surface:
⎧

⎪

⎨

⎪

⎩

ϕ1(ξ, η) = r̄cos(π
2
ξ)cos(2π

5
η),

ϕ2(ξ, η) = r̄sin(π
2
ξ)cos(2π

5
η),

ϕ3(ξ, η) = r̄sin(2π
5
η).

⎧

⎪

⎨

⎪

⎩

t1(ξ, η) = ϕ1(ξ, η)/r̄ ,

t2(ξ, η) = ϕ2(ξ, η)/r̄ ,

t3(ξ, η) = ϕ3(ξ, η)/r̄ .

0 ≤ ξ, η ≤ 1 (18)

where r̄ is the spherical radius chosen to be 10 m in our case.

The domain symmetry requires symmetric boundary conditions on the two lateral bounds located at ξ = 0 and

ξ = 1. The driving loads are prescribed as the concentrated force at two locations: at ξ = 0, η = 0 it points

toward the positive spatial x-axis, while at ξ = 1, η = 0 it points toward the negative spatial y-axis. The two

forces possess the same magnitude, indicating that there is just one parameter F̄ controlling the shell dynamics.

The material properties are as follows: Young’s modulus is 68.25 MPa, and the Poisson ratio is 0.3. The thickness

of this structure is assumed to be 0.04 m. We plot the shell configuration and the loading conditions (projected to

xy plane) in Fig. 4.

In the following part of this section, we focus on how simulations are performed to collect snapshots of deformed

shell configurations. For the sake of dataset enrichment mentioned in Section 2.1, we discretize the configurations

of both numerical examples into finite element meshes with different resolutions. In this sense, the low-fidelity

dataset l
G is established by collecting simulation snapshots in the coarser mesh, while the high-fidelity dataset h

G

is established with simulation snapshots in the finer mesh. We usually simulate fewer steps (snapshots) in the finer

mesh than that in the coarser mesh.

During mesh discretization, we first mesh the parametric domain to obtain a set of node coordinates (in 2D)

and a set of element connections. We then perform a coordinate transformation that maps the parametric coordinate

to its spatial counterpart on the shell manifold. We finally define the 3D mesh configuration by combining the

transformed node coordinates and the same element connections as those in the 2D parametric mesh. Fig. 5 shows

the finite element meshes in different resolutions for the first example: a hemispherical shell holed at the pole.

Fig. 5 (a,c) demonstrates the 3D shell mesh configuration from some perspective, while Fig. 5 (b,d) shows the

mesh discretization in the 2D parametric space before coordinate transformation. The coarser mesh (Fig. 5 (a,b))

has 125 nodes and 107 elements, while the finer mesh (Fig. 5 (c,d)) has 1781 nodes and 1712 elements.

We simulate 200 uniform-increment steps with the coarser mesh to build l
G, while the loading force value F̄

grows linearly to 1. To generate h
G with the finer mesh (Fig. 5(c)), we maintain the F̄ value in the last step as

the same ultimate load magnitude in the simulation setup with the coarser mesh (equal to 1) and load it for 20

11

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 5. Mesh discretization of the holed hemispherical shell. (a), (b) are the finite element mesh with coarse resolution viewed in the actual

3D space and the parametric space, respectively. (c), (d) are the finite element mesh with fine resolution viewed in the actual 3D space and

the parametric space, respectively.

uniform-increment steps. In this sense, for the 10th, 20th, . . . , 200th snapshots in l
G if counted sequentially in

time, there is a snapshot in h
G corresponding to the same prescribed load F̄ . lh

G is then established by extracting

the last snapshot of every ten steps l
G sorted by time. We also simulate additional steps with the finer mesh to

build a dataset for testing prediction accuracy, where we prescribe the external force as 0.6275 and 0.9425 such

that there are no snapshots in the training dataset that correspond to these loads.

4.1.2. A doubly-curved shell anchored at four corners

The second problem simulates a doubly-curved shell structure anchored at four corners for shelter purposes. The

geometry of this shell configuration can be generalized with the following equation: z −ω(x, y) = 0, where ω(x, y)

is expressed as follows (unit is meter for x, y, z):

ω(x, y) = 2.4(1 − ω1(x, y)2) + ω3(x, y)2
[

3(1 − ω2(x, y)2) − 2.4(1 − ω1(x, y)2)
]

, −1 ≤ x, y ≤ 1 (19)

where

ω1(x, y) =
|x | + |y|

2
, ω2(x, y) =

|x + y| − |x − y|

2
, ω3(x, y) =

|x + y| + |x − y|

2
(20)

We present the spatial view of the initial configuration from one perspective and plot the z elevation as a function

of x, y in Fig. 6. We still assume that the initial director field corresponds to the outward normal vector field of

the shell surface. As this shell is anchored at four corners, we enforce fix boundary conditions at the four corners.

The driven force is concentrated and located at (x, y, z) = (0,−1, 3) and (x, y, z) = (0, 1, 3), where the forces

have only x and y components. In total, the external load can be represented with four parameters. The material

properties are as follows: Young’s modulus is 29 MPa, and the Poisson ratio is 0.3. The thickness of this structure

is assumed to be 0.04 m.

Fig. 7 presents the finite element meshes in different resolutions for the second example: a doubly curved shell

anchored at four corners. The coarser mesh (Fig. 7 (a,b)) has 397 nodes and 356 elements, while the finer mesh

(Fig. 7 (c,d)) has 1521 nodes and 1424 elements. To prescribe the load, we randomly sample 400 ultimate load

values and prescribe a monotonic straight-line loading path to each ultimate load point. On each loading path, we

simulate 20 steps. Fig. 8 demonstrates how the 400 loading paths populate the load parameter space:

To construct l
G for this case, we simulate all steps on each loading path with the coarser mesh (Fig. 7 (a,b)),

which yields in total 8,000 snapshots. When establishing h
G, we randomly sample 40 load paths within the paths

provided in Fig. and simulate them with the finer mesh (Fig. 7 (c,d)), which yields in total 800 snapshots. For

testing purposes, we prescribed three test loading paths: one is seen in l
G\ lh

G while the other two is unseen in the

training set as Fig. 9 shows.

4.1.3. A cylindrical patch clamped at one boundary

As previous examples create the parametric loading space by applying concentrated point forces, we would like

to establish a example demonstrating the response surface modeling for shells under distributed loading. So we

propose the third problem as cylindrical patch clamped at one boundary, and loaded at the opposite boundary with

12

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 6. Geometry of the initial configuration of the doubly-curved shell anchored at four corners together with the boundary conditions.

x, y, z have the same length unit (m). Triangulars in (c) indicate fix boundary conditions (in all directions) at a specific point.

Fig. 7. Mesh discretization of the doubly curved shell anchored at four corners. (a), (b) are the finite element mesh with coarse resolution

viewed in the actual 3D space and the parametric space, respectively. (c), (d) are the finite element mesh with fine resolution viewed in the

actual 3D space and the parametric space, respectively.

Fig. 8. Prescribed loading paths to generate the training dataset for the doubly-curved shell example. All 400 paths are projected to either

F̄0x F̄0y plane or F̄1x F̄1y plane as straight lines, and the ultimate load at the end of each path is marked by a circle. (as Fig. 6(c) shows,

F̄0x , F̄0y is the force applied at (0,−1) and F̄1x , F̄1y is the force applied at (0, 1)) The overbar is omitted in the axes label texts for

simplicity.

uniform line loads. The geometry of this shell configuration is shown in Fig. 10, and its parametric equation is

written as follows:

x = 2ξ, y = 1.5η, z =
√

42 − x2 for 0 ≤ ξ, η ≤ 1 (21)

13

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 9. Loading paths for modeling testing for the doubly-curved shell an example. The overbar is omitted in the axes label texts for

simplicity.

Fig. 10. Geometry of the initial configuration of the cylindrical patch clamped at the left boundary (ξ = 0). x, y, z have the same length

unit (m). On the right boundary (ξ = 1), it is loaded by two uniformly distributed line forces: one pointing toward the positive y direction

at a magnitude of P̄y , the other pointing toward the negative z direction at a magnitude of P̄z .

Fig. 11. Mesh discretization of the cylindrical patch clamp at one boundary. (a), (b) are the finite element mesh with coarse resolution

viewed in the actual 3D space and the parametric space, respectively. (c), (d) are the finite element mesh with fine resolution viewed in the

actual 3D space and the parametric space, respectively.

The material properties are as follows: Young’s modulus is 28 MPa, and the Poisson ratio is 0.3. The thickness

of this structure is assumed to be 0.04 m. Fig. 11 presents the finite element meshes in different resolutions for the

second example: a doubly curved shell anchored at four corners. The coarser mesh (Fig. 11 (a,b)) has 397 nodes

and 356 elements, while the finer mesh (Fig. 11 (c,d)) has 1521 nodes and 1424 elements.

14

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 12. Prescribed loading paths to generate training dataset for the clamped cylindrical patch example. Paths are shown as straight lines

in the P̄y P̄z space, and the ultimate load at the end of each path is marked by a circle.

Table 2

Simulation time of the three examples at different resolutions when generating the training dataset. Neural network evaluation takes almost

the same time for all problems: 0.15 s, so it is not listed as items in Table 2. This is also true for physically constrained optimization,

where it usually costs 28 s to get the corrected local solutions. Computational times are evaluated on an NVIDIA DGX A100 workstation.

Resolution Steps per path Avg. time per path Total sim. time

Hemispherical shell
coarse 200 23 s 23 s

fine 20 59 s 59 s

Doubly curved shell
coarse 20 11 s 4400 s

fine 20 68 s 2720 s

Clamped shell
coarse 18 19 s 798 s

fine 6 47 s 658 s

The external load can be fully represented with two parameters (P̄y, P̄z). To populate the load parameter space,

42 load paths are prescribed radially such that the entire range of polar angle is equally divided into 42 segments.

Each monotonic straight-line loading path is simulated to some ultimate load point for 18 steps. We select one-third

of these paths to generate the high-fidelity simulation, but the steps on each path are limited to 6 (to control the

ratio between the low-fidelity data and the high-fidelity data). Three paths not existing in the training dataset are

generated randomly for test purposes. All of the prescribed paths are shown in Fig. 12:

Table 2 compares the performance of the machine learning predictions again the benchmark finite element

simulations. Note that a key advantage of the neural network predictions against the nonlinear finite element

simulations is that the neural network predictions does not require multiple loading step to reach the target load

whereas a conventional nonlinear finite element simulations may requires multiple incremental load steps to remain

close to the equilibrium state. As such, our approach, which requires 0.15 s neural network predictions + 28 s

for equilibrium correction, can be an attractive option when compared with the total simulation time of the FEM

(cf. Kim and James [60]).

4.2. Training configuration of the geometric models

This section aims to provide the detailed setting we employed for training the geometric learning model of the

numerical examples. The set of hyperparameters is provided to ensure reproducibility of the results. In each example,

we introduce the training setup for the mapping F̂, the graph autoencoder R̂, and the shell response controlling law

f̂ sequentially. Training setups usually cover the dimensions of neural network layers or substructures, the choice

of optimizer, the training iterations, and the learning rate. The neural networking is trained using the PyTorch

open-source library [61]. The training configuration for all examples is summarized in Tables 3±5. The success of

this training is evidenced in the loss vs. epochs shown in Fig. 13 where the loss histories against the training and

testing dataset of the doubly-curved shell example are provided.

15

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Table 3

Training setup of the first example. The Adam optimizer [62] is adopted for all tasks.

F̂ training setup

features of the GIN layers encoded dimensions 8

latent channels 64

MLP substructure of GIN layers
num. of layers 3

hidden neurons 100

features of the optimizer
batch size 1

training iterations 400

learning rate 5 × 10−4

R̂ training setup all setups are the same as those while training F̂ except that the batch size is 16

f̂ training setup

MLP architecture
num. of layers 3

hidden neurons 100

features of the optimizer

batch size 16

training iterations 500

learning rate 5 × 10−4

Table 4

Training setup of the second example. The Adam optimizer is adopted for all tasks.

F̂ training setup

features of the GIN layers
encoded dimensions 16

latent channels 64

MLP substructure of GIN layers same as Table 3

features of the optimizer

batch size 32

training iterations 500

learning rate 2.5 × 10−4

R̂ training setup

features of the GIN layers same as those in F̂ training setup

MLP substructure of GIN layers same as those in F̂ training setup

features of the optimizer
same as those in F̂ training setup

except that the training iteration is 250

f̂ training setup

MLP architecture same as Table 3

features of the optimizer

batch size 128

training iterations 1000

learning rate 5 × 10−4

Table 5

Training setup of the third example. The Adam optimizer is adopted for all tasks.

F̂ training setup

features of the GIN layers same as Table 4

MLP substructure of GIN layers same as Table 4

features of the optimizer

batch size 16

training iterations 750

learning rate 2.5 × 10−4

R̂ training setup

features of the GIN layers same as those in F̂ training setup

MLP substructure of GIN layers same as those in F̂ training setup

features of the optimizer
same as those in F̂ training setup

except that the training iteration is 250

f̂ training setup

MLP architecture same as Table 4

features of the optimizer

batch size 64

training iterations 1200

learning rate 5 × 10−4

16

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 13. Example training and validation loss function values for different neural network training tasks (for the doubly-curved shell example).

Fig. 14. Predicted deformed shell configurations at two test snapshots with prescribed loads not included in the training samples. The green

surface indicates the reference configuration (from DNS) while the gray surface indicates the configuration predicted from our model. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Numerical results and discussion

This section follows the demonstration in Section 4 and presents modeling results of the two examples of interest.

Section 5.1 shows verification results on the holed spherical shell to justify the usage of curvature filters and

the correctness of the resulting prediction. Sections 5.2 and 5.3 shows miscellaneous results that demonstrate the

capacity of our model in reconstructing a realistic response surface in higher-dimensional parametric space.

5.1. Spherical shell verification

The first example mainly serves as a verification example showing that the response surface can be successfully

reconstructed in a lower dimensional space. As the parametric loading space is only one-dimensional, we select

two loading states whose simulated shell configuration is not included in the training dataset: F̄ = 0.6275, 0.9425.

We plot the predicted shell manifold against the configuration obtained from direct numerical simulations (DNS)

in Fig. 14, where we can easily observe the predicted configuration is very close to the reference one (from DNS).

Physical residual equation values are also evaluated within a neighborhood of one of the loading points ((ξ, η) =

(1, 0)), as presented in Fig. 15, which suggests that the predicted shell configuration is in fact well compatible with

the physical constraints equation within the local area around where the concentrated load applied. Notice that the

value of the residuals are normalized to a dimensionless state by: |Rn|2 ×∆h/ñm and |[t ,β · Rm]|
2
×∆h/ñm , where

∆h is the mesh size and ñm is the maximum principal component of the effective membrane stress tensor ñβα at

the loaded point of interest.

We here want to highlight the capability of our model for capturing the nonlinearity in the response surface in

the parametric space. To this end, we propose to compare the prediction with our model and the linear interpolation

17

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 15. Normalized residual vector fields in the neighborhood of parametric coordinates (ξ, η) = (1, 0), where concentrated force is applied.

results, with a focus on the loading case where F̄ = 0.9425. We fetch two loading conditions that formulate

the closest possible upper and lower bound for the targeted case (F̄ = 0.9425), which could be determined as:

F̄ = 0.945, 0.94. We extract deformed configurations corresponding to the two fetched conditions from the database,

and generate the interpolated configuration by computing the arithmetic average of the displacement across the entire

domain, as the load targeted load is the arithmetic average of the fetched loads. For visualization purposes, we plot

the displacement prediction the absolute error of both the interpolated configuration and the predicted configuration

onto the initial shell configuration in Fig. 16.

5.2. A doubly-curved shell structure

This section provides numerical results regarding the shell configuration prediction and the responses in a local

area near the concentrated force after the resulting adjustment with physical constraints for the doubly-curved

shell example introduced in 4.1.2. We first present the deformed shell configuration for the three testing paths we

prescribed in 4.1, where each configuration is extracted after simulated to the end of the loading path. As Fig. 17

shows, the predicted shell configurations mostly overlap with the reference shell configurations, which are from the

high-fidelity numerical simulation results on the fine mesh shown in Fig. 7(c).

Again, we here want to show the privilege of our model w.r.t. the linear interpolation method in higher

dimensional parametric space. The test configuration is generated with a load of p = (−0.94,−0.14, 0.03, 0.77).

The resulting absolute error plot of the initial configuration is provided in Fig. 20. We find that the general magnitude

and the RMSE response of the displacement absolute error of our model prediction are much lower than their

interpolated counterparts, unlike the responses in Section 5.1. This further demonstrates the capability of recovering

the significant nonlinear behavior of the response surface in higher dimensional cases (see Fig. 18).

We compare the performance of the proposed model prediction against the method of snapshots (see Fig. 20).

Instead of classical POD with the method of snapshots, we first perform a singular value decomposition to extract

18

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 16. Absolute error of the displacement plotted on the initial shell configuration, with F̄ = 0.9425. (a) absolute error of the interpolated

configuration; (a) absolute error of the predicted configuration. In general, the prediction of our model outperforms the result obtained by

the linear interpolation method. Displacement absolute error unit: m.

Fig. 17. Predicted deformed shell configurations (doubly-curved) at the last step simulation results of the three prescribed test paths

demonstrated in Section 4.1. Displacements are scaled up by 7.5 times. The green surface indicates the ground-truth configuration while the

gray surface indicates the configuration predicted from our model. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 18. Comparison of the absolute error of the displacement field for the test case with load p = (−0.94,−0.14, 0.03, 0.77) between

different prediction approaches. Displacement absolute error unit: m.

19

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 19. Absolute error of the displacement field for the test case with load p = (−0.94,−0.14, 0.03, 0.77), obtained by the method of

snapshots with databases with different sizes. Displacement absolute error unit: m.

an orthogonal basis solution representation (with 10 orthogonal solutions), and then fit the coefficients associated

with each basis with the reference solution. (b)∼(f) shows the results obtained from the method of snapshots using

databases with different numbers of snapshots, where initially in (b) we use all 800 snapshots in h
G, and then we

gradually reduce the number of snapshots in the database by random selection ((c)∼(f)), so that we can get a sense

of when the method snapshot is no longer reliable (see Fig. 19).

Next, we would like to show the progress with solution adjustment with physical constraints. Fig. 21 shows

one example set of perturbed modes as the basis for adjusting the shell configuration locally around the loaded

points (ξ, η) = (0,−1) at the end of test path # 1. These perturbed fields are generated by random prescribe

perturbation δ pi (i = 1, 2, 3, 4) in the parametric space, while the linear independency is verified for the perturbed

fields. Adjusted local shell configurations for three different loading paths are shown in Fig. 22. We also provide

the computed linear momentum residual and director momentum residual fields within the neighborhood of the two

loaded points for the three different loading cases in Figs. 23±28.

We further provide additional figures that demonstrate the learned response surface from a different perspective.

Fig. 29 presents the load response curve at loading points (ξ, η) = (0,−1) and (0, 1) for different loading paths,

where the magnitude of horizontal deflection (the displacement vector without z component) is plotted as a function

of the magnitude of concentrated load applied at corresponding points. In most cases, the deflection prediction is

quite accurate, except that a small discrepancy is observed toward the end of the loading paths. This discrepancy

could be attributed to the sparsity of the training data near the edge of the sampling domain that negatively impacts

the neural network performance. Furthermore, the prediction accuracy also highly depends on the expressive power

of the graph neural network, which can be further improved. In fact, there remain open questions on how to

distinguish basic graph structures, such as differences in graph cycles, a task yet to be tackled by even the most

20

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 20. The first five shell configurations of the orthogonal solution basis obtained from the method of snapshots. (a) is the undeformed

shell configuration (the green surface), which also serves as the 1st solution in the orthogonal basis. In (b)∼(e), we plot the solutions as

deformed shell configurations (the gray surface) against the undeformed shell configuration. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Examples of the perturbed functional basis for optimizing the predicted shell configuration locally with physical constraints, for

the case of test path # 1 around (ξ, η) = (0,−1). The green surface indicates the non-perturbed reference local patch simulated shell

configuration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

state-of-the-art graph neural network [63]. Further improvement in the graph autoencoder design will be considered

in the future but is out of the scope of this study.

Next, we provide a global view of the response surface in the parametric space. It is plausible to assume that

the ground truth response surface of our physical problem is a smooth nonlinear manifold, both in the non-reduced

space and reduced latent space L. As a result, we propose to check whether the reconstructed solution manifold

is smooth and relatively close to the reference solution manifold from the simulation. To this end, we utilize the

encoded feature vector in the reduced ordered latent space that is learned by (8). Fig. 30 shows L2-norm of the

difference (vector) between the embedded EFV and the predicted EFV. The resultant field is a scalar function of

21

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 22. Resulting local patch on the shell configuration after correction based on physical constraints for specific points of interest (e.g., near

concentrated load). The green surface indicates the reference local patch simulated shell configuration; the gray surface indicates the corrected

local patch. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 23. Normalized momentum residual vector fields in the neighborhood of parametric coordinates (ξ, η) = (0,−1) at the last step

simulation results of test paths # 1.

Fig. 24. Normalized momentum residual vector fields in the neighborhood of parametric coordinates (ξ, η) = (0,−1) at the last step

simulation results of test paths # 2.

the parametric load (4D Euclidean space), and we take cross-section views on three representative planes to verify

the continuity of the learned manifold of the response surface in the reduced ordered space. As we can observe,

the difference between the EFV from simulated solutions and the predicted solutions is smoothly distributed and

limited in magnitude (as a Euclidean norm in 16D space). This further justifies the validity of our solution manifold

reconstruction process.

22

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 25. Normalized momentum residual vector fields in the neighborhood of parametric coordinates (ξ, η) = (0,−1) at the last step

simulation results of test paths # 3.

Fig. 26. Normalized momentum residual vector fields in the neighborhood of parametric coordinates (ξ, η) = (0, 1) at the last step simulation

results of test paths # 1.

Fig. 27. Normalized momentum residual vector fields in the neighborhood of parametric coordinates (ξ, η) = (0, 1) at the last step simulation

results of test paths # 2.

5.3. Cylindrical shell patch clamped at one boundary

This section provides numerical results for the cylindrical shell patch example introduced in 4.1.3, so that we

further demonstrate how the response surface is established for non-concentrated loads. As we have shown in

Section 5.2, we present the quantitative prediction results with the deformed shell configuration for the last snapshot

23

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 28. Normalized momentum residual vector fields in the neighborhood of parametric coordinates (ξ, η) = (0, 1) at the last step simulation

results of test paths # 3.

Fig. 29. Load response curve over the three prescribed test paths. x axis value indicates the magnitude of the prescribed force at either

point (ξ, η) = (0,−1) or (ξ, η) = (0, 1) (unit: kN); y axis value indicates the magnitude of horizontal deflection at the same point (unit: m).

The simulated load curve is well recovered by the NN prediction in all cases.

of the three testing paths we prescribed in 4.1.3. The deformed configurations are plotted in Fig. 31, where the test

paths are ordered by the polar angle value on the P̄y P̄z plane.

Next, we focus on the local response at the bottom-right corner ((ξ, η) = (1, 0)), as this location seems to

exhibit the largest displacement over the computational domain. We first extract the load±displacement response at

this point for the test paths in Fig. 32.

Then we make the physics-based adjustment to the local solutions at (ξ, η) = (1, 0). For the 2-dimensional P̄y P̄z

load parametric space, two perturbed local solutions are sufficient to create an orthogonal basis to optimize the shell

prediction locally. The adjusted local shell configurations for three different loading paths are shown in Fig. 33.

24

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 30. L2-norm of the difference (vector) between the embedded EFV and the predicted EFV. The resultant scalar field as a function of

the parametric load (in 4D Euclidean space) is visualized by taking the cross-section view on three planes: (a) F̄0x F̄0y plane, (b) F̄0x F̄1x

plane, and (c) F̄0y F̄1y plane.

Fig. 31. Predicted deformed shell configurations (cylindrical patch) at the last step simulation results of the three prescribed test paths

demonstrated in Section 4.1.3. Displacements are scaled up by 2.0 times. The green surface indicates the ground-truth configuration while

the gray surface indicates the configuration predicted from our model. The prediction agrees well with the reference one. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 32. Load response curve over the three prescribed test paths. x-axis value is equivalent to

√

P̄2
y + P̄2

z (unit: kN/m); y-axis value indicates

the magnitude of displacement of the bottom-right corner at (ξ, η) = (1, 0) (unit: m). The simulated load curve is well recovered by the NN

prediction in all cases.

We also compute linear momentum residual and director momentum residual fields within the neighborhood of

this location in Figs. 34 and 35. The small residual values verify that our model works fine for a shell model with

distributed loads. And interestingly, the residual fields in Figs. 34 and 35 are quite smooth rather than those in

Figs. 23±28, where the authors speculate that it is caused by the fact that the ground-truth solution does not exhibit

a singularity as the load is not concentrated.

25

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 33. Resulting local patch on the shell configuration (cylindrical patch) after correction based on physical constraints for (ξ, η) = (1, 0)

(bottom-right corner). The green surface indicates the reference local patch simulated shell configuration; the gray surface indicates the

corrected local patch. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 34. Normalized linear momentum residual vector fields in the neighborhood of parametric coordinates (ξ, η) = (1, 0) at the last step

simulation results of the three test paths (the cylindrical patch example).

Fig. 35. Normalized weighted director momentum residual vector fields in the neighborhood of parametric coordinates (ξ, η) = (1, 0) at the

last step simulation results of the three test paths (the cylindrical patch example).

26

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

Fig. 36. Example loss history recorded during the physics-informed adjustment of the shell configuration locally using the following approach:

(a) direct physics-informed training; (b) Algorithm 1. The physical residual in case (a) first decrease and then increase to a relatively large

value, indicating a potential failure of training.

Fig. 37. Example of the local shell configuration after the adjustment with physical constraints. The green surface indicates the reference

local shell configuration obtained from a numerical simulation; the gray surface indicates the shell configuration obtained using the following

approach: (a) direct physics-informed training; (b) Algorithm 1. The adjusted configuration in case (a) cannot match the reference one at

all, while it is the opposite in case (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Intuitively, we may propose direct functional mappings for ϕ̂ and t̂ parametrized by neural networks and

train it with the loss derived from residual equations in (14) via physics-informed learning [50,53]. We call this

methodology as direct physics-informed training herein. However, fine-tuning the neural network to suppress this

physical loss function is not trivial. Due to the non-convexity of the optimization problem, it is difficult to guarantee

the convergence rate of the supervised learning problem as they are highly sensitive to hyperparameters, including

the neural network architecture and optimization strategies [50].

Figs. 36 and 37 compare the training performance and the deformed configurations of the shell obtained via the

physics-constrained neural network and those obtained from the proposed correction algorithm. These results clearly

indicate the issue of non-convexity of the physics-informed training in the sense that a local loss minimizer which

is far from the equilibrium (loss ≈ 0.1) is encountered. It should be indicated a more sophisticated hyperparameter

tuning, a more efficient optimization algorithm and a longer exploration (with more epochs) might all increase

the probability of getting a better result. However, these interventions are not feasible for online or time-sensitive

simulations where maintaining the consistency of the solver speed is necessary.

6. Conclusions

This paper presents a predictor±corrector geometric learning digital twin that combines the expressive power of

graph isomorphism neural network and nonlinear graph embedding to adpatively generate orthogonal bases locally

27

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

that predict the admissible deformed configuration of a geometrically exact shell undergoing stable deformation.

Our numerical experiments indicate that the reduced-order model is capable of delivering robust simulation-free

predictions that are several orders more accurate than those obtained from the interpolated response surface. Another

salient feature of the current approach is that it only requires training of the neural network at the training phase

of the model, but not during the deploying of the models when it is used to make predictions. This feature helps

us deliver more robust and predictable performance, both in terms of accuracy and execution speed. Our numerical

results show that the proposed framework is capable of delivering simulation-free or reduced-order simulation

results with reasonable accuracy and robustness at affordable training and deployment costs. On the other hand,

the major limitation of the proposed method is that it is not yet able to handle predictions for unstable problems

where bifurcated solutions may exist. Future works in this line of research may include the development of such

a remedy to handle bifurcation and for systems very sensitive to perturbations. Another two major directions may

include techniques that can handle transient and dynamic solutions, and the usage of the proposed model to deduce

constitutive models for composites, such as woven composite and laminated composite shells. Researches in these

directions are currently in progress.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could

have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors thank the two anonymous reviewers for their constructive feedback and suggestions. The authors is

grateful for Professor Jure Leskovec who allow us to audit the course CS224W in the winter quarter of 2023

at Stanford and the support provided by the UPS Foundation and the Department of Civil and Environmental

engineering of Stanford University that enables the authors to complete this manuscript at the Stanford campus. The

authors are supported by the National Science Foundation under grant contracts CMMI-1846875, and the Dynamic

Materials and Interactions Program from the Air Force Office of Scientific Research under grant contracts FA9550-

21-1-0391 and FA9550-21-1-0027, and the MURI Grant No. FA9550-19-1-0318. These supports are gratefully

acknowledged. The views and conclusions contained in this document are those of the authors, and should not

be interpreted as representing the official policies, either expressed or implied, of the sponsors, including the U.S.

Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation herein. The views and conclusions contained in this document are those of

the authors, and should not be interpreted as representing the official policies, either expressed or implied, of the

sponsors, including the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to

reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

References

[1] Stephen Timoshenko, Sergius Woinowsky-Krieger, et al., Theory of Plates and Shells, Vol. 2, McGraw-hill New York, 1959.

[2] Raymond David Mindlin, H.H. Bleich, Response of an Elastic Cylindrical Shell to a Transverse, Step Shock Wave, American Society

of Mechanical Engineers, 1953.

[3] Chris R. Calladine, Theory of Shell Structures, Cambridge University Press, 1983.

[4] Petr Krysl, Jiun-Shyan Chen, Benchmarking computational shell models, Arch. Comput. Methods Eng. 30 (1) (2023) 301±315.

[5] Alejandro Arteaga Mota, A Class of Geometrically Exact Membrane and Cable Finite Elements Based on the Hu-Washizu Functional,

Cornell University, 2000.

[6] M.E. Bechly, P.D. Clausen, Structural design of a composite wind turbine blade using finite element analysis, Comput. Struct. 63 (3)

(1997) 639±646.

[7] Philip Avery, Daniel Z. Huang, Wanli He, Johanna Ehlers, Armen Derkevorkian, Charbel Farhat, A computationally tractable framework

for nonlinear dynamic multiscale modeling of membrane woven fabrics, Internat. J. Numer. Methods Engrg. 122 (10) (2021) 2598±2625.

[8] Liliana Beldie, Göran Sandberg, Lars Sandberg, Paperboard packages exposed to static loads±finite element modelling and experiments,

Packag. Technol. Sci. Int. J. 14 (4) (2001) 171±178.

28

http://refhub.elsevier.com/S0045-7825(23)00343-2/sb1
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb2
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb2
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb2
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb3
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb4
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb5
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb5
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb5
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb6
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb6
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb6
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb7
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb7
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb7
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb8
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb8
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb8

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

[9] Thomas J.R. Hughes, Wing Kam Liu, Nonlinear finite element analysis of shells: Part I. Three-dimensional shells, Comput. Methods

Appl. Mech. Engrg. 26 (3) (1981) 331±362.

[10] Eduardo N. Dvorkin, Klaus-Jürgen Bathe, A continuum mechanics based four-node shell element for general non-linear analysis, Eng.

Comput. (1984).

[11] Gary Mitchel Stanley, Continuum-Based Shell Elements, Stanford University, 1985.

[12] Wing K. Liu, E.S. Law, D. Lam, T. Belytschko, Resultant-stress degenerated-shell element, Comput. Methods Appl. Mech. Engrg. 55

(3) (1986) 259±300.

[13] J.L. Ericksen, C. Truesdell, Exact theory of stress and strain in rods and shells, Arch. Ration. Mech. Anal. 1 (1) (1957) 295±323.

[14] Paul Mansour Naghdi, The theory of shells and plates, in: Linear Theories of Elasticity and Thermoelasticity, Springer, 1973, pp.

425±640.

[15] Juan C. Simo, David D. Fox, On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization,

Comput. Methods Appl. Mech. Engrg. 72 (3) (1989) 267±304.

[16] J.C. Simo, D.D. Fox, M.S. Rifai, On a stress resultant geometrically exact shell model. Part II: The linear theory; computational

aspects, Comput. Methods Appl. Mech. Engrg. 73 (1) (1989) 53±92.

[17] Adnan IbrahimbegoviÂc, Stress resultant geometrically nonlinear shell theory with drilling rotationsÐPart I. A consistent formulation,

Comput. Methods Appl. Mech. Engrg. 118 (3±4) (1994) 265±284.

[18] Hee Yuel Roh, Maenghyo Cho, The application of geometrically exact shell elements to B-spline surfaces, Comput. Methods Appl.

Mech. Engrg. 193 (23±26) (2004) 2261±2299.

[19] Erwin Kreyszig, Differential Geometry, Courier Corporation, 2013.

[20] Richard P. Vinci, Joost J. Vlassak, Mechanical behavior of thin films, Annu. Rev. Mater. Sci. 26 (1) (1996) 431±462.

[21] Emma Lejeune, Ali Javili, Christian Linder, Understanding geometric instabilities in thin films via a multi-layer model, Soft Matter

12 (3) (2016) 806±816.

[22] Jon E. Olson, Joint pattern development: Effects of subcritical crack growth and mechanical crack interaction, J. Geophys. Res. Solid

Earth 98 (B7) (1993) 12251±12265.

[23] Christian Linder, Francisco Armero, Finite elements with embedded strong discontinuities for the modeling of failure in solids, Internat.

J. Numer. Methods Engrg. 72 (12) (2007) 1391±1433.

[24] Isabelle Staude, Jörg Schilling, Metamaterial-inspired silicon nanophotonics, Nat. Photonics 11 (5) (2017) 274±284.

[25] Jacob Fish, Gregory J. Wagner, Sinan Keten, Mesoscopic and multiscale modelling in materials, Nature Mater. 20 (6) (2021) 774±786.

[26] Lihua Jin, Alex Chortos, Feifei Lian, Eric Pop, Christian Linder, Zhenan Bao, Wei Cai, Microstructural origin of resistance±strain

hysteresis in carbon nanotube thin film conductors, Proc. Natl. Acad. Sci. 115 (9) (2018) 1986±1991.

[27] Siddhant Kumar, Stephanie Tan, Li Zheng, Dennis M. Kochmann, Inverse-designed spinodoid metamaterials, npj Comput. Mater. 6 (1)

(2020) 1±10.

[28] Cyril Touzé, Alessandra Vizzaccaro, Olivier Thomas, Model order reduction methods for geometrically nonlinear structures: a review

of nonlinear techniques, Nonlinear Dynam. 105 (2) (2021) 1141±1190.

[29] Sanjay Lall, Petr Krysl, Jerrold E. Marsden, Structure-preserving model reduction for mechanical systems, Physica D 184 (1±4) (2003)

304±318.

[30] Charbel Farhat, Philip Avery, Todd Chapman, Julien Cortial, Dimensional reduction of nonlinear finite element dynamic models with

finite rotations and energy-based mesh sampling and weighting for computational efficiency, Internat. J. Numer. Methods Engrg. 98

(9) (2014) 625±662.

[31] Shobhit Jain, Paolo Tiso, Simulation-free hyper-reduction for geometrically nonlinear structural dynamics: a quadratic manifold lifting

approach, J. Comput. Nonlinear Dyn. 13 (7) (2018).

[32] Patricia Astrid, Siep Weiland, Karen Willcox, Ton Backx, Missing point estimation in models described by proper orthogonal

decomposition, IEEE Trans. Automat. Control 53 (10) (2008) 2237±2251.

[33] Alejandro Cosimo, Alberto Cardona, Sergio Idelsohn, Improving the k-compressibility of hyper reduced order models with moving

sources: applications to welding and phase change problems, Comput. Methods Appl. Mech. Engrg. 274 (2014) 237±263.

[34] Petr Krysl, Sanjay Lall, Jerrold E. Marsden, Dimensional model reduction in non-linear finite element dynamics of solids and structures,

Internat. J. Numer. Methods Engrg. 51 (4) (2001) 479±504.

[35] Sergio R. Idelsohn, Alberto Cardona, A load-dependent basis for reduced nonlinear structural dynamics, Comput. Struct. 20 (1±3)

(1985) 203±210.

[36] Kwangkeun Kim, Adrian G. Radu, X.Q. Wang, Marc P. Mignolet, Nonlinear reduced order modeling of isotropic and functionally

graded plates, Int. J. Non-Linear Mech. 49 (2013) 100±110.

[37] Tiangang Cui, Youssef M. Marzouk, Karen E. Willcox, Data-driven model reduction for the Bayesian solution of inverse problems,

Internat. J. Numer. Methods Engrg. 102 (5) (2015) 966±990.

[38] Xinran Zhong, WaiChing Sun, An adaptive reduced-dimensional discrete element model for dynamic responses of granular materials

with high-frequency noises, Int. J. Multiscale Comput. Eng. 16 (4) (2018).

[39] Xinran Zhong, WaiChing Sun, Ying Dai, A reduced-dimensional explicit discrete element solver for simulating granular mixing

problems, Granul. Matter 23 (2021) 1±13.

[40] Nikolaos N. Vlassis, Ran Ma, WaiChing Sun, Geometric deep learning for computational mechanics part I: anisotropic hyperelasticity,

Comput. Methods Appl. Mech. Engrg. 371 (2020) 113299.

[41] Nikolaos N. Vlassis, WaiChing Sun, Geometric learning for computational mechanics part II: Graph embedding for interpretable

multiscale plasticity, Comput. Methods Appl. Mech. Engrg. 404 (2023) 115768.

[42] Aleksandr Mikhailovich Lyapunov, The general problem of the stability of motion, Internat. J. Control 55 (3) (1992) 531±534.

29

http://refhub.elsevier.com/S0045-7825(23)00343-2/sb9
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb9
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb9
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb10
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb10
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb10
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb11
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb12
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb12
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb12
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb13
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb14
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb14
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb14
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb15
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb15
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb15
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb16
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb16
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb16
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb17
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb17
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb17
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb18
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb18
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb18
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb19
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb20
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb21
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb21
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb21
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb22
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb22
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb22
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb23
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb23
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb23
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb24
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb25
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb26
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb26
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb26
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb27
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb27
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb27
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb28
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb28
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb28
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb29
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb29
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb29
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb30
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb30
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb30
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb30
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb30
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb31
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb31
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb31
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb32
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb32
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb32
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb33
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb33
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb33
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb34
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb34
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb34
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb35
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb35
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb35
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb36
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb36
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb36
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb37
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb37
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb37
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb38
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb38
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb38
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb39
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb39
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb39
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb40
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb40
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb40
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb41
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb41
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb41
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb42

M. Xiao, R. Ma and W. Sun Computer Methods in Applied Mechanics and Engineering 415 (2023) 116219

[43] Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, Michael W. Mahoney, Characterizing possible failure modes in

physics-informed neural networks, Adv. Neural Inf. Process. Syst. 34 (2021) 26548±26560.

[44] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, Kevin Murphy, Machine learning on graphs: A model and

comprehensive taxonomy, J. Mach. Learn. Res. 23 (89) (2022) 1±64.

[45] Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar VeličkoviÂc, Geometric deep learning: Grids, groups, graphs, geodesics, and

gauges, 2021, arXiv preprint arXiv:2104.13478.

[46] Glaucio H. Paulino, Ivan F.M. Menezes, Marcelo Gattass, Subrata Mukherjee, Node and element resequencing using the laplacian of

a finite element graph: part IÐgeneral concepts and algorithm, Internat. J. Numer. Methods Engrg. 37 (9) (1994) 1511±1530.

[47] Alejandro Mota, Jaroslaw Knap, Michael Ortiz, Fracture and fragmentation of simplicial finite element meshes using graphs, Internat.

J. Numer. Methods Engrg. 73 (11) (2008) 1547±1570.

[48] Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka, How powerful are graph neural networks? 2018, arXiv preprint arXiv:1810.

00826.

[49] Boris Weisfeiler, Andrei Leman, The reduction of a graph to canonical form and the algebra which appears therein, NTI, Ser. 2 (9)

(1968) 12±16.

[50] Jan-Hendrik Bastek, Dennis M. Kochmann, Physics-informed neural networks for shell structures, Eur. J. Mech. A Solids 97 (2023)

104849.

[51] Nikolaos N. Vlassis, WaiChing Sun, Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity

models with level set hardening, Comput. Methods Appl. Mech. Engrg. 377 (2021) 113695.

[52] Bahador Bahmani, WaiChing Sun, Training multi-objective/multi-task collocation physics-informed neural network with student/teachers

transfer learnings, 2021, arXiv preprint arXiv:2107.11496.

[53] Maziar Raissi, Paris Perdikaris, George E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686±707.

[54] Minglang Yin, Enrui Zhang, Yue Yu, George Em Karniadakis, Interfacing finite elements with deep neural operators for fast multiscale

modeling of mechanics problems, Comput. Methods Appl. Mech. Engrg. (2022) 115027.

[55] Tapas Tripura, Souvik Chakraborty, Wavelet neural operator for solving parametric partial differential equations in computational

mechanics problems, Comput. Methods Appl. Mech. Engrg. 404 (2023) 115783.

[56] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar,

Fourier neural operator for parametric partial differential equations, 2020, arXiv preprint arXiv:2010.08895.

[57] David L. Donoho, Carrie Grimes, Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, Proc. Natl.

Acad. Sci. 100 (10) (2003) 5591±5596.

[58] Xiaolong He, Qizhi He, Jiun-Shyan Chen, Usha Sinha, Shantanu Sinha, Physics-constrained local convexity data-driven modeling of

anisotropic nonlinear elastic solids, Data-Cent. Eng. 1 (2020) e19.

[59] Qizhi He, Jiun-Shyan Chen, A physics-constrained data-driven approach based on locally convex reconstruction for noisy database,

Comput. Methods Appl. Mech. Engrg. 363 (2020) 112791.

[60] Theodore Kim, Doug L. James, Skipping steps in deformable simulation with online model reduction, in: ACM SIGGRAPH Asia

2009 Papers, 2009, pp. 1±9.

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al., PyTorch: An imperative style, high-performance deep learning library, Adv. Neural Inf. Process. Syst.

32 (2019).

[62] Adam - PyTorch 1.13 documentation, URL https://pytorch.org/docs/stable/generated/torch.optim.Adam.html.

[63] Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, Jure Leskovec, Identity-aware graph neural networks, in: Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 35, No. 12, 2021, pp. 10737±10745.

30

http://refhub.elsevier.com/S0045-7825(23)00343-2/sb43
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb43
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb43
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb44
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb44
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb44
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb46
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb46
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb46
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb47
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb47
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb47
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1810.00826
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb49
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb49
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb49
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb50
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb50
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb50
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb51
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb51
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb51
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://arxiv.org/abs/2107.11496
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb53
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb53
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb53
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb54
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb54
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb54
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb55
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb55
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb55
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2010.08895
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb57
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb57
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb57
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb58
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb58
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb58
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb59
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb59
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb59
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb60
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb60
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb60
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb61
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb61
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb61
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb61
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb61
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb63
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb63
http://refhub.elsevier.com/S0045-7825(23)00343-2/sb63

	Geometric learning for computational mechanics, Part III: Physics-constrained response surface of geometrically nonlinear shells
	Introduction
	Deep geometric learning with graph neural networks
	Graph representation for shells discretized by different meshes
	The geometric learning model with graph neural networks
	The graph autoencoder architecture
	The learning problem for the high-fidelity shell responses

	Predicting the high-fidelity results without full-scale simulations

	Local enrichment with geometrical and physical constraints on the machine learning prediction
	Physical constraints for geometrically nonlinear shell
	Reduced-order modeling via tangential space of the solution manifold

	Training of the geometric learning model
	Generation of the graph database for deformed shell fields
	A hemispherical shell holed at the pole
	A doubly-curved shell anchored at four corners
	A cylindrical patch clamped at one boundary

	Training configuration of the geometric models

	Numerical results and discussion
	Spherical shell verification
	A doubly-curved shell structure
	Cylindrical shell patch clamped at one boundary

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

