
Computational Mechanics (2023) 72:95–124
https://doi.org/10.1007/s00466-023-02335-6

ORIG INAL PAPER

Design of experiments for the calibration of history-dependent models
via deep reinforcement learning and an enhanced Kalman filter

Ruben Villarreal1 · Nikolaos N. Vlassis2 · Nhon N. Phan2 · Tommie A. Catanach1 · Reese E. Jones1 ·
Nathaniel A. Trask3 · Sharlotte L. B. Kramer3 ·WaiChing Sun2

Received: 30 September 2022 / Accepted: 30 March 2023 / Published online: 12 May 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Experimental data are often costly to obtain, which makes it difficult to calibrate complex models. For many models an
experimental design that produces the best calibration given a limited experimental budget is not obvious. This paper introduces
a deep reinforcement learning (RL) algorithm for design of experiments that maximizes the information gain measured by
Kullback–Leibler divergence obtained via the Kalman filter (KF). This combination enables experimental design for rapid
online experimentswheremanual trial-and-error is not feasible in the high-dimensional parametric design space.We formulate
possible configurations of experiments as a decision tree and a Markov decision process, where a finite choice of actions
is available at each incremental step. Once an action is taken, a variety of measurements are used to update the state of
the experiment. This new data leads to a Bayesian update of the parameters by the KF, which is used to enhance the state
representation. In contrast to the Nash–Sutcliffe efficiency index, which requires additional sampling to test hypotheses
for forward predictions, the KF can lower the cost of experiments by directly estimating the values of new data acquired
through additional actions. In this work our applications focus onmechanical testing ofmaterials. Numerical experiments with
complex, history-dependent models are used to verify the implementation and benchmark the performance of the RL-designed
experiments.

Keywords Experimental design · Deep reinforcement learning · Enhanced Kalman filter · Elastoplasticity

1 Introduction

Finding an accurate representation for the physical response
of a material with complex nonlinear behavior is a diffi-
cult endeavor that depends on the parametric complexity
of the selected model, the experimental data available for
calibration, and other factors such as indirect, noisy, or
incomplete observations. This has motivated experimental
design as a longstanding research area [15] with a multitude
of approaches In particular, the field of Bayesian optimal
experimental design [5, 55] provides a paradigm to incor-
porate both prior information and uncertainties. It is guided
by a user-selected utility function which can be recast as

B Nikolaos N. Vlassis
nnv2102@columbia.edu

1 Sandia National Laboratories, Livermore, CA, USA
2 Department of Civil Engineering and Engineering Mechanics,

Columbia University, New York, USA
3 Sandia National Laboratories, Albuquerque, NM, USA

a dynamic programming problem based on the well-known
Hamilton–Jacobi–Bellman equation [24, 25]. Reinforcement
learning solutions [2, 10, 36, 38, 51, 52], such as the one pro-
posed in this work, have the same basis. Also related to the
present endeavour is real-time data assimilation, such as the
Dynamic Data Driven Application Systems framework [7].

The physical characteristics of the material of interest
in large part guide optimal experimental design. Material
symmetry plays a role in model and response complex-
ity, and hence in the complexity of the experiments needed
to characterize it. For instance, the irreducible number of
parameters for isotropic linear elasticity is just two, so
two linearly independent observations of stress are suffi-
cient to characterize the model; however, the number of
parameters increases for lower symmetry materials such
as transversely isotropic, orthotropic, monoclinic and fully
anisotropic elasticity (which has 21 independent parameters).
This complexity requires more independent observations
and poses a more challenging optimal experimental design
problem. Nonlinearity and path/history dependence of the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-023-02335-6&domain=pdf
http://orcid.org/0000-0002-0644-234X

96 Computational Mechanics (2023) 72:95–124

material response also play a role in model complexity and
the data needed to obtain a sufficiently accurate calibration.
Given large enough loads, most materials exhibit both non-
linearity in the stress–strain response and dissipation which
leads to path dependence. For instance, the material model in
Ames et al. [1] requires 37 material parameters and complex
forms to capture the thermo-mechanical response of amor-
phous polymers, and Ma and Sun [45] requires 25 material
parameters to capture the crystal plasticity and phase transi-
tion of salt under high pressure and high temperature. While
the use of machine learning to generate constitutive laws [30,
64] may enable one to bypass the need to identify a partic-
ular model form, the data required to obtain a sufficiently
accurate neural network or Gaussian process model may be
considerable and complex/ambiguous, and hence costly to
obtain [16, 22, 66, 67].

The complexity of both traditional and emerging mod-
els, combined with the epistemic uncertainty that commonly
occurs with experimental calibration, makes it difficult to use
intuition alone to foresee the optimal experimental design
for a fixed amount of resources (such as the duration of the
experiment). While Bayesian design of experiments (DOE)
[5, 53] may efficiently estimate and optimize the information
gain of an experiment with a limited number of design vari-
ables, calibrating amaterialmodel often requires hundreds or
even thousands of loading steps, each with a set of available
options/control actions. This decision-tree, beginning with
the material in its reference state, advances to subsequent
states through a series of policy predictions that facilitate
long-term planning, thereby rendering traditional myopic
Bayesian Design of Experiments (DOE) inapplicable. The
sequential process of decision–action-feedback of an experi-
ment can be represented as aMarkov decision process (MDP)
in discrete time, where the optimal design of the experiment
can be recast as a policy that optimizes a pre-selected set of
rewards. The MDP is the foundation of reinforcement learn-
ing and has been successfully used for real-time decision
making in robotics, control, and other fields [20, 23, 37, 72].
The interaction loop in a reinforcement learning algorithm
is shown schematically in Fig. 1 and centers around an actor
utilizing a policy to maximize rewards.

In this paper, we use a model-based deep reinforcement
learning approach where an agent is constantly building a
model based on the interaction with the environment. In con-
trast, a model-free algorithm does not involve the modeling
and parameterization of the state and policy. Instead, the pol-
icy of the action is carried out through the statistics of rewards
for a given action in the decision tree via Q table through pol-
icy gradient (see Feinberg et al. [14] and Sutton and Barto
[63]). Due to the depth of the decision tree required for the
design-of-experiment problem, we can only generate walks
that visit a small fraction of states. Hence, the model-based
method is preferred, as the model can estimate the states and

Fig. 1 Deep reinforcement learning. The environment consists of a
physical experiment, which reacts to actions, such as a prescribed strain,
to produce a new observed state. The reaction of the experiment, byway
of the calibration method, produces a reward that drives the (external)
agent to generate a policy that takes actions that maximizes rewards.
In deep RL the action-value policy is represented with a deep neural
network (DNN) that takes states and current rewards as inputs and pro-
duces favorable actions and values (which are accumulated rewards) as
outputs

policies and hence enables planing with fewer interactions.
The same approach has been used, for instance, in Chess and
Go, where the total number of visited states is significantly
less than the possible states (cf. Silver et al. [59]). Please
refer to Sutton and Barto [63] for a comprehensive review of
various types of reinforcement learning.

In this work, we introduce a reinforcement learning (RL)
[33, 43, 63] approach to optimal experimental design that uti-
lizes a deep neural network and an enhanced Kalman filter
(KF) [41, 69] for policy estimation to maximize the informa-
tion gain for an experiment. We develop a framework which
exploits our prior knowledge of the underlying physics by
utilizing the structure of common history dependent mod-
els, such as plasticity, and augments the RL state with the
uncertainty associated with model parameters. This allows
the agent to select actions which are guided by parameter
sensitivities to reduce the estimated variance of the param-
eters. The enhanced Kalman filter we present will provide
a computationally efficient means of estimating parameter
uncertainty for nonlinear systems. This approach offers sev-
eral salient features and improvements over previous efforts
(cf. Wang and Sun [65]) and is focused on providing optimal
experimental designs for complex models. First of all, the
use of a KF to provide a parameter calibration and paramet-
ric uncertainty-based reward via the Kullback–Leibler (KL)
divergence measuring information gain enables the method
to bypass the costly bottleneck induced by theNash–Sutcliffe
efficiency (NSE) index [46] used to estimate the values of
new experimental data. This bypass leads to significant cost
savings for experimental data that are expensive to obtain.
Second, the introduction of a deep neural network trained
by Monte Carlo tree search (MCTS) balances the needs
for exploration and exploitation. Third, the RL and KF are
enhanced with additional state information and strategies to
handle the history dependence of the process and model. In

123

Computational Mechanics (2023) 72:95–124 97

essence, we seek to replace a traditional experimentalist who
pre-conceives experiments with an RL actor who is guided
by a pre-trained policy and reacts to real-time rewards to
minimize uncertainty in the model calibration.

The remarkable adaptability of Kalman filters to a vast
array of linear and non-linear problems stems from their
ability to efficiently estimate uncertainty through recursive
updates in state and measurement parameters. For instance,
Kalman filters have been effectively employed for real-
time tracking of structural damage in civil infrastructure.
Their diverse applications span from detecting building
damage resulting from extreme events like earthquakes or
severe weather [17, 70, 73], monitor degradation using
incomplete knowledge of dynamics [27, 42], detection of
anomalous behaviour in structural sub-elements [49], non-
collocated heterogeneous sensing in non-linear systems [6],
and accounting for the effect of environmental changes on
the response of the system [12, 26, 29].

In Sect. 2 we develop a Kalman filter that can handle the
non-linearity, non-smoothness, and history-dependence of
common material models. It also exploits known behavior of
themodel, for example specific parameter sensitivities domi-
nate in certain regimes. Since the Kalman filter is essentially
an incremental Bayesian calibration (and state estimation)
method, it provides parameter covariances as well as esti-
mates of the mean parameters. The deep reinforcement
learning method, described Sect. 3, utilizes this information
in both the state and the reward that defines and guides the
policy. The policy for controlling an experiment with the
chosen reward creates data along a path thatmaximizes infor-
mation gain in the selected model’s parameters. We employ
a policy-value scheme that represents the rewards for control
actions over the decision tree with a neural network. Since
the possible paths of even simple experiments with a few
allowable actions/decisions at every state have an enormous
number of possible paths, we need to use Monte Carlo sam-
pling on this tree to train the policy-value network. In Sect. 4,
the proposed algorithm is demonstrated with widely-used
plasticity models [44]. Two numerical examples are specif-
ically designed to validate the deep RL where a benchmark
of optimal experimental design is available. A third exam-
ple demonstrates that the algorithm is effective in obtaining
an optimal experimental design given a pre-selected model
where the best design is not known a priori. Table 1 sum-
marizes the notation used in the following sections. More
details of the particular models and the KF applied to history
dependent models are given in the Appendices.

2 Model calibration

The calibration task is, given a modelm:

y = m(x; θ) (1)

Table 1 Notation for generic model, exemplar, Kalman filter and rein-
forcement learning method

Symbol Description

d Observable output (data)

y Model output

x Controllable input

z Hidden model state

m Observation/response model

f Hidden state dynamics

θ Parameters

σ Stress (model output)

ε Strain (observable input)

ε p Plastic strain (hidden model state)

µ Mean estimate of parameters

Covariance estimate of parameters

A Parameter sensitivity of m

F Hidden state transition

R Observation noise covariance

K Kalman gain matrix

S Experiment states s

A Experiment actions a

R Reward

v Value

p Policy

with parameters θ , find a path {xk} that leads to the highest
accuracy and lowest uncertainty in the calibrated parame-
ters. Here xk = x(tk) is the input at discrete time tk and the
sequence {xk, k = 1, n} represents an experimental protocol.
The total number of steps n indicates the cost of the experi-
ment. The controls x evoke an observable response y from the
physical system that m models. At each step, a finite num-
ber of actions are available to the machine controlling the
experiment; choosing these actions is the subject of Sect. 3.

Our focus is on models where the current response yk
depends on the current and previous inputs xi , i ≤ k. With
a history-dependent model

y = m(x, z; θ), (2)

latent variables z are introduced that have their own evolution

ż = f(x, z; θ) (3)

and are typically hidden from observation. In the realm of
material physics the latent variables typically describe inter-
nal states that are linked to dissipation, such as plastic strain.
This irreversible behavior greatly complicates experimental
design, since trial loadings can lead to permanent changes in
the material. Details of the elasto-plastic model we use as an
exemplar are given in “Appendix A”.

123

98 Computational Mechanics (2023) 72:95–124

2.1 Kalman filter for calibration

Systems that rely on not only their present state but also
on past states, inputs, and controls are referred to as
history-dependent systems. Capturing this history depen-
dence requires the history of the system to be sufficiently
represented by the state. While directly concatenating the
state history may seem feasible, doing so may lead to a very
high-dimensional state space. This high dimensionality can
be problematic for the training of the policy neural network,
which must then take the high-dimensional state-action pair
as input in order to output the policy for each action. There-
fore, our primary objective is to optimize exploration by
offering intermediate feedback to the agent in the form of
rewards derived from Kalman Filter (KF) estimates. These
intermediate rewards play a vital role in action selection, as
shown in (25), and supply the necessary information to eval-
uate environments that deviate from pretraining conditions.
To circumvent the need for batch processing the complete
history-dependent evolution of data generated during train-
ing, we employ a sequential Bayesian filtering scheme.
Moreover, providing sequential updates of the reward enables
immediate feedback on the environment and affords flexibil-
ity in devising an online policy capable of distinguishing
environments that diverge from pretraining circumstances.

For simplicity we will assume we have an experiment
where we can control all components of strain and observe
the stress of the material sample we would like to model;
hence the calibration data consists of a sequence of strain–
stress input–output pairs. There aremany applicablemethods
to obtain parameter estimates given calibration data [62],
such as nonlinear least squares regression. Here we use an
online method, the Kalman filter (KF), that provides concur-
rent uncertainty quantification. TheKF estimates a parameter
covariance as well as a parameter mean since it is essen-
tially an incremental Bayesian update of the parameters. It
also provides a probabilistic estimate of the response. The
current context presents a few complications that require an
enhanced KF: (a) the model is nonlinear with respect to the
inputs and parameters, (b) it is not smooth with respect to the
parameters and (c) it is history-dependent.

Remark In our design of experiments, the KF is primarily
tasked with guiding the experiments; after the data is col-
lected, the model could be re-calibrated using other methods
e.g. standard Bayesian calibration.

2.2 Extended Kalman filter

The complication of calibrating a nonlinear model with the
Kalman filter, which was developed [34] for models that are
linear in their parameters, can be handled with linearization.
In the extended Kalman filter (EKF) [28], the state transition

and observation models are linearized to maintain the usual
Kalman update formula. Since we assume the stress is the
only observable variable, the observation model is provided
by the material modelm, and the appropriate parameter sen-
sitivities are

Ak = ∂θm
∣∣
θk−1,x,z

, (4)

where k is the step, so that the linearization

m(x, z; θ k) ≈ m(x, z; θ k−1)+ Ak[θk − θk−1] (5)

is sufficiently accurate. This linearization provides amapping
from the parameter covariance # to the observable output
covariance A#AT .

Remark Note that for a linear model y = θx, like the elas-
tic response described in “Appendix A”, the sensitivities A
increase with x. This relationship has ramifications on the
KL divergence reward discussed in Sect. 3.

We assume the (observable) data d corresponds to the
model plus uncorrelated (measurement) noise

d = m(x, θ)+ ε, (6)

where parameters θ ∼ N (µ,#) and noise ε ∼ N (0, R)
follow normal distributions. The (continuous time, noiseless)
hidden state transition model is

θ̇ = 0 (7)

ż = f(x, z; θ), (8)

where states comprised of model parameters θ and hidden
material state z = {ε p, λ}. Since the parameters θ are fixed,
their state transition is the identity. In discrete time, the state
transitionmodel become difference equations. For simplicity
we assume the observations are complete, in the sense that
all components of y = m can be compared to data d. Due to
the yield surface constraint (33), the plasticity model exem-
plar is actually a system of differential algebraic equations
(DAEs). Handling DAEs in a KF requires additional care;
“Appendix B” describes a rigorous treatment based on the
work of Catanach [4]. For the results given in Sect. 4, we
merely perform the chain rule

A = ∂θm(x, z; θ) = ∂θm+ ∂zm ∂θz, (9)

which accounts for the change in z over the step, but not the
entire history.

The residual, residual covariance, and so-called Kalman
gain are

rk = dk − m(xk, zk,µk−1) (10)

123

Computational Mechanics (2023) 72:95–124 99

Sk = Ak#k−1AT
k + R (11)

Kk = #k−1AT
k S

−1
k , (12)

respectively. They are used to update the parameter (θ) mean
µ and covariance #:

µk = µk−1 + Kkrk (13)

#k = #k−1 − KkSkKTk (14)

given the data dk provided at step k.
The KF is an iterative method that requires initialization.

Initial values of the mean µ0 and covariance #0 represent
the prior information of the parameters θ . We normalized
the parameters so that they were close to O(100) and this
made a diagonal O(10−1) #0 matrix a reasonable prior. In
the present context of low measurement noise experiments,
the noise variance R is fixed and a scaling of the identity
matrix with the scale chosen a priori to be small O(10−6);
however, it can be calibrated as well. Furthermore, in this
case, the diagonal of R primarily regularizes the inversion of
S. Predictions can be made using the current values of the
mean parameters µ and their covariance #:

y∗ ∼ N (m(x∗,µ),A∗#A∗T). (15)

It is important to note that for highly nonlinear mod-
els, traditional approaches like the Extended Kalman Filter
(EKF) may not provide the accuracy needed. Instead, more
advanced methods like the Unscented Kalman Filter (UKF)
[32] or Ensemble Kalman Filter (EnKF) [13] can be imple-
mented, which can achieve higher accuracy and/or compu-
tational efficiency. In addition to the UKF, there are other
nonlinearKalman filteringmethods [8] such as particle filters
or dual filter estimation frameworks, which can offer advan-
tages over the EKF. However, we have chosen to use the
EKF in our work due to its simple implementation, flexibil-
ity, and compatibility with DAE solvers (see “Appendix B”)
and policy updates in reinforcement learning, i.e. both EKF
and machine learning networks use derivatives to update a
function with current knowledge. It is important to note that
changing the filter to any of the aforementioned methods
would not pose any technical difficulties since the RL algo-
rithm implemented is agnostic to the estimator.

2.3 Switching Kalman filter

Plasticity models consist of two response modes, (a) an elas-
tic onewhere only some of the parameters are influential, and
(b) a plastic one where all parameters affect the response. A
customization of the EKF is, therefore, necessary to adapt to
these physical regimes and avoid errors in the accumulation
of latent variables in the plastic mode. With the exemplar in

“AppendixA”, no information on the plastic response is avail-
able from the material in its reference/starting state. If the
exact state at which thematerial changes to a plastic response
was known, it would be trivial to select the appropriate KF;
unfortunately, uncertainty in the yield stress causes erroneous
Kalman updates of the parameters and hidden state.

Two solutions are implemented to handle the discontinu-
ity in response and the switching between elastic and plastic
modes. The first sets a convergence tolerance criteria on the
parameters. This ad hoc version of the EKF sets parame-
ter sensitivities to zero when convergence is detected. This
masks the sensitivity matrix A with a diagonal matrixM that
has unit entries for parameters that have not converged and
zeros for ones that have. This masking has the effect of fixing
the converged parameters at their current mean. In partic-
ular, it allows the elastic parameters to be calibrated first
while the material state is still within the yield surface, and
then the calibration of the plastic parameters ensues, with
fixed elastic parameters, once yield is encountered. For this
simple method, convergence is assessed with a Cauchy con-
vergence criterion on themeanµ for the particular parameter
and a check that the current diagonal entry of the covariance
has decreased from its previous value.

Alternatively, an extended switching Kalman filter (SKF)
is a more rigorous approach and can deal with discontin-
uous parameters, such as elastic vs. plastic response, by
simultaneously competing multiple models (in this case,
materialmodes). This competition allows for amore accurate
prediction of material behavior when there is a latent vari-
able with abrupt or discontinuous changes. We implement a
generalized pseudo-Bayesian (GPB) algorithm [48], which
takes Gaussian distributions associated with each material
mode and collapses them into a Gaussian mixture of (at
most) two previous history steps. The second-order gener-
alized pseudo-Bayesian algorithm (GPB2) is a good balance
between accuracy and the complexity of longer views of the
history. Full details of the GPB2 algorithm applied to the
present context are given in “Appendix C”.

3 Deep reinforcement learning for
experimental design with extended
Kalman filter

This section describes the incorporation of the extended
Kalman filter (EKF) into deep reinforcement learning (DRL)
for experimental designs that maximize information gain.
Based on the reward hypothesis of reinforcement learning
[50], we assume that the goal of a calibration experiment
can be formalized as the outcome of maximizing a cumula-
tive reward defined by the information gain estimated from
the EKF. As such, the design of the experiment that gener-
ates a model can be viewed as a game where an agent seeks

123

100 Computational Mechanics (2023) 72:95–124

Fig. 2 Workflow of the KF-based deep reinforcement learning

feasible actions in an experiment to maximize the total infor-
mation gain, and hence the best-informed model parameters,
as shown in Fig. 2 which illustrates the workflow of the pro-
posed RL approach.

In this section, we have two objectives: (1) to describe
how an experiment is run as an MDP in an RL framework
enhanced by the EKF, and (2) to provide some key high-
lights on how the DRL agent that runs the experiment is
trained. Section3.1 first formulates a family of mechani-
cal tests as an MDP. Then, the policy that gives the action
selection is described in Sect. 3.2 and the action of the experi-
ments represented by a decision tree is described in Sect. 3.3.
The action-state-reward relationship quantified by the EKF
is described in Sect. 3.4. With these ingredients properly
defined, the Monte Carlo tree search (MCTS) used to update
the policy and improve the DRL agent’s decision-making
process is provided in Sect. 3.5.

3.1 Experiments as a Markov decision process

Here, we consider an experiment conducted by an agent as
a single-player game formulated as MDP where the agent
interacts with the environment based on its state in a sequen-
tial manner. This MDP can be a tuple (S,A, s, γ) consisting
of state set S, action set A, and joint probability of reward
R for a given state s and discount factor γ that balances the
relative importance of earlier and later rewards.

For the experiment we set the RL actions with all the
allowed experimental control actions that affect the strain
ε, and the RL state set as all the results of possible actions
over a sequence of steps. To accommodate history effects
within the MDP we expand the notion of state to include all
prior loading history. Even for a discrete set of n actions the
state space increases exponentially with time starting from
the reference/initial state and growing n-fold with every step.

In an episode, the agent makes a sequence of decisions
of (discrete) actions %εk to take. An episode is a complete
traversal of the decision tree from the root node to a leaf

node that corresponds to the end state of an experiment after
a fixed number of steps. In effect an episode is a particular
experiment defined by selected control actions {xi , i = 1, k}.
For each decision within the same episode, an agent takes an
action based on the policy p(s, a) ∈ [0, 1] that suggests the
probability of the preferred choice. Each action taken by the
agent must lead to an update of the (observable) state yk . This
updated state is then used as a new input to generate the next
policy value for the available actions. This feedback loop
continues until the particular experiment/episode concludes.

The RL environment is defined as any source of observa-
tions that provides sufficient information to update the state.
In this work, our goal is to introduce the KF as a component
of the environment where the estimation of the KF state is
used to: (1) provide an enhanced state representation, as well
as (2) constitute the reward of the experiments to redefine the
objective of the game, which is now formulated to maximize
the information gain of the experiments. Finally, learning
occurs whenever the deep neural network that predicts the
policy is retrained in an RL iteration [59, 66]. An iteration
can be called uponwhenever a sufficient amount of new state-
action pair labels is collected during the experiments. The
ratio between the number of iterations and episodes as well
as the architecture of the neural network itself are both hyper-
parameters that can be fine-tuned for optimal performance.

3.2 Policy represented by deep neural network

In principle, the RL policy that guides the agent to select
rewarding actions can be determined by directly sampling the
states, actions, and rewards among all the existing options.
However, such an approach is not feasible when the number
of possible paths to conduct experiments becomes too large.
A classical example includes the game of Go [60] where
exhausting all the possible moves is intractable. This large
number of paths is also common in experiments where a
sequence of decisions has to be made both before and during
the experiments. More discussion of this point is given in
Sect. 4.

As shown in, for instance Silver et al. [58–60], an option
to manage this curse of high dimensionality is to approxi-
mate the policy (and potentially other sets in the tuple) via
a trained neural network and use MCTS to improve the effi-
ciency of the sampling. In our work, the deep neural network
is solely designed for the purpose of generating the policy
value when given a particular combination of state s ∈ S
and action a ∈ A. Note that policy function can also be
approximated by other techniques, including mathematical
expressions obtained from symbolic regression [39] and the
choice of the approximation may affect the difficulty of the
representation problem. In this paper, a standard overparam-
eterized deep neural network is adopted throughout the entire
training process. The neural network follows a standard mul-

123

Computational Mechanics (2023) 72:95–124 101

Fig. 3 A schematic of the reinforcement learning policy-value neural
network architecture. The network inputs a state s corresponding to a
node of the decision tree and outputs a policy p and value v

tilayer perceptron feed-forward architecture. The network
takes RL state s that corresponds to a node of the decision
tree as inputs and is subsequently fed into a series of dense
hidden layers. The network has two outputs: a policy vector
p representing the probability of taking the action a from
the current state s and a predicted scalar value v estimating
the reward from the state (see Fig. 3). A policy is a proba-
bilistic function in part to allow for exploration as well as
exploitation of previous information such as the rewards for
previous actions. Since the policy represents a probability, a
softmax layer is used for this output, while a tanh layer is
used for the continuous value output. Additional specifics of
the network’s architecture and training hyperparameters are
provided in Sect. 4.

The mapping between the input state s and the output
policy p and value v is, thus, represented by a neural net-
work approximator f̂ . The approximation is defined such
that (p̂, v̂) = f̂ (s | W , b), where p̂ and v̂ are the approxi-
mated values of the policy vector and value, respectively, and
W and b are theweightmatrices and bias vectors of the archi-
tecture, respectively, to be optimizedwith stochastic gradient
descent during the network training. The training objective
for the training samples i ∈ [1, . . . , N] is to reduce the mean
squared loss:

W ′, b′ = argmin
W ,b

(
1
N

N∑

i=1

(∥∥ pi − p̂i
∥∥2
2 + ‖vi − v̂i‖22

))

.

(16)

Remark Note that this policy corresponds to the reward but
is not the reward itself, as the policy must be a trade-off
between exploration and exploitation [63]. This balance will
be further discussed in Sect. 3.5.

Remark The application in this current work is developed
for calibrating plasticity models for metals where negligible
measurement noise (on the order of 0.01%) is observed in

the target data. As such, we do not investigate the impact of
noise on the DRL algorithm’s convergence in this work. It
is expected that observed noise will not significantly affect
the algorithm’s convergence. It is worth noting that the rein-
forcement learning states refer to discrete decisions in the
experiment setup and there is no direct definition of noise
in the context of the experimental design. Nevertheless, our
application aims to train the algorithm offline and deploy it
in a lab setting for real-time decision-making, where noise is
not expected to significantly impact the algorithm’s perfor-
mance.Thepolicy-value network f̂ (s) inputs only the current
state, which represents the history of previous decisions, to
make a forward prediction for the optimal next experimental
step and is not affected by the observed material response.

3.3 Action representation: decision tree for
experiments

In aMarkov decision process, a state from an earlier decision
is connected to all of the corresponding possible child states
through an action. Furthermore, an earlier action may affect
the latter states but a latter decision has no effect on the
prior state. Hence, all the possible actions and states together
are connected in a directed and acyclic manner, which, in
graph theory [68] is referred to as a poly-tree.Wewill employ
the terminology of graph theory and refer the initial state of
an experiment as the root (the vertex with only outgoing
edged in the tree) and the end of the experiment as the leaf
(a vertex with only an incoming edge). As such, the decision
tree of an experiment is a specific poly-tree that represents
all the possible states at vertices, each connected by edges
representing the corresponding actions available during an
experiment. The role of the policy of the RL agent (the actor)
is to determine the action when a state is given as input such
that an RL agent may create a path that started from the root
and end at one of the leaves of the decision tree.

3.4 Environment: states and rewards of the
design-of-experiment problem

As pointed out by Reda et al. [54], a key ingredient to gen-
erating the effective learned policy and value of the states
that often get overlooked is the parameterization of the envi-
ronment, in which the DRL agent/algorithm interacts. In
the design-of-experiment problem, the environment provides
feedback caused by actions selected by the DRL agent. This
feedback can be in the form of a state or reward.

We formulate the design-of-experiment as a multi-
objective problem in which we want to (1) minimize the
expected value of the discrepancy between the predictions
made by the calibrated models and the ground truth (by
maximizing theNash–Sutcliffe efficiency (NSE) index of the
calibrated model, see (23)) and (2) improve the efficiency

123

102 Computational Mechanics (2023) 72:95–124

of the experiments by maximizing the Kullback–Leibler
(KL) divergence, and hencemaximizing the information gain
between states. While both measurements provide a valua-
tion of the actions through measuring the improvement of
the model due to additional data gained from new actions
in the experiment, the KL divergence does not require addi-
tional sampling, and hence is more cost-efficient. However,
the extended Kalman filter (EKF) used to calculate the KL
divergence also has well-known limitations, such as the need
to make a sufficiently close initial guess to avoid divergence
triggered by the linearization process and the consistency
issue due to the underestimation of the true covariance
matrix.

As such, we employ a mixed strategy in which we only
approximate the NSE index by under-sampling a few states
outside of the training data region. This cheaper approxi-
mated NSE index is augmented with the KL divergence as
the combined reward to circumvent the inconsistency and
divergence issue of the EKF, whereas the KF-predicted mean
and variance of the calibrated parameters are used, in addi-
tion to the loading history of the experiments, to represent
the enhanced state of the experiment.

To fully assess the usefulness of the NSE and KL diver-
gence reward metrics for experiment design, we conduct a
comprehensive study of each reward metric individually and
in combination. In Sect. 4, our numerical experiments are
designed to validate the capacity of each reward metric for
designing experiments and their ability to work together to
produce optimal experiment designs. We want to use the KL
divergence reward metric because of its cost efficiency; how-
ever, we also incorporate the NSE index in our mixed reward
when necessary to address the limitations of the EKF calibra-
tion. This approach enables us to achieve a balance between
experiment efficiency and prediction accuracy, and it under-
scores theflexibility andversatility of our proposed algorithm
for designing optimal experiments in a variety of settings.

For brevity and to avoid confusion with the estimated
added rewardwithin each state update, wewould use the term
game score to refer to the total reward accumulated within
an experiment game, while the history of the performances
is measured by monitoring the distribution of the game score
against the policy neural network iteration atwhich the policy
neural network is re-trained.

3.4.1 Information-gain reward: Kullback–Leibler
divergence

The KL divergence has a lower-bound value of 0 when the
model perfectly describes the data, meaning that no infor-
mation was gained. Similarly, a perfect NSE score has an
upper-bound value of 1 when the model perfectly replicates
the data. There is no direct relationship between the NSE

score and the KL divergence, but both measure aspects of
model accuracy and parameter uncertainty.

Generally speaking, the KL divergence is a measure of
the statistical change between two probability distributions.
Denoted as D(π1||π0) where π0 is a reference prior proba-
bility distribution and π1 is the updated posterior probability
distribution. The difference is calculated as the expectation of
the logarithmic difference between distributions with respect
to the posterior probabilities π1(x):

DKL(π1||π0) =
∫

X
π1(x) log

(
π1(x)
π0(x)

)
dx, (17)

where x ∈ X represents a shared probability space.
By formulating a reward based on the KL divergence, we

can get a measure of how informative new data dn+1 is in
updating the distribution of the estimated parametersπ(θ |D)

(see Fig. 4):

%KL =
∫

π(θ |Dn+1) log
π(θ |Dn+1)

π(θ)
dθ

−
∫

π(θ |Dn) log
π(θ |Dn)

π(θ)
dθ , (18)

where Dn = {dk, k ≤ n}. For a multivariate Gaussian distri-
bution, like the one we have with the KF, the KL divergence
is analytic:

KLk =
1
2

(
log

det#0

det#k
+ tr

(
#−1

0 #k

)

+(µk − µ0)#
−1
0 (µk − µ0) − nθ

)
, (19)

where nθ is the number of parameters.A reward for the exper-
iment over n steps can be formulated as

RKL =
n∑

k=1

%KLk, (20)

where %KLk ≡ KLk − KLk−1.
For example, the reward for a single step in a linear elastic

material with bulk modulus K and shear modulus G has
covariance

#k =
[

var(K)k cov(K ,G)k
cov(G, K)k var(G)k

]
(21)

and mean vector of the estimated bulk and shear moduli

µk =
[
Kk
Gk

]
. (22)

As illustrated in Fig. 4, the distribution of the parame-
ters begins with a pre-selected prior value for the mean
µ0 and covariance #0 before measuring any data. The KL
divergence initially increases since the new data is more

123

Computational Mechanics (2023) 72:95–124 103

Fig. 4 Calibration of the isotropic elastic material model (bottom), and
the incremental KL-based reward along the calibration path (top) that
starts with a volumetric deformation and then switches to shear

informative, but then the rewards tail off as less information
is gained from subsequent samples and the mean parameter
values converge. When the material response exhibits a dis-
continuity, as in the onset of plastic deformation, the Kalman
switching filter Sect. 2.3 can be used to select the deforma-
tion mode (elastic or plastic) that best captures the data at
the current step. Section4.2 provides a detailed illustration
of this switching mechanism.

3.4.2 State represented by action history and Kalman filter
prediction

The RL state represents the complete information necessary
to describe the consequences of actions taken by the agent
from the beginning of the game to the current step.

In this work, the state of the experiment contains two
components: (1) the entire loading history of the experi-
ments since the beginning of the test and (2) the calibrated
mean and covariance of the material parameters (see, for
instance, Eqs. (21) and (22)). Depending on the types of
experimental tests, the loading history can be represented
via different parametrizations [21]. For a strain-controlled
test, the available action choices are the increments of indi-
vidual components of the strain tensor, and hence the loading
history can be represented by a stack of these strain incre-
ments stored in the Voigt notation, which leads to a matrix of
dimension 6 × Nstep where 6 is the number of independent
components of the symmetric strain tensor and Nstep is the
total number of strain increments. For future time steps that
are not yet executed, the corresponding columns of thematrix
are set to zero. For the case where the loading combination is
more limited, such as a shear box apparatus, loading history
can be sufficiently represented by a vector.

This state is augmented by the mean and covariance of
the material parameters predicted by the EKF. For instance,

in the case of linear elasticity, the state can be represented
by the mean of two elastic material parameters and the com-
ponents of the symmetric covariance matrix, which contains
three independent components. In other words, the state rep-
resentation of the experiment employs both a representation
of the loading path and the parameter distribution provided
by the EKF. Together, they form the RL state, which is used
as the input for the policy neural network shown in Fig. 3.

Remark The decision points for the MDP can be on a larger
step size than the KF, i.e., the KF can be sub-cycled for addi-
tional stability and accuracy.

Remark Note that while incorporating more sensory infor-
mation may provide more information to learn the policies
and values, in practice adding more information may also
increase the dimensionality of the state representation, and
hence significantly increase the difficulty of the DRL. The
exploration of more efficient state representation methods
and the implications of more efficient state representations
are active research areas [57], but are out of the scope of this
study.

3.4.3 Forecast prediction reward via an under-sampled
Nash–Sutcliffe efficiency index

The Nash–Sutcliffe efficiency index is a simple normalized
measure of the discrepancy between model predictions and
ground truth data. The NSE index is:

RNSE = 1 −
∑Ndata

k=1 |dk − m(θ)|
∑Ndata

k=1 |dk − mean(d)|
∈ (−∞, 1], (23)

where dk is the data point at step k, m(θ) is the calibrated
model at the end of an episode and mean(d) is the mean
value of the dataset. To measure the mean of the forecast
accuracy via the NSE index, the number of data points Ndata
must be sufficiently large such that empirical loss and pop-
ulation loss lead to a sufficiently small difference (refer to
Gnecco et al. [18]). Hence, this sampling requirement can
be costly, especially for physical experiments that require
labor, time and material costs. As such, we propose an
under-sampling and static strategy where the data points dk
collected to calculate the NSE reward are sampled prior to
the training of the DRL agent [66, 67]. This reduction in the
sampling size may, in principle, leads to increasing bias by
missing data of statistical significance. However, since the
sub-rewardRNSE introduced here merely functions as a reg-
ularization term for the KL reward in (20) to guide the early
exploration of the DRL agent, no significant issues mani-
fested in the numerical experiments showcased in Sect. 4.

123

104 Computational Mechanics (2023) 72:95–124

3.4.4 Combined reward for multi-objective experiments

As mentioned earlier, approximating the parameter distri-
butions of highly nonlinear function via the standard EFK
may lead to inaccurate state estimation. This inaccuracy, in
turn, can inflate the KL divergence and leads to an over-
optimistic reward for the DRL agent [40]. While there are
alternatives, such as unscented Kalman filter [31] and the
ensemble Kalman filter Evensen [13] that can circumvent
the loss of accuracy due to the linearization of the nonlin-
ear function, a simpler implementation approach is to add
the NSE reward into the DRL framework during the train-
ing process to modify the exploitation behavior of the DRL
agent.

As such, we introduce a weighted average reward that
augments the KL divergence with the under-sampled NSE
index:

Rtotal = wNSERNSE + wKLRKL, (24)

where wNSE and wKL are weighting factors for the two
rewards. To promote the neural network representation train-
ing, the rewards in the following applications are rescaled to
be order 1 based on an estimate of the range of expected
values. When using the mixture of the two rewards, RNSE
andRKL, we rescaled each to the range of [0, 1] and choose
the weights such that wNSE + wKL = 1 so that the total
reward is in the same range. Unless stated otherwise, all the
numerical experiments are conducted with equally weighted
sub-reward, i.e., wNSE = wKL = 1/2.

In order to implement this joint reward during the train-
ing of the DRL algorithm in practice, we perform the tasks
described in Sects. 3.4.1 and 3.4.3 sequentially to calculate
the sub-rewards in Eq. (20) and Eq. (23). For Eq. (20), we
update the KL divergence reward with the information gain
metrics as the EKF model is calibrated on new experiment
design paths from the tree search. For Eq. (23), we test the
newly calibratedmodel in a forward prediction against a sub-
sample of blind data dk—this data has been sampled prior
to the start of the DRL training. The two sub-rewards are
scaled, weighted, and summed to provide the joint reward in
Eq. (24).

Remark Note the assumption of a fixed-step budget is not
overly constraining. If the incremental reward tails off, and
the parameter uncertainties are acceptable, the experiment
can be truncated early, potentially with significant cost sav-
ings.

Remark There is distinction between (a) the reward calcu-
lated from the KL divergence, NSE index or a combination
of the two, and (b) the state value and expected cumulative
reward predicted by the policy. As in the RL literature, we

use reward to refer to the former and value to reference the
latter.

3.5 AMonte Carlo tree search with Kalman reward
estimator

Here, we consider the case where planning and learning are
both needed to maximize the information gain within a lim-
ited number of actions. The learning objective is the optimal
calibration of a material model. For costly physical experi-
ments, the goal of designing an experiment is not just to finish
a task (e.g., calibration, discovery and uncertainty quantifica-
tion), but to finish the taskwithin the allocated resources. The
multitude of decisions complicates this goal. For instance,
in a biaxial compression/extension test where the specimen
can be compressed/extended in two directions, there will be
450 ≈ 1030 possible ways to run an experiment with 50
incremental time steps. Sampling all the available paths and
selecting actions that maximize the optimal reward can be a
feasible strategy only if all paths can be visited. The classical
Monte Carlo simulation is not feasible as random sampling
is not sufficiently efficient to discover the optimal policy
given limited opportunities to visit only a small fraction of
the possible paths. As such, a tactic to balance exploitation
and exploration is necessary [47].

In this work, Monte Carlo tree search (MCTS) is used
to enable estimation of the policy value p(s, a) by visiting
state-action pairs according to an optimality Eq. (25), that
balances exploitation and explorationof the decision tree. It is
necessary to setup a material simulator and model calibrator
before beginning the policy search in algorithm 1. The output
of these components constitute the observable variables in
the RL environment that help the agent learn and improve its
policy. Code implementations of the simulator and calibrator
are not covered here in detail, but the material exemplar is
found in “Appendix A”. An KF is used for both evaluating
the reward and calibratingmaterial parameters. The EKF and
the SKF methods we empolyed are described in Sects. 2.2
and 2.3.

Once the policy DNN is initialized (see Sect. 4.1), the
iterator i starts the outer loop. Each iteration executes a pol-
icy update after an inner loop (iterator j) over a number of
episodes, where the outcome of each episode represents the
result of the current policies for the design of the experiment.
Update of the policy DNN is accomplished with a stochastic
gradient descent optimizer, see Sect. 3.2. During an episode,
the decision tree is populated with state and action pairs until
the end of the tree is reached. Each action is selected accord-
ing to a probability of moving to a state of maximum value.
This value is estimated by a policy pi (s, a) at the i

th iteration.
At the end of each episode, the history of control actions

taken are fed as input into the material simulator and cali-
brator. The rewardRK L assigned to an episode is calculated

123

Computational Mechanics (2023) 72:95–124 105

Fig. 5 Monte Carlo tree search
steps

using the KL divergence (20) which is based on themean and
covariance posterior updates. The KL divergence is a mea-
sure of the expected amount of information gained about
the system state. A higher reward indicates that the agent is
learning more about the system as it informs the model cali-
bration. The reward can also be calculated according to (23)
or amixture, (24).At the conclusion of each iteration, the pol-
icy is updated using the training examples generated during
the episode simulations (step 26, algorithm 1). After sev-
eral iterations, the policy becomes a good estimator of action
value and the exploitation of high value actions will be bal-
anced by (25) which diminishes the probability of selecting
repetitive pathways.

Algorithm 2 details and the MCTS in the inner loop in
Algorithm 1 (7–13). Within one episode, the MCTS we
employed repeatedly performs the three steps illustrated in
Fig. 5) [58]:

Once the search is complete, the search probabilities/pol-
iciesπ are evaluated based onhowoften a statewas traversed:

π(a | s) = N (s, a)1/τ∑
b N (s, b)1/τ

, (27)

where N is the visit count of each move from the root node
and τ is a temperature parameter, which is another parameter
controlling the exploration. Thus, the discovered policies are
proportional to the number of visits in each state.

After a fixed number of episodes, there will be enough
labeled data of state, action, policy, and reward to update
the policy network. At this point, an iteration of the policy
network is conducted, and all the collected data within the
episode will be used to retrain the policy neural network.
In this context, iteration refers to a policy update which is
conducted after a certain number of episodes have collected
sufficient new reward data.

4 Numerical experiments

In this section, we introduce three design-of-experiments
examples to: (1) validate the implementation of the EKF-
DRL algorithm, (2) provide benchmarks against the classical
DRL approach that employs the Nash–Sutcliffe sampling to
estimate the rewards, and (3) showcase the potential applica-
tions of the EKF-DRL algorithm for designing mechanical
experiments for models of high-dimensional spaces that
require a significantly larger decision tree for long-term plan-
ning due to history dependence and other complications.

We focus on the calibration of traditional physical models
whose limited parameterization (relative to potentially more
expressive models) helps to control the growth of the deci-
sion trees. We also assume that have noiseless observations
of experimental data, which ismotivated by the lowmeasure-
ment noise of modern testing equipment. These simplifying
assumptions allow us to focus on the primary challenge
of designing a UQ-driven reinforcement learning design of
experiments strategy for history-dependent materials.

4.1 Implementation verification 1: experiment for
linear isotropic elastic materials

For a linear isotropic elasticity model, there are two inde-
pendent elastic moduli. Hence two linearly independent
observations are sufficient to provide the necessary infor-
mation to determine the model parameters [3]. For example,
a single step in a uniaxial test should be sufficient to iden-
tify any pairs of independent linear elastic parameters if the
stress is observed in independent directions (e.g., the Poisson
effect is observed as a supplement to the surface traction and
uniaxial stress along the loading direction).

In this numerical experiment, we introduce a virtual test
where the EKF-DRL agent observes the volumetric and devi-
atoric stress of a linear isotropic elasticmaterial whenever the

123

106 Computational Mechanics (2023) 72:95–124

Algorithm 1 Reinforcement learning for Design of Experi-
ments
Require: The definitions of the experiment game: environment, states,

actions, rewards.
1: Initialize the experimentalist policy/value network DNN. For fresh

learning, the network is randomly initialized. For transfer learning,
load pre-trained network instead.

2: for i in iterations do
3: Initialize empty sets of the training examples trainExamples ←

{}.
4: for j in episodes do
5: Initialize the starting game state vector s (container for exper-

iment control history).
6: Initialize empty tree of the Monte Carlo Tree search (MCTS),

by setting containers for edge visits N (s, a), and mean action values
Q(s, a)

7: while True do
8: Check for all allowed actions at the current state s according

to the games rules.
9: Get the action probabilities p(s, .) for all allowed actions

by performing repeated MCTS simulations.
10: Sample action a from the probabilities p(s, .)
11: Modify the current game state to a new state s by taking

the action a.
12: if s is the end state of the game of the experimentalist then
13: break
14: Calibrate material model using EKF with the selected paths

in the decision tree.
15: if the information-gain reward (Sect. 3.4.1) is used then
16: Evaluate RKL from the model calibration.
17: Evaluate the total reward Rtotal = RKL of this gameplay.
18: if the Nash-Sutcliffe efficiency index reward (Sect. 3.4.3) is

used then
19: Test calibrated model against set of blind experiments and

evaluate RNSE.
20: Evaluate the total reward Rtotal = RNSE.
21: if the combined reward (Sect. 3.4.4) is used then
22: Evaluate RK L from the model calibration.
23: Test calibrated model against set of blind experiments and

evaluate RNSE.
24: Evaluate the total rewardRtotal = wNSERNSE+wKLRKL

of this gameplay.
25: Append the gameplay history [s, a, p(s, .),Rtotal] to

trainExamples
26: Train the policy/value network DNN with trainExamples
27: Use the trained network DNN of the last iteration to select the

optimal experiments for model calibration.
28: Exit

corresponding volumetric and shear strains are prescribed.
This agent is then tasked with designing a strain-controlled
mechanical test of a specimen to identify the bulk K and
shear G moduli. The decision tree that includes the possible
paths for two incremental steps is shown in Fig. 6.

Since the specimen is strain-controlled in two directions,
there are two optimal strategies: (1) first shear then compress
the specimen or (2) first compress then shear the specimen.
As with model-free Q learning [19], one can simply visit all
the possible states and the optimal strategy will be learned.
As such, the goal of this numerical example is to verify the

Algorithm 2Monte Carlo tree search
1. Selection. A path is determined by picking action according to the

estimated policy p(s, a) (until a leaf of the tree (the state node with
no child) is reached), i.e.,

at = argmin
a∈A

(
Q(s, a)+ cpuct p(s, a)

√∑
a′ N (s, a′)

1+ N (s, a)

)
, (25)

where at is the chosen action, cpuct is a parameter that controls
the degree of exploration. N (s, a) denotes the number of visit/time
action a is taken at state s. In (25), the first term is the Q value in
our case, which is the expected value of the reward, i.e.,

Q(s, a) = E[Rtotal|at = a, st = s], (26)

whereas the second term is the upper confidence bound, which
can be derived from Hoeffding’s inequality [63]. Here we simply
average the action value we have collected from N (s, a) sampling
as the Q(s, a) value. Meanwhile, the policy values p(s, a) are
estimated from the deep neural network trained in the last iteration.
The key feature of this action selection model is that it reduces the
value of the second term for a given action when it is visited more
frequently. Consequently, this reduction triggers a mechanism for
the agent to explore actions with high uncertainty if given the same
expected return.

2. Expansion. The available options of the experiment for a given
state is added to the tree. Generally speaking, options may vary for
different states. In this work, the available options of actions are
identical for each state. The allowed actions from every state are
the same increments of the strain tensor component. The number
of allowed actions/strain component increment options depends on
the complexity of the respective material and respective decision
tree.

3. Back-propagation. At the terminated state, the KL divergence and
other feasible indices that yield the reward are calculated (see
Fig. 2). All the policies between the root node and leaf nodes
will be updated. The visit count N (s, a) at every node traversed
is increased by 1 and the action value Q(s, a) is updated to the
mean value.

implementation where the optimal design is trivial in this
sense.

A synthetic measurement model was used to verify con-
vergence to the correct policy as a benchmark for the RL
algorithm. A training experiment was performed for 10 pol-
icy training iterations. Every iteration has 10 game episodes.
As mentioned, each episode corresponds to a complete
traversal of the decision tree from the root node to a leaf
node to design the experiment strain path. This includes gath-
ering the linear elasticity data, calibrating the Kalman filter
(KF) model on that data and calculating the information gain
reward. During each episode, we gather information for the
states s traversed as well as the corresponding policies p and
values v. At the end of every iteration, the RL neural net-
work is trained on the (s, p, v) data collected as described
in Sect. 3.2. The exploration parameter (25) is set to linearly
reduce every iteration, starting at cpuct = 10 and being equal
to cpuct = 1 at iteration 10. This parameter was chosen to
encourage exploration more in earlier iterations, sample the

123

Computational Mechanics (2023) 72:95–124 107

Fig. 6 All possible paths (orange/blue lines) of the decision tree for
the volumetric/deviatoric test within two steps. The weight of the nodes
stores the state, which represents the current strain of the specimen, and
the edge weight is the strain increment. The integers in the state vector
indicate 0 for no action, 1 for compression and 2 for shear, where the
first and second components of the state vector record the choice made
by the agent

tree choices more uniformly, and avoid accumulating bias
towards one decision tree path.

The policy-value neural network utilized for this example
had two hidden dense layers with a width of 50 neurons each
and Rectified Linear Unit (ReLU) activation functions. The
policy vector output layer had two neurons (equal to themax-
imum number of allowed actions on the tree) and a softmax
activation function. The (scalar) value output layer had one
neuron and a tanh activation function. The kernel weight
matrix was initialized with a Glorot uniform distribution and
the bias vector with a zero distribution for every layer. At the
end of every iteration, the model architecture and optimized
weights from the previous iteration are reloaded and trained
for 100 epochs with a batch sample size of 32 using an Adam
optimizer Kingma and Ba [35].

The total CPU time for the offline training of the algorithm
for the elasticity decision tree, including playing the game
episodes and training the policy network, was about 7 min.
In deployment, the neural network can traverse the elasticity
tree and design the optimal experiment in about 0.046s.

The convergence of a training experiment is demonstrated
in Fig. 7. The RL reward for the experiments is based on the
information gain described in (20). Themean episode reward
converges to amaximumvalue,with essentially zero standard

Fig. 7 Convergence over training iterations of a RL training experiment
for the linear elastic calibration game with the information gain reward.
The error bars indicate the standard deviation of the rewards over all
episodes

deviation, of zero after 10 training iterations. Note that for
this small decision tree, the rewards are scaled to be exactly
0 for the cases where the model is not calibrated successfully
and 1 for the cases it is.

Since the RL algorithm applied to this problem is fast to
converge and test, we also set up a numerical experiment
to test the algorithm’s repeatability and the effect the ran-
dom initialization of the MCTS and neural network has on
convergence. Recall that this simple decision tree is com-
posed of two actions; volumetric strain and shear strain were
employed to generate the training data. Figure8 shows the
distribution of converged policies p for 100 trials to the
expected policy, which should favor paths that take one of
each of the independent actions. Upon the first step, there
is little to distinguish between the value of taking a shear
or compression step, but after the second step, the policy is
essentially binary. The final policy assigns the highest value
to the shear-compression ([2, 1][2, 0]) and compression-shear
([1, 2][1, 0]) experiments; effectively zero value is assigned
to experiments that take repeated steps because they cannot
calibrate the linear elasticmodel.Note that the observed sym-
metry of tree policies was ensured by selecting a high value
for the exploration variable in earlier iterations. For smaller
values of the exploration parameter cpuct , the algorithm was
still observed to converge but randomly biasing towards one
winning path over the other.

123

108 Computational Mechanics (2023) 72:95–124

Fig. 8 Linear elastic policy tree (two actions and two steps) for the information gain reward

4.2 Implementation verification 2: experiment for
identifying vonMises yield function and
hardening

In this example, we introduce an experimental design prob-
lemwith a history-dependentmodel and a significantly larger
total number of possible paths but also a known optimal
design. In this numerical experiment, the EKF-DRL agent is
tasked with determining elastic and plastic parameters given
the prior knowledge that the yield surface is of von Mises
type and isotropic, which is embedded in the chosen model.

First, we illustrate the performance of the EKF and com-
pare the two variants of the switching algorithm.

For both some trial and error in choosing the prior covari-
ances was necessary; however, having an O(1) response
and noiseless observations helped. With these assumptions
choosing the observation covariance was simply a matter of
numerical conditioning i.e. small but not so small to create
underflow.

Figure 9 illustrates the efficacy of the ad hoc masked
Kalman filter and the more formally rigorous switching
Kalman filter (SKF) described in Sect. 2.3. Figure9a,b show
that the two methods both converge on the true parameters
(K bulk modulus, G shear modulus, Y yield strength, H
hardening modulus) with 100 steps; however, the conver-
gence has different characteristics. With the masked method,
prior to yield the elastic parameters (K bulk modulus, G
shear modulus) have converged and are fixed throughout the

loading steps. Furthermore, the plastic parameters (Y yield
strength, H hardening modulus) are effectively fixed prior to
encountering yield. The abrupt change also affects the reward
shown in Fig. 9c, and in particular, leads to the reward jump-
ing when yield is encountered before leveling off again. On
the other hand, the SKF displays much smoother behavior
in both the mean parameter convergence (Fig. 9b) and the
reward (Fig. 9d). Figure9d shows the KL divergence for both
elastic and plasticmodes, but only the reward from the plastic
mode is selected as the most probable reference of informa-
tion gain. Figure9f demonstrates that the method switches
effectively between the two models and chooses the elastic
model in the elastic region and the plastic model post yield.
It should be noted that the convergence behavior is sensi-
tive to the step size, i.e., a certain number of elastic samples
are needed for convergence of the elastic parameters; yield
is best detected over a moderate interval, and the estimate
of the hardening improves at larger strains. The covariance
shown in Fig. 9e drives these changes. The relatively slow
convergence of the hardening parameter H for both meth-
ods is likely due to a lower sensitivity of the output to this
parameter.

Next, we design the action-state space based on physical
considerations. Since the von Mises model is pressure-
independent, we can constrain the experimental design
search to the π -plane, i.e., the plane perpendicular to the
pressure and passing through the origin of the three princi-
pal stress axes. The underlying elasticity model is still linear

123

Computational Mechanics (2023) 72:95–124 109

Fig. 9 Comparison of the
switching Kalman filter to the
masking approach for a von
Mises calibration. For c and d,
the dashed Kullback–Leibler
divergence lines represent the
integral of the reward curve. In
d, the reward curve corresponds
to the Plastic KL only since that
is the relevant material model
for experimental design

elastic. Thus, we can constrain the exploration of strain and
stress on the π -plane by designing strain increment deci-
sions in the two principal directions ±%ε1 and ±%ε2 and
the increment in the third direction being calculated to have
a volumetric strain increment equal to 0.

The decision tree that describes this process is shown
in Fig. 10. From every state in the decision tree, there can
be four allowed actions: increase +%ε1, increase +%ε2,
decrease −%ε1 or decrease −%ε2. The magnitude of the
strain increment is chosen to be %ε = 0.04 in each direc-
tion. The number of options/layers in the decision tree is
nopt = 6 which was deemed enough to explore strain–stress
cases that exceed the yielding point and demonstrate hard-

ening behavior. The state vector has a length of nopt = 6 as
each component corresponds to a selected action. In the root
state of the tree, all the components are equal to 0. An enu-
meration is used for all the actions. For example, selecting
the action to increase +%ε1, the component corresponding
to this action would be 1, selecting +%ε2 it would be 2, and
so on. In Fig. 10, a final state that corresponds to a leaf node
in the decision tree is also shown along with the correspond-
ing stress path on the π -plane. The number of all possible
configurations/states in the tree is 5461, while the number of
final states/experiments is 4096.

Thus, we can define the RL algorithm environment to
make experimental decisions (decision tree), generate exper-

123

110 Computational Mechanics (2023) 72:95–124

Fig. 10 Decision tree for the
exploration of the principal
stress space on the π -plane. A
complete path from the root note
to a leaf node is shown for
example along with the
corresponding experiment stress
path on the π -plane

imental data (a vonMises benchmark model in this synthetic
experiment) and calibrate the plasticity model (another von
Mises model). In this RL benchmark experiment, we train
a RL neural network to explore the π -plane stress space to
design experiments that optimize the Kalman filter’s discov-
ery of the plastic parameters: yield stress Y and hardening
modulus H . Here, the underlying elastic model parameters
are considered known (K = 1.0, G = 0.7). The RL algo-
rithmwas performed for 20 training iterations. Each iteration
has 10 game episodes. Each game episode involves travers-
ing through the decision tree, root to a leaf node, to design an
experiment, collect the training data for this experiment, cal-
ibrate the KF model and calculate a reward for this episode.
The exploration parameter was again set to a high value
(cpuct = 10) in the first iteration and linearly reduce to 1
in the final iteration to encourage exploration of the deci-
sion tree and to avoid converging to a local maximum of the
reward.

The neural network architecture used in this experiment
is based on the architecture described in Sect. 3.2. Similar
to elasticity example, the network inputs a six-component

state vector, has two hidden layers (100 neurons each and
ReLU activations), and two output layers: the policy output
(six neurons and softmax activation) and value output (one
neuron and tanh activation). As with the previous example,
the kernel weight matrix of every layer was initialized with
a Glorot uniform distribution and the bias vector with a zero
distribution. The model architecture and optimized weights
from the previous iteration are reloaded and trained for 500
epochs at the end of every iteration with a batch sample size
of 32 using the Adam optimizer, set with default values.

The total CPU time for the offline training of the algorithm
for the isotropic plasticity decision tree was about 20 min
and the inference time for a complete tree traversal is about
0.138s.Note the response time for policy evaluation resulting
in a control action is fast but may not be fast enough for
high-rate experiments probing rate-effects, in this case we
can make control decisions over longer intervals that the data
sampling interval.

The RL experiment was performed once with an effi-
ciency index reward based on (23) as described in Sect. 3.4.3
and once with an information gain reward based on (20) as

123

Computational Mechanics (2023) 72:95–124 111

Fig. 11 The strain and stress path of the blind test experiment used to calculate the efficiency index reward for the von Mises dataset

described in Sect. 3.4.1. The efficiency index reward requires
an additional sampling of test data points to be calculated for
every episode. The additional test curve selected is shown in
Fig. 11. We note that the information gain reward does not
require additional sampling of the material response space,
and it is calculated on the collected experimental data after
calibration is complete. The convergence of these two numer-
ical experiments is showcased in Fig. 12, showing the mean
episode reward and the episode reward standard deviation
for every game iteration. The effect of a higher exploration
parameter and the random initialization of the RL neural
network in the first game iterations are visible as the strain
paths are sampled randomly leading to correspondingly poor
mean rewards and high standard deviations. The RL network
begins to encourage the sampling of experiments that provide
increasingly higher rewards for both the efficiency index and
information gain reward before converging to a maximum
score at the last few iterations of playing.

The behavior of this convergence is reflected in the opti-
mal experiment predicted by the RL neural network at the
end of every game iteration. In Fig. 13, we demonstrate
the designed experiments at the end of iterations 1, 10 and
20. Figure13a and b show the designed experiments for the
efficiency index and information gain rewards, respectively.
These paths are selected bymaking a forward predictionwith
the trained RL neural network at the end of each training iter-
ation. We traverse through the decision tree starting from the
root node [0, 0, 0, 0, 0, 0] and selecting the action with the
highest policy/probability as predicted by the RL network.
By the last iteration, the networks have converged to predict
the final state [1, 1, 1, 1, 1, 1] that corresponds to amonotoni-
cally increasing strain–stress curve in the direction of the first
principal stress axis. This radial loading choice is expected
as the yield surface model is isotropic. Furthermore, as pre-
viously mentioned, the model sensitivities to moduli, such
as H , increase with increased strain, so the radial directions

Fig. 12 Game score versus iteration for the von Mises plasticity cal-
ibration game calibrating with the Kalman filter model and using a
an efficiency index reward (NSE) and b an information gain reward

(KF/KL). The red lines and the error bars are the mean and±1 standard
derivation over the episodes. Note the change in scale

123

112 Computational Mechanics (2023) 72:95–124

Fig. 13 Designed experiments for the von Mises plasticity calibration game at the end of iterations 1, 10 and 20, calibrating with the Kalman filter
model and using a an efficiency index reward and b an information gain reward

Table 2 The RL-discovered final state and corresponding experimental
design for the von Mises calibration game along with the benchmark
and KF-calibrated plasticity parameters

Final state Experimental design

[1, 1, 1, 1, 1, 1] +%ε1,+%ε1,+%ε1,+%ε1,+%ε1,+%ε1

Benchmark parameters Calibrated parameters

Y0 = 0.3 Y0 = 0.30261

H = 1.0 H = 0.9578

tend to be the most informative. Thus, the KF optimizes the
calibration/maximizes the information gain when the data
density in one direction is maximized. The converged final
states and calibrated KF parameters are shown in Table 2.

4.3 Anisotropic plasticity

In the last numerical experiment, we demonstrate the capac-
ity of the KF model and RL algorithm to calibrate the

anisotropic modified Hill model described in “Appendix A”.
In this numerical experiment, we are setting up the RL envi-
ronment to calibrate both the elastic parameters (E, ν, ν⊥)
and plastic parameters (B,Y0, H). Given these complexities
the ideal path is not known a priori.

For this material model, the π -plane is not enough to ade-
quately describe the anisotropy of the data; thus, we opted for
full control of the general strain–stress space. In Fig. 14, the
decision tree for the exploration of this parametric space is
illustrated. From every state in the decision tree, there are 12
allowable actions to select from. Every choice corresponds
to either increasing or decreasing of one of the six symmetric
strain tensor components εi j . The number of options in the
decision tree is set to be nopt = 5, which is also the length of
the state and policy vectors. As a result, the initial state/root
node of the decision tree corresponds to the zero vector of
[0, 0, 0, 0, 0]. Selecting to increase+%ε33 would correspond
to state [3, 0, 0, 0, 0], then increasing +%ε11 would corre-
spond to state [3, 1, 0, 0, 0], and so on. In Fig. 14, we also

123

Computational Mechanics (2023) 72:95–124 113

Fig. 14 Decision tree for the exploration of the strain space. A complete path from the root note to a leaf node is shown along with the corresponding
experiment strain–stress paths for the Hill model (B = 0.5)

illustrate a final leaf state and the corresponding training
strain–stress paths thatwill be used to calibrate theKFmodel.
The number of all possible configurations/states in the tree
is 271,453, while the number of final states/experiments is
248,832.

We can thus define the environment to design the exper-
iments (decision tree), gather the experimental data and
calibrate an anisotropic elastoplasticity model (KF). In this
section, we conduct three numerical experiments to observe
the capacity of the network to collect experimental data to
fully calibrate the KF model for different anisotropic param-
eters in the dataset.

For the first two experiments, the RL algorithm is tasked
with designing an experiment and calibrating the model
for yield surface data with different degrees of anisotropy,

B = 0.5 and 2. A full description of the parameters of the
dataset is shown in Table 3. The algorithm was performed
for 30 training iterations. In each iteration, there are 10 game
episodes, each involves designing an experiment, calibrat-
ing the KF model and calculating the episode reward. In
these experiments, the mixed reward is calculated through
(24) where the normalized efficiency index and information
gain rewards of (23) and (20), respectively, are weighted
by wNSE = wKL = 0.5. The efficiency index is calculated
against a blind test experiment strain–stress curve illustrated
in Fig. 15. The exploration parameter cpuct was tuned to 5
in the first iteration and linearly reduce to 1 in the last iter-
ation. The RL neural network architecture, hyperparameters
and training procedures are identical to the ones described in
Sec. 4.2. The total CPU time for the offline training of the

123

114 Computational Mechanics (2023) 72:95–124

Table 3 The RL-discovered final state and corresponding experimental
design for the Hill model calibration game along with the benchmark
and KF-calibrated parameters for B = 0.5 and 2

Modified hill model (B = 0.5)
Final state Experimental design

[1, 1, 4, 1, 1] +%ε11,+%ε11,+%ε12,+%ε11,+%ε11

Benchmark parameters Calibrated parameters

E = 1.5 E = 1.5013

ν = 0.3 ν = 0.2992

ν⊥ = 0.2 ν⊥ = 0.2014

B = 0.5 B = 0.4996

Y0 = 0.1 Y0 = 0.9999

H = 0.1 H = 0.1001

Modified hill model (B = 2.0)
Final state Experimental design

[1, 1, 1, 4, 1] +%ε11,+%ε11,+%ε11,+%ε12,+%ε11

Benchmark parameters Calibrated parameters

E = 1.5 E = 1.4893

ν = 0.3 ν = 0.2984

ν⊥ = 0.2 ν⊥ = 0.2109

B = 2.0 B = 1.9889

Y0 = 0.15 Y0 = 0.1505

H = 0.2 H = 0.1999

anisotropic plasticity decision tree algorithm was about 3h
and the inference time from root to leaf node of the decision
tree is about 0.115s.

The convergence of the two experiments is demonstrated
in Fig. 16. The figure demonstrates that the mean values of
the mixed reward for the game episodes per iteration are
maximized and converged by iteration 30. In an experimental
space this large, it is difficult to perfectly scale the rewards

to be exactly maximized at unity. Therefore, we empirically
tune the scaling so that the rewards are roughly in the range
of [0,1]. The RL algorithm still discovers a complex path that
leads to a maximum reward, and the calibrated parameters
shown in Table 3 are deemed adequate.

In Fig. 17, we present the curve discovered by the RL
algorithm for the Hill model dataset with parameter B =
0.5. The figure shows the corresponding full strain tensor
components εi j time history for the predicted converged final
state [1, 1, 3, 1, 1] at iteration 30. It is observed that the KF
model calibrates very well to that data with the predicted
stress component paths matching the benchmark data. The
good approximation of theHillmodel plasticity parameters is
also observed in predicting the anisotropic yield surface and
its evolution with hardening as shown in Fig. 18 (Table 4).

In a third experiment, we investigate the capacity of the
DRL algorithm to converge and calibrate the model for dif-
ferent levels of model discrepancy. Specifically, we test two
cases where the DRL algorithm is guided by a model that
covers a smaller and greater range of behaviors than those
existing in the database respectively. For the former, we test
a case where the underlying constitutive model is not expres-
sive enough to capture the range of behaviors in the data set.
Specifically, we are attempting to calibrate the model with an
isotropic von Mises yield surface to anisotropic elastoplastic
data from aHill model with B = 0.5.We allow theKF to cal-
ibrate five parameters θ = {E, ν, ν⊥,Y0, H} while B = 1 is
fixed. For the latter,we test the capacity of theRLalgorithm to
design an experiment that can reduce the degree of anisotropy
of the Hill model to a simpler model.We allow theKF to cali-
brate all six anisotropic parameters θ = {E, ν, ν⊥, B,Y0, H}
while providing data for an isotropic elastic and von Mises
plasticitymodel. The decision tree, neural network setup, and
RL hyperparameters are identical to the previous two experi-
ments. The RL algorithm is run for 20 training iterations and
20 game episodes each for both cases. The mixed reward is
utilized in this experiment as well with wNSE = wKL = 0.5.

Fig. 15 The strain and stress path of the blind test experiment used to calculate the efficiency index reward for the B = 0.5 modified Hill model
dataset

123

Computational Mechanics (2023) 72:95–124 115

Fig. 16 Game score versus iteration for the Hill plasticity calibration
game for B = 0.5 and 2 calibrating with the KF model and using
a mixed reward combining the efficiency index and information gain

reward. The red lines and the error bars are the mean and ±1 standard
derivation of the rewards over the episodes

Fig. 17 a Discovered experiment strain path for the Hill model dataset with B = 0.5 that corresponds to the tree state [1, 1, 3, 1, 1]. b The
corresponding data stress components σi j and the KF model prediction σ̂i j

Fig. 18 Predicted yield surface for the Hill model B = 0.5 for the KF-calibrated model for accumulated plastic strain ε p = 0, 0.1 and 0.2

123

116 Computational Mechanics (2023) 72:95–124

Table 4 The RL-discovered final state and corresponding experimental
design for the isotropic von Mises plasticity model calibration game
along with the benchmark and KF-calibrated parameters calibrated on
the anisotropic elastoplasticity Hill data (B = 0.5)

von Mises Plasticity model
Final State Experimental Design

[2, 9, 1, 9, 9] +%ε22,−%ε33,+%ε11,−%ε33,−%ε33

Benchmark parameters Calibrated parameters

E = 1.5 E = 1.3713

νxy = 0.3 νxy = 0.2982

νzy = 0.2 νzy = 0.2700

B = 0.5 B = 1.0 (fixed)

Y0 = 0.1 Y0 = 0.1014

H = 0.1 H = 0.1011

The efficiency index for the two cases is calculated against
the strain–stress paths shown in Fig. 15 and Fig. 11 respec-
tively.

The convergence of the mixed reward for the two cases is
shown in Fig. 19, in which the algorithm reaches a maximum
score by the 20th iteration. For the model discrepancy case,
the model can be seen to represent the anisotropic behav-
ior with a best fit using the initial size of the isotropic yield
surface Y0 and hardening parameter H . The discrepancy can
be observed in Fig. 20 where the isotropic axes of the yield
function are perfectly captured (the yielding behavior in the
σ11 − σ22 axes is independent of B) but in the shear stress

axes the anisotropy cannot be captured. For the model sim-
plification case, the discovered parameters of the Kalman
model calibration are shown in Table 5 where the two cali-
brated Poisson ratios are equal, indicating isotropy, and the
anisotropy parameter B is close to unity, which coincides
with the von Mises yield surface. Thus, we observe that the
DRL algorithm has the capacity to converge regardless of
model discrepancy to a state that maximizes the calibration
objective. Note that, due to the usage of the upper confi-
dent bound to balance exploitation and exploration, the game
score is not necessarily improving monotonically and may
dip locally in between an iteration due to the exploration.
Nevertheless, the trend of the game score is improving until
the game equilibrium is reached.

5 Conclusion

In this paper, we introduced an integrated framework that
combines the strengths of Kalman filters (KF) and model-
based deep reinforcement learning (DRL) to design experi-
ments for calibratingmaterialmodels. The enhancedKalman
filter provides the means to estimate the information gain
corresponding to each individual action in an experiment
without further sampling. As shown in the numerical exam-
ples, this estimated information gain, quantified by the
Kullback–Leibler (KL) divergence, can help us improve the
efficiency of the DRL by either replacing the more expen-
sive Nash–Sutcliffe efficiency (NSE) index (which can be

Fig. 19 aGame score vs. iteration for the J2 plasticity calibration game
model given a dataset for anisotropic elastoplasic behavior from theHill
model (B = 0.5). b Game score versus iteration for the Hill plasticity
calibration game model given a dataset for isotropic elasticity and von

Mises yield surface (B = 1). The red dots and the error bars are the
mean and ± standard derivation of the rewards of over the episodes
respectively

123

Computational Mechanics (2023) 72:95–124 117

Fig. 20 Predicted yield surface for the KF-calibrated von Mises plasticity model for accumulated plastic strain ε p = 0, 0.1, and 0.2. The model
was calibrated through the DRL algorithm in an environment of anisotropic Hill plasticity data (B = 0.5)

Table 5 The RL-discovered final state and corresponding experimental
design for the Hill model calibration game along with the benchmark
and KF-calibrated parameters calibrated on the linear elasticity/von
Mises data

Modified hill model (B = 1.0/von Mises)
Final state Experimental design

[1, 1, 1, 12, 1] +%ε11,+%ε11,+%ε11,−%ε13,+%ε11

Benchmark parameters Calibrated parameters

E = 1.5 E = 1.5017

ν = 0.3 ν = 0.2996

ν⊥ = 0.3 ν⊥ = 0.3002

B = 1.0 B = 0.9992

Y0 = 0.1 Y0 = 0.0999

H = 0.1 H = 0.1000

expensive to estimate due to the additional cost for k-fold
validation), or enabling us to reduce the sampling size for
the NSE reward estimation.

In future work, we will enhance the algorithm to improve
its performance. In particular, including a variable step size
in the action space or enabling continuous action (cf. Doya
[11]) will allow the method to optimize the decisions more
precisely near the onset of yield.

We will also pursue the application of the proposed
RL methodology to real physical experiments which will
inevitably include model-data discrepancy and incomplete
observations of material response. A full model of the
boundary value problem representing a typical mechanical
experiment may enable a richer representation of the state
and hence improve the policy predictions at the expense of
higher training costs and reaction time. Techniques that can
effectively learn policies in state space of higher dimension,
such as those in Yang et al. [71] and those that can enable
the deployment of multiple agents to explore the decision

tree with shared experience, such as Schrittwieser et al. [57],
both of which are very active research fields in DRL, will be
explored in the future to further improve the robustness and
accuracy on the decision knowledge acquired by the experi-
mentalist agent.

Ultimately, the goal is to deploy the method as a real-time
decision-making process for concurrent experiment data col-
lection and model calibration. What we have developed is an
actor with a policy that is trained to synthetic data that can
deployed on an actual experiment and will react to the real
time rewards. We rely on similarity between the model used
to generate training data and the actual behavior of the mate-
rial of interest with the assumption that similar behavior is
sufficient to generate a good policy. Due to the extensive
interactions required to generate good policies, (a) transfer
learning between the simulated environmental and physical
tests and (b) more effective state representation may both be
necessary [9]. Transfer learning would entail retraining the
DNN policy starting from the parameters optimized to the
synthetic data with limited data from the actual experiment,
while keeping as much of the problem the same, e.g., the
action set. As mentioned, selecting an ideal state representa-
tion is an open question, with downsides to adding too many
state variables. Combinatorial studies are brute force means
of determining which state representation have advantages
over others. Latent encodingmethodmayprove to have appli-
cations as well. On a related thrust, the appropriate material
model is generally not known in advance, so model selection
and/or machine learning/data-driven models to augment the
traditional models are likely needed. As we have shown, the
SKF is an effective means to performmodel selection among
a finite set of models.

Real experiments also present the complications of mea-
surement noise, imprecise or incomplete control of the
sample, indirect measurements (e.g. observing forces and
displacements instead of stresses and strains), multiple mea-

123

118 Computational Mechanics (2023) 72:95–124

surement methods (strain gauges as well as full-field surface
measurements) and potential advantages of multiple proto-
cols on equivalent samples. Each of these challenges will
likely engender new developments to the proposed RL algo-
rithm; however, the KF provides means of tackling many of
them, such as noise, incomplete control and observation.

Acknowledgements The authors are primarily supported by Sandia
National Laboratories Computing and Information Sciences Laboratory
Directed Research and Development program, with additional support
from the Department of Defense SMART scholarship is provided to
support Nhon N. Phan. NAT acknowledges support from the Depart-
ment of Energy early career research program. This support is gratefully
acknowledged. WCS would also like to thank Dr. Christine Anderson-
Cook from Los Alamos National Laboratory for a fruitful discussion on
the design of experiments in 2019 and theUPS FoundationVisiting Pro-
fessorship from Stanford University for providing additional funding
for this research. Sandia National Laboratories is a multimission labo-
ratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for theU.S.Department of Energy’sNationalNuclear
Security Administration under contract DE-NA0003525. This paper
describes objective technical results and analysis, which is also archived
in the internal Sandia report SAND2022-13022. Any subjective views
or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United
StatesGovernment. This article has been co-authored by an employee of
National Technology and Engineering Solutions of Sandia, LLC under
Contract No. DE-NA0003525 with the U.S. Department of Energy
(DOE). The employee owns all right, title and interest in and to the
article and is solely responsible for its contents. The United States
Government retains and the publisher, by accepting the article for pub-
lication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this article or allow others to do so,
for United States Government purposes. The DOE will provide public
access to these results of federally sponsored research in accordance
with the DOE Public Access Plan https://www.energy.gov/downloads/
doe-public-access-plan.

Data availability The code and data that support the findings of this
paper will be posted in an open-source repositories upon the acceptance
of the manuscript.

Credit statement The extended Kalman filter was implemented by Dr.
Ruben Villareal, whereas the incorporation of the extended Kalman
filter and the framework of the deep reinforcement learning was imple-
mented by Dr. Nikolaos Vlassis. The rest of the authors contributed to
developing ideas, writing the manuscript and discussions.

Appendix A: Elastoplasticity

One class of particularly technologically important examples
of this problem type is the calibration of traditional elasto-
plasticity models [44, 56, 61]. In these models the observable
stress σ is a function of elastic strain εe. Typically, a linear
relationship between σ and εe is assumed:

σ = Cεe, (28)

where C is a fourth-order elastic-modulus tensor. For
instance, with transverse isotropy,

C1111 = E
(1 − ν⊥)

(1 − 2ν2ν⊥)
,

C2222 = C3333 = E
(1 − ν2)

(1 − 2ν2ν⊥)
,

C1122 = C1133 = E
ν

(1 − 2ν2ν⊥)
,

C2233 = E
(ν2 + ν⊥)

(1 − 2ν2ν⊥)(1+ ν⊥)
,

C1212 = C1313 = E
1

(1 − ν)
,

C2323 = E
1

(1 − ν⊥)
, (29)

where E is an effective Young’s modulus, ν is an in-plane
Poisson’s ratio and ν⊥ is an out-of-plane Poisson’s ratio. His-
tory dependence is incorporated via plastic strain ε p, which is
a hidden material state variable that elicits dissipative behav-
ior. The elastic strain in (28) is the difference between the
controllable, observable total strain ε and the irreversible
plastic strain ε p:

εe = ε − ε p. (30)

A closed, convex yield surface limits the elastic region
and demarcates the elastic, reversible behavior in the interior
of the surface from the irreversible plastic flow at the limit
defined by the surface. For instance, a modified/simplified
Hill anisotropic yield surface

Y = φ(σ)

≡
(
1
3

(
(σ22 − σ33)

2 + (σ11 − σ33)
2 + (σ22 − σ11)

2
)

+ B
2

(
σ 2
23 + σ 2

13 + σ 2
21

))1/2

generalizes the widely-used von Mises yield surface [44]; in
fact, Fig. 21 shows that it reduces to von Mises when B = 1.
The yield surface evolves with hardening of the material

Y = Y0 + h(ep), (31)

where Y0 is the initial yield strength, h is the hardening
function and ep is the equivalent plastic strain. For instance,
h = Hep induces linear hardening. The plastic strain evolves
via the (associative) flow rule

ε̇ p = λ̇∂σ φ, (32)

where the direction of evolution is given by the normal to the
yield surface ∂σ φ.

123

https://www.energy.gov/downloads/doe-public-access-plan
https://www.energy.gov/downloads/doe-public-access-plan

Computational Mechanics (2023) 72:95–124 119

Fig. 21 The modified Hill yield surface model under different stress axes for parameters B = 0.5, 1, and 2

The yield surface

g ≡ φ(σ) − Y (ep) ≤ 0 (33)

constrains the possible response of the material. When g <

0, the material is in an elastic state, and the material state
variables ε p and λ = ep are fixed so that the stress at the
new state k is

σ k = C(εk − ε p) = σ k−1 + C(%ε). (34)

where k indexes load steps. Otherwise, the material is in a
plastic state; the evolution equations and the constraint g = 0
need to be solved through aNewton iterationwith increments
%σ (i)

σ k = σ k−1 +
∑

i

%σ (i). (35)

where i indexes the Newton iterations. This aspect compli-
cates obtaining parameter sensitivities. Further details can be
found in Simo and Hughes [61].

For this exemplar the parameters are θ = {E, ν, ν⊥, B,
Y0, H}. If Y0 → ∞ the model reduces to elasticity, and if
ν⊥ = ν it reduces to isotropic elasticity, θ = {E, ν}. If Y0 is
finite, ν⊥ = ν and B = 1 it reduces to the widely-used von
Mises plasticity model, θ = {E, ν,Y0, H}.

Appendix B: EKF for state andparameter esti-
mation of DAEs

In this appendix we will derive and discuss the extended
Kalman filter (EKF) in the context of semi-explicit index-
1 differential algebraic equations (DAEs) for joint state
and parameter estimation. The plasticity model described in
“Appendix A” is an example of a DAE system with an alge-
braic stress rule (28) and an ordinary differential equation
(ODE) prescribing the flow of the hidden state variables (32)
subjected to the algebraic yield constraint (33). In general,

these DAEs have the form

ż = f (z, σ , θ , x, t) (B.1)

0 = g (z, σ , θ , x, t) . (B.2)

Here z are unobserveddynamic states,σ are unobserved alge-
braic states, θ are model parameters, x are known inputs and
t is time. Since we are dealing with index-1 DAEs, we can
assume that g (z, σ , x, t) = 0 is solvable for σ . In addition
to the DAE process model, we assume that there is an obser-
vation model for measurement d, given by

d = m (z, σ , θ , x, t)+ ε, (B.3)

where ε is noise which we assume follows a Gaussian dis-
tribution.

Considering that these dynamics are specified using a
continuous DAE system, we need to discretize them in
time. Further we will assume that the models are not time
dependent for simplicity but extending this method to the
time-dependent case is straight forward. While there are no
closed-formsolutions to theDAEsexplicitly, for convenience
we can define the solution as the function f for the dynamic
state update and m for the explicit measurement function
when a closed-form solution does not exist (e.g., if it depends
on σ). As a result,

zk = f (zk−1, θ , xk)+ ηk (B.4)

dk = m (zk, θ , xk)+ εk . (B.5)

for time tk . Here the addition of a Gaussian process noise
term η reflects modeling errors due to the discretization in
addition to any intrinsic noise. It is important to note that
there are many choices of f depending on the discretization
and numerical integration scheme used to solve the DAEs.
This explicit construction, though not implementable in a
closed form, defines the functions that we need to linearize
in order to construct the EKF. We can also augment the state
to include fictitious dynamics of the model parameters to aid
in model parameter identification:

θk = θk−1 + δk, (B.6)

123

120 Computational Mechanics (2023) 72:95–124

where δ is again additive Gaussian noise. For exact param-
eter estimation, δk = 0 because the parameters are fixed;
however, in some cases for stability adding small amounts of
noise can reduce bias in the estimated parameters at the cost
of increased variance and slower convergence of the estima-
tion.

Under this construction, the EKF prediction step has the
form

zk|k−1 = f
(
zk−1|k−1, θk−1|k−1, xk

)
(B.7)

θk|k−1 = θk−1|k−1 (B.8)

dk|k−1 = m
(
zk|k−1, θk|k−1, xk

)
, (B.9)

while the uncertainty propagation on the prediction has the
form

#k|k−1 = Fk#k−1|k−1FTk + Qk (B.10)

Sk|k−1 = Ak#k|k−1AT
k + R, (B.11)

where # is the covariance for the joint state [z, θ]T , Q is
the process and parameter additive uncertainty assumed to
be independent and has covariances Qη and Qδ , respectively,
and R is the measurement noise covariance. We also must
construct the linearizations of the dynamics F and the mea-
surement A:

Qk =
[
Qη 0
0 Qδ

]
(B.12)

Fk =
[
∂zf ∂θf
I 0

]

zk|k−1,θk|k−1,xk

(B.13)

Ak =
[
∂zm ∂θm

]
zk−1|k−1,θk−1|k−1,xk

. (B.14)

Once all these variables have been defined and a measure-
ment dk has been made, the EKF update is straight forward.
The EKF update is given by:

rk = dk − dk|k−1 (B.15)

Kk = #k|k−1AT
k S

−1
k|k−1 (B.16)

zk|k = zk|k−1 + Kkrk (B.17)

#k|k = (I − KkAk)#k|k−1. (B.18)

Therefore, in order to apply the EKF to the DAEs, we must
compute the derivatives: ∂zf, ∂θf, ∂zm and ∂θm.

We will compute these derivatives for the case where the
dynamics are implicitly solved using the backward Euler
method (as is common for plasticity updates). Thus, return-
ing to the discrete time DAEs, the model becomes

zk = zk−1 + %t f (zk, σ k, θk, xk) (B.19)

θk = θk−1 (B.20)

0 = g (zk, σ k, θk, xk) (B.21)

dk = m (zk, σ k, θk, zk) . (B.22)

Before we begin with the derivation of the derivatives needed
for the EKF, we will derive the following useful derivatives:
∂zk−1θk , ∂θk−1zk−1, ∂zk−1σ k , ∂zkσ k and ∂θk−1σ k . By inspec-
tion, we see that ∂zk−1θk = 0 and ∂θk−1zk−1 = 0. This
realization might seem counter-intuitive because obviously
there is a relationship between zk−1 and θk−1; however, that
relationship is already being accounted for via #. To find
∂zk−1σ k we must implicitly compute the derivative of the
algebraic constraint

∂zk−10 ≡ 0 = ∂zk−1g (zk, σ k, θk, xk)

= ∂zkg ∂zk−1zk + ∂θkg ∂zk−1θk

+ ∂σ kg ∂zk−1σ k

= ∂zkg ∂zk−1zk + ∂σ kg ∂zk−1σ k (B.23)

/⇒ ∂zk−1σ k = −
(
∂σ kg

)−1
∂zkg ∂zk−1zk . (B.24)

Here we used the fact that ∂zk−1θk = 0. Also, we know that
∂σ k g is invertible because it is an index-1DAE. Following the
same argument, we also find that ∂zkσ k = −

(
∂σ kg

)−1
∂zkg.

Similarly, to find ∂θk−1σ k wemust implicitly compute the
derivative of the algebraic constraint

∂θk−10 ≡ 0 = ∂θk−1g (zk, σ k, θk, xk)

= ∂zkg ∂θk−1zk + ∂θkg ∂θk−1θk

+ ∂σ kg ∂θk−1σ k (B.25)

/⇒ ∂θk−1σ k = −
(
∂σ kg

)−1 (
∂zkg ∂θk−1zk + ∂θkg

)
.

(B.26)

Now, using the previous definitions, we can use the same
implicit strategy to solve for ∂zf. We can derive it as

∂zf = ∂zk−1zk
= ∂zk−1

(
zk−1 + %tf (zk, σ k, θk, xk)

)

= I+ %t
(
∂zkf ∂zk−1zk + ∂θkf ∂zk−1θk + ∂σ kf ∂zk−1σ k

)

= I+ %t

(
∂zkf ∂zk−1zk − ∂σ kf

(
∂σ kg

)−1
∂zkg ∂zk−1zk

)

(B.27)

/⇒ ∂zf

=
(
I − %t∂zkf+ %t∂σ kf

(
∂σ kg

)−1
∂zkg

)−1
.

(B.28)

Using a similar strategy, we can compute ∂θf:

∂θf = ∂θk−1zk
= ∂θk−1

(
zk−1 + %tf (zk, σ k, θk, xk)

)

= ∂θk−1zk−1 + %t(
∂zkf ∂θk−1zk + ∂θkf ∂θk−1θk + ∂σ kf ∂θk−1σ k

)

123

Computational Mechanics (2023) 72:95–124 121

= %t

(
∂zkf ∂θk−1zk + ∂θkf − ∂σ kf

(
∂σ kg

)−1

(
∂zkg ∂θk−1zk + ∂θkg

))
(B.29)

/⇒ ∂θf =
(
I − %t∂zkf+ %t∂σ kf

(
∂σ kg

)−1
∂zkg

)−1

(
%t∂θkf − %t∂σ kf

(
∂σ kg

)−1
∂θkg

)
. (B.30)

Computing the derivatives for the measurement function
is more straight forward because we are now no longer using
the implicit integrator, and all the keyderivatives have already
been defined. We find that

∂zkm = ∂zkm+ ∂σ km ∂zkσ k (B.31)

∂θkm = ∂zkm ∂θf+ ∂θkm+ ∂σ km ∂θkσ k . (B.32)

For the special case when m (zk, σ k, θk, xk) = σ k , as in
our models, we can significantly simplify these equations as

∂zkm = ∂zkσ k = −
(
∂σ kg

)−1
∂zkg (B.33)

∂θkm = ∂θkσ k = −
(
∂σ kg

)−1 (
∂zkg ∂θf+ ∂θkg

)
. (B.34)

Appendix C: GPB algorithm applied to plas-
ticity model calibration

In GPB2, the material response modes occurring at step
k − 1 and k can be assigned discrete switching variables
α,β ∈ {0, 1} respectively, where 0 represents being in an
elastic mode and 1 in a plastic mode. The probability of
being in either mode depends on the likelihood of the active
mode given the observations, the transition model, and mode
probabilities.We partition our exemplar into twomodes,M0

andM1, which have a corresponding elastic, (34), and plas-
tic, (35), response. This allows the yield criterion (33) to be
bypassed and responses from both modes can be simultane-
ously carried out in order to update the mode probabilities at
every step. From the perspective of material science there is
a low probability of having any plastic behavior at start of an
experiment and this prior knowledge can be incorporated by
setting the initial mode probabilities accordingly.

Since we do not know a priori when switching occurs,
we assign each mode a probability; π(M0|θ) is the prior
probability before we collect any data, and π(Mk |d1:k; θ)
is the probability after we collect data, where d1:k is data
observed up to step k and θ are the model parameters shared
between both modes. The mode probability π(M) update
equation is derived from Bayes rule for the joint probability
π(Mα

k−1,M
β
k) given the data d up to the current step k:

π(Mα
k−1,M

β
k |dk,d1:k−1)

∝ π(Mα
k−1,M

β
k ,dk |d1:k−1)

= π(dk |Mα
k−1,M

β
k ,d1:k−1)π(Mα

k−1,M
β
k |d1:k−1)

= π(dk |Mα
k−1,M

β
k ,d1:k−1)︸ ︷︷ ︸

Lk (α,β)

× π(Mβ
k |Mα

k−1,d1:k−1)︸ ︷︷ ︸
Z(α,β)

π(Mα
k−1|d1:k−1)︸ ︷︷ ︸

Wk−1|k−1(α)

, (C.1)

The likelihood function Lk(α,β) is a multivariate Gaus-
sian distribution L = N (r,A#AT + R) based on the
parameter distributions where r is the residual error and the
covariance is defined in (C.4). The transition matrix Z(α,β)
contains elements zαβ which are the probability of transition-
ing from mode Mα toMβ . It has the form

Z(α,β) =
[
z00 z01
z10 z11

]
(C.2)

and was initialized with the following values:

Z(α,β) =
[
0.99 0.01
0.01 0.99

]
.

The reasoning for these initial values is that on the average
we expect most experimental steps to remain sequentially in
either the elastic or the plastic region with only a few steps
centering around the yield point where switching occurs.
The Wk|k(β) = ∑

α Wk−1,k|k(α,β) is the posterior distri-
bution forM. If the transition is partitioned between modes,
the switching becomes soft, and the Kalman filter is effec-
tively a mixture of the two discrete filter modes. Since the
material response is either elastic or plastic, we manipu-
late the transition matrix to be binary. When the material
is more likely to deform elastically with a probability of
π(Mk = 0|d1:k, θk) > 1/2, the prior parameters θk are
updated according to M0; else, if the material begins to
deform plastically with probability π(Mk = 1|d1:k, θk) >
1/2, then themodel parameters are updated according toM1.
Treating the calibration as separate modes allows for better
estimation of both elastic and plastic parameters considering
that new data can be partitioned appropriately by the mode
assignment.

The GPB2 algorithm extends the Kalman filter (KF) by
incorporating a Markovian jump system that models transi-
tions between discrete behavior modes. At each sequential
step tk−1 → tk , the algorithm generates estimates condi-
tioned on N modes and all possible transitions between
them, resulting in N 2 mode-matched KFs. The estimates are
then merged using a mixing probability proportional to the
likelihood of each KF to obtain the overall estimate of the
system state. The interplay between the multiple KFs and
the mixing probability is illustrated in Fig. 22, highlighting
the algorithm’s ability to generate accurate state estimates

123

122 Computational Mechanics (2023) 72:95–124

Fig. 22 A schematic of one complete cycle of the GPB2 algorithm

at each time step. The algorithm begins with previous esti-
mates (or priors)Wα

k−1, θ̂
α
k−1, and .α

k−1, which are the mode
probabilities, mode conditioned estimates, and covariances,
respectively.

A complete recursive cycle of GPB2 is as follows:
1. Mode matched filtering: The N 2 mode matched KFs

takes N (θ̂ α
k−1,.

α
k−1) and outputs N (θ̂

βα
k ,.

βα
k) where

subscript k|k − 1 denotes predicted statistics and k
are updated statistics. Details of the Kalman filter are
described in Sec. 2.2. Note that in our exemplars, the
material model parameters being estimated are constant
and therefore the state transition Fβ is the identitymatrix.
The inclusion of Fβ in the following filtering step shows
generality for calibrating dynamic states.

θ̂
αβ
k|k−1 = Fβ θ̂α

k−1, (C.3)

.
αβ
k|k−1 = Fβ.α

k−1F
T
β , (C.4)

Sαβ
k = Aβ.

αβ
k|k−1A

T
β + Rk, (C.5)

K αβ
k = .

αβ
k|k−1A

T
β (S

αβ
k)−1, (C.6)

θ̂
αβ
k = θ̂

αβ
k|k−1 + K αβ

k (dk − Aβ θ̂
αβ
k|k−1), (C.7)

.
αβ
k = .

αβ
k|k−1 − K αβ

k Sαβ
k (K αβ

k)T . (C.8)

2. Mixing probabilities: Wαβ
k−1|k is interpreted as the proba-

bility that mode Mα was in effect at step k-1 given that
Mβ is in effect at step k conditioned on data dk . The
likelihood is given by the normal distribution

L(α,β) = N (r̃αβ
k ; 0, Sαβ

k) (C.9)

where r̃αβ
k = dk − Aβ θ̂

αβ
k|k−1 is the residual between the

prediction and the data dk and the mixing probabilities
are calculated as

Wαβ
k−1|k =

L(αβ)Z(α,β)Wα
k−1

cβ
k

(C.10)

where Z(α,β) is the transition matrix, Wα
k−1 is a mode

probability, and cβ
k is a normalization constant given by

cβ
k ≡

N∑

α=0

L(αβ)Z(α,β)Z(α,β)Wα
k−1. (C.11)

3. Merging: The previous mode history Mα of θ̂
αβ
k and

.
αβ
k is marginalized out using the mixing probabilities

to obtain the conditional posterior estimates and covari-
ances given the current mode Mβ . These are calculated
as

θ̂
β
k =

N∑

α=0

Wαβ
k|k−1θ̂

αβ
k (C.12)

.
β
k =

N∑

α=0

Wαβ
k|k−1[.

αβ
k + (θ̂

β
k − θ̂

αβ
k) × (θ̂

β
k − θ̂

αβ
k)T].

(C.13)

4. Update mode probabilities: The mode probabilities are
updated by the sum of weighted likelihood estimates and
are given by

Wβ
k = 1

c

N∑

α=0

N (r̃αβ
k ; 0, Sαβ

k)Z(α,β)Wα
k−1 =

cβ
k

c

(C.14)

where c ≡ ∑N
β=0 c

β .
5. Overall estimate: Combining the mode estimates by the

updatedmode probabilities (C.14) results in the final state
estimate and covariance. These are calculated as

θ̂k =
N∑

β=0

Wβ
k θ̂

β
k (C.15)

.k =
N∑

β=0

Wβ
k [.

β
k + (θ̂k − θ̂

β
k) × (θ̂k − θ̂

β
k)

T]. (C.16)

References

1. Ames NM, Srivastava V, Chester SA, Anand L (2009) A thermo-
mechanically coupled theory for large deformations of amorphous
polymers. Part II: applications. Int J Plast 25(8):1495–1539

2. Baird L (1995) Residual algorithms: reinforcement learning with
function approximation. In: Machine learning proceedings 1995.
Elsevier, pp 30–37

3. Bower AF (2009) Applied mechanics of solids. CRC Press, Boca
Raton

4. Catanach TA (2017) Computational methods for Bayesian infer-
ence in complex systems. Ph.D. Thesis, California Institute of
Technology

123

Computational Mechanics (2023) 72:95–124 123

5. Chaloner K, Verdinelli I (1995) Bayesian experimental design: a
review. Stat Sci pp 273–304

6. Chatzi EN, Smyth AW (2009) The unscented kalman filter and
particle filter methods for nonlinear structural system identification
with non-collocated heterogeneous sensing. Struct Control Health
Monit 16(1):99–123

7. Darema F (2004) Dynamic data driven applications systems: a
new paradigm for application simulations and measurements. In:
Computational science-ICCS 2004: 4th international conference,
Kraków, Poland, June 6–9, 2004, Proceedings, Part III 4. Springer,
pp 662–669

8. Daum F (2005) Nonlinear filters: beyond the Kalman filter. IEEE
Aerosp Electron Syst Mag 20(8):57–69

9. De Bruin T, Kober J, Tuyls K, Babuška R (2018) Integrating state
representation learning into deep reinforcement learning. IEEE
Robot Autom Lett 3(3):1394–1401

10. DingZ,HuangY,YuanH,DongH (2020) Introduction to reinforce-
ment learning. In: Deep reinforcement learning: fundamentals,
research and applications, pp 47–123

11. Doya K (2000) Reinforcement learning in continuous time and
space. Neural Comput 12(1):219–245

12. Erazo K, Sen D, Nagarajaiah S, Sun L (2019) Vibration-based
structural health monitoring under changing environmental condi-
tions using Kalman filtering. Mech Syst Signal Process 117:1–15

13. Evensen G (2003) The ensemble Kalman filter: theoretical formu-
lation and practical implementation. Ocean Dyn 53(4):343–367

14. Feinberg V, Wan A, Stoica I, Jordan MI, Gonzalez JE, Levine S
(2018) Model-based value estimation for efficient model-free rein-
forcement learning. arXiv:1803.00101

15. Fisher RA et al (1937) The design of experiments. Oliver & Boyd,
Edinburgh

16. Fuchs A, Heider Y, Wang K, Sun WC, Kaliske M (2021) DNN2:
A hyper-parameter reinforcement learning game for self-design
of neural network based elasto-plastic constitutive descriptions.
Comput Struct 249:106505

17. Ghanem R, Ferro G (2006) Health monitoring for strongly non-
linear systems using the ensemble Kalman filter. Struct Control
Health Monit 13(1):245–259

18. Gnecco G, Sanguineti M et al (2008) Approximation error bounds
via Rademacher complexity. Appl Math Sci 2:153–176

19. Gu S, Lillicrap T, Sutskever I, Levine S (2016) Continuous deep
q-learning with model-based acceleration. In: International confer-
ence on machine learning. PMLR, pp 2829–2838

20. Gu S, Holly E, Lillicrap T, Levine S (2017) Deep reinforcement
learning for robotic manipulation with asynchronous off-policy
updates. In: 2017 IEEE international conference on robotics and
automation (ICRA). IEEE, pp 3389–3396

21. Heider Y, Wang K, SunWC (2020) So (3)-invariance of informed-
graph-based deep neural network for anisotropic elastoplastic
materials. Comput Methods Appl Mech Eng 363:112875

22. Heider Y, Suh HS, Sun WC (2021) An offline multi-scale
unsaturated poromechanics model enabled by self-designed/self-
improved neural networks. Int J Numer Anal Methods Geomech
45(9):1212–1237

23. Hester T, Stone P (2013) Texplore: real-time sample-efficient rein-
forcement learning for robots. Mach Learn 90:385–429

24. Huan X, Marzouk YM (2013) Simulation-based optimal Bayesian
experimental design for nonlinear systems. J Comput Phys
232(1):288–317

25. Huan X, Marzouk YM (2016) Sequential Bayesian optimal
experimental design via approximate dynamic programming.
arXiv:1604.08320

26. Huang J, LiD, LiH, SongG, LiangY (2018)Damage identification
of a large cable-stayed bridgewith novel cointegratedKalman filter
method under changing environments. Struct Control HealthMonit
25(5):e2152

27. Huang Y, Jianqi Yu, Beck JL, Zhu H, Li H (2020) Novel
sparseness-inducing dual Kalman filter and its application to track-
ing time-varying spatially-sparse structural stiffness changes and
inputs. Comput Methods Appl Mech Eng 372:113411

28. Jazwinski AH (2007) Stochastic processes and filtering theory.
Courier Corporation, North Chelmsford

29. Jin C, Jang S, Sun X, Li J, Christenson R (2016) Damage detec-
tion of a highway bridge under severe temperature changes using
extended Kalman filter trained neural network. J Civ Struct Heal
Monit 6(3):545–560

30. Jones RE, Frankel AL, Johnson KL (2022) A neural ordinary dif-
ferential equation framework formodeling inelastic stress response
via internal state variables. J Mach Learn Model Comput 3(3)

31. Julier SJ, Uhlmann JK (1997)New extension of theKalman filter to
nonlinear systems. In: Signal processing, sensor fusion, and target
recognition VI, volume 3068. SPIE, pp 182–193

32. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear
estimation. Proc IEEE 92(3):401–422

33. Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement
learning: a survey. J Artif Intell Res 4:237–285

34. KalmanRE (1960)Anewapproach to linear filtering andprediction
problems. J Basic Eng 82(1):35–45

35. Kingma DP, Ba J (2014) Adam: a method for stochastic optimiza-
tion. arXiv:1412.6980

36. Kiumarsi B, Vamvoudakis KG, Modares H, Lewis FL (2017)
Optimal and autonomous control using reinforcement learning: a
survey. IEEE Trans Neural Netw Learn Syst 29(6):2042–2062

37. Kober J, AndrewBagnell J, Peters J (2013) Reinforcement learning
in robotics: a survey. Int J Robot Res 32(11):1238–1274

38. KussM, Rasmussen C (2003) Gaussian processes in reinforcement
learning. Adv Neural Inf Process Syst 16

39. Landajuela M, Petersen BK, Kim S, Santiago CP, Glatt R, Mund-
henk N, Pettit JF, Faissol D (2021) Discovering symbolic policies
with deep reinforcement learning. In: International conference on
machine learning. PMLR, pp 5979–5989

40. LaViola JJ (2003) A comparison of unscented and extended
Kalman filtering for estimating quaternion motion. In: Proceed-
ings of the 2003 American control conference, 2003, volume 3.
IEEE, pp 2435–2440

41. Lee JH, Lawrence Ricker N (1994) Extended Kalman filter based
nonlinearmodel predictive control. IndEngChemRes 33(6):1530–
1541

42. Lee S-H, Song J (2020) Regularization-based dual adaptive
Kalman filter for identification of sudden structural damage using
sparse measurements. Appl Sci 10(3)

43. Li Y (2017) Deep reinforcement learning: an overview.
arXiv:1701.07274

44. Lubliner J (2008) Plasticity theory. Courier Corporation, North
Chelmsford

45. Ma R, Sun WC (2020) Computational thermomechanics for crys-
talline rock. Part II: chemo-damage-plasticity and healing in
strongly anisotropic polycrystals. Comput Methods Appl Mech
Eng 369:113184

46. McCuen RH, Knight Z, Gillian Cutter A (2006) Evaluation of the
Nash–Sutcliffe efficiency index. J Hydrol Eng 11(6):597–602

47. Moskovitz T, Parker-Holder J, Pacchiano A, Arbel M, Jordan M
(2021) Tactical optimism and pessimism for deep reinforcement
learning. Adv Neural Inf Process Syst 34:12849–12863

48. Murphy KP (1998) Switching Kalman filters. Technical report,
DEC/Compaq Cambridge Research Labs

49. Nguyen LH, Goulet JA (2018) Anomaly detection with the switch-
ing Kalman filter for structural health monitoring. Struct Control
Health Monit 25(4):e2136

50. Niv Y (2009) Reinforcement learning in the brain. J Math Psychol
53(3):139–154

123

http://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1604.08320
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1701.07274

124 Computational Mechanics (2023) 72:95–124

51. O’Donoghue B, Osband I, Munos R, Mnih V (2018) The uncer-
tainty bellman equation and exploration. In: International confer-
ence on machine learning, pp 3836–3845

52. Ormoneit D, Sen A (2002) Kernel-based reinforcement learning.
Mach Learn 49(2–3):161

53. Pukelsheim F (2006) Optimal design of experiments. SIAM,
Philadelphia

54. Reda D, Tao T, van de Panne M (2020) Learning to locomote:
understanding how environment design matters for deep reinforce-
ment learning. In: Motion, interaction and games. ACM, pp 1–10

55. Ryan EG, Drovandi CC, McGree JM, Pettitt AN (2016) A review
of modern computational algorithms for Bayesian optimal design.
Int Stat Rev 84(1):128–154

56. Scherzinger WM (2017) A return mapping algorithm for isotropic
and anisotropic plasticity models using a line searchmethod. Com-
put Methods Appl Mech Eng 317:526–553

57. Schrittwieser J, Hubert T,MandhaneA, BarekatainM,Antonoglou
I, Silver D (2021) Online and offline reinforcement learning by
planning with a learned model. Adv Neural Inf Process Syst
34:27580–27591

58. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A,
LanctotM, Sifre L, Kumaran D, Graepel T, et al (2017a)Mastering
chess and shogi by self-play with a general reinforcement learning
algorithm. arXiv:1712.01815

59. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A,
LanctotM, Sifre L, Kumaran D, Graepel T, et al (2017b)Mastering
chess and shogi by self-play with a general reinforcement learning
algorithm. arXiv:1712.01815

60. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A,
Guez A, Hubert T, Baker L, LaiM, Bolton A et al (2017)Mastering
the game of go without human knowledge. Nature 550(7676):354

61. Simo JC, Hughes TJR (2006) Computational inelasticity, vol 7.
Springer Science & Business Media, Berlin

62. Sun N-Z, Sun A (2015) Model calibration and parameter esti-
mation: for environmental and water resource systems. Springer,
Berlin

63. Sutton RS, Barto AG (2018) Reinforcement learning: an introduc-
tion. MIT Press, Cambridge

64. Vlassis NN, Sun W (2022) Component-based machine learning
paradigm for discovering rate-dependent and pressure-sensitive
level-set plasticity models. J Appl Mech 89(2)

65. Wang K, Sun WC (2019) Meta-modeling game for deriving
theory-consistent, microstructure-based traction-separation laws
via deep reinforcement learning. ComputMethods ApplMech Eng
346:216–241

66. Wang Kun, Sun WaiChing, Du Qiang (2019) A cooperative game
for automated learning of elasto-plasticity knowledge graphs and
models with AI-guided experimentation. Comput Mech 1–33

67. Wang K, Sun WC, Qiang D (2021) A non-cooperative meta-
modeling game for automated third-party calibrating, validat-
ing and falsifying constitutive laws with parallelized adversarial
attacks. Comput Methods Appl Mech Eng 373:113514

68. West DB et al (2001) Introduction to graph theory, vol 2. Prentice
Hall, Upper Saddle River

69. WilliamsRJ (1992) Training recurrent networks using the extended
Kalman filter. In: [Proceedings 1992] IJCNN international joint
conference on neural networks, volume 4. IEEE, pp 241–246

70. Yang JN, Lin S, Huang H, Zhou L (2006) An adaptive extended
Kalman filter for structural damage identification. Struct Control
Health Monit 13(4):849–867

71. Yang Z, Jin C, Wang Z, Wang M, Jordan MI (2020) On function
approximation in reinforcement learning: optimism in the face of
large state spaces. arXiv:2011.04622

72. Zhao W, Queralta JP, Westerlund T (2020) Sim-to-real transfer in
deep reinforcement learning for robotics: a survey. In: 2020 IEEE
symposium series on computational intelligence (SSCI). IEEE, pp
737–744

73. Zhou L, ShinyaW, Yang JN (2008) Experimental study of an adap-
tive extended Kalman filter for structural damage identification. J
Infrastruct Syst 14(1):42–51

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/2011.04622

	Design of experiments for the calibration of history-dependent models via deep reinforcement learning and an enhanced Kalman filter
	Abstract
	1 Introduction
	2 Model calibration
	2.1 Kalman filter for calibration
	2.2 Extended Kalman filter
	2.3 Switching Kalman filter

	3 Deep reinforcement learning for experimental design with extended Kalman filter
	3.1 Experiments as a Markov decision process
	3.2 Policy represented by deep neural network
	3.3 Action representation: decision tree for experiments
	3.4 Environment: states and rewards of the design-of-experiment problem
	3.4.1 Information-gain reward: Kullback–Leibler divergence
	3.4.2 State represented by action history and Kalman filter prediction
	3.4.3 Forecast prediction reward via an under-sampled Nash–Sutcliffe efficiency index
	3.4.4 Combined reward for multi-objective experiments

	3.5 A Monte Carlo tree search with Kalman reward estimator

	4 Numerical experiments
	4.1 Implementation verification 1: experiment for linear isotropic elastic materials
	4.2 Implementation verification 2: experiment for identifying von Mises yield function and hardening
	4.3 Anisotropic plasticity

	5 Conclusion
	Acknowledgements
	Appendix A: Elastoplasticity
	Appendix B: EKF for state and parameter estimation of DAEs
	Appendix C: GPB algorithm applied to plasticity model calibration
	References

