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Abstract

This article introduces an isometric manifold embedding data-driven paradigm designed to enable model-free simulations
with noisy data sampled from a constitutive manifold. The proposed data-driven approach iterates between a global optimization
problem that seeks admissible solutions for the balance principle and a local optimization problem that finds the closest
point projection of the Euclidean space that isometrically embeds a nonlinear constitutive manifold. To de-noise the database,
a geometric autoencoder is introduced such that the encoder first learns to create an approximated embedding that maps
the underlying low-dimensional structure of the high-dimensional constitutive manifold onto a flattened manifold with less
curvature. We then obtain the noise-free constitutive responses by projecting data onto a denoised latent space that is completely
flat by assuming that the noise and the underlying constitutive signal are orthogonal to each other. Consequently, a projection
from the conservative manifold onto this de-noised constitutive latent space enables us to complete the local optimization step
of the data-driven paradigm. Finally, to decode the data expressed in the latent space without reintroducing noise, we impose
a set of isometry constraints while training the autoencoder such that the nonlinear mapping from the latent space to the
reconstructed constituent manifold is distance-preserving. Numerical examples are used to both validate the implementation
and demonstrate the accuracy, robustness, and limitations of the proposed paradigm.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The era of big data comes with the great promise that the abundance of material data may enable a data-
driven/model-free approach to revolutionize how mechanistic simulations are run and used [1,2]. If constitutive
data for solids may one day become abundant and openly shared, the data-driven/model-free approach introduced
in [2] may lead to a new ecosystem for simulation-based engineering in which the time-consuming and expensive
constitutive modeling can be replaced by a distance-minimizing algorithm. As such, the burden of calibrating
phenomenological models [2] and the lack of physical underpinning of internal variables [3–5], and even the need
for verification and validation can all be bypassed in the model-free paradigm [6–8].

However, engineering industries and businesses that employ mechanistic simulations are not necessarily operated
with access to big data. In many cases, engineering analysis may require access to proprietary, export-controlled,
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and even classified data, often in a limited data regime. A low-cost mechanism to acquire large amounts of data with
sufficient fidelity through interactions with users is not available. For instance, constitutive data of solids are often
proprietary [9] and sometimes even classified or under export controls. In many cases, they could be the primary
and permanent assets where constitutive models and solvers often come to better utilize those assets [10]. As such,
a model-free approach that requires a lot of data to function is not always practical. Alternative approaches that
can operate in a reasonably robust manner in both data-rich and data-limited regimes are crucial for real-world
applications.

1.1. Relevant work on data-driven paradigm with noisy data

There are a number of published contributions dedicated to handling noisy data for the model-free/data-
driven paradigm. For instance, Kirchdoerfer and Ortiz [11] extend the distance-minimization paradigm in [2] to
a probabilistic formulation through the lens of maximum-entropy estimation. This formulation, which is referred to
as the max-ent Data-Driven Computing, improves the robustness of the projection step by introducing a probabilistic
aggregation mechanism for a cluster of data points in the phase space. Since the projection is conducted via the
cluster but not from a particular chosen data point, data-driven computing is less sensitive to outliers. In [12], a
local embedding approach is introduced where a set of neighbor data points closest to the conservation manifold is
identified and used to construct a locally convex hull on the fly. Consequently, this local approach does not require
the construction of a global embedding such as those used in [13], while a regularization parameter can be used
to reduce the impacts of outliers. In both cases, the robustness toward noisy data is nevertheless at the expense of
additional computational costs of the simulated-annealing strategies adopted during the simulations.

Eggersmann et al. [14], on the other hand, incorporate local second-order information regarding the local tangent
operator at each material data point calculated by an instance-based method known as tensor-voting. This method
is combined with the max-entropy approach to enhance the classical distance-minimization method in dealing with
noisy and limited data. Compared to first-order approximations, this method can track the geometrical structure of
data with higher precision. However, it may become less effective when given very limited or unevenly distributed
data as the voting process relies on the local aggregation of information, which may not be suitable for data points
of different proximity or when the data points are far apart from each other. Kanno [15] introduces a kernel method
to reconstruct a smooth constitutive manifold that may filter out noise through global interpolation. However, kernel-
based methods may become less computationally favorable in the big data regime as they scale cubically with respect
to the data size. Ayensa-Jiménez et al. [16] define a statistically consistent distance measure by incorporating higher-
order statistical moments into the data-driven computation to address the prediction uncertainty for noisy databases.
Finally, He et al. [17] extend this idea by embedding the data in a lower-dimensional latent space obtained via
an autoencoder. In this work, the encoder provides the nonlinear dimensionality reduction that maps the high-
dimensional data into a low-dimensional space, necessarily filtering out the noise while preserving the nonlinearity
of the data.

1.2. Scope of this work

In this research, our goal is to introduce a geometric framework that enables the manifold embedding data-driven
paradigm to perform robustly with noisy data. To achieve this goal, we design a geometric autoencoder. While the
encoder allows us to first identify the underlying de-noised smooth constitutive manifold through embedding the
nonlinear constitutive data onto a pre-designated flat plane, a locally isometric (distance-preserving) decoder is used
to prevent overfitting and the re-introduction of noise through the reconstruction procedure. (see Fig. 1).

This setup helps us overcome the non-discriminative distance structure of the high-dimensional noises [18,19]
that may otherwise make the decomposition of noise and data difficult. This distance-preserving treatment allows us
to preserve the geometric structure of a plausible constitutive manifold without directly dealing with the complexity
due to the nonlinearity of the high-dimensional signal and noise. With the isometric embedding established, the data-
driven simulation can then be conducted by an iterative scheme that minimizes the distance between the conservation
and constitutive manifolds.
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Fig. 1. The schematic representation of each step in the introduced local projection and the manifold recovery from a noisy point cloud
in this paper. First, the encoder function maps the ambient point cloud to the latent space that is approximately a hyperplane. Second, the
points out of the hyperplane are linearly projected onto the hyperplane. Finally, in the third step, the decoder function maps the hyperplane
points onto the ambient space. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

1.3. Organization of the rest of this paper

The organization of the rest of the paper is as follows. Sections 2 and 3 provide the formulation for the global and
local minimization problems that constitute the data-driven paradigm. In particular, emphasis is placed on Section 3,
where the geometric autoencoder designed to filter out noise is formulated, and the corresponding machine learning
problem used to train the neural networks is documented. Section 4 then provides a number of numerical examples
to verify the implementation and validate the proposed data-driven method with experimental data. A concluding
remark is then provided in Section 5. To avoid overburdening the readers with details, the hyperparameters used to
train the embedding as well as other implementation details are provided in the Appendix.

2. Global projection step

The distance-minimization approach leads to a double minimization problem, which can be solved by the
alternating minimization algorithm. In this algorithm, the solver repeatedly projects a solution belonging to a set
to another set until the convergence is achieved. Following Kirchdoerfer and Ortiz [2], we refer to the projection
from the constitutive manifold onto the conservation manifold as the global projection. Whereas the counterpart
that projects an admissible element from the conservation manifold onto the constitutive manifold is referred to as
the local projection. In this section, we provide the formulation for the global projection from the data manifold
onto the equilibrium manifold. Since the symmetry of the second Piola–Kirchhoff stress is sufficient to enforce
the balance of angular momentum, a solution admissible to the balance of linear momentum for finite elasticity is
considered to be an element of the equilibrium (or conservation) manifold [2,12].

2.1. Problem statement for the global step

For completeness, we briefly outline the global optimization problem of which the solution is updated iteratively
with the one obtained from the local optimization step. For a pair of given strain and stress fields Z⇤(X) =

(E⇤(X), S⇤(X)), we aim to find solution fields U(X), E(X), and S(X) such that the solution fields satisfy the
balance of linear momentum and admissible boundary conditions while they have the minimum distance to the
given strain and stress fields, i.e., Z⇤. Mathematically the problem statement can be written as follows:

arg min
Z

Z

⌦
D2

M (Z, Z⇤) d⌦ ,
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subject to: r
X
·P + B̄ = 0 in ⌦ ,

P N = T̄ on �P , (1)
U = Ū on �U ,

E =
1
2
{FT F � I} in ⌦ ,

where DM (·, ·) is a valid distance function defined in the phase space spanned by the Green–Lagrange strain tensor
E and the second Piola–Kirchhoff stress tensor S, U is the displacement vector in the reference coordinate system,
F = I +rX U is the deformation gradient, P = FS is the first Piola–Kirchhoff stress tensor, B̄ is the body force in
the reference coordinate system, T̄ is the applied traction vector over the external surface of the undeformed body
�P , N is the unit normal vector to the external surface of the undeformed body @⌦ , Ū is the applied displacement
vector over the external surface of the undeformed body �U such that �U \�P = ? and �U [�P = @⌦ , and ⌦ is
the space occupied by material points in the reference coordinate system X . In this work, the global optimization
step is formulated to minimize the classical energy norm, following the approach of Nguyen and Keip [20] and He
et al. [17], i.e.,

D2
M (Z, Z⇤

;C) =
1
2

(E � E⇤) : C : (E � E⇤) +
1
2

(S � S⇤) : C�1
: (S � S⇤), (2)

where the first and second terms incorporate the contributions of strain and stress differences, respectively, and C
is a fourth-order positive definite tensor with minor (CI J K L = CJ I K L = CI J L K ) and major (CI J K L = CK L I J )
symmetries. Note that this tensor is not necessarily related to the stiffness tensor. It can be viewed as a weighting
operator that re-scales the values of the stress and strain component in the norm used for the global optimization
step [2,17].

2.2. Euler–Lagrange equation for the global constrained optimization problem

The solution of the constrained optimization problem formulated in Eq. (1) is obtained via a standard finite
element method. To obtain the Galerkin form, we formulate the constrained optimization problem via the method
of Lagrange multipliers, i.e.,

⇧ (U, S, Q) =

Z

⌦
D2

M (Z, Z⇤) d⌦ +

Z

⌦
Q(X) · (rX

· P + B) d⌦ �

Z

�P

Q(X) · (P N � T̄ ), (3)

where Q is the Lagrange multiplier vector field that enforces the balance law; we restrict the displacement solution
field U to satisfy the Dirichlet boundary condition exactly, and the strain field E depends on the displacement field
via the compatibility relations. The corresponding Euler–Lagrange equations to this optimization problem can be
obtained by the corresponding first-order variations as follows:

�⇧ =

Z

⌦
�U ·

@E(U)
@U

: C : (E � E⇤) d⌦ �

Z

⌦
�U ·

@F(U)
@U

: (rX Q · S) d⌦ (4)
Z

⌦
r

X�Q : P d⌦ �

Z

⌦
�Q · B̄ d� +

Z

�P

�Q · T̄ d�
Z

⌦
�S : [C�1

: (S � S⇤) � FT
· r

X Q] d⌦ ,

where �U , �Q, and �S are any admissible variations corresponding to the unknown fields. The above derivation
is simplified by restricting �U = �Q = 0 on the Dirichlet boundary �U , i.e., the admissibility conditions. At the
stationary point, the first variation is zero for any admissible variations (�⇧ (U, Q, S) = ⇧ (U + �U, Q + �Q, S +

�S) = 0 8 �U, �Q, �S). As such, the Euler–Lagrange equations reads,
Z

⌦
�U ·

@E(U)
@U

: C : (E � E⇤) d⌦ �

Z

⌦
�U ·

@F(U)
@U

: (rX Q · S) d⌦ = 0, (5)
Z

⌦
r

X�Q : P d⌦ �

Z

⌦
�Q · B̄ d� +

Z

�P

�Q · T̄ d� = 0, (6)
Z

⌦
�S : [C�1

: (S � S⇤) � FT
· r

X Q] d⌦ = 0. (7)
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For computational purposes, we construct the stress field as the dependent field via the localization theorem in the
last equation Eq. (7), which leads to the following relation,

S = S⇤
+ C : (FT

· r
X Q) in ⌦ . (8)

As such, the only independent fields are the displacement and out-of-balance Lagrange multiplier vectors with two
nonlinear Eqs. (5) and (6). For brevity, the spatial discretization via finite elements is outlined in Appendix C.

3. Local projection step

In this section, we formulate the local optimization problem and introduce the manifold de-nosing algorithm that
enables the local projection step necessary to generate incremental updates for the distance-minimization data-driven
solver. To keep the simplicity of the original distance-minimization method while eliminating the time-consuming
discrete search, Bahmani and Sun [13] introduce an embedding method that performs the local minimization step
in an imaginary space that admits the Euclidean structure. However, this framework is not designed to handle noisy
databases since the mappings between the ambient and latent spaces are designed to be bijective and hence do not
allow any information loss necessary for the filtering. In this work, we relax the bijective requirement for the forward
and backward mapping functions and construct the mapping functions in an auto-encoder fashion instead [21]. The
overall procedure for the de-noising procedure is summarized in Fig. 1.

3.1. Problem statement for the local step

In the local minimization step of the data-driven paradigm, a solution Z belonging to the conservation manifold
is mapped onto the constitutive manifold. Such a mapping must be distance minimizing in which the distance is
measured by an appropriate metric DD consistent with the data set D. Kirchdoerfer and Ortiz [2] use the same
energy norm used in the global optimization step to assign each integration point the optimal stress-strain pair
of the discrete data set D. Kanno [15] argues that, although the metric structure of the constitutive manifold is
generally not known a priori, it can be approximated via a kernel method if the data points distribute ubiquitously
in the phase space. However, the presence of noise might make it difficult to reconstruct the underlying manifold
robustly. In addition, solving the distance minimization optimization problem with the presence of noise on the
manifold itself could be time-consuming and non-trivial [22].

To address these issues, we propose a geometric approach where we construct a flattened latent space that can be
isometrically mapped back to a de-noised constitutive manifold. To further simplify the local optimization problem,
we also introduce additional constraints and a projection step such that the resultant de-noised latent space is flat,
with the stress and strain components related linearly.

This linearity enables us to minimize the distance between the points in the conservation manifold determined
from the global iterative step and the latent space that represents the constitutive manifold through a projection.
Since the flattened latent space has the same normal everywhere, the local optimization problem can be advanced
through an analytical solution. Note that, in addition to the global embedding strategy employed in this paper, one
may also leverage the simpler metric of Euclidean space by embedding a subset of constitutive data locally (cf. He
et al. [17]).

As depicted in Fig. 1, a projection that maps the vector ⇣ onto the hyperplane of the constitutive law through
the normal vector of the hyperplane. Consequently, the local minimization step is formulated in the latent space,
which reads,

arg min
⇣⇤2L

d2
L(⇣ , ⇣ ⇤), (9)

where dL can be any norm equivalent to the Euclidean norm of the same dimension, ⇣ ⇤ = P(F(Z⇤)) and
⇣ = P(F(Z)) are the local updated constitutive responses admissible to L and that of the conversation manifold
accordingly. The de-noised latent space is obtained in an offline manner through the construction of a composite
mapping F and projector P.

The constructions of F and P and the related isometric mapping G that maps the de-noised latent space back
to the phase space with data on an underlying de-noised manifold for a given set of discrete data points will be
discussed further in Section 3.2.
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3.2. Design of the geometric autoencoder

Our goal is to train neural networks to obtain a pair of mapping functions F and G showcased in Fig. 1 by
leveraging the expressivity power of deep neural networks [23,24]. We consider a point cloud of stress-strain pair
data for path-independent elasticity problems in which the phase space is spanned by the independent components
of the symmetric stress and strain tensors. Here we introduce unsupervised learning to generate a pair of mapping
functions parameterized by two deep neural networks F✓ : R2n 7! R2n and G! : R2n 7! R2n where ✓ and ! are
their unknown parameters, and n is the number of independent components in a symmetric second order tensor (see
Remark 1). Similar to [21], we call F and G encoder and decoder functions, respectively (see Fig. 1). The vector
Z = [E, S] is an element of the phase space that concatenates the vector representation of strain and stress tensors
in Mandel’s notation.

3.2.1. Geometric encoder and the flattened latent space
The encoder function maps elements in the ambient space to the latent space, i.e., ⇣̄ = F✓ (Z), where the text

colors hereafter are consistent with those used in Fig. 1 for clarity. We then denote a set of discrete data points
Zi

2 M where M is assumed to be a Riemannian manifold, but this same set of points can also be described in
the R2n phase space where Zi can be considered as the position vectors of data points in the phase space.

The linear projector P projects points in the ambient space onto the closet points on the target hyperplane,
i.e., ⇣ = P(⇣̄ ), and essentially reduces the dimension of the constitutive manifold by filtering data stored in the
orthogonal basis out. This step assumes that the hyperplane stores the de-noised data such that the noise and the
data are orthogonal to each other in the latent space.

The assumption that the noise and data are orthogonal to each other comes from the orthogonality principle,
which states that the best approximation of a vector x of the ambient space V by a vector y of a subspace W ✓ V
of this ambient space V is to have the error vector e being orthogonal to the element of a closed subspace W where
x = y + e. Geometrically, this setting essentially minimizes the magnitude of the error vector, as any admissible
vector e = x � y would be of greater magnitude if y and e are not orthogonal with each other. As such, the
orthogonality principle is a necessary and sufficient condition for the optimality of a Bayesian estimator (cf. Moon
and Stirling [25]).

In our work, we first apply the manifold hypothesis to the constitutive signal data. In other words, we assume all
the signal data are elements of a Riemannian manifold. While there is no global orthogonal basis for a manifold,
the local tangential space of the constitutive manifold is spanned by a set of orthogonal bases. Recall that we aim to
enforce the decoder to be isometric. An important property of such an isometric mapping is that it is also conformal
(cf. Lang [26]), which means that any angle between two vectors of the tangential space of the constitutive data
is preserved when they are mapping from the latent space to the final space of the decoder. As such, the normal
vectors that are orthogonal to the constitutive sub-manifold in the ambient space remain orthogonal in the latent
space. Consequently, this enables us to apply the orthogonality principle to obtain the best-estimated data.

Note that the true hyperplane of the ambient space would be of n dimensions. However, in our neural network
approach, the mapping only constrains the latent space to resemble a hyperplane through a constraint (see Eq. (14)).
Hence, the dimension of the coordinate system that expresses the latent space remains of 2n dimension, but the
intrinsic dimension of the latent space is reduced to n due to the flatness of the latent space. For example, a plane
in R3 can be described in a 3D coordinate system, while a 2D coordinate system is sufficient. In the classical
autoencoder in which, the dimensions of the embedding layer may affect the amount of data being filtered out and
hence affect how signals and noises are decomposed. In our case, the weighting function of the autoencoder may
also affect the decomposition, as shown in the parametric study in Appendix E.

3.2.2. Isometry decoder
After the de-noising step (see Fig. 1), we want the decoder step to be a local isometry and diffeomorphism

such that the geodesic can be preserved. Here, the diffeomorphism is enforced by the reconstruction error, which
will be defined later. Meanwhile, to ensure the decoder generates mapping that preserves the local isometry, a new
constraint is added to the loss function of the autoencoder, i.e., Eq. (15).

Recall that a decoder function maps the point cloud data from the latent space onto the ambient space, i.e.,

Zi
= G!(⇣ i ). (10)
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Here we assume that the local tangent space of the constitutive manifold TzM, the phase space, and the latent space
(i.e., the approximated hyperplane T⇣N ) are all Euclidean space of dimension 2n. As such, a necessary condition
to fulfill Eq. (28) is to restrict the tangent operator of the decoder function, i.e.,

J(⇣ ; !) := @Z/@⇣ = @G!(⇣ )/@⇣ , (11)

such that J(⇣ ; !)T = J(⇣ ; !)�1; see Appendix B for the proof . In other words, J(⇣ ; !) is an orthogonal matrix
(cf. [27]). For instance, if a set of points on a curve in R2 is mapped onto a straight line isometrically, this constraint
can be viewed as enforcing the mapping G! to be a pure bending without any stretch or compression.

3.3. Training of neural network autoencoder

The modified autoencoder we used in this paper can be trained via the following weighted multi-objective
optimization statement:

arg min
✓ ,!

wrecnLrecn + wlinLlin + wisoLiso (12)

Lrecn =
1
N

NX

i=1

kG!(⇣ i ) � Zi
k

2
2 (13)

Llin =
1
N

NX

i=1

k⇣̄
i
n:2n � K ⇣̄

i
1:nk

2
2 (14)

Liso =
1
N

NX

i=1

kJ T (⇣ i ) J(⇣ i ) � I2n⇥2nk
2
F (15)

where ⇣̄ 1:n indicates the first n components of ⇣̄ , I2n⇥2n is the identity matrix of size 2n, k · k2, and k · kF are
the L2-norm and the Frobenius norm, respectively. The weighting parameters wrecn, wlin, and wiso control the
contribution of errors associated with the reconstruction, linearity, and isometric conditions, respectively. The first
term (Eq. (13)) is introduced to enforce the consistency of the forward and backward operations between latent and
ambient spaces, i.e., G = (F �P)�1. With the presence of noise, this objective must be supplemented with constraints
that filter out the noise. The second term (Eq. (14)) enforces the linearity constraint in the latent space such that
the mapped data points are admissible to the designated hyperplane where the stress-strain relation becomes linear.
Intuitively, if this term is enforced successfully, then the phase space should deform in such a way that the stress-
strain curve in the deformed configuration of the phase space becomes linear. Note that the matrix K is assumed
to be symmetric, positive-definite, and known a priori. This matrix controls the hyperplane properties in the latent
space (see Section 3.4.) The orthogonal linear projector P is defined with respect to this matrix as follows [13]:

⇣ = P(⇣̄ ) s.t. (16)

⇣ 1:n =
1
2

(⇣̄ 1:n + K�1⇣̄ 1:n, ) (17)

⇣ n:2n = K⇣ 1:n. (18)

The third term (Eq. (15)) constrains the decoder mapping such that it preserves the distance between two close
points in the same tangent space TzM upon the mapping.

Note that the issue of gradient conflict may arise (cf. Yu et al. [28] and Bahmani and Sun [29]) due to the
potential gradient conflict among the three objectives. As shown schematically in Fig. 1, the encoder merely maps
the point clouds onto an approximated hyperplane, then a linear projection that assumes the orthogonality of the
data and noise in the latent space filters out the noise portion of the data. Then, the reconstruction of de-noised
data in the original phase space is obtained by enforcing local isometry of the mapping between the latent and the
reconstructed space to ensure that the distance of any two data points remains the same upon transformation.

In summary, the de-noising procedure hypothesizes that the dimension orthogonal to the hyperplane is in
the space of the noise. Hence, together with the nonlinear dimensional reduction afforded by the encoder, and
the isometric reconstruction enabled by the decoder, the constitutive manifold can be de-noised in a nonlinear
manner. Just as the classical autoencoder used for de-noising of data-driven paradigm (e.g., [30]), the proposed
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method requires careful tuning of the hyperparameters. In our case, the weighting parameters wrecn, wlin, and
wiso are additional hyperparameters where any changes of them may affect how high-frequency data may be
perceived as noise or data. The implications of these hyperparameters to filter out data are explored both in the
numerical experiments in Section 4 and in a detailed parametric study in Appendix E. More systematic studies on
hyperparameter tuning are important but are out of the scope of this study.

3.4. Neural network architecture and implementation details

In this work, we parametrize the encoder and decoder functions by the residual neural networks [31]. With a slight
abuse of notation, the superscript indicates the output of each residual block, the i th residual block F i

✓ : Zi
7! Zi+1

has the following structure,

Zi+1
= Zi

+ F̄ i
✓ (Zi ), (19)

where F̄ i is the multilayer perceptron (MLP) [32]. The residual neural network with l residual blocks can be written
as:

F✓ := F l
✓ � F l�1

✓ · · · � F1
✓ , (20)

where � indicates function composition. We prefer this class of neural networks due to their stability regarding
exploding and vanishing gradient issues in the case of deeper architectures and better performance in learning
bijective transformations [31,33,34].

Although a neural network may exhibit sufficient expressibility to potentially represent a given function upon
training, successfully training such a neural network could remain challenging. When the data manifold is too
complex, finding the mapping F and G could be challenging. One potential reason for the increased difficulty is
the non-convexity of the multi-objective optimization problem, in which we are only solved via a vanilla first-order
optimizer such as the stochastic gradient descent. Similar to domain decomposition methods, one way to reduce the
complexity is to explicitly create coordinate charts and atlas such that the local embeddings of local regions of a
constitutive manifold are learned and then stitched back together by enforcing the consistency of co-domains [35,36].
However, such an approach may introduce other challenges, such as determining the appropriate numbers of local
patches and ensuring the closure of the learned manifold.

Similar to our previous work [13], the linearity constraint is inspired by Hooke’s law and its Euclidean structure.
If two vectors u and v are related by v = K u where K is a symmetric positive-definite matrix, then there exists at
least one hyperplane parameterized by its unit normal vector c such that pT c = 0 where the vector pT = [uT , vT ]
is the concatenation of the two vectors. For example, if K 2 SO(m), then

p
2mcT = [1T

m K , 1
T
m] is the hyperplane

unit normal vector where 1m is the vector of size m with all components equal to 1. This correspondence between
the hyperplane concept and the linearity condition ensures the Euclidean structure of the latent space hence the
validity of the Euclidean metric in the latent space.

Remark 1 (Dimensionality and Geometry). Theoretically, a perfect embedding that maps the constitutive data onto
the latent space may reduce the dimension by 1 for each affine equation added. In Eq. (14), the linearity constraint
introduces N number of affine equations where N is the number of individual components of strain or stress tensors,
and 2N is the dimensions of the phase space of the stress-strain data such that there is a linear relationship between
the stress and strain in the latent space. As such, if the training is successful, the latent space is of a lower dimension
(N ) than that of the ambient space (2N ). Note that this dimensionality reduction is not enforced explicitly by
reducing the number of neurons assigned to the bottleneck middle layer in the autoencoder. Rather, it is achieved
in a geometric sense such that the flattened manifold exhibits a geometric structure of lower dimensionality (and
hence may potentially parameterize with fewer parameters.)

4. Numerical examples

In this section, we introduce three representative numerical examples to verify the implementation, demonstrate
how the de-noising data-driven paradigm works, and examine the performance of the models while given noisy
data, i.e.,
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1. In Section 4.1, we demonstrate how the isometrically constrained autoencoder can be trained to generate an
embedding.

2. In Section 4.2, we verify the implementation of the de-noising data-driven paradigm by designing a boundary
value problem with a known solution, and using it to test whether the paradigm is able to produce the correct
solution with noisy data.

3. In Section 4.3, we examine the performance of the de-noising data-driven paradigm across the limited data
and big data regimes via a two-dimensional cantilever beam problem under pure bending. Noisy datasets
with different sizes and noise of different amplitudes are synthesized to compare the convergence of different
schemes with respect to the data size.

4. In Section 4.4, we assess the robustness and accuracy of the proposed model to handle noisy experimental
data that are inherently of higher dimensions due to the anisotropy with a set of biaxial plane-stress loading
tests commonly found in biomechanics literature.

Unless otherwise specified, the weighting functions for each constraint in the neural network training loss function
are set to 1 in these numerical examples. In the numerical experiments where different neural network strategies
are compared, we purposely use the same set of hyperparameters to ensure these results remain comparable. For
brevity, the hyperparameters used to train the neural network are provided in Appendix D.

Remark 2 (Noise Generator). In the numerical examples where synthetic noisy data are used, we use a Gaussian
noise procedure utilized in other published work of data-driven mechanics (cf. Kirchdoerfer and Ortiz [2], Kanno
[37], He and Chen [12] and He et al. [30] so that the performance of our work can be assessed and compared. To
assess the performance of the proposed approach against real noisy data, we introduced the last example, where
unfiltered raw data was collected from experiments collected by Jett et al. [38,39]. In the latter case, the noise
structure is not known prior. In engineering practice, noise properties are sensitive to how these data are collected.
For instance, noise could be of non-Gaussian nature [40–42] and exhibits scale fluctuation [43]. Since our focus of
this paper is not on generating the most realistic noise obtained from sensors or experiments, we did not attempt to
emulate these scenarios with more advanced noise generators. Note that the generative autoencoders are sometimes
trained with purposely generated noise sampling from a parametrized distribution to regularize the data distribution
in the latent space. In such a case, the nature of the noise may have implications on the representation capacity
of the latent space (cf. [44]. Examining, generating, and leveraging different types of noise for autoencoders is a
highly active research area but is out of the scope of this study. Readers may refer to Ho et al. [45] and Nichol and
Dhariwal [46] for details.

Remark 3 (Physics Constraints for Machine Learning). In this paper, we have not imposed additional constraints
to incorporate the physics-based priors such as poly-convexity, ellipticity, material frame indifference, etc. [47–53].
Enforcing those constraints may improve the robustness of the de-noising procedure. While such treatment may not
be necessary for a high-quality data set, it could be crucial in practice for ensuring the robustness of the de-noising
process. Such an extension is not considered in this paper but will be considered in the future.

4.1. Demonstrative one-dimensional example

In this first example, we use a synthetic dataset to demonstrate the effect of the isometry constraint on the learned
mappings between latent and ambient spaces. Fig. 2(a) shows the set of data points of the constitutive response and
the query points that could originate from the global optimization step. Here, we hypothesize that the constitutive
data points belong to a sub-manifold M ✓ R2.

In the proposed data-driven paradigm, query points (star points in this figure) are the out-of-manifold points that
we aim to project onto the constitutive manifold, which is a geometric prior learned from the stress-strain data. As
such, one must introduce a distance measure to formulate a distance-minimization problem at the local step. Not
surprisingly, such a distance-minimization problem can be sensitive to the assumed geometry of the data. Here,
we conduct a simple experiment where we simply use the L2norm of R2 to calculate the distance between two
data points, which we denoted as Ambient Euclidean distance. Then we construct a simple constitutive manifold
by jointing points with line segments. This enables us to compute the geodesic distance by summing the length
of segments on the shortest path between the two points in the point cloud. As shown in Fig. 2(b), the Euclidean
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Fig. 2. (a) the database and query points (QP) are shown by circles and star markers, respectively. The points are colored for ease of
tracking in each step in the local projection process. (b) A comparison between the discrete geodesic distances and Euclidean distances for
randomly picked pairs of data points. Each point in (b) represents two distance measures for a chosen pair of data points (i.e., circle points
in (a)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

norm and the geodesic distance are close to each other when the two points are close to each other. However, the
difference between these two measures becomes more significant for points further apart. This difference indicates
that the metrics equipped for different data geometry may affect the notion of distance. This discrepancy may affect
the choice of the admissible solution in the data-driven paradigm.

After training the encoder and decoder functions, we plot the output of each step in the proposed local projection
scheme in Figs. 3 and 4 for the isometric and non-isometric mapping functions, respectively. As the results show,
some data points, including the query points, may not lay down on the target hyperplane by the encoder mapping
function F in the first step (see Fig. (b)). This discrepancy could be attributed to the noise, the unsuccessful
satisfaction of the linearity condition, or the long distance between the data points and the underlying manifold
(e.g., query point 2). In the second step, the closest-point linear projection P projects all points onto the hyperplane.
In the third and last step, the points on the hyperplane are mapped to the real latent space via the decoder function
G. Per the reconstruction step (i.e., Step 3), we observe that both schemes recover almost the same manifold. But
their behaviors differ slightly for those query points too far away from the manifold, i.e., query points 2 and 4 in
Figs. 3(d) and 4(d). Recall that this reconstruction step is equivalent to the projection onto the discovered manifold.
One may ask which projection is more accurate for those query points too far away from the underlying manifold?
The answer depends on the distance measure assumption in the ambient space which we aim to avoid in this study.
However, all the distance measures converge to the Euclidean distance as the points get closer. Therefore, in solving
a real BVP, we suggest applying the external loads with sufficiently small increments to avoid inconsistency between
the manifold structure and the final results; this helps to not deal with query points too far away from the underlying
admissible manifold.

Fig. 5 compares the calculated Euclidean distances in the embedding (latent) space with the geodesic distances
in the ambient space. As the results suggest, the isometric training is able to construct a latent Euclidean space with
the same geometrical structure as the ambient space. However, the distance is not preserved by the non-isometric
training, especially for points too far away from each other. Notice that this feature opens some other interesting
directions for future studies, such as 1- performing a nearest neighbor search in the latent space that has fewer
dimensions; hence it may accelerate the search engine for high dimensional data, and 2- a consistent hybridization
of the fully model-free approach (for regains of the phase-space that has sufficiently high-quality data) and the
proposed scheme in the latent space.
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Fig. 3. Local projection steps for the isometric training. The steps are consistent with those in Fig. 1. These results are obtained after
training the encoding and decoding functions.

4.2. Verification exercise via a manufactured one-dimensional solution

In this second example, we introduce a simple one-dimensional boundary value problem (see Fig. 6) with a
known analytical solution to (1) verify the implementation and (2) test whether the data-driven algorithm may
deliver the correct solution when given noisy data.

As such, we generate a synthetic data set via a 1D version of the neo-Hookean model. We then regarded the
data generated from the neo-Hookean model as the ground truth signal and purposely injected Gaussian noise in
the data set such that the resultant data is the sum of the ground truth data and noise.

In the one-dimensional case, the 2nd Piola–Kirchhoff stress S is related to the Green-Lagrangian strain E =
1
2 (F2 � 1) by the following relationship:

S = 2(C1(�� ��2) + C2(1 � ��3)), (21)

where � =
p

2E + 1 is the principal stretch, F = 1 +
dU (X )

d X is the deformation gradient, and C1 = 10 MPa and
C2 = 1 GPa are material constants.

To obtain the parabola solution field U (X ) = 0.5X2, following the method of manufactured solution [54],
the body force field B(X ) is obtained by substituting the parabola displacement field into the balance of linear
momentum for the bar domain, i.e., B(X ) = �

d S(E(X ))
d X . The explicit form of the body force is obtained via the
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Fig. 4. Local projection steps for the non-isometric training. The steps are consistent with those in Fig. 1. These results are obtained after
training the encoding and decoding functions.

Fig. 5. A comparison between the ambient discrete geodesic distances of the randomly picked pairs of data points, the same pairs shown in
Fig. 2(b), and the Euclidean distances of the same pairs in the constructed latent space by (a) an isometric and (b) non-isometric decoder
functions.
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Fig. 6. The one-dimensional bar with length L = 1m, body force B(X ), and applied displacement Ū = 0.5 m. We use 20 uniform finite
elements with linear basis functions to discretize the domain.

Fig. 7. A synthesized material constitutive behavior database. E and S are the Green–Lagrange strain and 2nd Piola–Kirchhoff stress,
respectively.

SymPy package [55] using symbolic calculations. For brevity, the lengthy mathematical expression of the body
force is not provided here but can be easily obtained.

We first synthesize a noiseless material database {(Ei , Si )}N
i=1 by sampling N = 50 data points with equidistant

Green–Lagrange strain values in the range Ei 2 [�0.1, 1.9] from the Neo-Hookean model. The noisy database
{(Ei , Ŝi )}N

i=1 is synthesized by adding a random distribution to the noiseless stress values Ŝi = Si + N (0, 2|Si |)
where N (µ, � ) is the normal distribution with the mean and standard deviation µ and � , respectively. The data
points are shown in Fig. 7.

We first conduct a numerical experiment to test the necessity of the isometric constraint and how this constraint
affects the property of the autoencoder. To achieve this goal, we train two autoencoders with the same neural network
architectures but are given two different sets of loss functions; one trained with the isometric constraint in Eq. (12)
enforced, and another one trained without. The neural network training performances are shown in Fig. 8.

4.2.1. Dimension reduction
In both cases, the linearity constraint (Eq. (14)) is enforced successfully with the corresponding MSE less than

10�6. This indicates that both autoencoders are capable of reducing the intrinsic dimensions of the data by mapping
the data from the ambient space to the flat latent space.

4.2.2. Isometry and flatness of latent space
While both autoencoders may enforce the flatness of the latent space, this flatness is achieved by different types

of mappings that deform the constitutive manifold differently. In the case where the isometry is explicitly enforced
(see Fig. 8(a)), the MSE losses of the three constraints in Eq. (12) reduce gradually and stay stable after about 7000
iterations. On the other hand, in the case that the loss of isometry is only monitored but not enforced (see Fig. 8(b)),
we observe a gradient conflict issue between the isometric constraints Eq. (15) and the other two constraints that
govern the reconstruction and linearity objectives. In particular, the MSE of the isometric constraints Eq. (15) shown
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Fig. 8. Training curves for autoencoder trained for the noisy Neo-Hookean data with isometric constraints (LEFT) and without it (RIGHT).
These three curves correspond to the losses on reconstruction Eq. (13) (blue), linearity Eq. (14) (orange), and isometry Eq. (15) (green).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in Fig. 8(b) increases while the MSE of the reconstruction Eq. (13) and linear constraints Eq. (14) both decrease.
This result indicates that, when the isometry constraint is turned off, the flatness of the latent space is achieved
in a manner that does not preserve distance. Meanwhile, the proposed autoencoder is able to preserve the distance
while flattening the constitutive manifold. The fact that the losses on the linearity and isometry both reduce during
the training suggests that the distance-preserving property can be enforced without negatively impacting our goal
to reduce the intrinsic dimension of the latent space.

4.2.3. Property of reconstruction mapping
Note that the reconstruction error of the isometric autoencoder is about one order higher than the non-isometric

counterpart, as shown in the blue curves in Fig. 8. This is expected, as the de-noising process is expected to make
the de-noised signal different from the noisy data. Meanwhile, an interesting aspect revealed in this numerical
experiment is how the auto-encode achieves the reconstruction from the flattened latent space back to the ambient
space. By comparing the green and blue curves in Fig. 8(b), one may observe that the reduction of the reconstruction
error is at the expense of further violating the isometry constraint.

The importance of the isometry property on the decoder is demonstrated in the two reconstructed constitutive
manifolds shown in Fig. 9 (with isometry enforced) and Fig. 10 (without isometry). While both approaches use a
projection in the latent space to suppress the noise, the decoder that enforces isometry is able to keep the noise
filtered out from the signal in the reconstructed constitutive manifold. On the other hand, allowing the violation of
the isometry observed in Fig. 8(b) may make it possible for the neural networks to learn back the noisy pattern
such that the reconstruction loss can be further suppressed.

4.2.4. Sensitivity on neural network initialization
Note that the constructed constitutive manifold may exhibit dependence on the neural network initialization. Since

neural network training usually leads to a highly non-convex optimization problem where a unique global optimum
might not exist or be found [56]. To gather further evidence on the importance of the isometry and to assess the
robustness of the de-noising procedure, we repeat the training process five times, each time with a different neural
network initialization. The results of these five trials are shown in Fig. 11. This additional experiment suggests that
the previously mentioned outcomes are independent of neural network initialization. Note that the performance of
the autoencoder is also sensitive to the choices of hyperparameters. For brevity, we did not introduce additional
studies on hyperparameter tuning.

Remark 4 (Stress-free Configuration). The de-noised manifold might not always pass the origin exactly, e.g., see
Fig. 9(c). This implies that the reference configuration may not be stress-free. Presumably, enforcing the reference
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Fig. 9. A comparison between the Local projection steps for the isometric training when the noisy Neo-Hookean data is used. The steps
are consistent with those in Fig. 1.

Fig. 10. A comparison between the Local projection steps for the non-isometric training when the noisy Neo-Hookean data is used. The
steps are consistent with those in Fig. 1.

Fig. 11. A study of the neural network initialization effect on discovered manifolds. Different color intensities are used to indicate different
random seeds (in total 5 random seeds). Solid lines pass through the projected training data (circles). Square points show the projected query
points (stars). The dashed line indicates the ground truth. The results are shown after (a) isometric and (b) non-isometric neural network
trainings. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. A comparison of response fields obtained by different schemes and the exact manufactured solution for the 1D bar BVP. U denotes
the displacement, E and S denote the strain and stress measures accordingly.

configuration to be stress-free is possible by introducing additional constraints in the loss function. Alternatively,
one may design a neural network architecture that inherently maps the zero state exactly to itself, e.g., f (x; ✓ ) =

xF(x; ✓ ).

4.2.5. Boundary value problem solution via different data-driven schemes
A successful de-noising of the constitutive manifold is of practical value only if it can lead to the correct solutions

of a boundary value problem. To this end, we compare three different local projection algorithms:

1. Autoencoder with the local isometry enforced (denoted as “iso”)
2. Autoencoder without the local isometry enforced (denoted as “non-iso”)
3. Classical nearest neighbor search (cf. Kirchdoerfer and Ortiz [2], denoted as “classical”).

The parameter for the global optimization step C = 0.66 GPa is set the same among all the schemes. Due to
the non-linearity, we solve this BVP in three linearly increased loading steps for all the schemes. The optimal
strain-stress values (E⇤ � S⇤) at all quadrature points at the initial step are set to zero. Twenty uniform elements
discretize the bar domain. The classical linear basis functions are used for the unknown fields and their associated
test functions.

The displacement, strain, and stress fields along the bar are plotted in Fig. 12. As the results suggest, there is a
good agreement among all the methods for the displacement field prediction. However, data-driven paradigm with
the isometric autoencoder is found to make more accurate strain and stress field predictions that are also free of
spurious oscillations.
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Fig. 13. The 2D beam problem with the length L = 20 mm and the height H = 1 mm. The total shear force is P̄ = 10E I/L2 where the
beam moment of inertia and Young’s modulus are I = H3/12 and E = 4.8 GPa, respectively.

4.3. Representative example 1: sensitivity analysis on cantilever beam simulations in the finite strain regime

The purpose of this example is to analyze how the performance of the de-noising data-driven paradigm is affected
by the sampling size in a more general setting where the dimension of the boundary value problem is increased to
2D, and the geometrical nonlinearity of the deformation is considered. In this example, we solve the same 2D plane-
strain cantilever beam problem under the bending loading condition previously used in [17]. Noisy data sets are
synthesized to examine how the availability of the data and the amount of noise affect the accuracy and robustness
of the de-noising data-driven paradigm. The geometry of the body and the boundary conditions are depicted in
Fig. 13. The left end of the bend is fixed, while uniform shear traction is applied over the right side with the total
force P̄ .

To synthesize the database, the Saint Venant–Kirchhoff phenomenological model with Young’s modulus E =

4.8 GPa and Poisson’s ratio ⌫ = 0 is used. The noiseless Green–Lagrange strain components are evenly sampled
from the interval Ẽi j 2 [�0.02, 0.02] to generate databases with sizes 103, 203, and 303 data points. The noisy
databases are generated by a procedure used previously in [11,17] where Gaussian noises proportional to the size
of data sets are added to each component of strain and stress tensors. For each component (Ei j or Si j ), the added
noise has zero mean, while the corresponding standard deviation is equal to the maximum value of that component
among all noiseless data points scaled by the factor 0.4/ 3p

|D|. |D| 2 {103, 203, 303} is the dataset size. As such,
the dataset with fewer data points also fluctuates in the parametric space more.

4.3.1. Sensitivity of the autoencoders with respect to data and noise
To assess the sensitivity of the de-noising data-driven algorithm with respect to the amount of data, we train two

autoencoders (with and without isometry constraints) with three noisy data sets described earlier.
Fig. 14 reports the training performance of these two sets of autoencoders trained with different amounts of noise

data. All MLP functions are initialized with the same parameters at the beginning of the optimization iterations.
These training problems differ based on the amount of data utilized in their training process and their isometric
constraint weight wiso = {0, 1}. Both isometric and non-isometric autoencoders exhibit better performance when
given more training data. Interestingly, even without explicitly enforcing the isometric constraints (see Fig. 14(d)–
(e)), adding more data also leads to a minor improvement in fulfilling the isometry constraints. Furthermore, the
overall trends of the MSE for all three constraints are also monotonic decreasing. This suggests that, unlike the
previous 1D example, there is no noticeable gradient conflict observed during the training. Given the additional
facts that both the isometric and non-isometric cases lead to very similar MSE for the linearity and reconstruction
constraints, it is plausible that the learned constitutive manifolds and the latent spaces obtained via different strategies
and data sets of different sizes are all very similar. In this particular case, the isometric constraint merely ensures
the distance-preserving property but does not exhibit a major influence on the MSE of reconstruction.

4.3.2. Sensitivity of the data-driven simulations with respect to data and noise
To examine further the performance of the autoencoders trained with different amounts of noisy data, we simulate

the same pure bending BVP with each of these autoencoders and compare the corresponding results.
In the global step of the data-driven paradigm, the tensor used to constitute the energy norm Eq. (8) is set to

be equal to the elasticity tensor of a linear elastic material with ⌫ = 0 and E = 4.8 GPa. Meanwhile, the local
step is solved via projection in the latent space. For comparison purposes, three additional simulations obtained via
the classical local optimization step used in [2] are included. Meanwhile, The benchmark solution is the solution
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Fig. 14. Training performance of autoencoder trained with (top row) and without (bottom row) the isometry constraints when given noisy
data of different sampling densities.

Fig. 15. A comparison of tip deflection profiles during the loading steps with different schemes. The horizontal axis represents U tip
Y /L for

the bottom tip on the loading side of the beam where U tip
Y is the vertical displacement. The vertical axis represents the normalized applied

load P L2/E I during 50 linearly increased loading steps where the beam moment of inertia is I = H3/12.

obtained by the conventional displacement-based finite element solver with constitutive responses obtained from
the noiseless ground-truth constitutive model.

The bottom tip vertical displacement of the beam is recorded during the load steps in Fig. 15. There is a good
agreement between the isometric and non-isometric cases compared with the benchmark. The classical distance-
minimization paradigm also captures the overall trend and improves as the data size grows, but the results are less
accurate.

Since hyperparameters and the initial weights of the neural network may both affect the performance, we repeated
the numerical experiments multiple times, each with a neural network initialized by different initial weights but of
the same architecture (the same hyperparameters listed in Appendix D.2).
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Fig. 16. Nodal displacement errors in the computational domain for different methods when different data sizes are used. In cases of
isometric and non-isometric embedding functions, four different neural networks with different initialized random weights are trained with
the same configuration. The shaded area shows mean ± 0.85 std.

Fig. 17. The deformed computational domain obtained by different schemes for the bending beam problem.

The mean square error (Eq. (22)) between all the nodal displacement values in the finite element mesh obtained
by the data-driven methods and the benchmark are plotted in Fig. 16.

MSEdisp =
1

Nnode

NnodeX

i=1

kU i
gt � U i

ddk
2
2, (22)

where the superscript i indicts the nodal index and subscripts gt and dd refer to the ground truth and data-driven
solutions, respectively. As the results suggest, the isometric training performs slightly better than the non-isometric
case in terms of smaller mean errors and variance. For better visualization, the displacement solution is plotted in
Fig. 17. These solutions are obtained by one of the found mapping functions (one random seed) with the same
initial weights for both isometric and non-isometric cases.

In summary, the solutions obtained from the two autoencoders and the classical data-driven paradigm exhibit
comparable performance, with the isometric approach producing a slightly more accurate deformed configuration.
Given the similar reconstruction errors of these six autoencoders previously discussed in Section 4.3.1, these
comparable performances are expected. On the other hand, we have also noticed that the performance of the two
manifold embedding approaches is both not very sensitive to the amount of data and the amplitude of noises added
to the observed data. This set of results suggests that both manifold embedding approaches may deliver robust
predictions even in the presence of noisy data, provided that the embedding is successful (as indicated by the loss
function Eq. (12)).
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Fig. 18. The geometry and boundary conditions of the plane-stress biaxial test. Normal roller constraints are used on the left and bottom
edges. The uniform traction is applied over the right and top edges.

4.4. Representative example 2: biaxial test: validation against experimental data

The purpose of this last example is to test and demonstrate the performance of the de-noising data-driven
paradigm when given realistic experimental data for real-world applications. In this problem, we solve the plane-
stress biaxial loading for an anisotropic material shown in Fig. 18. This is a common experiment in biomedical
applications [57] and has also been used to test the robustness of a data-driven paradigm [17]. In this set of numerical
examples, we use both synthesized and real experimental data. In the first set of numerical experiments, we use
synthesized data via Fung’s model and introduce artificial noises to compare the data-driven solutions with the
available benchmark. In the second numerical experiment, we then utilize real experimental data to simulate a soft
tissue specimen undergoing finite strain deformation to examine the proposed de-noising data-driven paradigm.

4.4.1. Simulations with synthetic noisy data
Datasets are generated from one of Fung’s phenomenological constitutive models [30,58] with the following

energy functional:
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where c = 960 Pa, a1 = 48.4, a2 = 46.3 and a3 = 15.1 are material properties chosen from [59] for the Ileum
biological tissue with the anisotropy index 0.97. The strain-stress relations can be straightforwardly derived as
follows:

ŜX X = c exp( ̄) (a1 EX X + a3 EY Y ) , (25)

ŜY Y = c exp( ̄) (a3 EX X + a2 EY Y ) , (26)

and the shear component vanishes; the noiseless stress components are decorated by a hat Ŝ.
The noiseless data (benchmark) is obtained by a displacement-based finite element solver with Fung’s phe-

nomenological energy functional. Different force-driven biaxial simulations are conducted based on the different
ratios of external loads as P̄X/P̄Y 2 {1, 0.5, 0.75, 2, 1.33̄} labeled by protocols 1-5, respectively. These simulations
start from zero loading, and the loading is linearly increased in 100 steps up to P̄X = 60 kPa for protocols 1-3 and
P̄Y = 60 kPa for protocols 4-5. We add Gaussian noise to the noiseless data as follows:

SI J = ŜI J + N (0, � ), (27)

where � 2 {0.5, 1, 1.5} kPa is the assumed standard deviation. The three generated datasets based on the level of
the injected noise are plotted in Fig. 19. Note that we assume the shear components are all zero in the datasets
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Fig. 19. Synthesized noisy datasets using Fung’s model. Each protocol shows a different boundary condition in the biaxial test. The data is
represented as EX X � SX X and EY Y � SY Y curves; see [39] for more details on this type of representation. Data points with circular and star
markers correspond to EX X � SX X and EY Y � SY Y curves, respectively, and their colors indicate their protocol types. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

and training tasks due to the plane stress condition. In the following results, we test a protocol (labeled as 6) with
a vertical-to-horizontal loading ratio of 1.5 as a test case where such a loading condition is not included in the
training data. Notice that even for test cases (protocols 1 and 4) with loading conditions similar to the train data,
the sampling points in the train data (50 data points) are different from the test scenarios (80 loading steps).

The training curves for isometric and non-isometric training cases are plotted in Fig. 20. As the data becomes
noisier, the reconstruction error increases in both cases. Also, the reconstruction error reaches a plateau, meaning
that the network set-up is not too expressive to over-fit the noise too much. Both of these observations are necessary
for a good training process. The linearity constraint remains almost the same, indicating that the neural network is
sufficiently expressive for the hyperplane construction regardless of the noise level.

The data-driven simulations are conducted in the force-based control with 80 equal loading steps. The global
optimization parameter C has only non-zero diagonal terms as follows [CI J ] = � (SI J )/� (EI J ) where � (·) is the
standard deviation operator. For a consistent comparison among all datasets, we fix this parameter as [CX X ,CY Y ] =

[332.3, 321.7] kPa which is calculated based on the noiseless data.
The obtained Green–Lagrange strain versus the second Piola–Kirchhoff stress is shown in Fig. 21. The benchmark

solution refers to the solution obtained by the common displacement-based finite element solver where the
phenomenological constitutive law is utilized.

We observe that increasing the standard deviation of the noise (see Fig. 19(a)–(c)) may still affect the accuracy
and smoothness of the constitutive laws. However, there exists a good agreement between the recovered noiseless
response. In this numerical example, the isometric and non-isometric methods yield similar reconstructed stress-
strain curves. This is consistent with the training results shown in 20(a) and (b) where the 5 orders of difference in
the isometry loss impose a marginal effect (less than an order) on the reconstruction and linearity losses. As such,
the isometry constraint here merely plays the role of insurance but does not impose a significant difference on the
mappings enabled by the trained neural network.

Remark 5 (Alternative De-noising Data-driven Paradigms). In this paper, we re-implemented the data-driven
paradigm in [2] and used it to generate benchmark results. It should be noted that there are other options available
that may handle noisy data in the data-driven paradigm, as we indicated in the introduction. For example, He
et al. [17] use a partition of unity with convexity for local data reconstruction on the latent space for de-noising
and stability purposes. For brevity, we do not re-implement these algorithms and will not compare all the feasible
options. Readers may refer to Kirchdoerfer and Ortiz [11], He and Chen [12], Eggersmann et al. [60] and He et al.
[17] for these alternatives.
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Fig. 20. Training performance of the isometric (top row) and non-isometric (bottom row) autoencoders trained from data sets with noises
of different amplitudes. The ground truth data is generated from Fung’s model.

4.4.2. Simulations with experiment data
We use the reported experimental data from [38,39]. Particularly, the dataset with the label MVAL1.txt is utilized

for the mapping functions training and the data-driven solver. This data is obtained by the biaxial test on the mitral
valve anterior leaflet; refer to [38] for more details. Since the raw data is reported based on the principal stretches and
first Piola–Kirchhoff stress values, we transform the data into Green–Lagrange strains and second Piola–Kirchhoff
stresses as follows:

[EX X , EY Y ] = [0.5�2
X � 1, 0.5�2

Y � 1],
[SX X , SY Y ] = [Px X/�X , PyY /�Y ],

where �X and �Y are stretch ratios in the horizontal and vertical directions. The dataset used in this study is plotted
in Fig. 22. The isometric and nonisometric training plots are provided in Fig. 23. The same observation as described
for Fung’s data training holds here.

The solver parameters are kept the same as in the previous case study. Since the ground truth response is
unavailable, we only compare the proposed schemes with the classical distance-minimization method. Also, the
experimental data for protocol loading 6 is not available The obtained results for different biaxial loading conditions
are shown in Fig. 24. Both de-noising schemes lead to similar stress-strain responses at the latter stage of the
experiments. The classical nearest neighbor approach may lead to erroneous constitutive responses in the limited
data regime.

In between the de-noising schemes, the discrepancy is more profound at the initial loading steps. One hypothesis
that may explain this phenomenon is that the noise of the acquired data is probably of similar amplitude during the
experiments. As such, when the deformation is small, the effect of the noise is more profound. Hence, the isometry
condition plays a more important role in reconstructing the data in the earlier phase of the experiment. On the
contrary, the de-noising becomes less crucial when the magnitude of the stress increases such that the ratio between
noise and true signal gradually reduces. Sparsity, noise, and non-linearity at the beginning of loading steps may
result in spurious step-wise constitutive behavior when the classical distance-minimization algorithm is used.
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Fig. 21. A comparison among different data-driven schemes and the benchmark solution obtained by the displacement-based finite element
solver with the phenomenological constitutive law. The data-driven methods use noisy Fung’s type data with different amounts of artificially
injected Gaussian noise. Each protocol shows a different biaxial boundary condition, and std indicates the standard deviation.

5. Conclusions

We present a manifold embedding data-driven paradigm where a modified autoencoder is designed to handle
noisy manifold data while preserving the underlying geometry of the data. The encoding of the noisy data is split
into two steps, where the nonlinear dimensional reduction is achieved through two steps. First, a mapping function is
used to bend the constitutive manifold to an approximated hyperplane. Then, by assuming orthogonality between the
noise and true signal in the latent space, a projection from the approximated hyperplane onto the actual hyperplane
may enable nonlinear filtering of high-frequency noise on the manifold. Finally, we introduce an additional local
isometry constraint in the loss function that trains the neural network responsible for reconstructing data from the
latent space back to the phase space. This constraint enables the learned neural network decoder to reconstruct
the data while preserving the distance of two points in the latent space and those mapped onto the reconstructed
constitutive manifold upon the decoding. This distance-preserving autoencoder is shown to be able to help preventing
the noise from being incorporated back into the nonlinear decoding. Three sets of numerical experiments are used to
examine the performance of the de-noising manifold embedding data-driven algorithm. Boundary value problems
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Fig. 22. The experimental dataset from a biaxial test on a specimen of mitral valve anterior leaflet [38]. Data points with circular and star
markers correspond to EX X � SX X and EY Y � SY Y curves, respectively, and their colors indicate their protocol types. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 23. Training performance plots on the real dataset for the isometric (left) and non-isometric (right) mapping functions.

Fig. 24. A comparison among different data-driven schemes for different biaxial boundary conditions (protocols).

conducted with both synthetic and real experimental data are conducted. The numerical results suggest that the
proposed model is capable of delivering accurate and robust responses when given noisy data.
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Appendix A. Mathematical preliminary for isometric autoencoder for constitutive manifold

Here we review the basic concepts of the manifolds relevant to the construction of the isometric autoencoder.
To make the content self-contained for the target readers, a minimal review of the terminologies, definitions, and
lemmas essential to establish the local optimization step on the de-noised manifold is provided herein. To simplify
the formulation, we only consider n-dimensional constitutive manifolds that are connected, Hausdorff, and second
countable with the tangential spaces that are locally Euclidean. For a more comprehensive yet concise review on
this topic, please refer to, for instance, Marsden and Hughes [61] and Fong and Tino [62].

Let N be a Euclidean manifold equipped with the Euclidean metric that is the square root of the inner product.
Let G : N ! M be a smooth mapping that maps the Euclidean manifold to a smooth Riemannian manifold M with
the corresponding tangent space at G(⇣ ) 2 M denoted by TG(⇣ )M where ⇣ 2 N . Then, the corresponding associated
map between the tangential spaces of N and M denoted as T⇣N and TG(⇣ )M may read (DG)⇣ : T⇣N ! TG(⇣ )M
(cf. Definition 1). Due to the equipped Euclidean metric, the Euclidean manifold is a special case of an n-dimensional
“flat” space that admits a global coordinate system. On the other hand, an n-dimensional topological manifold can
be represented locally by a local coordinate system corresponding to a tangent space for a given point that provides
the local linear approximation of the manifold via the coordinate charts.

Definition 1 (n-Dimensional Topological Manifold). A n-dimensional topological manifold M satisfies the following
conditions (cf. Fong and Tino [62]).

1. Hausdorff condition, which requires that 8Za, Zb 2 M, 9U, V 2 TzM such that Za 2 U, Zb 2 V and
U \ V = ;. In other words, any distant points in this manifold is neighborhood-separable.

2. Second countable, i.e., the tangential space TzM is spanned by a finite-dimensional basis.
3. Locally Euclidean of dimension n, every points in the manifold 8Z 2 M has a neighborhood homeomorphic

to either an n-dimensional Euclidean space Rn or an open ball in Rn .

To construct a pair of distance-preserving mappings between N and M, we need to first properly define a
distance that is consistent with the geometrical properties of the manifold. This step requires additional structures
to be equipped such that local information can be stitched together to form a global counterpart applicable to the
entire manifold. Recall that our strategy here is to perform the de-noising task from the Euclidean manifold, then map
back the de-noised manifold via an inverse map. The drawback of this strategy is that the mappings generated from
the neural network do not necessarily preserve geometrical properties such as distance and convexity. Nevertheless,
there are geometrical properties, such as angles and curvature that can be studied and controlled locally through
the tangent spaces TzM. This can be done by considering the pushforward of the local coordinate map (see, for
instance, [62]).
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With the basis of the tangent space defined, we may consider the necessary condition to make the map G being
local isometry (see Definition 2) where the transformation between two tangent spaces T⇣N and TG(⇣ )M is distance
preserving locally.

Definition 2 (Local Isometry). A map between two Riemannian manifolds N and M is local isometry if the
associate map (DG)⇣ is a local diffeomorphism such that for all point ⇣ 2 N and all vectors d⇣ a, d⇣ b 2 T⇣N ,

hd⇣ a, d⇣ bi = h(DG)⇣ (d⇣ a), (DG)⇣ (d⇣ b)i, (28)

where h·, ·i is the inner product on T⇣N and (DG)⇣ is the associate map (DG)⇣ : T⇣N ! TG(⇣ )M.

Here, the diffeomorphism of G requires it to be invertible, and both G and the inverse of G remain differentiable.
Finally, the Riemannian isometry of G between N and M can be achieved by enforcing that both local isometry
and the diffeomorphism hold such that the geodesic distance between any pair of arbitrary points in N is preserved
upon the transformation (see, for instance, [63]).

Appendix B. Local isometry condition

Here, we prove that the orthogonality constraint on the Jacobian operator is equivalent to the local isometry. Let
⇣ be a vector admissible to the latent (Euclidean) space and �⇣ be an infinitesimal perturbation of length k�⇣k in
the latent space such that the following linearized approximation remains valid,

G!(⇣ + �⇣ ) ⇡ G!(⇣ ) + J(⇣ ; !) · �⇣ . (29)

Then, by enforcing J(⇣ ; !)T = J(⇣ ; !)�1, and by assuming Eq. (29) is valid,

kG!(⇣ + �⇣ ) � G!(⇣ )k2
=

⇣
G!(⇣ + �⇣ ) � G!(⇣ )

⌘
·

⇣
G!(⇣ + �⇣ ) � G!(⇣ )

⌘

=

⇣
J(⇣ ; !) · �⇣

⌘T ⇣
J(⇣ ; !) · �⇣

⌘

= �⇣ T
· J(⇣ ; !)T J(⇣ ; !) · �⇣

= �⇣ T
· �⇣

= k�⇣k
2

Appendix C. Finite element discretization for the global projection step

Here, we provide the ingredients to obtain the finite element discretized equations which are represented entirely
in tensorial notation. The Einstein summation convention holds unless otherwise specified.

In this work, the displacement and Lagrange multiplier fields are discretized by the same finite element basis
functions as follows,

UI (X) ⇡

NnodeX

↵=1

N↵(X)ÛI↵ = N↵(X)ÛI↵, 1  I, J  Ndim (30)

QI (X) ⇡

NnodeX

↵=1

N↵(X)Q̂ I↵ = N↵(X)Q̂ I↵, 1  I, J  Ndim (31)

where N↵(X) is the standard Lagrange polynomial basis function corresponding to the node ↵, ÛI↵ is the value of
I th 2 {1, 2, 3} component of the displacement vector field at the node ↵, and Q̂ I↵ is the value of I th component
of the Lagrange multiplier vector field at the node ↵. Accordingly, the variations can be discretized as:

�UI (X) ⇡ N↵(X)�ÛI↵ (32)

�QI (X) ⇡ N↵(X)� Q̂ I↵. (33)

The gradient fields are approximated via:
@UI

@X J
⇡ B↵ J ÛI↵; B↵ J :=

@N↵(X)
@X J

(34)
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Using these approximations in the Euler–Lagrange Eqs. (5) and (6), the following discretized equations can be
obtained:

� Q̂ I↵{

Z

⌦h
B↵ J (X)PJ I (X) d⌦ �

Z

⌦h
N↵(X)B̄I (X) d⌦ �

Z

� h
P

N↵(X)T̄I (X) d� } = 0 (35)

�ÛI↵

⇢Z

⌦h
B↵K (X)

⇥
F · C : (E � E⇤) � r

X Q · S
⇤

K I d⌦
�

= 0 (36)

Since these equations hold for any admissible variations, we have the following discrete residual equations:

RQ
I↵ =

Z

⌦h
B↵ J (X)PJ I (X) d⌦ �

Z

⌦h
N↵(X)B̄I (X) d⌦ �

Z

� h
P

N↵(X)T̄I (X) d� = 0 (37)

RU
I↵ =

Z

⌦h
B↵K (X)

⇥
F · C : (E � E⇤) � r

X Q · S
⇤

K I d⌦ = 0 (38)

The above system of equations RQ
= 0 and RU

= 0 are coupled and nonlinear with respect to the unknown nodal
solutions Q̂ and Û . We find the solution iteratively via the Newton–Raphson method. The tangent operators for the
Newton–Raphson method are provided below:

@RQ
I↵

@ Q̂ J�
=

Z

⌦h
B↵K FK OCO I M J FL M B�L d⌦ (39)

@RQ
I↵

@ÛJ�
=

Z

⌦h
B↵K SJ I B�K d⌦ +

Z

⌦h
B↵K FK LCL I J M (rX Q)O M B�O d⌦ (40)

@RU
I↵

@ Q̂ J�
= �

Z

⌦h
B↵L SJ I B�L d⌦ �

Z

⌦h
B↵K (rX Q)K OCO I M J FL M B�L d⌦ (41)

@RU
I↵

@ÛJ�
=

Z

⌦h
B↵K

⇥
C : (E � E⇤)

⇤
I J B�K d⌦

+

Z

⌦h
B↵K

⇥
FK LCL I J M FO M � (rX Q)K LCL I J M (rX Q)O M

⇤
B�O d⌦ (42)

Appendix D. Hyperparametrs of neural networks used in numerical examples

This section provides the details on neural network hyperparameters in each example for third-party reproducibil-
ity. We use the Python version 3.7.12, the NumPy version 1.21.5 [64], and the PyTorch version 1.10.2 [65]; the
version consistency is important for reproducibility due to the random seed generator and potential changes in the
source code among different versions. First, we provide the common hyperparameters for all examples then we
describe problem-specific changes.

The default values are random seed = 1, mini-batch size = 200, activation function = ELU [66], number of
residual blocks = 1, mini-batch random shuffle is activated. In the context of deep learning, mini-batch refers to a
sub sample of data used in stochastic gradient descent iterations.

The default optimization algorithm for training encoder and decoder parameters is ADAM with the default
parameters suggested in [67]. To achieve more stable training, we use ReduceLROnPlateau which reduces the
initial optimizer learning rate based on a predefined schedule with the default values reduction factor = 0.91 and
patience = 50; refer to PyTorch’s Manuel for more explanation.

It is important to normalize the data before the training to make sure the scaling inconsistency of features does
not impact the quality of the optimization [56]. Two common methods are called min–max and uvar. In the min–max
method, which is the default in this work, each feature is linearly scaled such that the normalized feature has zero
minimum and unit maximum. In the uvar method, each feature is linearly scaled such that the normalized feature
has zero mean and unit variance.

All the neural networks are initialized by the He uniform approach [68] which is the default setup in PyTorch.
During the neural network training, we save the best weights and biases based on the weighted objective value
calculated on the training dataset.
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D.1. 1D manufactured solution

The decoder and encoder networks have four hidden layers and each hidden layer has 30 hidden units. The initial
learning rate is 0.0005. The learning rate reduction factor is changed to 0.85.

D.2. Bending test

The decoder and encoder networks have two hidden layers and each hidden layer has 10 hidden units. The initial
learning rate is 0.001. The learning rate reduction factor is changed to 0.85.

D.3. Biaxial test with Fung’s data

The decoder and encoder networks have four hidden layers and each hidden layer has 10 hidden units. The initial
learning rate is 0.0002. The data normalization is changed to uvar.

D.4. Biaxial test with real data

The decoder and encoder networks have two hidden layers and each hidden layer has 10 hidden units. The initial
learning rate is 0.0002. The data normalization is changed to uvar. The mini batch size is changed to 400.

Appendix E. Parametric studies on the 1D bar problem

Here, we provide a detailed numerical study regarding the effect of the relative contribution of each objective
in the training optimization statement Eq. (12) on the manifold recovery performance. To this end, we set the
weight associated with the reconstruction objective to wrecn = 1 and consider different possibilities for the other
two objective weights as wlin 2 {0.001, 1, 1000} and wiso 2 {0.001, 0, 1, 1000}.

In all cases reported in Tables 1, 2, and 3, the lower the weight of isometric condition is the more overfitted
is the recovered manifold; see the reconstructed manifolds in the last columns. This observation is consistent with
our earlier claim that the isometry condition may also regularize the optimization problem and avoid overfitting
and noise recovery. We observe that when the relative effect of the reconstruction term is considerably less than
other objectives, the reconstructed manifold tends to converge to a line fitted to the data; see the last rows. This is
expected since the reconstruction term almost vanishes, and the optimizer tries to map a line to another line in the
decoder branch.

A comparison among the third rows, where the weight of the isometric condition is the same in all three cases, but
the weight of the linearity condition is different, shows that an appropriate balance between the isometry condition
and linearity is essential. In this regard, the reconstructed manifold in the case where the weight of the linearity
condition is too small is more erroneous than in the other two cases.

Appendix F. Local projection via nearest neighbor search

In all the numerical examples, the results obtained from the de-noised manifold embedding method is compared
against the classical distance-minimization data-driven paradigm [2] where the local optimization problem is
formulated as a nearest neighbor search (NNS) problem. We follow the fast NNS algorithm proposed in [69] using
the KD-tree search defined for the distance function in Eq. (2). We use Mandel’s representation (see Appendix G)
and use factorization to enable the KD-tree search, i.e.,

E : C : E = [E]T [C][E] = [E]T [C fact]T [C fact][E] = [Ẽ]T [Ẽ] = k[Ẽ]k2
2, (43)

where [Ẽ] = [C fact][E] and [C fact] is the factorization of the positive definite matrix [C] such that [C] =

[C fact]T [C fact]. The kd-tree data structure designed for the Euclidean metric can be efficiently constructed for the
transformed data. There are different choices for the [C fact] but we use the matrix root [C fact] = [C]

1
2 ; see [69] for

more discussion.
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Table 1

A comparison between the results obtained in each step of the introduced local projection for different penalty weight setting in the training
optimization statement when wlin = 0.001 and wrecn = 1 while the isometric enforcement varies.

Appendix G. Mandel representation

In this study, the neural network training process is performed on the vector representation of the tensorial
database. Also, the nearest neighbor search (needed only for the classical approach) is performed on the vector
representation of the data. We use Mandel transformation to enable us to store 2nd-order tensor as vector and
4th-order tensor as matrix.

For the efficient data storage and the ease of computer implementation, we store symmetric 2nd and 4th order
tensorial data via the Mandel representations. We prefer Mandel notation over the Voigt notation due to the (1)
equivalence of spectral properties between the fourth order tensors and their matrix representations [70] and (2) the
same treatment of strain and stress quantities in this notation.

In the Mandel notation, a 2nd order tensor ✏ = ✏i j êi ⌦ ê j with the symmetric condition (✏i j = ✏ j i ) can be
represented by an one-dimensional array [✏] as follows,

[✏]T
= [✏11, ✏22, ✏33,

p
2✏23,

p
2✏13,

p
2✏12]T in three dimensions (44)

[✏]T
= [✏11, ✏22,

p
2✏12]T in two dimensions. (45)
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Table 2

A comparison between the results obtained in each step of the introduced local projection for different penalty weight setting in the training
optimization statement when wlin = 1 and wrecn = 1 while the isometric enforcement varies.

A forth order tensor C = Ci jkl êi ⌦ ê j ⌦ êk ⌦ êl with the minor symmetry condition (Ci jkl = C j ikl = Ci jlk) can be
represented by a two dimensional array [C] as follows,

[C] =

2

6666666664

C1111 C1122 C1133
p

2C1123
p

2C1113
p

2C1112

C2211 C2222 C2233
p

2C2223
p

2C2213
p

2C2212

C3311 C3322 C3333
p

2C3323
p

2C3313
p

2C3312
p

2C2311
p

2C2322
p

2C2333 2C2323 2C2313 2C2312
p

2C1311
p

2C1322
p

2C1333 2C1323 2C1313 2C1312
p

2C1211
p

2C1222
p

2C1233 2C1223 2C1213 2C1212

3

7777777775

in three dimensions, (46)

[C] =

2

64
C1111 C1122

p
2C1112

C2211 C2222
p

2C2212
p

2C1211
p

2C1222 2C1212

3

75 in two dimensions. (47)

In this paper, tensorial variables introduced by brackets (i.e., [·]) are represented by the Mandel notation, unless
otherwise specified.
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Table 3

A comparison between the results obtained in each step of the introduced local projection for different penalty weight setting in the training
optimization statement when wlin = 1000 and wrecn = 1 while the isometric enforcement varies.
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