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AbstractÐNumerous Drone as a Service (DaaS) applications,
such as surveillance, search and rescue, and infrastructure inspec-
tion, may employ real-time object detection to achieve computer
vision-based autonomous functions. However, running object
detection algorithms, e.g., YOLO, locally on a drone requires
extensive computational power, which is expensive in terms of
cost and energy consumption. Conversely, edge computing facil-
itates the implementation of an affordable and efficient platform
where drones compress and transmit images to an edge server for
real-time object detection. Nevertheless, DaaS designers applying
edge computing for real-time object detection must be cognizant
of the network design of an Edge Computing Enabled Real-
Time Object Detection (ECOD) platform to consistently realize
object detection in real-time. In our research, we propose utilizing
network calculus to analyze the delay performance of an ECOD
platform, which provides a principled approach for the platform
design. A testbed was implemented to evaluate the accuracy of
this approach, which was then used to analyze DaaS design
scenarios with different numbers of drones and various network
capacities.

Index TermsÐDrone as a Service, Edge computing, Delay
analysis

I. INTRODUCTION

Drone as a Service (DaaS) is a growing industry to provide

customers with the hardware, software, and human resources

necessary to accomplish certain tasks using unmanned aerial

vehicles (UAVs), i.e., drones [1]. Drones can provide functions

such as asset inspection, crop monitoring, and live streaming

events, which can be useful in the energy, agriculture, and

entertainment industries [2]. Many of these tasks might require

real-time object detection for autonomous functions [20].

Object detection algorithms such as YOLO (You Only

Look Once), R-CNN (Region-based Convolutional Neural

Networks), and SSD (Single Shot Detector) require GPUs

to accelerate the inference process. However, the price of

microcomputers with GPUs, e.g., NVIDIA Jetson products,

is high. Moreover, these microcomputers weigh more and

consume more power than those without GPUs. It is better

to avoid using large and powerful microcomputers as onboard

computers for drones because the battery capacity is limited.

On the other hand, edge computing is desirable as process-

ing data at the edge of a network rather than uploading it to

the cloud reduces latency, cost, and energy consumption [3].

Thus, edge computing could be a suitable candidate for real-

time object detection on drones. Edge-assisted object detection

is not a new thing. A lot of work has been done to realize

real-time object detection using edge servers [4], [5], [22]±

[24]. However, all previous work does not pay attention to

the network analysis in their design. Considering specific

application scenarios using a swarm of drones, DaaS designers

applying edge computing must be cognizant of the network

design in terms of the traffic profile, the network device

capacity, and the delay requirements, to consistently realize

object detection in real-time.

In our research, we propose an Edge Computing Enabled

Real-Time Object Detection (ECOD) platform for DaaS, as

shown in Figure 1. We apply network calculus to analyze

the delay performance of the communication network in the

ECOD platform, which might be 4G, 5G, or WiFi. Network

calculus is a prevalent framework that provides performance

analysis of networks to model the delay performance of

networks. Based on the analysis result, we provide a principle

guideline to help designers design DaaS platforms. A testbed

has also been implemented to evaluate the accuracy of this

approach.

The major contributions of this paper include: (i) We

provide a network-calculus-based approach to analyzing the

delay performance of an ECOD for DaaS, which furthermore

offers a principle guideline to design the ECOD platform based

on 4G, 5G, and WiFi networks, ii) We propose a measurement-

based method to identify the parameters of arrival curves and

stochastic service curves needed by network calculus, and (iii)

The network-calculus-based approach has been validated by

experiments in a testbed and then used to analyze DaaS design

scenarios with different requirements.

The rest of the paper is organized as follows. Section II

discusses background knowledge of the ECOD platform and

network calculus. Section III describes the research problem of

the paper and our solution. Section IV presents the network

delay model of the ECOD platform. Section V proposes a

measurement-based approach to identify the essential param-

eters for network calculus. Section VI verifies our model by

experiments. Section VII apply our model for the design of the

ECOD platform. Finally, Section VIII concludes this paper.



Fig. 1. An Edge Computing Enabled Real-Time Object Detection Platform

II. BACKGROUND KNOWLEDGE

A. Edge Computing Enabled Real-Time Object Detection

In our research, we designed an Edge Computing Enabled

Real-Time Object Detection (ECOD) platform for Drone as a

Service (DaaS) using a F450 Quadcopter running ArduCopter

firmware, a Raspberry Pi serving as the onboard microcom-

puter, a Raspberry Pi Camera Module, and a Dell Precision

computer serving as the edge server.

Figure 1 shows how the ECOD platform for DaaS works.

The Raspberry Pi Camera Module captures an image, to which

the Raspberry Pi applies JPEG compression [8], reducing

transmission size by 90%. Next, the Raspberry Pi transmits

the compressed image to the Dell Precision computer using

the TCP protocol to guarantee data transmission reliability

through a wireless communication network. Then the Dell

Precision computer decompresses the compressed image and

runs the object detection algorithm YOLOv5 [9] on it. After

completing object detection, the result is sent to the Raspberry

Pi through the network. The Raspberry Pi decides what to do

next, given the received information.

In our research, we focus on the delay from the time when

an image is captured by the drone-onboard camera to the

time when the drone gets the object detection result, which

is called feedback time in this paper. Figure 2 shows the

feedback time in two scenarios, namely using the Raspberry Pi

only versus the ECOD platform with a TL-WR840N wireless

router. In this example, 100 images with a 1280*720 resolution

have been used. The x-axis shows the image index, and the

y-axis shows the feedback time. The average feedback time

using Raspberry Pi for object detection is 3.723 s, which is

not suitable for real-time functions or applications of drones,

e.g., obstacle avoidance. Using the ECOD platform is much

faster than using the Raspberry Pi only, achieving an average

feedback time of 0.258 s. Figure 2 also shows the processing

time needed by the edge server to run YOLO on an image for

object detection without receiving nor transmitting any data

through a network, which has a mean value of 34 ms.

B. Network Calculus

Network calculus is a mathematical framework for analyses

of delay bounds and backlog bounds experienced by traffic

flows passing through networked nodes (i.e., wired switches,

wireless routers, or base stations). It is widely used in the

delay analysis of wired and wireless networks [6], [14]±[16].

As network calculus uses per-flow per-node modeling, the

following information is needed to apply NC for analysis:

1) Network topology and traffic flow paths

Fig. 2. The time elapsed for object detection in three scenarios

2) Arrival curves of all flows where a flow’s arrival curve

describes the arrival process of the flow (details in

subsection II-B1)

3) Service curves of networked nodes where a service curve

describes the minimum service provided by a network

device, e.g., an access point, a switch, or a router (details

in subsection II-B2)

Knowing the arrival curve of a flow α(t) and the service

curve of a networked node β(t), we can derive the maximum

delay bound and backlog bound for each flow experienced at

each node using network calculus as follows. How to obtain

α(t) and β(t) is explained in subsections II-B1 and II-B2.

Equation 1 shows how to calculate the maximum delay

bound where ⊘ represents a deconvolution operator.

delay : ∀t ≥ 0 : D(t) ≤ inf{d ≥ 0|(α⊘ β)(−d)} (1)

The deconvolution ⊘ of functions f1 and f2 is defined as

deconvolution (f1 ⊘ f2)(d) = sup
u≥0

{f1(d+u)− f2(u)}. (2)

The backlog bound of the node can be calculated using

backlog : ∀t ≥ 0 : B(t) ≤ (α⊘ β) (3)

1) Arrival process and arrival curve: Obtaining the arrival

curve of a flow uses the concept of arrival process. When a

flow passes through a networked node, there is an incoming

arrival process Fin(t) of the flow representing the cumulative

amount of data arrived at the node between time 0 to t. Fin(t)
is a non-negative and non-decreasing function with Fin(0) =
0. There is also an outgoing process Fout(t) of the flow after

passing through the node, which is the incoming process of

the flow arriving at the next node of the flow path.



Definition 1. Given an arrival process Fin(t), a real-valued,

non-negative, nondecreasing function α(t) defined for any t ≥
0 is an arrival curve of Fin(t) if and only if

∀t ≥ s ≥ 0 : Fin(t)− Fin(s) ≤ α(t− s) (4)

In other words, the arrival curve α(t) is an upper bound of its

arrival process during any backlogged period [t, s].
2) Service curve: The service curve of a networked node

can be defined using a convolution operator. The following

equation shows how to calculate the convolution of f1 and f2.

convolution (f1 ⊗ f2)(d) = inf
0≤s≤d

f1(d− s) + f2(s) (5)

Definition 2. When a flow passes through a networked node,

there is an incoming arrival process Fin(t) and an outgoing

process Fout(t). A real-valued, non-negative, non-decreasing

function β(t) is the service curve of the node if and only if

Fout(t) ≥ Fin(t)⊗ β, where β(0) = 0 (6)

Theorem 1. Considering the flow passing through a series of

networked nodes Si, i = 1, ..., n, where Node Si has a service

curve βi, we can treat all nodes as one virtual node with a

service curve β = β1 ⊗ β2 ⊗ ...βn.

In some network calculus methods, such as Separate Flow

Analysis (SFA) used in [13], leftover service curve calculations

are necessary when there is more than one flow passing

through the same networked node. We provide the definition

of leftover service curves as follows.

Definition 3. Suppose two flows f1 and f2 pass through

a lossless node with arbitrary multiplexing. f1 and f2 have

arrival curves α1 and α2, respectively. If the node has a service

curve β(t), then the leftover service curve β1(t) for f1 can be

calculated as follows where [x]+ equals to max(x, 0):

β1(t) = [β(t)− α2(t)]
+ (7)

III. RESEARCH PROBLEM AND SOLUTION

Edge-assisted real-time object detection has been well inves-

tigated in recent years [4], [5], [22]±[24]. Although some work

takes the network capacity and the bandwidth usage of the

network into consideration [4], [22], none of them provides a

formal method to theoretically model the network performance

in their design. Moreover, their designs are mostly tested in

the case that an edge server is only used to do the object

detection for one device. However, in the ECOD platform,

it is common that each edge server might be responsible for

the tasks coming from more than one drone. Thus, the main

research problem becomes how to design the ECOD platform

in terms of the traffic profile, the network device capacity, and

the delay requirements.

In order to solve this problem, we apply network calculus

to analyze the delay performance of the 4G, 5G, or WiFi

network in the ECOD platform, and thus use the analysis

result to provide a guideline principle for the design of the

ECOD platform. In this paper, our solution provides i) network

calculus modeling of the ECOD platform, ii) parameters

identification for arrival curves and service curves using a

measurement-based approach, iii) verify the network calculus

result using the testbed, and iv) ECOD platform design based

on the network calculus result.

IV. MODELLING NETWORK DELAY

Since we target to provide a principle guideline for the

design of the ECOD platform, modeling the network delay

of the platform using network calculus is necessary.

As discussed in Subsection II-A, we focus on the feedback

time, which consists of several components, including the

processing time by the Raspberry Pi for image compression,

the network delay for wireless data communication, and the

processing time by the edge server for image decompression

and object detection. As the network delay is the most signif-

icant part of the feedback time and the rest of the feedback

components are constant, assuming that the edge server has

enough computational capacity, we focus on modeling network

delay since the other parts of the feedback time are mostly

constants under our assumption.

In our research, we apply network calculus to model and

analyze the network delay in an ECOD platform for DaaS. It is

normal that the network topology, along with its traffic pattern,

is a single-hop network with bidirectional flows between

drones and the edge server in the ECOD platform.

In this paper, we use the leaky-bucket arrival curve and

the rate-latency service curve, which comprise two linear

piecewise components. The leaky-bucket arrival curve can be

defined by using rate ρ and burst b as expressed by Equation

8. The rate-latency service curve can be described using rate

r and latency T , which is defined in Equation 9.

αρ,b(t) =

{

ρt+ b t > 0

0 Otherwise
(8)

βr,T (t) = [r(t− T )]+ (9)

Knowing the arrival curves and service curves, we can

provide a closed-form mathematical expression for the delay

bounds derived using network calculus in the ECOD platform.

If there is more than one drone in the system, we calculate

the leftover service curves for each drone using Equation 7.

Note that wireless networks are usually half-duplex, meaning

that bidirectional flows need to compete for the same service

while they do not in full-duplex networks.

For each drone i, there are flow i1 sourcing from drone i
to the edge server and flow i2 sourcing from the edge server

to drone i, respectively. These two flows have arrival curves

αij (t) = ρij t+bij where j is 1 or 2. Then the leftover service

curve for flow ij can be calculated as follows:

βij = [β(t)−
∑

m ̸=i

(αm1
+ αm2

)− αi3−j
]+ (10)



After calculating the leftover service curve of flow ij , we

can use Equation 1 to derive the worst-case delay bound. The

delay bound Dij for flow ij can be calculated as follows:

Dij =
r ∗ T +

∑

bmn

r −
∑

m ̸=i&n ̸=j ρmn

(11)

V. MODEL PARAMETER IDENTIFICATION

In Section IV, we provide a closed-form expression for

calculating the network delay in the ECOD platform. In order

to apply Equation 11, the arrival curves and the service

curve must be known. So as to make the theoretical results

conform to reality, we propose a measurement-based approach

to identify the parameters of arrival curves and the service

curve.

A. Arrival curve parameters

There are two parameters needed to be identified, which are

rate ρ and burst b, in the arrival curve. It is straightforward

to calculate these two parameters when dealing with periodic

UDP flows using Equation 12 [10], where σ is the frame size

and p is the period. However, in this ECOD platform, TCP

is used for reliable data transmission, which makes the arrival

curve parameter identification hard to evaluate due to TCP’s

retransmission mechanism.

αρ,b(t) =
σ

p
t+ σ (12)

We employ a measurement-based approach to identify the

arrival curve parameters. Each image is treated as one virtual

packet, although a (compressed) image needs to be split into

a group of packets for TCP transmission. This treatment

conforms with the model because the edge server will not start

processing a (compressed) image until all packets associated

with it are fully received. The Raspberry Pi runs a packet

sniffer [7] to record Fin(t). The average transmission rate of

the packet flow is used as rate ρ of the arrival curve. Then

Fin(t) and ρ are used to find b that meets Definition 1 using

binary search.

1) Service curve parameters: In order to measure the

service curve of a wireless router, we need to make several

assumptions. First, the drone only moves within a specific area

away from the access point (a base station or a router). This is

due to the channel fading influenced by the distance between

the drone and the access point [18]. If the distance is too

large, the signal attenuation will be significant and lead to

limited network performance [22]. Second, without the loss of

generality, the bandwidth measured at the farthest point from

the access point can reflect the minimum service provided by

the access point. Meanwhile, instead of using a deterministic

service curve, we use a stochastic service curve to reflect the

service provided by the wireless network.

Figure 3 shows the distribution of the bandwidth measure-

ment results of a TL-WR940N router at the farthest point

within a specific range (about 10 m in our lab) 1100 times.

Note that the bandwidth in this paper refers to the data rate of

the network. The measured bandwidth fluctuates significantly

Fig. 3. Network bandwidth distribution measurement of the wireless router.

due to the channel fading of the wireless network [17] ranging

from 16 Mbps to 55 Mbps. In order to evaluate the network

bandwidth under the impact of channel fading, we use a

stochastic service curve to describe the service provided by

the router. According to [19], the rate of a stochastic service

curve can be described using the rate r with its Cumulative

Distribution Function (CDF). Based on Figure 3, we consider

using the normal distribution and the Laplace distribution to

model the Probability Density Function (PDF) of the router

bandwidth. Thus, we calculate the overlapping area of the

histogram and the PDFs of the two distributions with different

parameters to determine the better PDF. The parameters of the

normal distribution are the mean and the standard deviation,

while those of the Laplace distribution are the location and the

scale. The maximum overlapping area between the histogram

and the normal distribution is 982.6 out of 1100, and the value

is 961.6 using the Laplace distribution. The two distributions

with the maximum overlapping areas are also shown in Figure

3. Therefore, we decide to use the normal distribution with the

mean being 37.3 and the standard deviation being 2.5 to model

the PDF of the rate r of the router because the overlapping

area between the histogram and this normal distribution is the

maximum. Thus, P (R = r) = 1
2.5

√
2π

e−
1

2
( x−37.3

2.5
)2 . Then, the

CDF of the rate is also known after determining the PDF. We

can search for a T to meet the service curve meets Definition

2. In order to search for T , we use two machines with PTP

(Precise Time Protocol) time-synchronization to record Fin(t)
and Fout(t). Then, after fixing the rate r, we use binary search

to find the T corresponding to r with measured Fin(t) and

Fout(t).

VI. MODEL VERIFICATION

In this section, we verify the effectiveness of the network-

calculus-based model for the delay performance of the ECOD

platform using experimental results of the feedback time

measured in a single-hop single-drone scenario. Since network

calculus is used to analyze the network delay, we subtract

the processing time components of the edge server and the



onboard computer from the feedback time to get the network

delay experienced by the traffic.

In order to verify the network calculus result, we need to

regulate the traffic from the Raspberry Pi to the edge server.

We send a 1280*720 image from the Raspberry Pi to the edge

server every 0.1 s 100 times. After the edge server receives

each image and uses YOLO to process the image, it will

send the detection result back to the Raspberry Pi. Since the

network contains only one router, the topology and the traffic

pattern are fixed. All flows will pass through the same wireless

router to their destinations.

In order to create different scenarios for the single-router

single-drone network, we control the largest bandwidth of the

wireless network from 4 Mbps to 16 Mbps. However, the

router itself does not have an accurate bandwidth restriction

function. Thus, instead of restricting the bandwidth of network

devices, we restrict the incoming and outgoing transmission

rates of the NIC (Network Interface Card). This can be done

using the wondershaper on Raspbian [11]. In this way, the

NIC of the Raspberry Pi can be abstracted as a node whose

bandwidth is the restricted value. According to Theorem 1,

the NIC and the router can be treated as one virtual node

whose service curve is the convolution of their service curves,

meaning that the rate of the virtual node is the minimum rate

of the NIC and the network device. We have mentioned in

Section V-A1 that the router we use has a stochastic service

curve whose rate conforms to a normal distribution. A specific

rate should be chosen for the service curve to provide a

probabilistic delay bound. We decide to use 16 Mbps, which

is the smallest bandwidth in the bandwidth measurement of

the router, as the rate of the service curve. According to

the CDF of the normal distribution, the wireless router has

about 92.0% probability of providing a higher rate than 16

Mbps. The latency T of the service curve is 0.44 s under this

scenario. Thus, the service curve of the wireless router will be

β(t) = 16(t − 0.44). The probabilistic delay bounds derived

using this service curve should be able to model the delay in

approximately 92.0% cases.

In order to analyze the delay performance of network

calculus, we use SFA (Separate Flow Analysis) to derive the

worst-case delay bounds [13]. Table I shows the rates and

bursts of outgoing and incoming arrival curves under different

bandwidth restrictions in the wireless network. The incoming

and outgoing arrival curves are all captured on the onboard

computer. The outgoing flow is the flow from the onboard

computer to the edge server, and the incoming flow is the

flow from the edge server to the onboard computer. Since we

use leaky bucket arrival curves, we only need to know the rate

and the burst to determine an arrival curve.

The outgoing rate and outgoing burst in Table I defines

the arrival curves of flows from the Raspberry Pi to the edge

server. Although we restrict the bandwidth of the NIC to a

certain value, it is not guaranteed that this certain value is the

exact bandwidth that the NIC reaches. However, the bandwidth

of the NIC is described by the rate of the outgoing flow. Thus,

the outgoing rate is the real bandwidth of the NIC.

Fig. 4. Boxplots for network delays and delay bounds derived from network
calculus under different bandwidths in the wireless network

When calculating the worst-case delay bound for the traffic

from the edge server to the Raspberry Pi, its arrival curve

should be known. The arrival curve of the traffic at its desti-

nation, which is the incoming arrival curve at the Raspberry

Pi, can be used to model the arrival curve at its source, which

is the edge server. This works because the rate of arrival curves

in the network will not change, and the bursts of the arrival

curves are non-decreasing if the network is globally stable

[12]. Thus, the arrival curve of a flow at any node on its path

can bound its arrival process at the source. In Table I, the rates

and bursts of the incoming arrival curves are much lower than

those of outgoing arrival curves. This is because the incoming

flow mostly contains acknowledgments and detection results,

which consume fewer network resources than transmitting

images. Knowing all the necessary information for network

calculus, the worst-case delay bounds can be calculated for

flows under different bandwidths. We can use Equation 11

to derive the worst-case delay bounds for different scenarios.

Figure 4 shows the boxplots for network delays and the

theoretical results of delay bounds under different bandwidths

in the wired network. The x-axis shows the bandwidth of the

NIC, and the y-axis represents the network delay. The delay

bound shown in the figure is derived using the service curve

β(t) = 16(r − 0.44). Since we use 16 Mbps as the rate of

the service curve and the probability of the route providing a

larger rate is about 92.0%, the frames in the network should

encounter a delay less than the derived delay bound in the

figure in about 92.0% cases [17]. Note that the network

delay equals the total feedback time minus the processing

time in both the edge server and the onboard computer. All

measurements in the experiment are done using local timers.

As we can see in Figure 4, delay bounds derived by network

calculus can bound the network delays in all scenarios in the

experiment.

In this section, we have done experiments in the single-

drone scenario to verify the effectiveness of delay bounds

derived by network calculus. From the result, we can conclude



(a) Selected bandwidth = 1000 
Mbps

(b) Number of drones= 10 (c) Frequency= 10

Fig. 5. How the number of drones, the frequency of taking photos, and the selected bandwidth influence the delay bounds

TABLE I
RATES AND BURSTS OF THE OUTGOING ARRIVAL CURVE UNDER

DIFFERENT BANDWIDTH RESTRICTIONS USING THE WIRELESS NETWORK

Bandwidth
restriction

4 Mbps 8 Mbps 12 Mbps 16 Mbps

Outgoing rate (Mbps) 4.12 9.36 10.40 13.60

Outgoing burst (Mb) 3.52 4.54 4.13 2.70

Incoming rate (Mbps) 0.04 0.06 0.06 0.07

Incoming burst (Mb) 0.03 0.03 0.03 0.02

network calculus can provide probabilistic delay bounds based

on the CDF of the stochastic service curve that can model the

delay performance in the ECOD using wireless networks.

VII. MODEL APPLICATION FOR THE DESIGN OF THE

ECOD PLATFORM

In this section, we apply the model described in Section

IV to study the relationships between the traffic profile, the

capacity of the network device, and the delay bound of a

hypothetical ECOD platform that is designed for DaaS.

The traffic profile of the network depends on two parame-

ters, which are the arrival curve for each drone and the number

of drones in the platform. Thus, the design space of the ECOD

platform contains four components i) traffic for each drone, ii)

the number of drones, iii) the service curve provided by the

access point, and iv) delay requirements by applications.

We assume that drones transmit images with a 1280*720

resolution. Then, the maximum burst is taken as the frame

size for incoming and outgoing flows in Table I. The arrival

curve can be calculated using Equation 12 after figuring out

period p. The arrival curves of the bidirectional flows of drone

i are αi1 = 4.34/p+4.34 and αi2 = 0.03/p+0.03. p decides

the frequency of taking a photo by each drone. We assume that

all drones have the same p for the same application scenario.

For the service curve, we assume that the all service

curves have a fixed 0.1 s latency in this scenario. Then, a

rate/bandwidth should be selected from the stochastic service

curve based on the model requirement (percentage of scenarios

required to be modeled by the network calculus result). Note

that this percentage is about 92% in Section VI.

Figure 5 shows how the selected bandwidth, the number of

drones, and the frequency of taking photos influence the delay

bound in the ECOD platform. Note that we only choose one

selected bandwidth for each router based on the requirements

and the CDF of the bandwidth. Figure 5 (a) shows how the

frequency/( 1
p

and the number of drones influence the delay

bound when the selected bandwidth of the access point is

fixed. Figure 5 (b) depicts how the selected bandwidth and the

frequency influence delay bound when the number of drones

is fixed. Figure 5 (c) illustrates the influence of the selected

bandwidth and the frequency on the delay bound when the

number of drone is fixed. Based on the contour figure, we can

conclude that when the frequency and the number of drones

increase, the delay bound also increases. When the selected

bandwidth increases, the delay bound decreases.

Figure 5 provides a principle guideline for the design of

the ECOD platform. If we know any three components of

the four in the design space, we can easily calculate the

fourth one. For example, if we know the bandwidth is 1000

Mbps, the frequency is 2, and the delay requirement is 0.3

s, it is easy to find that the maximum number of drones

can be accommodated by the ECOD platform meeting all

the requirements is 8. This number can be directly read from

Figure 5 (a). If we know two components, we can find a set of

combinations of the other components to meet the requirement

using our approach. For example, if we know the selected

bandwidth is 1000 Mbps, and the delay requirements is 0.3

s, any combination of the number of drones and the frequency

on the contour below the blue plane, which shows the plane

with delay bound equaling 0.3 s, in Figure 6 meets the delay

and bandwidth requirements. If there is only one component

having requirements, the design will be more flexible. We can

draw the figure with the known component like Figure 5, and



Fig. 6. Candidates of combinations of the number of drones and the frequency
when the bandwidth is 1000 Mbps and the delay requirement is 0.3 s

any point on the contour can be a feasible design.

In this section, we have provided a principled approach to

the ECOD platform design based on wireless networks (4G,

5G, and WiFi). There are totally four components in the design

space, namely the delay requirements, the number of drones,

the frequency, and the selected bandwidth of the access point.

We propose a method of designing the ECOD platform based

on the knowledge of any component in the design space.

VIII. CONCLUSION

In this paper, we have modeled and analyzed the delay per-

formance of an ECOD platform for DaaS using network cal-

culus. Moreover, we propose a measurement-based approach

to identify the parameters for network calculus based on the

real testbed. The effectiveness of the network-calculus-based

model and analysis is verified using our testbed. Network

calculus can also provide a principled approach to designing

an ECOD platform based on its requirements. Knowing the

requirements of any design component, we can propose a

set of combinations of the other design components in the

ECOD platform to meet all the requirements based on network

calculus.
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