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THE VIRTUAL K-THEORY OF QUOT SCHEMES OF SURFACES

NOAH ARBESFELD, DREW JOHNSON, WOONAM LIM, DRAGOS OPREA,
AND RAHUL PANDHARIPANDE

ABSTRACT. We study virtual invariants of Quot schemes parametrizing quotients of di-
mension at most 1 of the trivial sheaf of rank N on nonsingular projective surfaces. We
conjecture that the generating series of virtual K-theoretic invariants are given by rational
functions. We prove rationality for several geometries including punctual quotients for all
surfaces and dimension 1 quotients for surfaces X with p, > 0. We also show that the
generating series of virtual cobordism classes can be irrational.

Given a K-theory class on X of rank r, we associate natural series of virtual Segre
and Verlinde numbers. We show that the Segre and Verlinde series match in the following
cases:

(i) Quot schemes of dimension 0 quotients,

(ii) Hilbert schemes of points and curves over surfaces with py > 0,

(iii) Quot schemes of minimal elliptic surfaces for quotients supported on fiber classes.
Moreover, for punctual quotients of the trivial sheaf of rank N, we prove a new symmetry
of the Segre/Verlinde series exchanging r and N. The Segre/Verlinde statements have
analogues for punctual Quot schemes over curves.
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1. INTRODUCTION

1.1. Overview. While moduli spaces of sheaves on higher dimensional varieties rarely carry
2-term perfect obstructions theories, moduli spaces of sheaves on varieties of dimension at
most 3 often have well-defined virtual fundamental classes. In many cases, the resulting

virtual invariants have a rich structure, reflecting the underlying geometry of the moduli
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spaces used in their definition. We refer the reader to [PT3] for an introduction to sheaf
counting methods in enumerative geometry.

An example whose virtual geometry can be studied effectively is the Quot scheme of
1-dimensional quotients over surfaces. If X is a nonsingular projective surface and 8 €
Ho(X,7) is an effective curve class, we let Quotx(C",[3,n) parametrize short exact se-

quences
(1) 0-S—-C"o0x —>Q—0,

where
rank Q =0, c1(Q) =8, x(Q) =n.

By [MOP1], Quotx(C¥,3,n) carries a canonical 2-term perfect obstruction theory and a

virtual fundamental class of dimension
vdim = x(S,Q) = Nn+ 2.

The virtual fundamental class of Quot schemes over curves had been constructed previously
in [MO1]. Due to connections with Seiberg-Witten theory, the virtual fundamental class of
Quot schemes over surfaces with p, > 0 is typically more accessible, while the case p, = 0
is less understood.

For the Quot schemes of 1-dimensional quotients over surfaces, the generating series of

the following invariants have been considered in [OP [} [TOP] respectively:

(i) virtual Euler characteristics,
(ii) virtual x,-genera,

(iii) descendent invariants.

Conjecturally, series (i) — (iii) are always given by rational functions. Rationality was shown
for arbitrary surfaces when 8 = 0, see [JOP, [L, [OP]. For non-zero curve classes, rationality
was confirmed for (i) and (ii) for all surfaces with p, > 0, see |L, [OP]. Furthermore, series
(i) and (iii) were also proven to be rational for simply connected surfaces with p, = 0 when
N =11in [JOP].

We refine here the techniques of [JOP! L, [OP] to study the virtual K-theory of the Quot
scheme Quoty (CV,3,n). A central result is the rationality of natural series of virtual K-
theoretic invariants for many geometries. The methods also allow us to prove several new
identities and symmetries satisfied by the virtual Segre and Verlinde series. Along the way,
we take up the series of cobordism classes, and study the virtual structure sheaf for punctual

quotients.
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1.2. Seiberg-Witten invariants. Let X be a nonsingular projective surface. Curve
classes 8 of Seiberg-Witten length N were introduced in [L]. By definition, 5 € Hy(X,Z)
is of Seiberg-Witten length N if for all effective decompositions

B=p1+...+ BN
such that SW(p;) # 0 for all 4, we have
Bi- (Kx — ;) =0 for all 7.

Here, SW(B3;) € H,(Pic(X)) = A*H'(X) denotes the Seiberg-Witten invariant of [DKO]
constructed via the Hilbert scheme of curves Hilbg, (X)) of class 8; and the associated Abel-

Jacobi map
AJ : Hilbg, (X) — Pic’(X).

When the condition §; - (Kx — ;) = 0 is satisfied, the Hilbert scheme of curves admits a

virtual fundamental class of dimension zero whose length is
SW(8;) = deg [Hilbg, (X)]"" € Z.
As noted in [DKO, [L], examples of curve classes of Seiberg-Witten length N, for all N,

include:

(i) B =0 for all surfaces,
(ii) arbitrary curve classes 3 for surfaces with p, > 0,

(iii) curve classes supported on fibers for relatively minimal elliptic surfaces.

vir

1.3. K-theory. For a scheme S with a 2-term perfect obstruction theory, let Og" denote
the virtual structure sheaf, see [BF, [CFK| [Lee|. Given a K-theory class V — S, write

XS, V) = x(S,V @ 0F").
For a € K°(X), we define the tautological classes
ol = Ry, (Q @ mia) € K°(Quoty (CV, 8,n)).
Here,
Q — Quoty (CN, 8,n) x X

is the universal quotient, and 7, w9 are the two projections.
The Riemann-Roch numbers of exterior and symmetric powers of tautological sheaves
over the Hilbert schemes of points X[™ (with its usual geometry) were studied in [A, D,

EGL| K| [Scl [Z], among others. Closed-form expressions are difficult to write down. By



4 ARBESFELD, JOHNSON, LIM, OPREA, AND PANDHARIPANDE

working with the virtual class, we cover more general Quot scheme geometries and obtain

answers that satisfy simpler structural results. We first prove

Theorem 1. Fiz integers ki,...,k; > 0, and let aq,...,ap be K-theory classes on a non-
singular projective surface X. If p € Ho(X,Z) is a curve class of Seiberg- Witten length N,
the series

Z v gl ok k) =D @t <QuotX((CN, B,n), Al e ® A’wayﬂ)
nez

is the Laurent expansion of a rational function in q.

By taking « of negative rank, we also access the symmetric powers of the tautological

sheaves via the identities
/\ta:Ztk Ao, Sy(a) :Ztk SymFar, A_i(—a) =S,(a).
k k

Theorem [I applies to all curve classes on surfaces with p, > 0. The case of surfaces with
pg = 0 is more complicated, and our results are not as general. Nonetheless, when N =1,

we show

Theorem 2. For all nonsingular simply connected surfaces X with p; = 0 and all o €
K°(X), the series

Z)[gl,ﬁ = Z anVir (QUOtX(Cla /87 n)u a[n})
nez
is the Laurent expansion of a rational function in q.

Based on Theorems [Tl and 2], we formulate the following

Conjecture 3. Let kq,...,ky > 0 be integers, and let aq,...,ap be K-theory classes on a
nonsingular projective surface X. For every f € Ho(X,Z), the series

Z yplan o alkiy k) =) T <QuotX((CN, B,n), Al e ® A%L’”)
nez

is the Laurent expansion of a rational function in q.

Several other variations are possible. We can dualize some of the factors of the tensor

product. We could also consider twists by the virtual cotangent bundle

zﬁ’]\ﬂﬁ(al,... ,Oé[‘kl,... 7]€£) =

=D a"x" (Quotx(CN, B,n), Aol @ .. @ akal @ /\yQVir> _
neL
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These variations can be studied by the same methods, yielding rational functions in ¢,
though we do not explicitly record the answers.
It is natural to ask about the locations and orders of the poles of the K-theoretic gener-

ating series. In case N = 1, we have a complete answer.

Theorem 4. If 5 € Ho(X,7Z) is a curve class of Seiberg-Witten length N = 1, the shifted

series

Zxqplar,...,aq|ki,. .. ko) = ¢PBx anx I (QuotX(Cl,ﬁ,n), /\kla[ln] ®...0 /\k‘agn]>
nez

is the Laurent expansion of a rational function with a pole only at ¢ = 1 of order at most
2(k1 4+ ...+ ko).
We formulate the following non-virtual analogue of Theorem Wl

Question 5. For integers ki,...,k¢ > 0 and K-theory classes a,...,qy, is the series
) Y
o
Z qx (X["}, /\kla[ln} ®R...® /\kfagn})
n=0
the Laurent expansion of a rational function in q?

Explicit calculations in [A, Section 6], [EGLL Section 5], [K, Section 8| , [Sc, Section 5|, |Z,
Section 7] answer Question [f] in the affirmative for several values of the parameters ¢, k;

and rank «;. We will investigate the general case in future work.

Example 6. The simplest case of Theorem [1l occurs when k; = 0 for all 7. By the results
of [L],
(2) Z¥ v =>_ "X (Quotx(CY,n),0) =1,

ne”L

and, in general,
Z5 N = Z ¢"x"™ (Quotx (CV, 8,n),0)
nez

is rational whenever 3 is of Seiberg-Witten length N.
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Example 7. Let 5 = 0, and take £ = 1, k1 = 1. To illustrate Theorems [l and H], we

compute !

2
(3) an vir( [}):_rka.K)zf.(lziq)?_<KX’cl(a)>'%q‘

Here, (,) is the intersection pairing on X. For N > 1, we find the surprising identity

(4) an vir QuotX((CN - N an v1r [ }) ]
Since the above series vanish for K-trivial surfaces, the followmg question is natural.

Question 8. What are the corresponding series for the reduced tangent-obstruction theory
of Quot schemes of K3 surfaces?

Example 9. Perhaps the simplest example with 3 # 0 is the case of relatively minimal
elliptic surfaces X — C with g supported on fibers. We have
n v1r N [n] q 1
Zq (Quotx (C™, B, n), al™) = swg - —N(KX,C1(04)>T + (B, c1(a )>i]
Where

swg= > SW(B)---SW(By).
Bi+...+Bn=P
The Seiberg-Witten invariants of fiber classes are known by [DKOL Proposition 5.8].

Example 10. For a more complicated example, let X be a minimal surface of general type
with p, > 0, and let 8 = Kx. We find

B (X
an vir QuOtX((CN,KX,n)aO[[n}) — SW(KX) . <—l> (Z ZZ'_KX : Pa(%’)) .

nez
Here, z1, ..., 2N are the roots of the equation

N —qz-1)N =o.

In general, p, is an explicit rational function, but the simplest expressions occur when

rank o = 0:

pPa(2) = (Kx,c1(a)) (M — z) .

1—g¢q

INon-virtually, we can compare @) with Proposition 5.6 in [EGL]:

Z qn 1 X[n] ) %
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1.4. Stable pairs. The Quot schemes studied here can be compared to the moduli space

of higher rank stable pairs on surfaces X,

whose virtual fundamental class was constructed in [Lin]. The tautological classes al” can
be defined analogously. It is natural to inquire whether the above rationality results still
hold.

Increasing the dimension, let X be a smooth projective threefold, and let P, (X, 5) denote

the moduli space of stable pairs
Ox =+ F, [F]=8, x(F)=n,

as defined in [PT1]. In cohomology, the series of descendant invariant
) S [ ehulal!). o)
nez [Pn (X,8)]"
is conjectured to be rational [MNOP, [P, [PP1, [PP2, [PT1l [PT2]. Rationality is proven for
toric threefolds in [PP1, [PP2] via localization of the virtual class |[GP]. The analogous

conjecture in K-theory reads

Conjecture 11. For all integers ki,...,ke > 0, and K-theory classes ay,...,ap on a
smooth projective threefold X, the series
Z)[gﬁ(al, vk, k) = Z Ak (Pn(X,ﬂ), /\kla[ln} ®R...® /\kfagn})
nel

1s the Laurent expansion of a rational function in q.

For stable pairs on threefolds, rationality of the descendent series in cohomology implie@
the rationality of Conjecture [11] for K-theory via the virtual Hirzebruch-Riemann-Roch
theorem [FG]. Indeed, the K-theoretic invariants can be expressed solely in terms of the
Chern characters chy(al™) appearing in the descendent series. The Chern classes of the
virtual tangent bundle appearing in the calculation can be written in terms of descendent
invariants in a form which does not depend on n, see [Sh, Section 3.1]. The result crucially

relies on the independence of the virtual dimension of P, (X, /) on n.

2The descendent series (@) is in a slightly different form than the descendent series in the stable pairs
references, but the rationality of () follows from the descendent study in the references by an application
of Grothendieck-Riemann-Roch.

3See also [Sm| for a direct approach to the rationality of the 1-leg descendent vertex in K-theory via
quasimaps.
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For Quot schemes of surfaces, the descendent rationality of |[JOP] does not obviously
imply Conjecture 3. The virtual dimension of the Quot scheme on a surface grows with n.
Therefore, we cannot bound the degree of the descendent classes appearing in Hirzerbruch-
Riemann-Roch independently of n, and hence the K-theoretic series are not expressed in
terms of finitely many descendent series
(8) S / iy (@) .. . chy, (@) (T Quot)

nel, [Quotx (CN,B,n)]"™
of [JOP]. Nevertheless, we will remark in Section [ that the methods used in the proof of
Theorem [1 also establish rationality of the Quot scheme descendent series for all surfaces

with py > 0, partially answering Conjecture 2 of [JOP].

1.5. Cobordism. It is natural to inquire whether the rationality results proven in coho-
mology or K-theory also hold at the level of virtual cobordism{? We show that this is not

the case:

Theorem 12. The series

z$% =3 ¢" [Quotx (C, 8,n)] " € 2((q))

ne”

18 not given by a rational function, in general.

In particular, we show that the virtual Pontryagin series is given by an explicit algebraic
irrational function when N = 1 for surfaces with p; > 0. Under the same assumptions,

Theorem [18] of Section [2] provides an explicit expression for the cobordism series.

1.6. A virtual Segre/Verlinde correspondence. Let X be a nonsingular projective
surface, and let a € K°(X). Using the usual (non-virtual) geometry of the Hilbert scheme

of points, we define Segre and Verlinde series as follows:

Slo-jilb _ n/ [n] ’
Z:q 7@

VHilb - — Zq (X det ™).

Precise closed-form expressions for SH'P and VHiP are in general difficult to write down,
but see [EGLL [Le, MOP1, MOP3, [V] for results and conjectures when « has small rank.

4For the parallel theory of stable pairs over 3-folds, both the series of invariants and the series of cobordism
classes [Sh] are conjectured to be rational.
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Nevertheless, in the absence of explicit expressions, a connection
Hilb Hilb
Son o+ Vg

after an explicit change of variables, for pairs (o, @) related in an explicit fashion, was
proposed in [J, MOP2]. The resulting Segre/Verlinde correspondence is aligned with the
larger conjectural framework of strange duality. An extension to higher rank moduli spaces
of sheaves was announced in [GK].

In the virtual context, the Segre/Verlinde correspondence takes a simpler form. We define
the virtual (Shifted Segre and Verlinde SerieSE by

Salg) = ¢*Fx q"/ s(aly,
7;2 [QUOtX (CN7577L”V“
Vaolg) = ¢PBx Zq" X" (Quotx (CV, 3,n), det a["}).
nez

The more precise notation Sy, and V. also keeps track of the dimension of CN.

Theorem 13. The virtual Segre and Verlinde series match

Sna (=1D)Yq) = Viala)
in the following three cases:
(i) X is a nonsingular projective surface, =0, N is arbitrary,
(ii) X is a nonsingular projective surface with py >0, N =1 and 8 is arbitrary,

(iii) X s a relatively minimal elliptic surface, B is supported on fibers, N is arbitrary.

However, the virtual Segre/Verlinde correspondence does not always hold. The simplest
counterexample occurs for minimal surfaces of general type, N = 2 and § = Ky, with

discrepancy even at the first few terms.

1.7. Symmetry. For 8 = 0, we show that the expressions for the Segre series Sy , are

symmetric when the rank r = rk o and the dimension of CV are interchanged.

Theorem 14. Let X be a nonsingular projective surface, and let or,a € K°(X) satisfy

rka=r, rka=N, (Kx, c1()) = <KX’ci(a)> )
rk o rk a

Then, the following symmetry holds:
Sna (FD)Vg) =S,a((—1)q) -

5The shift is needed to ensure a uniform statement in Theorem I3,
6By contrast with the series considered in Section [[.3] the Segre/Verlinde series are given by algebraic
functions; see Section [Bl for details.
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1.8. The virtual structure sheaf. Our calculations crucially rely on the simpler form of
the virtual fundamental class of Quot schemes for curve classes of Seiberg-Witten length
N. When g = 0, the following result was proven in [OP] Section 4.2.3]. Let C' € |[Kx| be a

nonsingular canonical curve, and let
L : Quote (CN, n) — Quotx (CV,n)
denote the natural inclusion. Then, the virtual class localizes on the canonical curve:
(9) [Quotx (CY,n)]™ = (=1)"s, [Quot(CY,n)] .
We provide a similar expression for the virtual structure sheaf. Let © = Ng,/x denote
the theta characteristic. Write
D,, = p*det (@["]>
for the pullback via the support morphism

p: Quotc((CN,n) — C’["], Q — supp Q.

Theorem 15. Assume C C X is a nonsingular canonical curve. In rational K-theory, the

virtual structure sheaf localizes on the canonical curve

Oduots @V my = (=1)" 1 Dy

Quot x
Furthermore, letting NV denote the virtual normal bundle of the embedding v, the sheaf Dy,

is a square root of det NVI*.

1.9. The 8-fold equivalence. Let X be a nonsingular projective surface with a nonsingu-
lar canonical curve C' C X. Putting together Theorems [I3] and [[4] we match the following
4 virtual invariants of Quot schemes of X in the § = 0 case:

(i) the Segre integrals (—1)V" f[QuotX(CNm)]vir s(al™)

(i) the Segre integrals (—1)"™ "/‘[QuotX(CTﬂl)]vir s(an)

(iii) the virtual Verlinde numbers x""(Quotx (CV,n), detal™)

(iv) the virtual Verlinde numbers x""(Quot x(C",n), det al™).
With the aid of Theorem [15] and equation (), the same results can be stated over the

canonical curve. For simplicity, let @ = L®", @ = L%V, where L — C is a line bundle. We
match:

(i)’ the Segre integrals (—1)" fQuotc(CN,n) s(LMhyr

(ii)" the Segre integrals (—1)™ fQuotC(Crm) s(LIM)N

(iii)" the twisted Verlinde numbers x (Quotc((CN, n), (det LM)T ® Dn>
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Segre/Verlinde
—_-

virtual Segre Quotx (CV,n) virtual Verlinde Quotx (CV,n)

A1rjowruks

K1jyowruiAs

Segre/Verlinde

Segre Quot(CN, n) > Verlinde Quotc(CN,n)

AIJOUIIAS

w0
<
]
=
] M Segre/V | lind M
. egre mae . .
~  virtual Segre Quotx (C",n) » virtual Verlinde Quotx (C",n)
) .-"';eC‘\O o C;K’\’O
O O
~ . ~
Segre/Verlinde

Segre Quot(C", n) > Verlinde Quoto(C",n)

FIGURE 1. The Segre/Verlinde series for curves/surfaces and their symmetry

(iv)" the twisted Verlinde numbers y (Quotc((C’", n), (det LM)N ® Dn) .

The diagram in Figure 1 summarizes the above 8-fold equivalence.
Question 16. Find a geometric interpretation of the above equalities.

It would be satisfying to see (i)’-(iv)" as solutions to the same enumerative problem. The

match between (iii)" and (iv)’:
r N
X <Quotc((CN, n), <det LM> ® Dn> =¥ (Quotc((Cr, n), <det LM> ® Dn>

is reminiscent of strange duality for bundles over curves [Be, MO2]. We will investigate

these matters elsewhere.

1.10. Plan of the paper. Section 2lis the most demanding computationally, but it plays
a central role in our arguments. It generalizes the techniques of [JOP, [Ll IOP] and records
structural results for the series of invariants we consider. It also contains a proof of Theorem
regarding the cobordism series. Section [3 shows the rationality of the K-theoretic series
in several contexts: punctual quotients, curve classes of Seiberg-Witten length IV, surfaces
with p, = 0, and certain rank 1 quotients. Section 4] establishes Theorem [15] regarding

cosection localization for punctual quotients. Finally, Section [5 discusses the Segre/Verlinde
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correspondence and the symmetry of the Segre/Verlinde series, proving Theorems [I3] and

T4
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2. A GENERAL CALCULATION AND COBORDISM

2.1. Setup. While our interest here lies foremost in the series which appear in Theorems

[L, 4! and [12] and [13] it is useful to work more generally. Let

f(z) € Fla]

be an invertible power series with coefficients in a field F'. For our purposes, F' will be either
the field of complex numbers or the field of rational functions in one or several variables.
For a vector bundle V' over a complex projective scheme S, we consider the corresponding

genus

f(V) = Hf(a:n € H*(S,F),

where x; are the Chern roots of V. This definition extends multiplicatively to K-theory.

Fix invertible power series

fiyeooy fo,9 € Flz], ¢(0) =1,
and classes
ai,...,0q € K%(X) with rank ay =75, 1<s </

As explained in Section [1.3], this yields

a[ln}, .. ,aL"} — QuotX((CN,ﬁ,n),
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and we may consider the associated characteristic classes

fl(a[ln}), v ,fg(agn])

in the cohomology of Quotx(CY, 3,n). Recall furthermore that the standard deformation-

obstruction theory of the Quot scheme is governed by
Ext’(S,Q), Ext'(S,Q), Ext=*(S,Q) = 0.

Here, we keep the notation in (IJ), with .S, Q) denoting the subsheaf and the quotient respec-
tively. The last Ext vanishes by Serre duality and the assumption that rank @@ = 0, see
[MOP1]. In particular, the virtual tangent bundle is given by the alternating sum

T""Quot = Ext®(S, Q) = Ext’(S, Q) — Ext'(S, Q).

We consider the following general expression mixing the tautological classes and the

virtual tangent bundle

(10) ZLEwliglon, ..o =D " / A fo(al) - g(1¥Quot).

nez [QUOtX ((CNvﬁvn)]Vir
As we will see below, the examples in Theorems [1] 4], [12], [L3] correspond to

(i) the virtual tautological series: fs(z) =1+ yse” and g(z) =

) l—e=%)
(ii) the virtual Verlinde series: f(r) = e” and g(r) = —=,
(iii) the virtual Segre series: f(z) = H% and g(x) =1,
(iv) the virtual cobordism class: f(x) =1 and g arbitrary.

An example covered by (iv), but not considered in further detail here is given by

(v) the virtual elliptic genus: f(z) =1 and g(z) = = - 6(9{’37_2’;), with 6 denoting the
2mi’’
Jacobi theta functionE

"The virtual elliptic genus has interesting automorphic properties for virtual Calabi-Yau manifolds. How-
ever, for N = 1, 8 = 0, the virtual canonical bundle
\

W = (det TX™)Y @ det Obs = (Kx)(n) ® det ((KX)W) =BY

where E is —% of the exceptional divisor. To get weak Jacobi forms, the modified elliptic genus can be used:

o) =z N2 = 27) ;72_;";;) exp (-% : %(z, T)) .

Alternatively, weak Jacobi forms can be obtained by twisting with pure classes coming from the symmetric

product; these pair trivially with ;fn] and Theorem 5.4 of [FG] applies.
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2.2. Calculation. We compute (I0) explicitly for curve classes /3 of Seiberg-Witten length
N following the approach in [L| [OP] [JOP]. The strategy is to combine torus localization
with universality arguments over the Hilbert scheme of points. Specifically, we let C* act

with distinct weights
W1y..., WN
on the middle term of the exact sequence

05S->CVo0x = Q—0,

thus inducing an action on Quotx ((CN ,B,n). The series (I0) admits a natural equivariant

lift. Writing K for the canonical bundle of X to ease notation, we show

Theorem 17. For fixed N, ri,...,rp, there are universal series
A, Bs, Ui, Vis, Wi

such that for all nonsingular projective surfaces X, all curve classes [ of Seiberg- Witten

length N, and all classes aq,...,ap of ranks r1,...,rs, the equivariant series above takes
the form
() Zialan e =a YT SW(B) L. SW(BY)
B=B1+-+Bn
¢ N 506
K? s).K i K Bi-c1(as i-Bj
A ,HBgl(a ) 'Huiﬁ . H VLSCl(a ) 'HWM j
s=1 i=1 1<i<N i<j
1<s<t

The universal expressions appearing in the answer are explicitly recorded in equations (L5)

— (20)) below.
Proof. Under the above torus action, the C*-fixed subsheaves split
N
S=@PIz(-D;), [Di]|=8i, length(Z)=m;
i=1
where
N
1
B=Pi+...+By, m=mit..+my, m=n+> 5(5+K).
i=1

Thus, the torus fixed loci of Quotx (CV, 3,n) are isomorphic to products of Hilbert schemes

of points and curves

Flm, 8] = X™ x Hilbg(X).
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The underline notation

m:(ml,...,mN), ﬁ:(ﬁl,...,ﬂj\[)

is used to denote vectors of integers, curve classes etc. We set
xlml = xtml e s XV Hilbg (X) = Hilbg, (X) x ... x Hilbg,, (X).

Crucially, the arguments of Section 2 in [L], originally written for the integrals computing
the virtual x,-genus, apply verbatim to the more general expressions considered here. In-
deed, via the virtual localization theorem in [GP], the integrals (II]) can be written as sums
of contributions from the fixed loci F[m, ]. Whenever 3 is a curve class of Seiberg-Witten

length N, nonvanishing contributions only arise from splittings satisfying
(12) Bi- (K —p8)=0

In all other cases, the Seiberg-Witten invariants in the class §; vanish. As explained in
[L], this in turn forces the vanishing of the corresponding localization terms. Furthermore,
when (12)) is satisfied, the Hilbert schemes of curves Hilbg,(X) carry virtual fundamental
classes of dimension zero and of length SW(g;). Thus

(13) [Flm, 8] = SW(B1) - SW(Bx) - [X!2] ™ x [point].
The virtual class of X is determined by the obstruction bundle
v
Obs =Y~ Obs;,  Obs; = ((K — 5)!"!)
Note that m = n + 8- Kx. The equivariant series Zx n g takes the following structure

Z5 sale) = PR ST SW(B) - SW(BN) - 250 (@),
B=B1++BN

where we used the above convention to underline quantities understood as vectors. The last

term in the expression above arises via equivariant localization |[GP] and is given by

XNB (g, w|a) = Z Zmz/ Hf La"]> <§:Obsi). (NVIr). <ZT ml])
i=1

m; >0
where e is the equivariant Euler class and NVI* denotes the virtual normal bundle. Further-

[m]

more,
(i) Obs; = ((K — D;)mi)",
(ii) NV* =37, Nijlwj —wi], where Nj;j = RHomy (Iz,(—D;),0 — Iz,(—Dy)),

(iil) *al” = ZN 1 a[ﬁml} [w;i], with ag:”} = R (Q; ® ¢*a) = a(—D;)lmil  Cx(@lpy),
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Here Z; denotes the universal subscheme of X[™il x X and the equivariant weights are
recorded within brackets. Furthermore, D; € Hilbg,(X) are any representatives for the
point classes appearing in (13]). The integral does not depend on this choice.

The obstruction and normal bundles in (i) and (ii) are lifted from [Ll [OP]. Item (iii)
concerns the splitting of the tautological sheaves o[ to the product X[ This uses the

splitting of the universal quotient
N
Q=> Qiw], Q=0-0(-D;)®Iz,.

We point out the following notational ambiguity in (iii): the tautogical sheaf al™ on the
left is restricted from the Quot scheme to the fixed locus, but the tautological sheaves on

the right are over the Hilbert scheme of m; points. The notation oz[ mi)

records the twist by
the curve class ; in the universal quotient.
The expresssion 7is a tautological integral over products of Hilbert schemes of points.

Using the arguments of [EGL], it follows that Z admits a multiplicative universal formula

¢ ¢
J _ K?2 K. S c (as .C a) s o
ZXN(BL 751\7)( g, w|a)=A .HB c1(as) | H o 1 t'HD?(a)-EX( %)
s=1 1<s,t<4 s=1
HUﬁZK H VBlcl(as). H Wﬁ’bﬁj.
1<i<N 1<i<j<N
1<s<¢

The above universal series are independent of the choice of surface and curve classes 3;,
though they do depend on N,rs, f,g. We omitted the Chern numbers ﬁ? because we will
only use the formula for 8 = 8;.K

We next determine relations between the universal series by specializing to simpler

geometries. When 51 = --- = By = Kx, the obstruction bundle
ObSi = (O[Xnm)\/

admits a trivial summand, hence its Fuler class vanishes, for all ¢ with m; > 0. The case
m; = 0 corresponds to the Hilbert scheme isomorphic to a point, and the only equivariant

contributions come from (iii). Since for D; € |Kx| we have
x(as|p,) = —rs - K’ + K- (o),

the series Z becomes

{ N 1 52 N
IIII T \r. . NK.ci(as
s=1i=1 (fs(wi)TS> fs(wl) .



THE VIRTUAL K-THEORY OF QUOT SCHEMES OF SURFACES 17

This also equals

’
AK2HBK01 as) H Ccl(as Cl(Olt)Hng(as)EX(OX HUK2 H VKcl(Ols H WZ-K;.
s=1 1<s,t<l s=1 1<i<N 1<i<j<N

1<s<t

By the independence of the Chern numbers, we conclude that
Ct =Dy = E =1

Therefore we have
V4

(1 )Z}N(gh (@ w|a) = AR T BEele) HU@K I] v I wio.

s=1 1<i<N 1<i<j<N
1<s<¥

Next we specialize X to a K3 surface blown up at a point, with exceptional divisor
E = Kx. Let IUJ = [N] be a partition of the set [N] = {1,..., N} into two disjoint parts.
Define a vector of curve classes
Bi=E, ifiel

E. (6. h
Zrug (/817 7BN) where {/8] :O7 lfj S J

By (14]), we have

J _ E.ci(a -1 E c1(os) . —1
ZXNEIu](q’w|g)_A HB ) HU H V H Wihiz'
s=1 el i1 <ig
1§s§é 11,026l

By varying the degree ds = FE.ci(as) and the partition I U J = [N], we determine all
universal series. In fact, it will be enough to consider the cases when |I| = 0,1 or 2.

From now on, to ease the notation, we assume ¢ = 1 so that
Z,J;(gNB q,w|a Z Zml/ <Zamz] wz) (ZObSZ> g NVII‘ <ZT ml])
m; >0
We will make the convention to temporarily denote indices in I, J and [N] by 4, j, and k,
respectively. Since
Obs; = (Kx — E)™))Y = (0" ifie 1
Obs; = ((KX _ 0)[mi])v _ (E[mj})v itje
all contributions with m; > 0, for some ¢ € I, must vanish. Therefore we assume that

m; =0 for all ¢ € I. For j € J, the Euler class of

Oij = (E[m]})\/
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can be represented up to sign by the Hilbert scheme of m; points on E = P!
e(Obs;) = (~1)™ | ™)) = (—1)™ [p].

We obtain /Z\;(’?N,EMJ(Q’M | @) equals

2 0% [ () 0o 5 (- 000))

Vi€, m;>0 j
where
vi [P s T, Xl
Let d = E.ci(«). From the calculations of [Ll Section 3] and [OP) Section 5] respectively,

we have
(i) o= fw] = CXelB) ;] = €],
(i) ol ) O(=hy) ™ [w;] + (O = O(=hy)) "),
(i) ¢*(Tyimy) = Obs;) = O(=hj)®™ + O(hy) — O
(iv) NV =§j(OFMJ%m+owm—omﬁ—m»ﬁwfw%]

J1#j2
+Z< )™ [w; _wi]+0(hj)[wi_wj]>‘

Here the h;’s denote the pullbacks of the hyperplane classes from each of the factors.
Integrating over the projective space means extracting the suitable coefficient of hj; we
denote this operation by square brackets. After carefully collecting all terms, we obtain
that
> . my .
ZQ,g]VvE]\_[J(q’w |a) = Z (_Q)ij [HjEJ hj J] HjeJ Oi(hy)™ - Wrug({hj}ie)
m;>0

where
N

©;j(h;) = (—hy) - f(—hj+w;)" H

h-+wj—wk)
—h —i—w]—wk

r h —w; +
\If[uJ—Hh wak . Hf h +w r+d H gh _QZ]_’_;L;k)

JjeJ jeJ jeJg
1<k<N

. H hj, —wj, — hj, +wj, ‘
iz, Iy = wjy = hjy +wj,)
We evaluate the above expression via the multivariable Lagrange-Biirmann formula [G].

Specifically, fix £ > 1, and for each 1 < j < ¢, consider power series ¢; in the variable x;,
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with nonzero constant terms. Set
‘ d
j=1 I
Then, for all power series ¥ in z1,..., 2y, we have
Y
Z gmtetme [a:g'“ . --xzn‘] G1(x)™ o pe(xe)™ (e, ) = ?(wl, ceeyp).
m;>0

On the right hand side, the x;’s are the unique solutions to

Ly
q= , zj(g=0)=0.
¢j(z;) 7
Applying this to our situation, we obtain
o~ v
f.9 _ g Y
ZX,N,EMJ(‘L wla)= Koy ({h] }JEJ)

where
d
K[uJ = H (1 — hj% log q>j(hj)> s
= J
and for variables related by

—h;
q= , hij(¢g=0)=0
@;(h;)
In our case, we obtain
N
1 —hj + wj — wg .
9= 77— ° with hi(¢g=0)=0
f(=hj +w;) ,}19(—@ +w; — wg) 4=
and
f N7 1
K]uJ:th-H r-7(—hj+wj)+z(E(—hj—i-wj—wk)—i—m) .
jeJ jed k=1
Using the additional change of variables
Hj = hj — wj,

we can simplify this to

k=1 JjeJ eJ J1#£32
1.9 1<k<N J1.92€J
XvaﬁluJ(q w’a) - f/ N / 1 ’
I (r fem)+ S (5H -0+ b))
JjeJ k=1
where
1 N —H; —wy
15 = J th Hi(g=0)=—
(15) )y 1 g—H; —wy) ia=0) = ~w;
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This determines all the universal series by comparing with

Z;}NEM( wla)=A""-BE U TV T Wik,

el el i1<ig
11,19€1

First, we find
N
f(wg)
16 B= ——, V; = f(—H,),
(16) 5y vim s

by considering the terms with exponent d and letting I = () or I = {i}. Similarly, we see

that

N
—Hi T H (Hz H@ )

(17) A :Hf( L I1 Hz-:‘l’ll)ﬂkk H ngl m,

1<ki<N 1 2

1
-ﬁ<w§«ﬂg+§(%em—wm+mﬁﬁ>

=1 k=1
and
N
_ 1 (Hi4wy) Hy—H; Hi—Hy
(18) Ui = semy - I 5w - 1 sd—ay - sa—in
k=1 i/
’ N / -
: (7“ I (—H) + Py <%(—Hi —w) + ﬁwk»

by comparing the terms with exponent (—1) and letting I = () or I = {i}. In the above
expressions, the indices i,i now range over [N] because the partition I U .J = [N] is not
involved. Finally,

g(Hil - Hi2) . g(Hi2 - Hil)

1 Wi, i, = )
( 9) 1,22 H’il _ HZ'Z Hig _ H’il

by considering I = {i,i2} for i1 < is.
When several functions f1, ..., fy are involved, each instance of f gets replaced by product

contributions from each of the fy’s. For instance, the change of variables becomes

¢ N o —w
—H: — wy,
(20) q= J .
51;[1 fo(= iy 9(=Hj — wg)
This also affects the logarithmic derivatives fT, accordingly, turning them into sums of /¢

terms. O

2.3. Cobordism and the virtual Pontryagin class. As an application of the calcula-

tions in the previous subsection, we consider the virtual cobordism series of the Hilbert



THE VIRTUAL K-THEORY OF QUOT SCHEMES OF SURFACES 21

scheme of curves and points:

2% = > q" [Quotx (C', B,m)] 1 € 2*((9)).

neL
For a proper scheme S with a 2-term perfect obstruction theory, virtual cobordism [Sh]

is encoded by all virtual Chern numbers
/ e (TV7S) - ¢ (TVS).
[ ]vir

For bookkeeping, we set

o
= Zyk.’ﬂk, Yo = 17
k=0

and note that the virtual cobordism class of S is determined by
s = [, 9S) € Clyo )

This is consistent with the fact that €2, is a polynomial ring in infinitely many variables.

For surfaces with p, > 0, the series

= Z q / 9(T""Quotx (C, B, n))

ne? [Quotx (C1,8,n)]"™

can be calculated by letting N = 1 and f = 1 in the formulas of Section [2.2, also setting

w = 0 in the answer. Then,

A=U‘1=%-<g—/(—H)+%>, B=V=1

for the change of variables

Thus
Z5®(q) = ¢ P - SW(p) - AKTICS,

It is easy to see that Zg? ' 1s not given by a rational function. This fails for instance for

the specialization
1 =0, yo=y, yp =0 for k >3 = g(z) =1+ ya?

corresponding to the virtual Pontryagin class. In this case

-H 1—yH? 1
e A = A= (14T dgy) VT Ay
4 1+ yH? (1+ yH?)? 2 v ¢y) -V vy
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We can however write down a different expression for the cobordism series. The cobordism
ring €), is generated by the classes of projective spaces PY, P!, .... Consider the generating

P=> 4" [P"] € (@)
n=0

More generally, for each ¢, we consider the projective spaces P" endowed with the nontrivial
obstruction theory O(¢). When ¢ > 1 this corresponds to the class of a smooth degree ¢

hypersurface. We denote by []P’"](Z) the associated virtual cobordism class and define

Py = an [P") ¢y € 2:((q))-

n=0

Theorem 18. For surfaces with p, > 0, we have
K2—K.8
b K2 P_1
IR =SW(B)-q¢ " - <—ﬁ> :
Proof. The series P corresponds under our conventions to

p_ Zq/ (TP an/ﬂm pyrtt = Zq nH):fl_Z
n=0

T

by Lagrange-Biirmann formula for ¢ = T};L)' Note that h = —H in the notation used above.
Similarly,
P, = Zq / g(T"" [P"] ) Zq / (Obs) - g(TP™ — Obs)
n=0 7IP" ]<fz>
= q" = q" - | [h"] ——=—=g(h =—" =,
Z L gy = 2 I gy o) = g g

n=0
again using Lagrange-Bilirmann in the last equality. By direct calculation, we find
—h g/ 1 1 P_ 1
A=—[=h)—=)=—"
< (5 h> g P2
completing the proof. O

3. RATIONALITY IN K-THEORY AND EXAMPLES

3.1. Overview. We here establish Theorems [[ and [ using the general calculations of
Section [2.2. In addition, we justify Examples [7, [9] and [10] in the Introduction. Finally, we
consider surfaces with p; = 0, thereby proving Theorem [2| and we discuss a calculation

involving rank 1 quotients.
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3.2. Rationality. Proof of Theorem |4l The theorem concerns the shifted series

7= Z "NV (Quotx (CY, 3, 1), /\kloz[ln] ®R...® /\k‘fozgn]).
ne”L

For formal variables y1, ..., 1y, define

Z' =3 PR (Quotx (C B, n), Ayl @ - @ Ayalt).
nel

k1 ke
z:;(i) <i> z*‘ ,
k‘ll ‘e k‘g! 8y1 ayg y=0

Then

The series Z! are special cases of the general expressions of Section [2l This can be seen
by invoking the Hirzebruch-Riemann-Roch theorem of [CEK| [FG]. For a scheme S endowed

with a 2-term perfect obstruction theory, and any K-theory class V — S, we have

XS, V) = / ~ch (V) - Todd (T""S).
[S}vw

In our context, we take

S = Quotx (Ch, B,n), V= /\yloz[ln} ®R...® /\ylagn].

Thus, in the notation of Section [2, the series Z' corresponds to functions

fol@) =14y’ 1<s<tl glo) = 7.

For pg > 0, we write via (11
l )4
7' = sw(p) . AK-BK [ Bo@ 5 T verte)?,

s=1 s=1
where we used A = U~!. The change of variables (I5) becomes

l

g= (1M +ye ™).
s=1

For convenience, set ef =1 — z so that
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We regard z as a function of ¢, y1,...,ye. From formulas (I6)—(IR) of Section we find

¢ re 0 ¢
— yS —rg ys —z
A:U1:H<1+1_Z> T +ws) '<Z“1+y —z'1—z+1>

s=1 s=1 s=1
ETAED
s 14+ys—=2
Ys

V=1 .
3 * 1—-=2

We immediately see that

A = B; =V =1.
y=0 y=0 g:O

Let us first assume ¢ = 1 forisimplicit;f, also writing y; = y and r; = r. Note that

z = ¢. The function z is differentiable in y. We claim that for k£ > 1, the derivatives
y=0
take the form
oz  Pu(q)
3yk y=0 (1 _ q)2k—1

for certain polynomials PkE This can be seen by induction on k starting from the equation
1—-2 "
Fly,z)=z-|———— ] =gq.
(y,2) <1 T y) q
For instance, differentiating once we obtain
8F+8F 0z :>82 o rq
oy 0z 0Oy Oy yzo_l—q'

The case of arbitrary k is notationally more involved, but it is useful to spell out the details

in order to bound the order of the poles. Key to the argument is the general expression for

the kth derivative of F(y, z) with respect to y. It takes the form

ON [ ONP . omz gy
Zc(p\ml,...,mt)'<£> <a_y> F.ayrm'”aymtzo

In the above expression, the length of the tuple (mq,...,m;) must equal the number of z

derivatives, namely ¢, and of course the total number of y derivatives equals

p+mi+...+my =k.

The derivative 22 appears in the form

oyk
or o
0z Oy

+ lower order terms = 0.

8A more precise calculation similar to that in Lemma 22 below shows that the derivative equals
> m—1\(n+k—2
k—1)! "
( );T<k—1>< k—1 )q

The coefficient of ¢" is a polynomial in n of degree 2k — 2, from where the claim follows.
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(The leading coefficient C(0| k) can be seen to be 1 by induction.) The lower order terms

involve lower derivatives of z with respect to y and derivatives of F'. By direct calculation

we find %—f = 1 so we can solve for the derivative % in terms of the lower order
terms. In fa%?,o using the explicit expression for F, all derivgt:ig/es take the form
<3>t (2)70 o el
0z 0y y=0 (1 - Q)p—l—t
for certain polynomials F}, ;. Inductively, all terms g;nnif . g;:flf are rational functions
in ¢ with pole at ¢ = 1 of order less or equal to (2m; — 1) + .. .y—:FO(2mt —1). Solving for
% . we obtain a rational function with pole of order at most
y=

p+t)+2mi—1)+...+2m—1)=p+2mi +... +2my <2k — 1.

The only exception is p = 0 which requires ¢ > 2 (since ¢t = 1 gives the leading term), but

() F

This completes the proof of the claim.

then by direct calculation

=0.
y=0

Now let G(y, z) be one of the factors that appears in the product expressions of A, B, V

or their inverses A=Y, B™!, V™. These terms are fractions in y and z. We claim that
kG

(21) B

is a rational function in ¢ with pole of order at most 2k at ¢ = 1.

y=0

Indeed, the derivative is given by the same formula

8 t 8 p 8m12 8mt2
S C@lmm- () (5) 652

In all cases at hand, we can compute

() ()e

directly and observe that the answers are rational functions in ¢ with poles of order at most

y=0

2p+tat g = 1. Thus, at y = 0, the derivative in (2] is rational with poles of order at most
Cp+t)+2mi —1)+ ...+ (2my — 1) = 2k.

Property (21)) is preserved under taking products. We therefore conclude that ZT satisfies
(21) as well. Equivalently, Z is rational in ¢ with pole of order at most 2k at ¢ = 1, as

claimed.



26 ARBESFELD, JOHNSON, LIM, OPREA, AND PANDHARIPANDE

Finally, the case £ > 1 is similar. The above statements hold true, their proof requiring

only more diligent bookkeeping via multiindices, but no new ideas. O

Proof of Theorem 1. For simplicity, first take £ = 1. We seek to prove the rationality of

the series

ZXNﬁ Oé“ﬁ an vir (QUOJEX((C B, ) [n])
nez
The proof exploits the symmetric structure of the expression (II]), and also relies on the
rewriting of the change of variables (IH]) and of the functions ([I6]) — (I9) in terms of rational
functions, in the case at hand.

Specifically, as in the proof of Theorem [4] above, set

1 9kzt

Zq" vir <QuotX((CN,ﬁ,n),/\yoz["}) = 7= E(‘?—yk -

neL

For Seiberg-Witten classes § of length N, by (II)) we have
Zh = g~ Rx Z SW(B1) - - SW(By)-AK" B (@) HUBZK HVBlCl(a HWﬁlﬁJ.
B1+..+BNn=p i<j
For every decomposition S = 1 + ...+ By, we consider the symmetrized expression
Bo’(z) K Bo’(z) Cl Bo’(z) ﬁo‘(])
U, V, 11w,
st X [0 [T )

where the sum is over the orbit of the symmetric group Sy permuting the classes ;. We
will drop the dependence of C on the classes §; for simplicity.
We use the results of Section for the functions

x
1—e

fl@)=1+ye", g(z)=

To simplify the formulas, we further set e =i = 1— zj, e = 1+1t;. The change of variables

(I3) becomes

N
(2 o= eat-z) " I(FE2E). 0=

1—=z
k=1 J
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We record

N
1—|—y1—z2)> 2z + g, 11—z ry(1 — z) 1+t
A= +
H<1+y1—|—t) 1<1;I 1—|—tk zl—z]H 1+y(l—2) Z; Z; + g,

777

_Hl—l—y(l—i-ti)
pa 1+y(1—z,)

N N -1
1 14t Zi — Zit Zit — % ry(l — z)
U, =
' (1+y(1—z,-))’"Hzi—ktkH(l—zir 1—,z,-><1+yl—zZ +§::1

k=1 i/ £

Vi:1+y(1—zi)
1_Zi1 1—ZZ'2

W, i, =
1,02 :
7 Rip = %y Zip T Rig

To show that

1okt
KL OYE |yo,1=0
is a rational function in ¢, it suffices to show that the derivatives
oFA oFB okC
(23) EY T ok ) o )
Y™ ly=0,t=0 Y™ ly=0,t=0 Y™ ly=0,t=0

have the same property. We do not have closed form expressions for these derivatives, but
a qualitative argument suffices.

Property (23] is in fact valid for any rational function R in the {z;}, {tx} and y, which
is symmetric in the z’s. The functions A, B, C are of this type. This is clear for A and B
from the explicit expressions, and it also holds for C because we sum over the orbit of the
Sy-action.

The assertion above was proven in [JOP], Section 2.2, and we only indicate the main

points. Indeed, R is a rational function in ¢ since it can be expressed in terms of
y=0, =0
the elementary symmetric functions in the z;’s. These symmetric functions are continuous

in y and . At y = 0, ¢t = 0, they are rational functions in ¢ since the change of variables

becomes

The derivative

ay
is also given by a rational function in {z;}, {¢x} and y, symmetric in the {z;}’s. The second

term OyR is calculated keeping z fixed, and is symmetric in the 2’s since R is. By implicit
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differentiation

N
. —z—t 0z
F(y,z,i):(l—i-y(l—Z)) ' 1_2k:q:>8—y25(y,22,£)
k=1

for an explicit rational function S. Using that R is symmetric and the formula for the
implicit derivatives, it follows that transposing z; and z; turns

OR . OR 0z . 0z

— into — and —— into —=.

0z; 0z y oy
Since we sum over all i’s, % is symmetric in the z;’s.

Inductively, it follows that all higher derivatives of %E are rational functions of {z;},

{tr} and y, symmetric in the {z;}. Their values % are therefore rational in q.
y=0,1=0
Finally, introducing additional formal variables ¥i,...,%; and running the argument

above, we obtain the rationality of the series
Z Ak (QuotX((CN,ﬁ,n), /\kloz[ln] ®R...® /\k‘a%"]> . d
ne”L

Remark 19. The same arguments prove the rationality of the generating series of descen-
dent invariants defined in [JOP], for all curve classes § of Seiberg-Witten length N. This

partially confirms Conjecture 2 in the work cited.

3.3. Examples. Equations (3) and (4) in the Introduction are obtained by executing the

above proof in more precise detail. We continue to use the notation

7= anxm (Quotx((CN,n),oz[”]> , 2T = Z A <QuotX((CN,n), /\ya[”]> .

nez neZ
We have ;
7=9Z) 7t AR ek,
Y |,—o
The functions A, B were recorded in the proof of Theorem [1. We claim that
(i) A =B =1
y=0,t=0 y=0,t=0
.\ OA 2 0B
(ll) a—y :_NT'(lz—q)z’ a—y :_Nl%q
y=0,t=0 y=0,1=0
From here, (3) and (4) follow immediately since
Al 2
Zza_ :Q(AKQ.Bm(a).K) :_NT.K2.Q72_N.(01(Q).K).L_
Y ly—o 9y y=0 (I-q) l—gq

Item (i) is clear due to equation (2). This can also be seen directly by setting

y=0,t=0
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in the explicit formulas. The fact that these substitutions make sense is a consequence of
the arguments in Section 2.2 of [JOP]: the elementary symmetric functions in the roots
z1,...,2N are continuous in the parameters. When y = 0, t = 0, the equation giving the

change of variables becomes

N _gz-1)N =0

with roots z;. It is then clear that B

Item (ii) is similar. It is more convenient to work with the logarithmic derivative. Set

Bf = log B. Using (i), we have

B Bt N9
v = —— = > o (log(1+y) —log(1l +y(1 — z)))
dy y=0, t=0 dy y=0, t=0 ;ay y=0
N
- Zzi =N
i=1 l—q

We record here that

al q N\ ¢
24 = —N—— zj = — —
(24) Z - Z <2>1_q

The calculation involving A is slightly more involved and requires the implicit derivatives

9z
0y

r

= Nzi(l —z;)2.

y=0,1=0

These are found by differentiating (22)). Writing AT = log A, we obtain

OAT
:Z Z?zi

y:07 EZO =1

on
y=0, t=0 dy

oA
Jdy

oA

on’ 822'
y=0,t=0 9

y=0,t=0 Y

y=0,t=0
The last y-derivative is understood as keeping the z’s fixed. The answer is symmetric in

the 2’s and setting y = £ = 0 is therefore allowed. Direct calculation gives

2

r q
:—T’E zi+—>» z(l1—2z)=—-Nr - —.
y=0,t=0 i=1 N i=1 (1-4q)?

on
dy
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Similarly, the following sum is also symmetric in the roots, and by direct computation we
find

87:@
y=0, =0 ay

g 0N
y=0,i=0 IV = 0z

N
Z azl

=1

using (24]). This completes the argument.

Finally, equations (B]) and (6)) of the Introduction require not only the series A, B studied
in (i)—(ii), but also U;, V; and their first derivatives. For rank a = 0, we find

N 1
(iii) U; =1L 5 Vi =1
y:O7§:O y:0,§:0
: oU; oV, —
(IV) Dy = 0, dy =1- Z;.
y=0,t=0 y=0,t=0

The expressions in Examples [9] and [10] in the Introduction follow by substituting (i) — (iv)
in (11). Items (i) — (iv) and equation ([19)) suffice to treat all classes § = {Kx for 0 < ¢ < N,

but the formulas are more cumbersome.

3.4. Surfaces with p, = 0. We next give a proof of Theorem [Z. Let X be a simply
connected surface with p, = 0 and set N = 1. We show that the shifted series

7 — % (B+Kx) an vir (QuotX((Cl,B,n), a[n})

nez
is given by a rational function with poles only at ¢ = 1. This case reduces to the calculation

of Riemann-Roch numbers of tautological sheaves over the (non-virtual) Hilbert scheme of
points.
We have the following identification
Quotx (CY, B,n) ~ XM x P
where P = || and m = n + BB+Kx) +KX ). When pg = 0, the obstruction bundle was found in
[OP]:
1 m]) "
Obs = H'(B) @ ¢ + (M ) ®C,
where ¢ = Op(1) denotes the tautological bundle, and M = Ky — 3. Thus

Or = A10bs" = (A1) P @ ny (M @ 1),
The term
/\—1C_1 =0 - C_l
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is supported on hyperplanes, and its powers can be used to cut down the dimension of the

projective space. Hence
Ot = ta A1 (M @ ¢ )
is supported on X[™ x P(V) where
dimV = r°(8) — h'(B) = x(B) = v+ 1, assuming v > 0.

We used here that h?(3) = 0 by Serre duality, combined with the fact that 3 is effective

and p, = 0. In consequence, for an arbitrary class v, we have

X (Quotx (C', 8,n),7) = x (X[m] x P(V), Ay <M[m] ®<_1> ®7)

= S~y (X[m} xP(V), AMI @ (TR ).
k=0

Under the identification of the Quot scheme with X" x P, the tautological classes take the

form
Omer = X(@) O = x(@) - ¢ @ @ ¢!
where @ = a ® O(—f3); see [JOP], Section 3.2. As a result, we write
7= Z1+7Zs+ 273

where

Zy=x(@)- Y q" Y (=) x (X B(V), Aful o ¢)

=0 k=0
Zy = —x(a)- q" Z(_l)kx (X[m} x P(V), Ak ] ® <_k_1)
m=0 k=0
l3 = Z qu(—l)kX (X[m] x P(V), AF il ® Flml 2 C_k_1> .
m=0 k=0

All three series yield rational functions. The first two series require Theorem 5.2.1 in [Sc]

or Corollary 6.1 in [A]:
X (X , N°M > < m—k k k

using that in our case x(Ox) = 1. Thus

Zy = x(a)- i qmi(—l)kx (X[m}, /\’“M[m]) X (P(V),(‘k)

m=0 k=0
= x(a) - ;qm ’ é(_l)k <V Z 1) ' (-k;r V)

=x(a) - (1+qg+...+4").
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The last evaluation follows by examining the nonzero binomial contributions & = 0 and

k =wv 4+ 1 in the sum above. In a similar fashion, we find
Zy=—x(a)-(v+1)-¢"
Regarding the third sum, we note

Z3= i qmi(—l)kx <X[m} x P(V), AF M ® alm! ® C_k_1>
m=0 k=0

= ¢ (—1Fx (X AFMI @ Gl -(V >
KR )"y

m=

We require the following;:

Proposition 20. For all nonsingular surfaces X, line bundles M — X, and K-theory

classes a on X, we have

s (M) M
_ m, (xlm] ] o ) _ . (L) Ny ~
(25) W mzz:oq X(X Ny M™ @ a ) q (1= g)x0x) X X,/\qu@a )

To prove rationality of Z3, note that

1 o'W
Zg_ﬁ. oy

y=-1
We examine the derivatives of each term in the product (25]). For instance, for v > 1, we
have
lou Ay M
—x (X, L= ®a
ayVX ( "Ny M >
Expanding using the binomial theorem, we arrive at the expression

> —v—1

()" 'l 1 =) ) (—o)* < B > (X, MR @ &),
k=0

= (-1l a—q) (X M ®a).
=1 ’ (1 _ qM)I/—l-l

By Hirzebruch-Riemann-Roch, the Euler characteristics (X, M*** ® &) depend polyno-
mially on k, and the same is true about the binomial prefactors. Thus, the answer is a
rational function in ¢ with possible pole only at ¢ = 1.

The interested reader can compute Zz explicitly by following the above method, substi-
tuting x(M) = x(8) =v+1 and x(Ox) = 1. For example, when v > 2, after cancellations,
we obtain

Zy=q¢" - (—x(M'@a)+ (v + 1) x(a))
so that

(26) Z=x(a)-1+qg+...+¢)—x(K'®a)- ¢
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The answers for v = 0 or 1 have poles at ¢ = 1 of order at most 2; we do not record them
here. (]

Proof @ of Proposition [20. Since both sides are additive in «, it suffices to assume « is a

line bundle. Consider the more general expression
wi = Z q"x (X["], /\yM["} ® Sym ,, N["]) .
n=0

We show that

1+ gy)X) Ny M
wh = Ura) ™ () x, L
= gpon 1T (R @) )

where the omitted terms have order at least 2 in z. The Proposition follows from here by
extracting the z-coefficient. Note that the z-constant term

> n n 1+ gy)XM)
Z:(]:;:%q X(X[L/\yM[ D:%

T
W (1 — q)X(OX)

is indeed correct by [A, [Sc], and was already used above. Consequently, we only need to

confirm the asymptotics of the normalized expression

wt Ny M
:7i1—|—qzx<X, Y ®a>—|—....
WT‘Z:O /\qu

By the universality results of [EGL], it suffices to establish (27]) for toric surfaces X. Via

(27) e

equivariant localization in K-theory, we reduce to the case of equivariant X = C2. These
steps are standard, and the interested reader can find more details in a similar context in
A, [ EGL].

Let the torus C* x C* act on C? with weights ¢, to, which we write multiplicatively. The
line bundles M and « are trivial, but they carry possibly nontrivial equivariant weights m

and a respectively. The equivariant version of (27) becomes
a 1+ym
(1—t7H(A -t 1+qym

W*=1+4gqz-

The torus fixed points of the Hilbert scheme ((C2) ) are standardly known to correspond to
monomial ideals; these are indexed by partitions A of n. We note the equivariant restrictions
of the tautological bundles to the fixed points

= mehg, ol
A (b1,b2)EN

i

= Z atl_bltz_bz,

A (bi,b2)EN

9This also follows from |Z], equation (194) by setting u = —y, v = 0 in the corresponding formulas. In
|Z], the last term is claimed to be x(X,@). There is however a substitution oversight on the previous page
just above equation (192). When the correct values of u, v are used, the above expression naturally appears.
For the convenience of the reader, we decided to include an independent argument here.



34 ARBESFELD, JOHNSON, LIM, OPREA, AND PANDHARIPANDE

as well as the character of the tangent space

T)\ (CQ)[”] — Z (tl_é(m)t;(m)'i_l + ti(D)"_lt;a(D)) .
OeA

The equivariant sum
Wi = Z q"x (((C2)[n] Ay MP @ Symz&["]>
n=0

thus takes the form

by —b1,—b
WT:Z q' | ) H 1+ymt1 1t2 2

4 o —by,—ba °
X ATy (bth)E)\l zaty '

It is more convenient to introduce the following modified expression

A 1wt}
q U
F(q,u,v) = E ATV . | | - 12

_ 4b1gbo
A A (b1,b2)€EX v—iyty

Then
F <_qym7 _yim7 ZCL)
F <_qym7 _yLmv 0)

Crucially for our arguments, F admits the following (g, v)-symmetry

1
Wi =F <—qym,——,za> , W=
ym

F(Q7 u, U) _ F(Uv u, Q)

F(q7 u? 0) F(,U7 u? 0)‘

This is contained in Theorem 1.2 of [A], and is proven via localization over the Donaldson-
Thomas moduli space of Calabi-Yau toric threefolds. The symmetry greatly simplifies our
calculation: by switching parameters, we only need to find the contribution of the Hilbert

scheme of one point. Specifically, we have

1 - 1
F (—qym,—y—m,O) F (za,—y—m,O)

From the definitions, we see that

W F (—qym, —yim,za> F (za, —yim, —qym)

a 1+

1— ;)1 -t —qym—1

1 1
F <za, __,0> =1- _lza —5 <1 + —) + h.o.t in z,
ym (1—t7)1—1t5) ym

from where the equivariant version of (27) follows at once. O

1
F <za, e —qym) =1+ + h.o.t in z,
ym
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3.5. Rank 1 quotients. We end this section with a calculation involving rank 1 quotients.
Let X be a nonsingular projective surface with p, = 0. Let Quot,, parametrize short exact

sequences
(28) 055 —-C*00x -Q —0
where
rkQ=1, a(@) =0, x(Q)=n+x(Ox)
It was shown in [OP) [Sch] that Quot,, admits a virtual fundamental class of dimension
vd = x(Ox)

whenever p, = 0. We write x = x(Ox) = 1 — h}(Ox) for simplicity. We must have
0 < x <1 in order to obtain non-zero invariants. As an application of our computations in
Section [3.2] we show

Proposition 21. The series
[ee]
Z= Z ¢"x""(Quot,, 0)
n=0
is the Laurent expansion of a rational function in q.

The method of proof is well-suited to handle twists by tautological sheaves as well. It is
natural to inquire whether the Proposition can be generalized to higher NV and higher rank
quotients @, and to include curve classes 8 # 0. These questions are more difficult and we

will address them elsewhere.

Proof. We let the torus C* act with weights w1y, ws on the middle term of the sequence (28)).

Set w = wy — wy for simplicity. There are two fixed point loci
Ft = x
corresponding to exact sequences
0—S=17— Ox[wi]+Ox[w)] - Q=0z+0x =0

where length(Z) = n. The £ decorations correspond to the inclusion of the subsheaf S into
the first or second trivial summands respectively. The fixed part of the tangent-obstruction

theory is
. \%
TYF* = Bxty(Iz,0z) = TX!" — Obs = 7x1" — (K1)
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Here Z is the universal subscheme. Thus, the fixed locus F* = X[ comes equipped with
the virtual fundamental class we studied above. Similarly, the virtual normal bundles carry
weights +w and are given by
N* = Ext%(Iz,0x) = Ext%(Ox — 0z,0x) = CX ® O — Ext%(0z, Ox)
v
—CX®0 - (K[n}) 7

using Serre duality in the last step. In particular, for y = e™%

1 A (EP=w]) 1 X vk Ak el k| Ay KT
AN (A C[—w)])X _<1—y> '<Z( DEATETYT ) = (1—y)x

k

, we have

and similarly
1 /\_yfl Knl

A_IN=Y (1 =y~
By virtual localization in K-theory [FG,|Q], we find

. . 1 . 1
vir L vir + _ - vir -
X (Quotn,O) =X (F ’ /\_1N+V> TX (F ’ /\_1N_V>

— g (XA K +

Expressions of this form were studied in Section B.2. In particular, from the formulas for

I < XA K[n})

1

the functions A and B immediately following equation (22), we find
K2
1—y+ yu?
n. vir X[n A K[n]
Z R ( ) 1—-y+yu

where u is the solution of the equation

U 1
1l—u 1—y+yu’

_q:

To evaluate the second term, we similarly solve the equation

v 1
l—v 1—y 14y’

_q:

Therefore,

Z= Zq” ‘”r (Quot,, O)

1 '<1—y+yu2>K2+ 1 ‘<1—y +y‘1v2>K2
1=y \1—-y+yu A=y Hx \1-yt+yto

In order to cancel the poles at y = 1 in the above expression, we record the following:

y=1
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Lemma 22. We have

_ 42
—(-g - T D o -y
= (1 -y o+ =0 s + 0 (-9,

Proof. We only give the details of the first expansion. We could derive this directly by
implicit differentiation as in Section [3.2) but a different and slightly stronger argument will
be given instead. (The same ideas can be used to give a different proof of Theorem |4.) We

change variables 1 — y = ¢, so that

i 1
l—u t+(1—-tu

_q:

We claim that the implicit solution takes the form

(29) wgt)= > anrq"t"
n>1,k>1
where
(_1)n+k+1 n+k n
App = ————— :
’ n k-1 k
The Lemma follows since
n n n—1)(n+2
ap 1 = (_1) 3 Gp2 = (_1) . ()%7
and
> n (2 + q)
an,14 an q"

Expansion (29) uses Lagrange inversion for implicit functions [So], Theorem 3.6. Specifically,

let
G(u,q,t) = —q(1 —u)(t+ (1 — t)u)

so that we implicitly solve G(u,q,t) = u. Therefore,

Z an,kqntk

n>1,k>1
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where
k=30 g G 0,0
;% 2L g R (1) g (1 — ) (o (1 — £)2)™
- #[z”‘l (1= 2)" (t+ (1= )2)"
_ (‘i)" 1] (1 — 2)7 (2 4+ (1 — 2))"

n <Z> [V (1= 2)" 2" R (1 — 2)F
(

Z) [F1(1 — 2)ntk = (—1)Z+k+l (Z) (7; J_r f)

Using Lemma 22], we find that

—*(2+q)
(1+4q)?

U —q
7 Tiq (1-vy)

and from here we derive

L—y+yu? 1415
l—y+yu 1+

—(1+4q) (1-(1—y)-q<1_q>+O((1—y)2)>-

A similar argument shows

1—y~ +y‘1v2

1—yt+y o

(1+q)-<1+(1—y)-H+O((1—y)2)>.

The Proposition follows from here. For instance, when y = 0, corresponding to surfaces of

irregularity 1, we immediately obtain
Z =201+

For regular surfaces, we have y = 1. In this case, we need to consider the linear terms in

1 — y as well, yielding
,_ 1+ <1 PRy q)> L 1+9® <1 P (U q)>

l—y (1+¢)? 1—y! (1+9)?) [,
_ K? 2 ¢(1—¢q)
={+9) < ST )

This completes the proof. O
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4. K-THEORETIC COSECTION LOCALIZATION

To complement the explicit calculations of Section 3] we now discuss the virtual structure
sheaf of Quot schemes with 8 = 0, giving a proof of Theorem [15]
As in the Introduction, assume C' C X is a nonsingular canonical curve, and let © =

N¢/x = *Kx denote the theta characteristic. Let
v : Quote(CN, n) — Quotx (CV, n)

be the natural inclusion. We show that the virtual structure sheaf of Quotx (CV,n) localizes

on the curve C:
(30) Oduotx(@¥.my = (1"t Dy,
where we set
D,, — Quot(CV,n), D, = detRm, (O ® det Q).
Along the way, we also prove that
(31) DE? = det NI

where NV stands for the virtual normal bundle of the embedding .
To align (30) with the statement of Theorem [15] given in the Introduction, consider the

support map
P Quotc((CN,n) — C["], Q — supp Q.
We have
D,, = p*det (@M) .
Indeed, for Z ¢ C' x C denoting the universal subscheme, over Cl" we establish that

det R, (O ® O(Z2))Y = det Rm, (0 ® Oz).

This follows by relative duality, the fact that © is a theta characteristic, and the ideal exact

sequence for Z:

det Rm, (0 ® O(Z))Y = det Rm, (0 ® O(—Z))Y = det R, (0 ® Oz).

Example 23. For N = 1, equation (30) states

O}ffll[rn] = (_1)nL* det @[nh
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for 1 : C"l — X"l This is indeed correct since Obs = (K X)[”])v as noted in [OP) Section
4.2.3], and we have
(32) W = A—10bs” = (=1)" A" Obs" ® A_;Obs
= (=1)"det(Kx)™ @ 1,001
= (=1)"t, det O,
Here, we used the Koszul resolution
A <(KX)["])V — Ocin)
of the canonical section sl cutting out ¢ : C"l < XM where s defines ¢ : C — X.
Furthermore,
NV = ppvirxlnl _ pelnd
= (7"~ Obs) — Tl
= Nemxtm — t*Obs
_ ol _ (@M)V ,
On the last line, we used the identifications
N xim =0, *Obs = 1* <(Kc)["]>v = (@M>v :
which can be found in |[OP, Section 4.3.2]. This allows us to confirm equation (31l):

det NI = <det @["1)2 .

Proof of Theorem [1h. We justify equations ([B0) and (BII). For simplicity, we write Quots
and Quoty for the two Quot schemes. We let S¢, Sx denote the two universal subsheaves,

and let @ be universal quotient for Quots. We begin by noting that
NV = *TV"Quoty — TQuotc
= Ext% (Sx, Q) — Ext&:(Sc, Q)
= —Ext%(Q, Q) + Exty(Q, Q)
= Ext$(Q,Q ® ©).

The third equality follows by expressing the universal subsheaves in terms of the universal

quotient in K-theory. The last identity follows from the exact sequence
... = Exth(Q, Q) — Exty(Q, Q) — Extii(Q,0®0) — ...

proven, for instance, in [T, Lemma 3.42].
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For future reference, over Quots(CV,n), we set
U, = det NV = det Ext?(Q, Q ® ©).
We show first that
(33) gll;otx((CN,n) = (—1)" e Uy
where the right hand side is only well-defined up to 2-torsion.

To this end, we apply C*-equivariant localization to both Quot schemes over C' and X

using the same weights w1, ..., wy for the two torus actions. The fixed loci are
Fo[ni,...,nn] = clml x ... x C'[nN], Fx[ni,...,ny] = xlml oo xlnl
where nq + ...+ ny = n. There is a natural embedding
t:Folni,....,nn] <= Fx[ni,...,nn].

In the localization argument below, we will match contributions coming from the two fixed
loci corresponding to the same values of nq,...,ny. For simplicity, we drop the n;’s from

the notation, writing Fo and Fx for the fixed loci. We let
jc : FC — Quotc, jX : FX — QUOtX

denote the natural inclusions. We also write No and Nx for the virtual normal bundles.

The proof of (33)) requires several steps. By the virtual localization theorem in K-theory
[Q], we have

i . F
Ofors = Y_(ix)e 7ipec
—1NX

, @
OQquote = Z(]C)* ch
—1C

In particular, from the second expression, we find

) i T
_1 n . 1/2 — _1 n " - « C n
( ) LUy Z( ) L (]C) /\—lNé
it 1/2
- -1)™(j * Ux 7n'
S G
To prove (33)), it suffices to establish
vir % 7,1/2
34 X — (—1)", T=—.
(34) ANy D ST

We compute the virtual structure sheaf on the left. The obstruction theory of the fixed
locus Fy = XMl x ... x XN gplits as

Obs — & ,Obs;, Obs; — (Kg?i])v.
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Thus, using (B82), we find

(35) ¥ — A_ObsY = @Y, Ay ObsY =1, (@ﬁil(—l)"i det @["ﬂ) .
To prove (34]), we show

N detOld jr U
* N_q N}/( N /\_1Né '

(36)
Next, we note that over the fixed locus F¢, the quotient takes the form
Q=0z +...+0z,.
Thus the equivariant restriction becomes

N N
(37) jEU, = det Ext, (Z 0z,» 0z ® @) .

i=1 i=1
Both sides carry weight 0.
Lemma 34 in [OP] gives the difference

(38) *Nx —Ne = PV
1<J
where we define

Vij = Eth(Ogi, OZj ® @)[w] — wz] ) EXt&v(OZj N OZ@' ® @)[wz — wj].

We noted in [OP] that by Serre duality and the fact that © is a theta characteristic, we

have
Vij = U + Ujj[—1]
where
Uij = Exte:(Og,, 0z; @ O)[w; — wi.

Observe that

rank U;; = 0.
In general, if V = U + UY[—1] we have
1 kU
e (—1)VdetU.
(39) TV (—1) et U

To see this, note that since both sides are multiplicative, we may assume U is an equivariant
line bundle L. We then need to show

;:—L = A L=—A_L"V-L
N_1 (LV — L)

which is correct.
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From (38)) and (39]) we find

1 1 1 1
40 — : = - det Uij
( ) Ay N} /\_IN&{ E /\_1V2\./j /\_1Ng e Z; ij

Comparing (37) and (4Q) with (36)), we need to show
N N 1/2
(41) ®; det O™ @ det | " Uj; | = det (Ext;; <Z 0z,> 0z ® @)) .
i<j i=1 i=1
All terms above carry zero weights. A priori, the bundles U;; carry weights w; — w;, but

the ranks are equal to 0, so the weights cancel after taking determinants.

To establish (41l) we extend the definition of U;; to include the case i = j:
Ui = Extg(0z,, 0z, ® O).
By Serre duality, we have
det U;; = det (Extg:(0z,, Oz, ® ©) — Ext:(0z,, 0z, ® O))
= det (Ext((0z,, 0z, ® 0) — Ext$:(0z,, 0z, ® 0)")
= det Ext2(0z,, 0z, ® ©)%? = det Ext&(O¢, Oz, ® )2
— det @1,

The ideal exact sequence for Z; was used on the third line. We already noted above that

as a consequence of Serre duality U;; ~ U}’i[l], hence

det Uij = det Uﬂ

Therefore
1/2
®;det O @det | Y Uy | =det [ Y Uy
i<j 1<i,j<N
N N 1/2
= det <Ext’c <Z 0z, 0z ® @)) :
=1 =1

This confirms (41)), and equation (33)) along with it.
Finally, recall that

Dy, U, — Quote(CY,n), D, =detRr(det Q®0)Y, U, = det Ext%(Q, Q® O).

We show that
D2 = UY,.
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If in the expression for U, we replace Q@ by det @ — O, we obtain

U, = det Extg(det @ — O,det Q ® © — O)
= det (R7,(det Q@ ® ©))" ® det R, (det Q¥ @ ©)V
= det (Rm,(det Q ® ©))"®? = D®2,

where Serre duality was used in the last line. It remains to show that U, ~ LN{n Write
A= (detQ—-0)—Q,

and note that

Uy, = U, @ det Exty (A, A ® ©) @ det Extg (A, Q ® O) @ det Extg (9, A ® O).

With respect to the codimension filtration in K-theory, A has pieces of degree 2 or higher,
and Q has pieces of degree 1 or higher. It follows that the last three Ext’s above are
supported in codimension 2, hence their determinants are trivial. This completes the argu-

ment. O

5. THE SEGRE/VERLINDE CORRESPONDENCE AND SYMMETRY

5.1. Overview. We study here the virtual shifted Verlinde and Segre series

Valg) = ¢*553 ¢"x""(Quotx (CN, B,n), det al™)

n=0

S0 = > q | s(al).
,12—:0 [Quot x (CV,8,n)]"™"

We establish the Segre/Verlinde correspondence of Theorem [I3l For g = 0, we prove the
symmetry of the Segre/Verlinde series with respect to N and r = rank «, as stated in
Theorem [14]

5.2. The Verlinde Series. The virtual Verlinde series corresponds to the series ZQQN B(a)

of Section [2 for

f@) =" gla) = ——

This is a consequence of the virtual Hirzebruch-Riemann-Roch theorem [CFK| [FG]. In

particular,

frov o gz 1 g 11
7(95)—1, r l—e’ E(_x)JFE_l—e—x’

We can simultaneously simplify the universal series and the change of variables by setting

(42) e =1~ H; and e =1 + @y,
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so that equation (I5]) becomes

N 73 ~
~ H,+w, . ~ _
k=1

Using (L6]) — (19), we obtain the explicit expressions

A_‘H<1+{Ei> 11—(1—[?,-) 7 — H,, H<r 2.7 N)
1

i=1 , i1y iz =1 =1 Hi + Wi
N ~
—H;
B =
=5
i=1
N ~ ~ = N ~ o\ !
. —(1 - H; Hy—H;, H,—Hy 1— H;
UZ-:(l—Hi)T.H £ ~z).H 7 Nz' 1 Nz N - NZ
k=1 H; + wy, il i 1-H; 1—Hy k=1 H; + wy,
1
V= ——
1—H,

1—-H;, 1-H
1,02 — ~ = =~

H;, — H;, H; —H;,

W

5.3. The Segre Series. To obtain the virtual Segre series, we consider the functions

- 1 B
f) == gy =1
In particular,
f_,(x):_ 1 gzl 5—/(—:1:):0
f 1+2” =z =z g '

We write wq,...,wy for the weights used in the corresponding localization computation.

Via equations (I5) — (I9), we find the universal series

A AN - 1 A Ny
T T T

i=1 ki il;éizHil_Hh - Hi 5
N ~
B[
1+ w;
i=1
N -1
0= (1= 8) [ o - TT (e~ ) (e ) - [ 3
kleZ+wk Vi 1— H; % H; + wy,
~ 1
V, = —=
1— H;
~ 1 1
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after the change of variables
~ N ~ ~
g=(1—H) - [[ (- Hi— @) with Hi(q=0)=—a;.
k=1

5.4. Comparison. We show the Segre and Verlinde series matc for the following geome-

tries

(i) X is smooth projective, § = 0, N is arbitrary,
(ii) X is smooth projective with p; > 0, N =1 and 3 is arbitrary,

(iii) X is a relatively minimal elliptic surface, 3 is supported on fibers, N is arbitrary.

Proof of Theorem[I3. We begin by rewriting the Segre series as
Sl(q):qﬁ.KX an s<a[n}_ ((CN)EBN>
n=0

This does not change the original nonequivariant expression. Equivariantly, we use the

/[\QUOtX ((CN 767”)]Vir

lift of the trivial bundle CV with weights @,...,@wy. Assuming that the torus weights
wi,...,wy on the Verlinde side and the torus weights wq,...,wy on the Segre side are

connected by (@2), we show that equivariantly
Val(q) = SL((=1)"q).

Theorem [13] follows from here.
We begin by analyzing the series V,, and S,. By the calculations in Sections and 0.3,

the following universal series match exactly on both series:
A=A, B=B, V,=V,

when evaluated at the variables ¢ and ¢ related by

N

(43) 9N ] —

q kle—i—’[Ek'

However, the remaining universal series no longer match precisely. In fact,

Ui N—-1 1
= = —1 . ~
=1 11 1—Hy

Ui il #i
Wil i2 oy 7
~——= = (1 - H;,)(1 - H,).
Wihiz

0There are other quadruples (f, g, f,ﬁ) for which the corresponding series of invariants match as well,
but their geometric interpretation is less clear.
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The geometries (i)—(iii) prevent these terms from taking effect: in cases (i) and (iii) they
appear with exponent 0, while in case (ii) only U makes sense and in this case we do obtain

a perfect match. Thus, for (i)—(iii), we obtain via (LL) the equivariant identity

Va(q) = Sa(9)

where

We can absorb the difference in the variables by working with Sl instead. Recall the lift of
the trivial bundle CV with weights @1, ..., wy. This affects each individual summand in
Sk by the factor

N
(14+w)" - (1 +wn)" so that Sa< H 1+ wy, ) :SL(q).

The claimed equality follows

Example 24. When N = 1 and for rank a = r, we have

K
(44) Zq Vlr x , det 04[”]) =(1- t)cl(a)'KX . <$>

for ¢ = t(1 —t)". This is a consequence of Theorem [L3| and [MOP2, Theorem 2| giving the
Segre series. Thus, the theorems in Section [L.3] do not extend to the highest exterior powers
and to the Verlinde series which are typically given by algebraic functions.

Rationality does occur however in the special case when rank o = 0 (also for rank o =

—1), so that det al™ agrees with the pullback from the symmetric power (det a)(n) . Then,
(45) Z q" Vlr n] det Oz[n]) (1— q)_XVir(Xva) =(1- q)cl(a)'KX ]

By (B2), we have

n

b = D (1P A ()

k=0
The computation (45) is thus aligned with Theorem 5.2.1 in [Sc] which gives the individual

cohomology groups

HY(X (det @)y @ AF(Kx)") = APH*(det o @ Kx) ® Sym™ FH*(det av) .
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5.5. Symmetry. We now prove Theorem [I4] giving the symmetry of the Segre/Verlinde
series when 8 = 0. We pick two classes « and « such that

tka=r, rtka=N, ala) K = cl(oz);K = l.
rk rk @

We show
Sn.a((=1)"q) = S, a((=1)"q).

For clarity, we change the notation from the previous subsections, writing

o0

n n 2
Sva((-1)Vg) = 3 ((-1)Vq) / s(alt) = ME? e
n—0 [Quot x (CN n)]"™
where
—r Y 1 1—H;\ " 1
M=]] + )H( ’) T H+w) []
pale 1—H; pt H; + wy, ey 14+w L N i1, Hin H;,
N TT (LY
- i \ 1w
for
N
k=1
In a similar fashion,
= n ~In ~ o~
Sral(=1)7g) =>_((-1)q) / s(al™) = MET L NH
n=0 [Quotx (C™,n)|"*™"
where
T N (e 1 r 1 ﬁ -N 1
M = ( _ _ ~> <1+~7> I E+aw [] ==
o\ Hj o ) G4 Wi 1<), k<r intin Hin = His
, ~ \ N
N (o
o \ 1w
for
g=(1—H)N-T] (H;j+ @), Hilg=0) = —a.
k=1
Two sets of weights w = (wy,...,wy) and w = (wy,...,w,) are used on the two different

Quot schemes in the localization computation. We will show that

w=0

M . N

w=0

w=0

w=0



THE VIRTUAL K-THEORY OF QUOT SCHEMES OF SURFACES 49

In fact, we argue that the limit is found by setting w = 0 directly in the above equations.

In other words

where

N N N 1
* —-r N
M _H<1—H H> gk HH—H

2:1 i=1 intip 1 2
N* =T - H),
i=1
and Hq,...,Hy are the root of the equation
=(1-H)-HY

that vanish at ¢ = 0. These roots are given by formal Puiseux series in the variable q%.
To justify the limit, note that expressions M and N are symmetric in the H’s, so they can
be recast in terms of the elementary symmetric functions. The assertion follows from the

following:

Claim: The elementary symmetric functions of the solutions Hy,..., Hy of (46) are con-

tinuous as functions of w at w = 0.
We will justify this shortly. In a similar fashion, in the limit, M and N become

- r _N r r ~.—N T . 1
M_IJ(l—ﬁjJrﬁj)'H(l_Hj) 1711 5 Hj,

j=1 J=1 T

where ]?I1, .. ,IA{TT are the roots of ¢ = (1 — ]?I)N - H" that vanish at q = 0.
We show
M* = M*,  N* = N*.
Let
fz)=2"(1 -2 —q.
We note that f(z) = 0 has r + N roots namely

Hy,...,Hy,1—Hy,...,1— H,.

11By slight abuse, we do not introduce new notation for the roots of the equation obtained by setting
w = 0.
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Thus
N r
) =[[G-m) []J0-2-H)
i=1 Jj=1

Using the equations, we can rewrite

r N
~ q N* _ — * NI*
N*: —_ = = :qT _qTf — :1$N:N
L N* I Il I:I Fe

The computation for the remaining series is similar. We first note

Flz)=2N1 -2 ( 5 E) .

1—=z2 z

From here, we find

N r N N N 1
* N\ [*2 B r N
= ). 1— ) -1 a”y. - -
M*N H(l_Hi+Hi> H( ) H ! H H; — H;,
i=1 i=1 i=1 eI
N
1

=7 (H)

i=1 i1 702 Hiy = H,

N | R S Ve
1<i<N,1<5<r

This shows M* = |\~/I*, completing the proof of Theorem [14l

Proof of the Claim: The proof is a modification of the argument of Section 2.2 of [JOP]
which does not apply directly here. We work over the ring A = C(w)[[q]] of formal power
series whose coefficients are rational functions in w. For simplicity, set

N

P(z)= (1 -2, Q) =[] (=+wp),

k=1

and write
P(z)=(-1)" (" +pi2" ' +...4p), Q) =2"+q""+. . +an.
By assumption, Hy,..., Hy € A are the power series solutions of
P(H)-Q(H)—q=0, H(g=0)=—w;.

Let e; € A be the i elementary symmetric function in Hy, ..., Hy times (—1)%, and note

that from the initial conditions, we have at ¢ = 0:

ei(o) = dg;-
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We factor in A[z]:

N
(47) P(2) - Q(z) —¢=(-1)"- H(z —Hy) (2" + fi2" 4 f)

k=1
= (1) NN T+ ten) (T T 4 ).

Setting ¢ = 0, we find
P(z)-Q(z) = (=1)"- | | (z — Hg(0)) - (zr + f1(0)2" .+ fT(O)) .
k=1

From the initial conditions Hy(0) = —wy, we obtain

fi(0) = p;.
We use the convention ey = fo = 1.

We show by induction on m that the coefficients of ¢"* in e; and f; are rational functions

in w whose denominators are powers of

N
A =[] Pl=wr).
k=1

Since P(0) # 0, the substitution w = 0 is therefore allowed, completing the proof of the
Claim.

The base case m = 0 is a consequence of the above remarks. For the inductive step, write

m+le(m+1)

€ =4qit4q i + other terms, f; =p;

4t f](mﬂ) + other terms.

The omitted terms correspond to powers of ¢ with exponent between 1 and m, or greater
than m + 1. From (47T), we see that
™Y eidy = TR (1) (PIQ(E) — ) = 0or (1),
i+j=k
On the other hand, by direct computation
(™ Z eif; = Z pjel(mﬂ) + qif;mﬂ) + other terms.
i+j=k i+j=k
By the inductive hypothesis, we obtain that
1 1

ST piel™ Y ™Y = ¢

it+j=k
where ¢;, is a rational function in w whose denominator is a power of A for 1 <k < N +r.

We regard the above equations as a linear system in

€§m+l) €(m+1),f1(m+1)

y s N 7f7gm+1)

PRI
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which we solve in terms of the ¢;’s by Cramer’s rule. To complete the inductive step, we
show that the determinant of the matrix of coefficients equals A. Indeed, the matrix of
coefficients has entries equal to p; or ¢;, and zero elsewhere. This is in fact the Sylvester

matrix of the two polynomials (—1)"P, Q, and its determinant is therefore the resultant

N
A =Res ((-1)"P,Q) = [ P(—wr).
k=1
O

Example 25. The match between expressions (i)-(iv) and (i)’-(iv)’ in Section [L9l is es-
tablished by combining Theorems [I3], [14], Here, we offer an analogy with the projec-
tive space. Indeed, the following identity can be seen as the most basic instance of the

Segre/Verlinde correspondence

(19) (1" [ s(Op (1) = x(P-.Opu(1),

while the simplest rank-section symmetry, when formulated on the Verlinde side, is
X(B*,0(r)) = x(P", O(k)).

In fact the above statements correspond precisely to the case n =1, § =0, N arbitrary,

so that our results can be interpreted as possible extensions to arbitrary n. Note that
Quotx (CN,1) = X x PN~!

in such a fashion that (z,¢) € X x P¥~! corresponds to the quotient CV S5C— C, — 0.

Since
Q=0AKOp~n-1(1)

over X x X x PN-1

, we compute
Ext®(S,Q) =TX + TPV~ - K} — Obs = KY¥
and

ol = K Opyv-1(1) = detall = detar ® Opn-1(r).

Thus the Verlinde number is

X (Quotx (CV, 1), det alll) = (X, det @) - (BN, Opw -1 (1)),
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On the Segre side, we find

s(altly = /XleNl e(KY)  s(aXOpn-1(1))

— ([ ety ea@) - [ 5@y

— (X, det a) - / s(Opn1 (1)) L.

PN-1

/[Quotx (CN DY

Equation (48]) confirms Theorem [I3] in this case. We invite the reader to check that all

vertices of the cube in Section [1.9] match precisely.
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