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ABSTRACT
Tomorrow’s massive-scale IoT sensor networks are poised to drive
uplink traffic demand, especially in areas of dense deployment.
To meet this demand, however, network designers leverage tools
that often require accurate estimates of Channel State Informa-
tion (CSI), which incurs a high overhead and thus reduces network
throughput. Furthermore, the overhead generally scales with the
number of clients, and so is of special concern in such massive IoT
sensor networks. While prior work has used transmissions over
one frequency band to predict the channel of another frequency
band on the same link, this paper takes the next step in the effort
to reduce CSI overhead: predict the CSI of a nearby but distinct
link. We propose Cross-Link Channel Prediction (CLCP), a tech-
nique that leverages multi-view representation learning to predict
the channel response of a large number of users, thereby reduc-
ing channel estimation overhead further than previously possible.
CLCP’s design is highly practical, exploiting existing transmissions
rather than dedicated channel sounding or extra pilot signals. We
have implemented CLCP for two different Wi-Fi versions, namely
802.11n and 802.11ax, the latter being the leading candidate for
future IoT networks. We evaluate CLCP in two large-scale indoor
scenarios involving both line-of-sight and non-line-of-sight trans-
missions with up to 144 different 802.11ax users and four different
channel bandwidths, from 20 MHz up to 160 MHz. Our results show
that CLCP provides a 2× throughput gain over baseline and a 30%
throughput gain over existing prediction algorithms.

CCS CONCEPTS
•Networks→Wireless access networks; •Computingmethod-
ologies → Artificial intelligence.
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(a) Cross-band channel pred. (b) Cross-link channel pred.
Fig. 1— Left: Previous work [2, 17] on cross-band channel predic-
tion infers a downlink channel at frequency 𝑓2 using the uplink
channel at frequency 𝑓1 on the same link. Right: CLCP infers the
channel to Sensor 2 using channel measurements from Sensor 1.

1 INTRODUCTION
Today’s wireless IoT sensor networks are changing, scaling up in
spectral efficiency, radio count, and traffic volume as never seen
before. There are many compelling examples: sensors in smart agri-
culture, warehouses, and smart-city contexts collect and transmit
massive amounts of aggregate data, around the clock. Networks
of video cameras (e.g., for surveillance and in cashierless stores)
demand large amounts of uplink traffic in a more spatially-concen-
trated pattern. And in multiple rooms of the home, smart cameras,
speakers, and kitchen appliances stream their data continuously.

This sampling of the newest Internet of Things (IoT) applications
highlights unprecedented demand for massive IoT device scale, to-
gether with ever-increasing data rates. Sending and receiving data
to these devices benefits from advanced techniques such as Mas-
sive Multi-User MIMO (MU-MIMO) and OFDMA-based channel
allocation. The 802.11ax [3] Wi-Fi standard, also known asWi-Fi
6, uses both these techniques for efficient transmission of large
numbers of small frames, a good fit for IoT applications. In par-
ticular, OFDMA divides the frequency bandwidth into multiple
subchannels, allowing simultaneous multi-user transmission.

While such techniques achieve high spectral efficiency, they face
a key challenge: they require estimates of channel state information
(CSI), a process that hampers overall spectral efficiency. Measuring
and propagating CSI, in fact, scales with the product of the num-
ber of users, frequency bandwidth, antenna count, and frequency
of measurement. Highly-dynamic environments with human and
vehicle mobility further exacerbates these challenges, necessitat-
ing more frequent CSI measurement. With densely deployed IoT
devices, the overhead of collecting CSI from all devices may thus de-
plete available radio resources [21]. While compressing CSI [13, 21]
and/or leveraging channel reciprocity for implicit channel sound-
ing [2, 17] reduces CSI overhead to some degree, users still need
to exchange compressed CSI with the Access Point (AP) [21], and
implicit sounding relies on extremely regular traffic patterns [2, 17],
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Fig. 2— CLCP’s mechanism: Time of flight and angle of arrival
for two nearby IoT sensors (upper and lower, respectively). While
each sensor (link) has a distinct set of static wireless paths, their
parameters both indicate reflections off the same moving object,
highlighted in red dotted circles.

and so with increasing numbers of clients, antennas, and OFDM
subcarriers, CSI overhead remains a significant burden.

In this paper, we take a qualitatively different approach. While
conventional wisdom holds that the channels of the nodes that are
at least half a wavelength apart are independent due to link-specific
signal propagation paths [16], with enough background data and
measurements of a wireless environment, we find that it is possible
to predict the CSI of a link that has not been recently observed.
Fig. 1 illustrates our high-level idea: unlike previous works [2, 17]
that use CSI measurements at frequency 𝑓1 to infer CSI at 𝑓2 for
a single link, our approach exploits the cross-correlation between
different links’ wireless channels to leverage traffic on one sensor’s
link to predict the wireless channel of another.

To support our idea, we measure the wireless channels from two
nearby sensors that are roughly 30 cm apart in the presence of a
moving human. Figure 2 visualizes these channels using two wire-
less path parameters, Time-of-Flight (ToF) and Angle-of-Arrival
(AoA)1. While Sensor 1’s channel (upper) is independent from Sen-
sor 2’s channel (lower), ToF and AoA from both reflect the same
moving body in the environment, indicated by the dotted red cir-
cles, while other major paths remain unchanged. This suggests the
existence of a function that correlates the occurrence of wireless
links of stationary sensors in the presence of moving reflectors.

We propose the Cross-Link Channel Prediction (CLCP) method, a
wireless channel prediction technique that uses multiview represen-
tation machine learning to realize this vision. In summary, a CLCP
AP uses uplink channels observed from the last transmission to
predict a large number of unobserved wireless links. Here, the AP
treats each channel reading like a photo of an environment taken
at a particular viewpoint, and combine multiple different views to
form a joint representation of the environment. It then exploits
this representation to predict unobserved wireless CSI readings.
Since CLCP has no dedicated channel sounding or extra pilot sig-
nal, the aggregated overhead no longer scales with the number of
radios. However, since traffic patterns are not regular in reality,
the number of channels and links observed at the time of predic-
tion is likely to change. Such dynamics in input data often lead to
an explosion in the number of trainable parameters, making the
learning process intractable [20, 22]. CLCP hence adopts a special

1We note that the spectrum representing Link 2 at 6-sec abruptly changes due to a
carrier frequency offset resulting from non-synchronized local oscillators. This figure
shows the raw observation without any error correction.

model design (§3.1.3) and training paradigm (§3.1.6) that allows it to
construct a joint representation from any combination of multiple
views. Moreover, we often treat deep learning models as black boxes
whose inner workings cannot be interpreted. As a result, designers
cannot differentiate whether the trained model truly works or is
simply overfitting. To understand and validate CLCP’s learning
mechanism, we visualize a fully trained feature representation and
interpret it using the wireless path parameters, ToF and AoA (§3.2).

Our implementation and experimental evaluation using 802.11ax
validate the effectiveness of CLCP through microbenchmarks and
head-to-head performance comparison against OptML [2] and R2F2
[17] cross-band channel prediction methods (§5). CLCP provides a
2× throughput gain over baseline 802.11ax and a 30% throughput
gain over R2F2 and OptML in a 144-link testbed. Moreover, by
eliminating channel sounding, it increases sleep time by 65%.

2 PRIMER: ML BACKGROUND FOR CLCP
In the context of learning, cross-band channel prediction [2, 17] is
a markedly different problem than cross-link channel prediction. In
the former, uplink and downlink channels share exactly the same
paths in the wireless channel. Therefore, the learning task is simply
to map the (complicated) effect of changing from one frequency
band to another, given a fixed set of wireless paths. For CLCP, the
channels of nearby radios have distinct paths and the the learning
task is to elucidate the correlations between the two links.

To correlate the occurrence of distinct wireless links given they
share some views on the wireless environment, CLCP must 1) dis-
card radio-specific information from raw observations and extract
a feature representation that conveys information on moving reflec-
tors; 2) integrate the extracted representation with radio-specific
properties (e.g., signal paths and noises) to synthesize unobserved
channels. However, radio-specific and environment-specific infor-
mation superimpose in channel readings and thus are not easily
separable. We exploit representation learning to achieve these tasks.
Specifically, an encoder network of our model accomplishes the first
task, and a decoder network achieves the second task. Before we
explain our design in detail, we first provide the background on
representation learning.
Variational Autoencoder (VAE). The goal of VAE [10] is to com-
press input data into a low-dimensional feature while preserving
maximum information about the original data. In a nutshell, its
encoder neural network compresses the input data into a representa-
tion 𝑧, also known as a latent variable, and its decoder decompresses
𝑧 back to the original input. Its loss function, known as an evidence
lower bound (ELBO), consists of a reconstruction term and a regu-
larization term. The reconstruction term ensures that the decoder
output resembles the encoder input, while the regularization term
encourages the latent variable to follow a normal, Gaussian dis-
tribution, preventing overfitting and enhancing generalizability
beyond the training set [1, 12]. By minimizing this loss, the VAE
finds a distribution that best describes the data.
Multiview Representation Learning. Multiview (multimodal)
representation learning [11, 14, 20] has proven effective in capturing
the correlation relationships of information that comes as differ-
ent modalities (distinct data types or data sources). For instance,



Fig. 3— System overview for uplink transmission: (1) an AP receives uplink traffic from multiple users simultaneously. (2) when channels
become outdated, the AP extracts the path parameters of partial CSIs estimated from the latest OFDMA packet and predicts unobserved
links using CLCP and unobserved bands using CBCP in a server; (3) Then, the AP schedules uplink traffic based on predicted CSIs and
triggers the users. (4) Finally, the AP receives the scheduled packet.

different sets of photos of faces, each set having been taken at dif-
ferent angles, could each be considered different modalities. This
model learns correlations between different modalities and repre-
sents them jointly, such that the model can generate a (missing)
instance of one modality given the others. Like VAE, it encodes a
primary view into a low-dimensional feature that contains useful in-
formation about a scene. However, instead of simply reconstructing
the input, multi-view learning decodes this latent variable, which
describes the scene, into a secondary view.

A more advanced form of multiview learning adopts multiple
different views as input data and encodes them into a joint rep-
resentation. By analyzing multiple information sources simulta-
neously, we learn a better, comprehensive feature representation.
Past works [15] use multiview learning to synthesize unseen im-
ages at an arbitrary angle given the images of a scene taken at
various angles. Likewise, we treat each wireless link like a photo
of a scene taken from a particular viewpoint. We observe wireless
links from various viewpoints and combine them to form a joint
representation of the channel environment. We then exploit this
joint representation to predict the link at unobserved viewpoints.

3 DESIGN
Our system operates in a sequence of steps shown in Fig. 3: to
begin with, an AP acquires channel state information (CSI) from
all users, which it then uses to schedule an uplink OFDMA packet.
Once scheduled, the AP triggers the uplink transmission. When the
acquired CSIs become outdated, the AP estimates the channels from
the most recently received OFDMA packet and uses them to predict
(1) the remaining bands of estimated channels using cross-band
channel prediction (CBCP) and (2) full-band CSIs of unobserved links
using cross-link channel prediction (CLCP). The AP then schedules
the uplink packet using the predicted CSIs and sends a trigger frame
(TF) to re-initiate the uplink transmission.
(1) Opportunistic Channel Observation. OFDMA divides the
entire bandwidth into multiple subchannels known as a resource
unit (RU). The AP assigns RUs to individual users, enabling one
OFDMA packet to contain channel estimates from multiple users.
Our goal is to leverage multiple subchannels already present in
existing OFDMA transmissions to predict the channels of other
users. In Fig. 3, user 3, 4, and 6 simultaneously transmit uplink
signals in their dedicated RUs, which adds up to a full bandwidth

channel. After the acquired CSIs expire, the AP extracts the sub-
channels from these users. It then uses this information to predict
the remaining channels of these users and the whole channels of
unobserved users 1, 2, and 5. This way, we completely eliminate
the need for channel sounding.
(2) Channel Prediction.Once the AP estimates the subchannels, it
directly routes the channels to a backend server through an Ethernet
connection. At the server-side, path parameters are extracted from
observed channel estimates and are then fed to CLCP for channel
prediction (§3.1).
(3) Scheduling and Resource Allocation (SRA). The AP sched-
ules the upcoming OFDMA transmission using predicted CSIs (§3.3).
It is worth noting that OFDMA scheduling requires full-bandwidth
channels in order to allocate a valid combination of RUs with vary-
ing subcarrier sizes [18] and to find a proper modulation and coding
scheme (MCS) index for each RU. Moreover, unlike 11n and 11ac,
11ax provides support for uplink MU-MIMO, which requires CSI
to find an optimal set of users with low spatial channel correlation
and appropriate decoding precedence. After scheduling an uplink
packet, the AP encloses these information in a trigger frame (TF)
and broadcasts the frame.
(4) Uplink data transmission. After receiving the TF, the corre-
sponding users transmit data accordingly.

3.1 CLCP Model Design
Our CLCP ML model is summarized in Fig. 4: there is a single-view
encoder network 𝑞𝜙 (𝑧 |ℎ) (§3.1.2) dedicated to each single view (i.e.,
channel ℎ of each radio). Every encoder outputs the distribution
parameters, 𝜇 and 𝜎 , and a multi-view combiner (§3.1.3) fuses the
parameters from all encoders into a joint representation 𝑧. If the
channel is not observed, we drop its respective encoder network
(e.g. 𝐸2 in Fig. 4). A decoder network 𝑝𝜃 (ℎ |𝑧) (§3.1.4), dedicated to
each target radio whose CSI we seek to synthesize, samples the
joint representation 𝑧 to predict a cross-link channel.

A key challenge is that across different prediction instances, the
combination of observed channels varies, as we utilize channels
from existing OFDMA transmission. In Fig. 4, the input channels
consist of two RUs, one from Sensor 1 and the other from Sensor
𝑁 . In the next prediction instance, the OFDMA packet is likely to
contain a different RU combination, possibly from different radios,
resulting in inconsistencies that complicate the learning process.
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Fig. 4— CLCP ML model with 𝑁 measured channels, each represented as a set of wireless path parameters {𝜃𝑙 , 𝑑𝑙 , 𝑎𝑙 , 𝜙𝑙 }𝐿𝑙=0 with 𝐿 paths
estimated from measured channels. Each set of the parameters is served by a Single-view Encoder network 𝐸𝑖 (𝑖 ∈ [1, 𝑁 ]) that compresses
the measured wireless path information of its dedicated radio and outputs variational parameters 𝜇𝑖 and 𝜎𝑖 . TheMulti-view Combiner
integrates all variational parameters into 𝜇 and 𝜎 , based on which Single-view Decoder networks 𝐷𝐾 generate a set of path parameters
that are unobserved. If any input channel is not observed, CLCP drops the respective encoder network (𝐸2, for example).

We will address how CLCP is robust against observations that vary
in frequency (§3.1.1) and link (§3.1.3).

3.1.1 Path Parameter Estimator. To reduce the learning complexity
of CLCP, we extract the geometric information i.e., wireless path
parameters, from raw CSIs and use them directly as input data. This
approach is particularly effective because the path parameters are
frequency-independent, which means that CLCP is robust against
observations from different frequency bands. We can represent the
channel ℎ observed at antenna𝑀𝑖 as a sum of 𝐿 paths2, where each
path is characterized by an arrival angle 𝜃𝑙 , a time delay 𝑑𝑙 , an
attenuation 𝑎𝑙 , and a reflection 𝜙𝑙 :

ℎ𝑀𝑖 ,𝜆 =

𝐿∑︁
𝑙

(𝑎𝑙𝑒
− 𝑗2𝜋𝑑𝑙

𝜆
+𝑗𝜙𝑙 )𝑒

− 𝑗2𝜋𝑖𝑘𝑐𝑜𝑠 (𝜃𝑙 )
𝜆 (1)

where 𝜆 and𝑘 arewavelength and antenna distance. To extract the 4-
tuple of parameters {(𝜃𝑙 , 𝑑𝑙 , 𝑎𝑙 , 𝜙𝑙 )}𝐿𝑙=0, we use maximum likelihood
estimation. For simplicity, we now denote the 4-tuple as ¥ℎ.

3.1.2 CLCP’s Single-View Encoder. Like VAE, a single-view en-
coder 𝑞𝜙 (𝑧𝑛 | ¥ℎ𝑛) compresses its dedicated channel ¥ℎ𝑛 into Gaussian
distribution parameters, 𝜇𝑛 and 𝜎𝑛 . We can then compute the distri-
bution that best describes its dedicated viewpoint as 𝑧𝑛 = 𝜇𝑛+𝜎𝑛⊙𝜖
where 𝜖 ∼ N(0, I). Each of the encoders consists of the long short-
term memory layer (LSTM) followed by two-layer stacked con-
volutional layers (CNN) and fully connected (FC) layers. In each
layer of CNNs, 1D kernels are used as the filters, followed by a
batch norm layer. We learn all layer weights of the encoders and
decoders end-to-end through backpropagation. If an encoder has
no input due to an unobserved link (e.g., Sensor 2), CLCP drops the
respective encoder networks (𝐸2 in Fig. 4).

3.1.3 CLCP’s Multi-view Combiner. A naïve approach to handle a
varying number of inputs is to train an encoder network for each
combination of input. However, this approach leads to a significant
increase in the number of trainable parameters, making it com-
putationally intractable for complex multi-view datasets. Instead,
CLCP constructs one encoder per each user and efficiently fuses
the output of all encoders into a joint representation. We model this
2The number of distinguishable paths is constrained by the numbers of transmitting
antennas Mt and receiving antennas Mr. Consequently, we define the number of paths
𝐿 as min(Mt, Mr).

multiview combiner after the product-of-experts (PoE) [6, 20] whose
core idea is to combine several probability distributions (experts),
by multiplying their density functions. With any combination of
input channels H = { ¥ℎ𝑖 | channel of 𝑖th radio }, we formulate the
multiview combiner as:

𝑞𝜙 (𝑧 |H) ∝ 𝑝 (𝑧)
∏
¥ℎ𝑛∈ ¥𝐻

𝑞(𝑧𝑛 | ¥ℎ𝑛) (2)

where 𝑝 (𝑧) is a Gaussian distribution, and 𝑞(𝑧𝑛 | ¥ℎ𝑛) is an encoder
network dedicated to 𝑛th radio. Here, the multiview combiner ap-
proximates the joint representation 𝑧 by multiplying all individual
distributions 𝑧𝑛 , parameterized by the encoder outputs, 𝜇𝑛 and 𝜎𝑛 .

PoE assumes that multi-view inputs are conditionally indepen-
dent given the distribution 𝑧, which represents dynamics in the
wireless environment. The assumption holds because the signal
paths of different radios experience independent fading, and allows
for the factorization of the encoders in CLCP. With this factoriza-
tion, we can simply ignore the encoder with no input channel.

3.1.4 CLCP’s Single-ViewDecoder. Our single-view decoder 𝑝𝜃 ( ¥ℎ𝑛 |𝑧)
is another DNN, whose input is the joint representation 𝑧. The goal
of each decoder is to synthesize an accurate channel estimate of its
dedicated radio. The decoder architecture is in the exact opposite
order of the encoder architecture. The decoder predicts the path
parameters of a target radio, which are in turn used to construct
a full-band channel based on Eq. (1). In practice, estimating path
parameters induces some loss of information. To compensate for
this loss, we add an extra neural network layer, a resolution booster
that generates a final channel estimate ℎ𝑝𝑟𝑒𝑑 .3

3.1.5 Objective function. We define our loss function as:
ELBO = E𝑞𝜙 (𝑧 |H)

[
log 𝑝𝜃 ( ¥ℎ |𝑧)

]
− 𝛽𝐷KL (𝑞𝜙 (𝑧 |H) | |𝑝 (𝑧)) (3)

where 𝛽 is a weight for balancing two terms in the ELBO. Like
VAE (§2), the second term represents the regularization loss (𝐿𝑟𝑒𝑔)
that makes the joint distribution 𝑧 close to a Gaussian distribu-
tion 𝑝 (𝑧). For VAE, the first term represents the reconstruction
error. However, instead of simply reconstructing the input, our de-
coders must synthesize unobserved channels. Hence, our first term
consists of a mean squared error between the predicted channel
3In the case of adding a new node, once CLCP’s state is already constructed, only one
decoder needs to be added. Thus, CLCP does not require a fresh training start.



Fig. 5— Multi-step training paradigm.

ℎ𝑝𝑟𝑒𝑑 and ground-truth channel ℎ𝑔𝑡 of a target radio: 𝐿𝑚𝑠𝑒,𝑐𝑠𝑖 =
1
𝑆

∑𝑆
𝑠=0 (



ℎ𝑠,𝑔𝑡 − ℎ𝑠,𝑝𝑟𝑒𝑑

2) where 𝑆 is the number of subcarriers.
We also include a mean squared error between the predicted and
ground-truth path parameters as a part of the first term. Since some
paths are stronger than others when superimposed, we weigh the
error of each path based on its amplitude 𝑎 as follow: 𝐿𝑚𝑠𝑒,𝑝𝑎𝑟𝑎𝑚 =∑𝐿
𝑙=0 (𝑎𝑙



 ¥ℎ𝑙,𝑔𝑡 − ¥ℎ𝑙,𝑝𝑟𝑒𝑑



2). Finally, our first term becomes 𝐿𝑚𝑠𝑒 =

−(𝛼𝐿𝑚𝑠𝑒,𝑐𝑠𝑖 + 𝜂𝐿𝑚𝑠𝑒,𝑝𝑎𝑟𝑎𝑚) where 𝛼 and 𝜂 are the weight terms.
By maximizing ELBO, we maximize the lower bound of the proba-
bility of generating a comprehensive representation of the wireless
environment and predicting accurate channels.

3.1.6 Multi-stage training paradigm. If we train all encoder net-
works altogether, then CLCP cannot generate an accurate prediction
when some links are unobserved at the test time. Conversely, if we
individually train each encoder network, CLCP fails to capture the
relationship across different links. To address this issue, our loss
function consists of four ELBOs (see Fig. 5): (1) one from feeding
all 𝑁 full-band channels, (2) the sum of 𝑁 ELBO terms from feed-
ing each full-band channel at a time, and (3) the sum of 𝑘 ELBO
terms from feeding𝑘 randomly chosen subsets of full-band channels
(where k is randomly chosen between 2 and N). Lastly, (4) we repeat
the first three steps with a random subchannel to mimic channels
in the actual OFDMA transmission. We then back-propagate the
sum of four ELBOs end-to-end.

3.2 Model interpretability
The proximity of low-dimensional features in the feature space
indicates their relevance for a given task. For instance, if we encode
two radios’ channels into our low-dimensional features and they
appear close in the feature space, it suggests that both channels
have been affected by the same moving reflectors simultaneously.
To understand the learning mechanism of CLCP, we visualize the
feature space using t-distributed stochastic neighbor embedding (t-
SNE), reducing it to two dimensions for better visibility. We collect
channel instances of two radios for three hours and randomly select
250 timestamps, which we then feed into CLCP encoders. Each
encoder output 𝜇 is represented by a color-coded data point, with
red and blue points representing Radio 1 and Radio 2, respectively.

Fig. 6 depicts t-SNE visualizations of the feature space of two
clients, before and after training. Prior to training, the encoder
outputs form a separate and non-intersecting cluster in the latent
space. Post-training, the red and blue data points coalesce into a
singular and Gaussian cluster, revealing that the model learned to
correlate two distinct links.

Fig. 7 provides a comprehensive analysis of the fully trained
feature embedding, utilizing ToF and AoA path parameters. Closely
located low-dimensional features for each radio indicate similar

Fig. 6— 2D t-SNE visualization of the latent space of two adjacent
clients before (left) and after training (right).
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Fig. 7— A fully trained latent space example with ToF on the y-axis
and AoA on the x-axis. Encoded CSI instances of Radio 1 and 2 are
highlighted in red and blue, respectively.
path parameters as shown in the spectra on right. Furthermore, a
pattern across different radios is discernible, where the number of
strong reflectors in Radio 1 and Radio 2’s spectra are similar when
their low-dimensional features are in close proximity. For instance,
both Radio 1 and 2 exhibit many reflectors in the upper-left spec-
trum, and only one in the bottom-left spectrum. This reveals the
CLCP’s proficiency in encoding wireless channels and distributing
encoded features based on reflector movement. Also, CLCP can effi-
ciently locate encoded features in the latent space, making accurate
generalizations when presented with previously unseen channels.

3.3 Scheduling and Resource Allocation
Our scheduling algorithm exploits both channel conditions and
buffer status to compute an optimal user schedule. In OFDMA,
the channel bandwidth is divided into different RUs with various
sizes ranging from the smallest 26 tones (2MHz) up to 996 tones
(77.8 MHz). The size and the locations of RUs are defined for chan-
nels of 20, 40, 80, and 160 MHz. Our goal is to select a set of RUs
that covers the entire channel bandwidth and maximizes the total
channel capacity. We also need to consider the buffer status of all
users to allocate large RUs for high-data devices (e.g., streaming
video) and smaller RUs for low-data devices. Scheduling is challeng-
ing as the search space increases exponentially with the number of
users and RU granularity.

To compute the optimal set of RUs efficiently, we adopt a divide-
and-conquer algorithm [19] and constrain the user assignment for
each RU based on user buffers. Fig. 9 shows the RU abstraction. First,
we search for a user that has low buffer occupancy and maximizes
channel capacity for each of the two 26-tone RUs4. Next, we select
the best user with more buffer occupancy for the 52-tone RU and
compare its channel capacity with the sum of two 26-tone RUs.

4As per 802.11ax standard, each user can only be allocated one RU, so when a user is
chosen for the first 26-tone RU, they are no longer considered for the second RU.



(a) Testbed for cashierless store. (b) Testbed for smart warehouse. (c) Hardware devices.
Fig. 8— CLCP preliminary experimental testbed floor plans and radio hardware with different operating bandwidths.

Fig. 9— Our scheduling and resource allocation algorithm.

This process is repeated for subsequent resource blocks, and the
RU combination with higher capacity is chosen and compared with
larger RUs until the combination covers the full bandwidth.

4 IMPLEMENTATION
We conduct an experimental study on cross-link channel prediction
in a large indoor lab (Fig. 8(a)) and an entire floor (Fig. 8(b)). Fig. 8(a)
is equipped with high-bandwidth 802.11ax commodity radios with
three APs highlighted in red - Asus RT-AX86U APs that support
802.11ax, 4x4 MIMO operation, and 160-MHz bandwidth (2048 sub-
carriers per spatial stream) at 5 GHz. The users (Fig. 8(c)) include
the Asus RT-AX82U router (four antennas), Asus ZenWifi XT8
routers (four antennas), and the smartphones, such as the Samsung
A52S (single-antenna) and Xiaomi Mi 11 (two antennas). While
the bandwidth of the routers is 160MHz, the smartphones use 80
MHz bandwidth. We identify a total of 144 separate links (consid-
ering each spatial stream as a separate link). To extract CSIs from
commodity 11ax devices, we used the AX-CSI extraction tool [4].
Fig. 8(b) is equipped with low-bandwidth 802.11n commodity ra-
dios. We use 11n WPJ558 with the Atheros QCA9558 chipset (three
antennas) for both the AP and users. The users are placed in 95
different locations in NLoS settings, and we extract traces using
Atheros CSI Tool. All routers and phones together are generating
traffic constantly using iperf. Two people (Fig. 8(a)) and 8 people
(Fig. 8(b)) moved at a constant walking speed of one to two meters
per second. Although we did not record a walking trajectory for
each individual, we directed them to traverse all areas of the room
or hallway. Since commodity 11ax devices do not allow OFDMA
scheduling on the user side, we run a trace-driven simulation using
a software-defined simulator. We implement CLCP using Pytorch,
and the model parameters5 include batch size of 16 and learning
rate of 5𝑒−6. We employ Adam for the learning rate optimization.
Channel measurement error. To minimize the packet boundary
delay during OFDM symbol boundary estimation, the AP averages
the phases of multiple CSIs within the channel coherence time.
5We used a grid search for hyperparameter tuning. Here, we divided the domain of the
hyperparameters, including alpha and beta, into a discrete grid and tried a combination
of values of this grid until we find a point that minimizes the loss.
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Fig. 10— Channel variability. We indicate our channel data as a red
line and idle channels as a dotted blue line.

Then, to compensate for the amplitude offset due to the power con-
trol uncertainty error, the AP obtains the Received Signal Strength
Indicator (RSSI), reported alongside CSI in the feedback, detects the
RSSI outliers, and discards the associated packet. Lastly, to minimize
carrier frequency offset due to non-synchronized local oscillators,
the AP subtracts the phase constant of the first receiving antenna
across all antennas. Since phase constant subtraction does not alter
a relative phase change across antennas and subcarriers, the signal
path information is preserved in CSI.

5 EVALUATION
We begin by presenting the methodology for our experimental eval-
uation (§5.1), followed by the end-to-end performance on through-
put and power consumption (§5.2). Lastly, we present a microbench-
mark on CLCP (§5.3).

5.1 Experimental methodology

Use cases. We evaluate CLCP in two use case scenarios: a cashier-
less store (Fig. 8(a)) and a smart warehouse (Fig. 8(b)). Cashierless
stores typically experience a high demand of data traffic as densely
deployed video cameras continuously stream their data to the AP
for product and customer monitoring. To reflect a realistic cashier-
less store application, we configure all users to continuously deliver
standard quality video of 1080p using UDP protocol for trace-driven
simulation. Also, we leverage 80 and 160MHz bandwidth for every
uplink OFDMA packet. In smart warehouses, IoT devices transmit
relatively little data traffic and are widely and sparsely deployed
compared to the cashierless store use cases. Hence, each uplink
packet has 20 and 40 MHz bandwidth in NLoS settings. CLCP is
scoped for static sensor deployments with environmental dynamics,
and the movement of the sensor6 is beyond the scope of our work.
Evaluation metrics. To quantify the network performance, we
calculate uplink throughput as the total data bits transmitted to the

6In case of sensor mobility, a system that uses CLCP can gracefully degrade to the
status quo for mobile sensors (i.e., mobile nodes use standard channel estimation).

https://ans.unibs.it/projects/ax-csi/
https://wands.sg/research/wifi/AtherosCSI/
https://pytorch.org/
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Fig. 11— End-to-end performance on throughput and power consumption: (a) aggregated throughput across time for every 500 ms, (b)
throughput across users for 20, 40, 80, and 160 MHz bandwidth, and (c) device sleep time over the entire transmission duration and the total
number of Target Wake Time (TWT) triggered on every user.

AP divided by the duration, measured every 500ms. Also, we report
the total number of Target Wake Time (TWT) packets to evaluate
power consumption. TWT is an 11ax mechanism for power-saving,
where user devices sleep between AP beacons and only wake up
to transmit signals, such as uplink data transmission and channel
reports. If a user is not scheduled for uplink transmission or report-
ing CSIs to the AP, it is not triggered for a TWT packet, increasing
device sleep time and conserving IoT device battery life.
Baselines. Our baseline follows sounding protocols in which the
AP periodically requests Buffer Status Reports (BSRs) and CSIs from
all users. Upon receiving the Neighbor Discovery Protocol (NDP)
from the AP, all users calculate the feedback matrix for each OFDM
subcarrier as follows [8]:

CSI tones × CSI bits × TxAntenna × RxAntenna ×𝑇𝑐
Subcarrier Group × Feedback Period (4)

where 𝑇𝑐 signifies the wireless channel coherence time. We use
8-bit CSI quantization, a channel coherence time of 15 ms, and a
subcarrier grouping of 4. The other control protocols we consider
are BSR report (32 bytes), BSR poll (21 bytes), CSI poll (21 bytes),
MU-RTS (20 bytes), CTS (14 bytes), TF (28 + (5 × 𝐾) bytes), and
BlockAck/BA (22 + (5 × 𝐾) bytes), where K denotes the number of
users. SIFS takes 10𝑢𝑠 . We note that BSRs and CSIs are delivered to
the AP via OFDMA transmission to minimize the overhead.
Algorithms.We compare CLCP to the following algorithms which
collectively represent the state-of-the-art in channel prediction: (1)
R2F2 [17] infers downlink CSI for a certain LTE mobile-base station
link based on the path parameters of uplink CSI readings for that
same link, using an optimization method in lieu of an ML-based ap-
proach; (2) OptML [2] leverages a neural network to estimate path
parameters, which, in turn, are used to predict across frequency
bands. Both algorithms predict downlink based on uplink channels
in LTE scenarios, where the frequencies for downlink and uplink
are different. To adopt these algorithms into our OFDMA sched-
uling problem, the AP triggers all users to transmit pilot signals
simultaneously in the 242-subcarrier RUs, and these algorithms
predict a full-band channel (2048 subcarriers) of each user based on

the received RU. We use a maximum likelihood approach for fast
path parameter estimation.
Channel variability. It is important to take into account environ-
mental dynamics in the training dataset since training in a static
environment does not generalize well. Fig. 10 demonstrates the
variability of idle channels without human mobility (a dotted blue
line) and our channel environment affected by moving reflectors (a
red line). Here, we calculate the power variance of channels over
one second (across subcarriers and links) and generate the corre-
sponding variance distribution. In Fig. 10, the power variance of
our channel data is about 30 dB higher than that of idle channel
data, suggesting that our links are not idle and there is environment
variability caused by moving reflectors.

5.2 End-to-end performance
Weevaluate CLCP’s end-to-end throughput against R2F2 andOptML,
and compare its power consumption performance
Significant throughput improvement. The end-to-end through-
put performance of CLCP is evaluated and compared to the baseline,
R2F2, and OptML across time and users. Fig. 11(a) summarizes the
results for 20, 40, 80, and 160 MHz bandwidth channels. Here, each
data point of the curves indicates an aggregated uplink throughput
within 500 ms duration. With 20MHz bandwidth, CLCP shows a
3.2x improvement in throughput compared to the baseline and a
1.4x improvement over R2F2 and OptML. Similarly, CLCP provides
a 1.9𝑥 to 2𝑥 improvement over the baseline for 40, 80, and 160MHz
channels and a 1.3𝑥 improvement over R2F2 and OptML. Particu-
larly, CLCP improves spectral efficiency for smaller bandwidths.
While existing cross-band prediction algorithms need a dedicated
pilot signal for channel sounding from all users, CLCP uses the
channel estimates from existing transmissions, avoiding additional
signal transmissions with the corresponding control beacons.

In Fig. 11(b), we present the end-to-end throughput performance
across users. Here, each data indicates the throughput of one user
for 10 seconds of uplink traffic. It is worth noting that as the band-
width increases, more users get an opportunity to send their data.
For 20 MHz bandwidth, only 20% to 40% of users can send their



(a) Prediction accuracy. (b) Impact of input number (c) CLCP runtime (d) Overhead reduction

(e) Channel capacity. (f) PER distribution. (g) PHY rate distribution. (h) BER distribution.
Fig. 12— Microbenchmark on the prediction accuracy, overhead reduction, and scheduling performance.

data, while for 160 MHz bandwidth, more than 50% to 70% of users
communicate with the AP. For all bandwidths, we observe that
CLCP allows 15% to 20% more users to deliver their data.
Increasing device sleep time. TWT reduces the power consump-
tion by letting users sleep and only waking up when they need to
transmit their packets. Fig. 11(c) (upper) shows the average sleep
time of all users over the entire measurement duration. While the
users sleep slightly over 25% of the time using the baseline, CLCP
enables 90% of users to remain in sleep state, which is roughly
65% and 15% longer than the baseline and cross-band prediction
algorithms, respectively. It is worth noting that the sleep time of the
cross-band algorithms is longer than the baseline because each user
sends at least 260 byte of its channel information for the baseline
while users simply transmit a pilot signal for R2F2 and OptML.
However, CLCP does not need bulky feedbacks nor pilot signals,
minimizing contention between users and increasing the duration
of power save mode. Fig. 11(c) (lower) shows how many TWT pack-
ets are exchanged when 150MB data are delivered to the AP. (i.e.,
how frequently each user wakes up to participate in channel sound-
ing and data transmission). Here, CLCP has significantly less TWT
counts because the users stay idle during channel acquisition. In
contrast, all users are forced to transmit a signal with the baseline,
R2F2, and OptML. Given that the average wake power and trans-
mit power is 600 uW and 135 mW, respectively, we can infer that
CLCP’s power consumption is significantly less.

5.3 Microbenchmark
We present a microbenchmark on the prediction accuracy, channel
capacity, packet error rate, and PHY-layer bit rates7.
Prediction accuracy.We use an error vector magnitude (EVM) to
represent how far a predicted channel 𝐻 deviates from a ground-
truth𝐻gt: EVM = 10 log10

(
|𝐻 − 𝐻gt |2/|𝐻gt |2

)
. According to 802.11

spec. [7, 8], BPSK modulation requires an EVM between −5 and −10
dB, while QPSK from −10 to −13 dB. In Fig. 12(a), CLCP provides an
EVM of approximately −8 dB. Compared to an LoS setting, an NLoS
7Microbenchmark results are obtained under settings in Fig. 8(b)

setting shows lower EVMs across different users due to multiple
wall blockages and long signal propagation distance.
Impact of the number of observed channels. We evaluate the
prediction accuracy with varying number of observed channels. As
shown in Fig. 12(b), the prediction performance improves when
there are more than two input users. However, further increasing
the number of input channels does not greatly enhance CLCP’s
prediction accuracy. This result suggests that CLCP can predict
channels correctly even when there are many unobserved channels.
Overhead reduction. Fig. 12(c) shows that CLCP achieves only
about 4 ms of inference time, which comply with the runtime of
other VAE-based models [9]. Next, we present the overhead reduc-
tion with varying parameters in Fig. 12(d). We define the overhead
as the percentage of CSI transmission time over the total traffic
time. In the absence of CLCP, a short feedback period, an increase
in the number of users, and a greater number of sub-carriers result
in a larger CSI overhead. In a densely deployed scenario, our CLCP
notably reduces the overhead. Fig. 12(d) (right) shows that with 400
users, CLCP can free up more than 40% overhead.
Channel capacity. Fig. 12(e) evaluates the channel capacity of
OFDMA packets that are scheduled using predicted channels. Chan-
nel capacity is defined as the sum of achieved rates at each sub-
carrier 𝑠 , that is 𝑅capacity (𝑅𝑈𝑖 ) =

∑
𝑠∈𝑅𝑈𝑖

𝑅capacity (𝑠) where 𝑅𝑈𝑖
is RU at 𝑖-th location. Then, we define the capacity of a final user
schedule 𝑔 as:∑︁

𝑗

𝑅capacity (𝑝 𝑗 , 𝑢 𝑗 ) =
∑︁
𝑗

∑︁
𝑠∈𝑝 𝑗

∑︁
𝑢∈𝑢 𝑗

log2 (1 + 𝑃𝑢,𝑠 ) (5)

where 𝑃𝑢,𝑠 denotes a transmit power for user 𝑢 and subcarrier 𝑠 .
Fig. 12(e) shows that the channel capacity of packets scheduled
based on predicted CSIs is nearly identical to that of ground-truth
CSIs. These results indicate that our predicted channels are accurate
enough for OFDMA scheduling.
PER distribution. PER distributions of packets scheduled using
predicted CSIs are shown in Fig. 12(f). Even if PER is high, packets
scheduled with ground-truth CSIs and predicted CSIs share similar
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PER distributions. We conclude that even if the channel condition
is bad, CLCP still provides good channel prediction.
PHY rate distribution. 11ax enables each RU to have its ownMCS
index, which is calculated based on its channel condition. Therefore,
accurate channel estimates are essential for rate adaptation. In
Fig. 12(g), we present the PHY rate distributions calculated using
an effective SNR (ESNR)-based rate adaptation [5]. This algorithm
leverages channel estimates to find a proper MCS index. The results
show that the PHY rate distributions of both ground-truth and
predicted channel are similar.
Multiuser detection. 11ax uses multi-user detection algorithms to
separate uplink streams from multiple users. For uplink MU-MIMO,
it is crucial to select a subset of users with low spatial channel
correlation and determine an appropriate decoding precedence.
Here, we deploy several multiuser detection algorithms, such as
zero-forcing (ZF) and minimum mean squared error (MMSE), that
are integrated with a successive interference cancellation (SIC) and
the optimal maximum-likelihood (ML) decoder. Fig. 12(h) shows
a BER of packets that are scheduled with ground-truth CSIs and
predicted CSIs. We decode these packets using ZF-SIC, MMSE-SIC,
or ML techniques across different SNR values. We observe that the
BER of packets from predicted CSIs is slightly higher than that from
ground-truth CSIs for ML decoder when SNR ranges from 10 to 16
dB. In contrast, BER with ZF- and MMSE-SIC decoder shows no
difference, indicating that CLCP’s prediction is accurate for ZF-SIC
and MMSE-SIC decoders.

6 CONCLUSION
This paper presents the first study to explore cross-link channel
prediction for the scheduling and resource allocation algorithm in
the context of 11ax. We have evaluated CLCP using 802.11ax, vali-
dating the effectiveness of our system through microbenchmarks
and end-to-end performance.
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