

pubs.acs.org/JACS Communication

Regiospecific Alkene Aminofunctionalization *via* an Electrogenerated Dielectrophile

Dylan E. Holst, Céline Dorval, Casey K. Winter, Ilia A. Guzei, and Zachary K. Wickens*

Cite This: J. Am. Chem. Soc. 2023, 145, 8299-8307

Read Online

ACCESS

III Metrics & More

Article Recommendations

s Supporting Information

ABSTRACT: Modular strategies to rapidly increase molecular complexity have proven immensely synthetically valuable. In principle, transformation of an alkene into a dielectrophile presents an opportunity to deliver two unique nucleophiles across an alkene. Unfortunately, the selectivity profiles of known dielectrophiles have largely precluded this deceptively simple synthetic approach. Herein, we demonstrate that dicationic adducts generated through electrolysis of alkenes and thianthrene possess a unique selectivity profile relative to more conventional dielectrophiles. Specifically, these species undergo a single and perfectly regioselective substitution reaction with phthalimide salts. This observation unlocks an appealing new platform for aminofunctionalization reactions. As an illustrative example, we implement this new reactivity paradigm to address a longstanding synthetic challenge: alkene diamination with two distinct nitrogen nucleophiles. Studies into the mechanism of this process reveal a key alkenyl thianthrenium salt intermediate that controls the exquisite regioselectivity of the process and highlight the importance of proton sources in controlling the reactivity of alkenyl sulfonium salt electrophiles.

xidative alkene functionalization reactions are a fundamental class of synthetic transformations and represent a premier tactic to rapidly increase molecular complexity. 1-3 However, modular and regioselective alkene heterofunctionalization strategies, which introduce two distinct functional groups across the π -bond, remain fundamentally limited despite their clear synthetic value. In principle, if an alkene could be transformed into a dielectrophile that is susceptible to a single regioselective substitution by one nucleophile, diverse heterofunctionalized products could be readily obtained through addition of a second, distinct nucleophile (Figure 1, top). Unfortunately, although alkenes can be transformed into vicinal dielectrophiles (e.g., dihalides or halonium intermediates), none of these species offer the necessary selectivity profile to enable this idealized platform. Specifically, use of these conventional dielectrophiles for intermolecular alkene heterofunctionalization has been stymied by a series of inextricable problems: 4-8 (1) competitive elimination pathways; (2) poor substitution regioselectivity; and (3) uncontrolled sequential addition of the same nucleophile (Figure 1, middle). Circumventing these limitations has been a longstanding synthetic goal and pioneering advances have exploited π -acidic metals or main group organocatalysts and reagents to formally engage alkenes as dielectrophiles. 9-13 However, each established strategy requires substantial compromises relative to an idealized dielectrophile approach. For example, hypervalent iodine and selenium promoted alkene heterofunctionalization reactions rely on bifunctional nucleophiles to enforce selectivity for heterofunctionalization over homofunctionalization. 14-16 While effective, this design strategy fundamentally limits the range of accessible products to a subset of heterocyclic compounds. As a consequence, multistep procedures based on initial alkene epoxidation followed by iterative stoichiometric

activation and substitution steps remain the most commonly employed synthetic workaround to formally replicate the potential reactivity of dielectrophiles. Overall, identification of a new dielectrophile that undergoes a single regioselective substitution is poised to dramatically expand the pool of readily accessible, vicinally substituted molecules.

Recent advances have revealed diverse and unique electrophilic reactivity from $C(sp^2)$ and $C(sp^3)$ thianthrenium salts. 19-33 Among these efforts, our group has introduced an oxidative alkene aziridination strategy that relies on the generation of dicationic adducts derived from electrolysis of an alkene and thianthrene. In all reported studies regarding the reactivity of these dielectrophiles, both carbon-sulfur bonds were displaced either through substitution or elimination pathways. 33,34 Indeed, nothing is known about selective manipulation of just one of the electrophilic sites of these adducts. We recognized that selective substitution at one site of this dielectrophile would represent a fundamentally new reactivity paradigm for alkene-derived dielectrophiles. We suspected this might be feasible based on two key hypotheses: (1) the dicationic species would be more electrophilic than the nascent monocationic sulfonium salt, preventing homofunctionalization and (2) differential reactivity at each site of the dicationic adduct would allow for regioselective substitution. If correct, the dicationic adducts would meet all the prerequisites

Received: January 31, 2023

Published: April 6, 2023

Target transformation: Regioselective alkene heterofunctionalization via dielectrophilic intermediate

Central question: Can this dielectrophile undergo a single, regioselective nucleophilic substitution?

Figure 1. Electrochemical heterofunctionalization platform. Target alkene heterofunctionalization transformation using dielectrophiles and major challenges (top). Proposed platform for alkene heterofunctionalization exploiting electrochemically generated dielectrophiles (bottom).

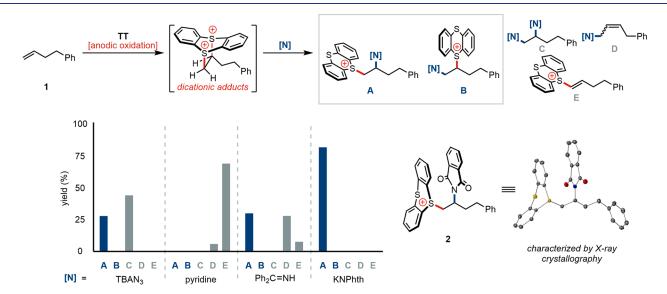


Figure 2. Strategy validation. Substitution of electrogenerated dicationic adducts with various ammonia surrogates and X-ray structure of selective internal addition.

for an idealized dielectrophile approach to modular alkene heterofunctionalization (Figure 1, bottom).

We selected the development of oxidative aminofunctionalization reactions as a specific context to explore the prospect of substituting the dicationic adducts with two distinct nucleophiles. This important class of reactions introduce one carbon–nitrogen bond alongside a distinct, second new carbon-heteroatom bond. In principle, alkene aminofunctionalization reactions represent an appealing approach to prepare important nitrogen-containing compounds; however, they remain limited to using established approaches. ^{35,36} Rather than employing dielectrophilic intermediates, important recent advances have instead focused on a nitrogen umpolung

strategy through either the use of presynthesized electrophilic nitrogen reagents $^{37-51}$ or *in situ* oxidation of nitrogen nucleophiles. Of particular relevance to the proposed strategy, pioneering parallel efforts from Morandi, Leonori, and Fu have introduced distinct platforms for alkene aminofunctionalization that leverage new catalytic approaches to prepare β -chloroamines from alkenes. These approaches exploit the versatile substitution chemistry of the alkyl chloride, which can be displaced by numerous nucleophiles. However, these processes typically proceed through transient aziridine or aziridinium intermediates, which can complicate substitution regioselectivity. We envisioned that regioselective single substitution of the

Table 1. Scope of Selective Single Addition and Further Substitution

 $nucleophilic\ aminofunctionalization^c$

"Reactions were conducted using alkene (1.8 mmol), TT (1.5 equiv), 18 mL MeCN (0.2 M KPF₆), I = 65 mA, 2.23 h (3 F/mol alkene), 30 °C. After electroylsis, potassium phthalimide (5 equiv) is added and stirred for 2 h. Yields are of the purified product. See the SI for further experimental details. ^bReaction run on an 11 mmol scale. ^cReactions were conducted using 2 (0.45 mmol), nucleophile (1-2 equiv), base if necessary (1–2.5 equiv), MeCN or DMF (1–3 mL), 45 °C. Yields are of the purified product unless otherwise noted. Products isolated as 1:1 mixtures of diastereomers when applicable. ^dYield determined by 1H nuclear magnetic resonance analysis of the crude reaction mixture. ^eProduct isolated as a Boc-protected amine. See SI for further experimental details.

dicationic adducts using a simple nitrogen nucleophile to produce a protected β -aminothianthrenium salt would unlock a powerful and potentially generalizable platform for oxidative alkene aminofunctionalization.

To commence our studies, we surveyed the reactivity of a range of ammonia surrogates with electrochemically generated dicationic adducts derived from alkene 1 as a representative model substrate (Figure 2). We reasoned that addition of any of these formal ammonia sources would enable a general approach to access complex aminofunctionalized products. At the outset, we anticipated a series of potential reactivity pathways: (1) desired single nucleophilic displacement to provide constitutional isomers A or B; (2) iterative substitution of the dielectrophile by the nitrogen-nucleophile to provide homofunctionalization product, C; (3) eliminationsubstitution pathways to provide allylic substituted products, D;²³ and (4) elimination of the dicationic adducts to provide alkenyl thianthrenium salt E.²¹ Initially, we tested azide, a classic anionic nucleophile and ammonia surrogate. We found that treatment of 1 with tetrabutylammonium azide resulted in the formation of azidosulfonium salt A with no evidence of the constitutional isomer, B. While the exquisite regioselectivity of this substitution was promising, we observed a significant amount of the diazide product C. We questioned whether weaker nucleophiles could accentuate the difference in reactivity between the initial adduct and the desired monosulfonium salt product to mitigate the formation of

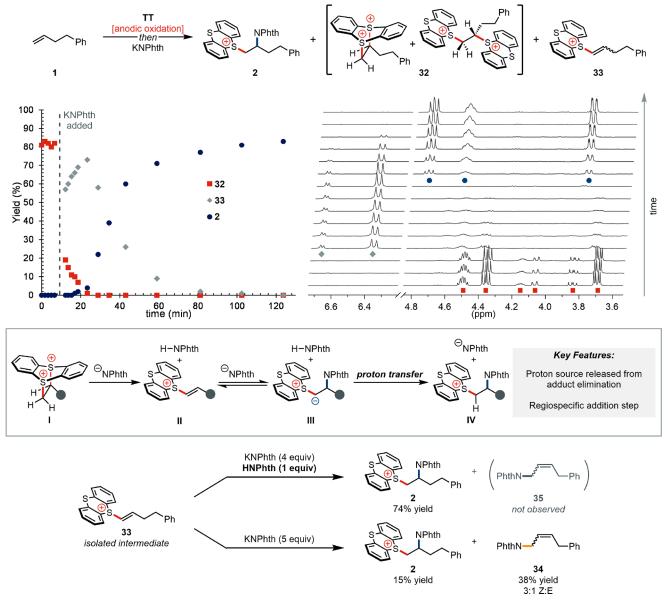

homofunctionalization product C. We found that pyridine was insufficiently nucleophilic and resulted in predominant elimination to alkenyl thianthrenium species, E, which did not continue to convert under the reaction conditions. In contrast, treatment of the adducts with benzophenone imine and diisopropylethylamine resulted in the generation of sulfonium salt A, again as a single constitutional isomer. In this case, although homofunctionalization C was not observed, the yield was nonetheless diminished by formation of the allylic product D in roughly a 1:1 ratio with the desired product. Excitingly, potassium phthalimide, however, possessed the appropriate balance of nucleophilicity and basicity to deliver monosulfonium salt A in quantitative yield from the dicationic adducts as a single constitutional isomer. Formation of homofunctionalization product C was completely suppressed; the 1,2-phthalimidosulfonium salt does not undergo measurable substitution by excess potassium phthalimide even if given an extended 80 h reaction time (see the Supporting Information). The formation of terminal sulfonium salt 2 was unambiguously verified via X-ray crystallography. Excitingly, regioselective monosubstitution was not limited to alkene 1, and electrolysis of thianthrene in the presence of various alkenes followed by treatment with potassium phthalimide enabled preparative generation of an array of substituted sulfonium salts (2-4) (Table 1, top).⁵⁸ Each salt could be readily purified by precipitation from the reaction mixture. In each case, these salts were sufficiently stable to storage on the

Table 2. Scope of Electrochemical One-Pot Unsymmetrical Diamination Reaction^a

"Reactions were conducted using alkene (0.4 mmol), TT (1.5 equiv), 8 mL MeCN (0.2 M n-Bu₄NPF₆), I = 14.4 mA, 2.23 h (3 F/mol alkene). After electrolysis, potassium phthalimide (5 equiv) is added and stirred for 2 h, then amine (2.5 equiv), DIPEA (5 equiv), 12–24 h, 45 °C. Yields and diastereoselectivity are of the purified product unless otherwise noted. See the SI for further experimental details. The major diastereomer was not determined. b 3.5 equiv amine was used. c I = 12 mA, 2.5 F/mol alkene. d 1.6 equiv amine was used. c Yield determined by 1H nuclear magnetic resonance analysis of the crude reaction mixture.

benchtop and exhibited no measurable decomposition for over half a year. Overall, these results establish that the thianthrenederived dicationic adducts possess a unique selectivity profile relative to other dielectrophiles, enabling exclusive and regioselective monosubstitution.

We next investigated whether these modestly hindered 1,2phthalimidosulfonium salt products could be substituted with a second nucleophile without deleterious elimination pathways (Table 1, bottom). Selective second substitution constitutes the last key requirement to enable a diverse array of net alkene aminofunctionalization protocols. Classic strong nucleophiles such as halides, azide, and thiolate each efficiently substituted the thianthrenium salt electrophile and delivered vicinally heterofunctionalized compounds 5-8 in high yield. Of note, while N-halophthalimide reagents have been developed, phthalimide addition into halonium intermediates is unselective and use of these reagents with unactivated alkenes provides 1:1 mixtures of constitutional isomers.⁵ Weaker nucleophiles, such as carboxylates, amines, and anilines, similarly could be employed as nucleophiles, generating products 9-12 in good yield. Interestingly, treatment of 1,2phthalimidosulfonium salt 2 with methylamine directly afforded the free 1,2-aminoalcohol 13, presumably via cyclization of an intermediate hemiaminal followed by full deprotection of the phthalimide (see the Supporting Information for detailed mechanistic proposal). We next probed whether pharmaceutically relevant molecules—which typically bear multiple potentially problematic functional groups—could be selectively engaged using this aminofunctionalization protocol. Excitingly, diverse nucleophiles such as penicillin G, sitagliptin, desloratadine, and sulfamethoxazole could each be employed to afford complex, vicinally substituted products 14-17 in high yield. These substitution reactions each selectively engaged the most nucleophilic functional group on the bioactive molecules, tolerating other functional groups such as amides, anilines, and basic heterocycles. Additionally, subsequent deprotection of the phthalimide unit to reveal an unprotected primary amine could be carried out in a one-pot procedure without any intermediate purification (see the Supporting Information for details). This new reactivity platform provides a means to bypass the aziridine intermediates that would be conventionally employed

Figure 3. Mechanistic details of the regioselective single substitution into the dicationic adducts. Time course analysis of the reaction profile (top). Working mechanistic model to rationalize regioselective phthalimide anion addition (middle). Validation of the importance of proton source on the observed 1,2-phthalimidosulfonium salt formation (bottom). Yields determined by ¹H nuclear magnetic resonance analysis. See the SI for further experiment details.

to prepare analogous products from alkenes. Accordingly, it circumvents the challenges encountered in aziridine-based strategies such as the poorly controlled regiochemistry and oligomerization pathways endemic to unactivated N-H aziridine opening ^{59,60} and harsh removal of sulfonyl protecting groups that enable controlled ring opening. ⁶¹

We envision that these studies lay the foundation for the development of a diverse array of one-pot alkene heterofunctionalization protocols. To this end, we targeted one-pot alkene diamination with two distinct nitrogen nucleophiles as a case study given the classic challenges associated with unsymmetrical alkene diamination. Al,62–75 In principle, a series of diamines could be synthesized by the addition of an amine nucleophile and base to the reaction mixture following phthalimide substitution (Table 2). First, we targeted the use of cyclic amines as second nucleophiles. Construction of diversely substituted nitrogen heterocycles would be partic-

ularly interesting for medicinal chemistry efforts, as saturated nitrogen heterocycles are among the most common nitrogencontaining functional groups in pharmaceutical compounds. 6 We found that a series of functionalized cyclic amines, including piperidines (16, 19, 20, 21, 25), pyrrolidines (22, 26, 27), piperazines (24), diazepanes (23), and morpholines (18) were competent nucleophiles for this alkene diamination reaction. Nucleophiles bearing functional groups such as esters (22), nitriles (20), pyridines (16, 24), tertiary amines (23), and carbamates (27) were each well-tolerated. Excitingly, amines bearing potentially competitive nucleophilic functional groups, such as free amides (21) and alcohols (19) underwent selective diamination. We found that desloratadine, a complex nucleophile that worked well in the two-pot functionalization sequence, could also be leveraged using the streamlined onepot procedure (16) at slightly diminished yield relative to the two-pot protocol. Various terminal alkenes of differing steric

and electronic environments underwent net diamination. These substrates could contain functional groups such as esters (18, 27), alkynes (24), phthalimides (20), sulfonamides (25), and amides (26). Substrates containing more than one alkene were exclusively functionalized at the most electron rich site (18, 21). Acyclic secondary amines were also amenable to this one-pot diamination protocol and provided the heterofunctionalized compounds in high yield (28–31). Again, diverse functional groups were tolerated across both alkene and amine reaction components, including acetals (31), alkenes (30), nitriles (29, 31), and acetyl-protected carbohydrates (30).

We next turned our attention to elucidating the origin of the exquisite regioselectivity that underpins each of these new aminofunctionalization processes. Indeed, across each alkene studied, only a single constitutional isomer of the 1,2phthalimidosulfonium salt was obtained. Curiously, previously reported intramolecular competition experiments studying sulfonium salt electrophiles suggest that, at best, only modest selectivity for the more substituted position should be observed.⁷⁷ This discrepancy suggested that displacement of the thianthrene-based dicationic dielectrophiles may proceed through a distinct, regiospecific mechanism rather than simple nucleophilic substitution. To probe the substitution mechanism, we conducted a time course analysis of the reaction of dicationic adducts with potassium phthalimide using ¹H NMR (Figure 3, top). Following addition of potassium phthalimide to the reaction mixture after electrolysis, we observed rapid elimination of the adducts 32 to form an alkenyl thianthrenium salt 33. This intermediate is subsequently consumed as the 1,2phthalimidosulfonium salt 2 is formed. Taken together, these data suggest that the alkenyl thianthrenium salt 33 may be on pathway to the desired product. Overall, we suspect that the regioselective substitution by potassium phthalimide occurs via the following sequence of steps (Figure 3, middle): (1) the phthalimide anion initially eliminates the dicationic adduct I to the corresponding alkenyl thianthrenium salt II; (2) remaining phthalimide anion nucleophile adds into the alkenyl thianthrenium salt II at the internal, β -position to generate a stabilized sulfur ylide III; (3) the sulfur ylide III is protonated by phthalimide formed during the first step to furnish the ultimate monosulfonium salt product IV. This working mechanistic model offers a plausible explanation for the observed regioselectivity in the dielectrophile substitution, given that alkenyl sulfonium salts are far more electrophilic at the β -position than α .⁷⁸

While vinyl and alkenyl sulfonium salts have been employed as electrophiles for diverse transformations, 21,24-29,79-89 they have not been leveraged for single substitution as proposed herein. Indeed, selective single nucleophilic addition into these species to form a monosulfonium salt has only been observed in a handful of isolated instances as an undesired byproduct. 78,85,90,91 Accordingly, we sought to validate that this species was indeed kinetically competent in the reaction. To this end, we prepared and isolated the proposed alkenyl sulfonium salt intermediate, 33, and directly subjected it to substitution conditions (Figure 3, bottom). Importantly, the proposed substitution mechanism involves an equivalent of the corresponding nucleophile conjugate acid, which is formed through elimination of the electrogenerated dicationic adducts to form the alkenyl thianthrenium species (I to II). Based on the working mechanistic model, this conjugate acid should be crucial as it is required to protonate the ylide species III and

deliver the final monosulfonium salt product IV. Consistent with this hypothesis, reaction of isolated alkenyl thianthrenium salt, 33, with a mixture of potassium phthalimide and an equivalent of phthalimide results in the formation of the 1,2phthalimidosulfonium salt 2 as the exclusive product. Furthermore, omission of the phthalimide proton source results in poor yield of the 1,2-phthalimidosulfonium salt 2 and instead results in a new major allylic substitution byproduct 34, similar to recently reported alkenyl thianthrenium salt allylation processes. 23,27,28 These experiments illustrate that proton balance is a crucial parameter that controls the reactivity of alkenyl sulfonium salt substitution. Since recent efforts from Ritter et al. have introduced general and operationally simple methods to prepare alkenyl thianthrenium salts, 21 we leveraged these mechanistic observations to develop an adapted protocol for one-pot diamination from these species for researchers without access to electrochemical equipment (see the Supporting Information). Overall, these data are consistent with alkenyl thianthrenium salt, 33, as a key intermediate that explains the observed regiospecificity.

In summary, we have illustrated that dicationic adducts derived from anodic oxidation of thianthrene and alkenes present a unique selectivity profile relative to more conventional dielectrophiles. This observation enabled an operationally simple and modular alkene aminofunctionalization platform. Specifically, we show that potassium phthalimide formally displaces the internal electrophilic position of the dicationic adducts to furnish a monosulfonium salt. This key intermediate can then be substituted with a series of different nucleophiles to synthesize diverse vicinally functionalized molecules with exquisite regioselectivity. Mechanistic studies revealed that in situ elimination of the dicationic adducts to generate an alkenyl thianthrenium salt is the key step that controls the ultimate regioselectivity of the formal substitution by potassium phthalimide. Overall, we anticipate that the unique selectivity profile of these unusual dielectrophiles lays the foundation for the development of a wide array of heterofunctionalization reactions.

ASSOCIATED CONTENT

Solution Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c01137.

Discussions of general methods and materials, electrochemical methods and materials, mechanistic investigations, substrate preparation, scale-up batch electrolysis set-up and procedure, general experimental procedures, product isolation and characterization, Xray diffraction data, and crystal data, figures of large divided cell with electrodes, potential mechanism for aminoalcohol and byproduct formation, deprotection of aminofunctionalized product, diamination sequence starting from vinyl thianthrenium salt, implication of vinyl thianthrenium salt 33 as an intermediate in the reaction, attempted aminofunctionalization of an internal alkene, large-scale divided cell with electrode assembly, LCMS data, molecular drawings, and NMR spectra, and tables of reaction optimization for ammonia surrogate screening, substitution profile of potassium phthalimide addition into dicationic adducts, full time course data, and crystal data and structure refinement (PDF)

Accession Codes

CCDC 2238455 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Zachary K. Wickens — Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States; orcid.org/0000-0002-5733-5288; Email: wickens@wisc.edu

Authors

Dylan E. Holst – Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States; orcid.org/0000-0001-5218-6642

Céline Dorval – Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States; orcid.org/0000-0003-2990-302X

Casey K. Winter – Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States

Ilia A. Guzei – Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States; Occid.org/0000-0003-1976-7386

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.3c01137

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Prof. Alison Wendlandt and Prof. Mark Levin for helpful suggestions and manuscript proofreading. The authors thank the Weix, Stahl, Yoon, and Schomaker groups for sharing their chemical inventory. Dr. Blaise J. Thompson is acknowledged for his assistance with power supply design and fabrication. Tracy Drier is acknowledged for electrochemical glassware fabrication. The authors also acknowledge that the invaluable support and helpful suggestions from all Wickens group members throughout the investigation of this project. The authors acknowledge generous support from the Alfred P. Sloan Foundation for funding this project. Support for this research was provided by the UW-Madison Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation. Spectroscopic instrumentation was supported by a generous gift from Paul. J. and Margaret M. Bender, NSF (CHE-1048642, CHE-2017891), and NIH (1S10OD020022-1). The Bruker D8 VENTURE Photon III X-ray diffractometer was partially funded by NSF Award #CHE-1919350 to the UW-Madison Department of Chemistry.

REFERENCES

- (1) Patel, M.; Desai, B.; Sheth, A.; Dholakiya, B. Z.; Naveen, T. Recent Advances in Mono- and Difunctionalization of Unactivated Olefins. *Asian J. Org. Chem.* **2021**, *10* (12), 3201–3232.
- (2) Bary, G.; Jamil, M. I.; Arslan, M.; Ghani, L.; Ahmed, W.; Ahmad, H.; Zaman, G.; Ayub, K.; Sajid, M.; Ahmad, R.; Huang, D.; Liu, F.;

- Wang, Y. Regio- and Stereoselective Functionalization of Alkenes with Emphasis on Mechanistic Insight and Sustainability Concerns. *J. Saudi Chem. Soc.* **2021**, 25 (7), No. 101260.
- (3) Yao, H.; Hu, W.; Zhang, W. Difunctionalization of Alkenes and Alkynes via Intermolecular Radical and Nucleophilic Additions. *Molecules* **2021**, 26 (1), 105.
- (4) Chemler, S. R.; Bovino, M. T. Catalytic Aminohalogenation of Alkenes and Alkynes. *ACS Catal.* **2013**, 3 (6), 1076–1091.
- (5) Song, L.; Luo, S.; Cheng, J.-P. Catalytic Intermolecular Haloamidation of Simple Alkenes with *N* -Halophthalimide as Both Nitrogen and Halogen Source. *Org. Lett.* **2013**, *15* (22), 5702–5705.
- (6) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Catalytic, Asymmetric Halofunctionalization of Alkenes—A Critical Perspective. *Angew. Chem., Int. Ed.* **2012**, *51* (44), 10938–10953.
- (7) Ashtekar, K. D.; Vetticatt, M.; Yousefi, R.; Jackson, J. E.; Borhan, B. Nucleophile-Assisted Alkene Activation: Olefins Alone Are Often Incompetent. *J. Am. Chem. Soc.* **2016**, *138* (26), 8114–8119.
- (8) Zhang, J.; Wang, J.; Qiu, Z.; Wang, Y. Highly Regio- and Diastereoselective Halohydroxylation of Olefins: A Facile Synthesis of Vicinal Halohydrins. *Tetrahedron* **2011**, *67* (36), 6859–6867.
- (9) McDonald, R. I.; Liu, G.; Stahl, S. S. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation: Stereochemical Pathways and Enantioselective Catalytic Applications. *Chem. Rev.* **2011**, *111* (4), 2981–3019.
- (10) Fürstner, A.; Davies, P. W. Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π Acids. *Angew. Chem., Int. Ed.* **2007**, 46 (19), 3410–3449.
- (11) Yamamoto, Y. From σ to π -Electrophilic Lewis Acids. Application to Selective Organic Transformations. *J. Org. Chem.* **2007**, 72 (21), 7817–7831.
- (12) Lee, J. H.; Choi, S.; Hong, K. B. Alkene Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years. *Molecules* **2019**, *24* (14), 2634.
- (13) Jacques, B.; Muñiz, K. Palladium Catalysis for Oxidative 1,2-Difunctionalization of Alkenes. *Catalyzed Carbon-Heteroatom Bond Formation*; John Wiley & Sons, Ltd., 2010; pp 119–135.
- (14) Wata, C.; Hashimoto, T. Organoiodine-Catalyzed Enantioselective Intermolecular Oxyamination of Alkenes. *J. Am. Chem. Soc.* **2021**, *143* (4), 1745–1751.
- (15) Wu, F.; Kaur, N.; Alom, N.-E.; Li, W. Chiral Hypervalent Iodine Catalysis Enables an Unusual Regiodivergent Intermolecular Olefin Aminooxygenation. *JACS Au* **2021**, *1* (6), 734–741.
- (16) Mumford, E. M.; Hemric, B. N.; Denmark, S. E. Catalytic, Enantioselective *Syn* -Oxyamination of Alkenes. *J. Am. Chem. Soc.* **2021**, *143* (33), 13408–13417.
- (17) Curthbertson, E.; O'Brien, P.; Towers, T. D. Practical One-Step Synthesis of Koga's Chiral Bases. *Synthesis* **2001**, 2001 (5), 693–695.
- (18) Cheng, M.; De, B.; Almstead, N. G.; Pikul, S.; Dowty, M. E.; Dietsch, C. R.; Dunaway, C. M.; Gu, F.; Hsieh, L. C.; Janusz, M. J.; Taiwo, Y. O.; Natchus, M. G.; Hudlicky, T.; Mandel, M. Design, Synthesis, and Biological Evaluation of Matrix Metalloproteinase Inhibitors Derived from a Modified Proline Scaffold. *J. Med. Chem.* 1999, 42 (26), 5426–5436.
- (19) Berger, F.; Plutschack, M. B.; Riegger, J.; Yu, W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. Site-Selective and Versatile Aromatic C—H Functionalization by Thianthrenation. *Nature* **2019**, *567* (7747), 223–228.
- (20) Berger, F.; Ritter, T. Site-Selective Late-Stage C-H Functionalization via Thianthrenium Salts. *Synlett* **2022**, *33* (04), 339–345.
- (21) Chen, J.; Li, J.; Plutschack, M. B.; Berger, F.; Ritter, T. Regioand Stereoselective Thianthrenation of Olefins To Access Versatile Alkenyl Electrophiles. *Angew. Chem., Int. Ed.* **2020**, 59 (14), 5616– 5620
- (22) Holst, D. E.; Wang, D. J.; Kim, M. J.; Guzei, I. A.; Wickens, Z. K. Aziridine Synthesis by Coupling Amines and Alkenes via an Electrogenerated Dication. *Nature* **2021**, *596* (7870), 74–79.

- (23) Wang, D. J.; Targos, K.; Wickens, Z. K. Electrochemical Synthesis of Allylic Amines from Terminal Alkenes and Secondary Amines. J. Am. Chem. Soc. 2021, 143 (51), 21503–21510.
- (24) Juliá, F.; Yan, J.; Paulus, F.; Ritter, T. Vinyl Thianthrenium Tetrafluoroborate: A Practical and Versatile Vinylating Reagent Made from Ethylene. *J. Am. Chem. Soc.* **2021**, *143* (33), 12992–12998.
- (25) Xie, R.; Zhu, J.; Huang, Y. Cu-Catalyzed Highly Selective Silylation and Borylation of Alkenylsulfonium Salts. *Org. Chem. Front.* **2021**, 8 (20), 5699–5704.
- (26) Liu, M.-S.; Du, H.-W.; Cui, J.-F.; Shu, W. Intermolecular Metal-Free Cyclopropanation and Aziridination of Alkenes with XH2 (X = N, C) by Thianthrenation**. *Angew. Chem., Int. Ed.* **2022**, *61* (41), No. e202209929.
- (27) Angyal, P.; Kotschy, A. M.; Dudás, Á.; Varga, S.; Soós, T. Intertwining Olefin Thianthrenation with Kornblum/Ganem Oxidations: Ene-Type Oxidation to Furnish α,β -Unsaturated Carbonyls. *Angew. Chem., Int. Ed.* **2023**, *62* (2), No. e202214096.
- (28) Liu, M.-S.; Du, H.-W.; Shu, W. Metal-Free Allylic C-H Nitrogenation, Oxygenation, and Carbonation of Alkenes by Thianthrenation. *Chem. Sci.* **2022**, *13* (4), 1003–1008.
- (29) Ye, Y.; Zhu, J.; Xie, H.; Huang, Y. Rhodium-Catalyzed Divergent Arylation of Alkenylsulfonium Salts with Arylboroxines. *Angew. Chem., Int. Ed.* **2022**, *61* (49), No. e202212522.
- (30) Jia, H.; Häring, A. P.; Berger, F.; Zhang, L.; Ritter, T. Trifluoromethyl Thianthrenium Triflate: A Readily Available Trifluoromethylating Reagent with Formal CF3+, CF3•, and CF3-Reactivity. *J. Am. Chem. Soc.* **2021**, *143* (20), 7623–7628.
- (31) Chen, C.; Wang, M.; Lu, H.; Zhao, B.; Shi, Z. Enabling the Use of Alkyl Thianthrenium Salts in Cross-Coupling Reactions by Copper Catalysis. *Angew. Chem., Int. Ed.* **2021**, *60* (40), 21756–21760.
- (32) Chen, C.; Wang, Z.-J.; Lu, H.; Zhao, Y.; Shi, Z. Generation of Non-Stabilized Alkyl Radicals from Thianthrenium Salts for C-B and C-C Bond Formation. *Nat. Commun.* **2021**, *12* (1), 4526.
- (33) Meng, H.; Liu, M.-S.; Shu, W. Organothianthrenium Salts: Synthesis and Utilization. *Chem. Sci.* **2022**, *13* (46), 13690–13707.
- (34) Rangappa, P.; Shine, H. J. An Overview of Some Reactions of Thianthrene Cation Radical. Products and Mechanisms of Their Formation. *J. Sulfur Chem.* **2006**, *27* (6), 617–664.
- (35) Chen, X.; Xiao, F.; He, W.-M. Recent Developments in the Difunctionalization of Alkenes with C-N Bond Formation. *Org. Chem. Front.* **2021**, *8* (18), 5206–5228.
- (36) Donohoe, T. J.; Callens, C. K. A.; Flores, A.; Lacy, A. R.; Rathi, A. H. Recent Developments in Methodology for the Direct Oxyamination of Olefins. *Chem. Eur. J.* **2011**, *17* (1), 58–76.
- (37) Legnani, L.; Prina-Cerai, G.; Delcaillau, T.; Willems, S.; Morandi, B. Efficient Access to Unprotected Primary Amines by Iron-Catalyzed Aminochlorination of Alkenes. *Science* **2018**, *362* (6413), 434–439.
- (38) Falk, E.; Makai, S.; Delcaillau, T.; Gürtler, L.; Morandi, B. Design and Scalable Synthesis of N-Alkylhydroxylamine Reagents for the Direct Iron-Catalyzed Installation of Medicinally Relevant Amines**. *Angew. Chem., Int. Ed.* **2020**, *59* (47), 21064–21071.
- (39) Chen, P.; Liu, G. Advancements in Aminofluorination of Alkenes and Alkynes: Convenient Access to β -Fluoroamines. *Eur. J. Org. Chem.* **2015**, 2015 (20), 4295–4309.
- (40) Liu, Z.; Wang, Y.; Wang, Z.; Zeng, T.; Liu, P.; Engle, K. M. Catalytic Intermolecular Carboamination of Unactivated Alkenes via Directed Aminopalladation. *J. Am. Chem. Soc.* **2017**, *139* (32), 11261–11270.
- (41) Li, Y.; Liang, Y.; Dong, J.; Deng, Y.; Zhao, C.; Su, Z.; Guan, W.; Bi, X.; Liu, Q.; Fu, J. Directed Copper-Catalyzed Intermolecular Aminative Difunctionalization of Unactivated Alkenes. *J. Am. Chem. Soc.* 2019, 141 (46), 18475–18485.
- (42) Kang, T.; Kim, N.; Cheng, P. T.; Zhang, H.; Foo, K.; Engle, K. M. Nickel-Catalyzed 1,2-Carboamination of Alkenyl Alcohols. *J. Am. Chem. Soc.* **2021**, *143* (34), 13962–13970.
- (43) Gasser, V. C. M.; Makai, S.; Morandi, B. The Advent of Electrophilic Hydroxylamine-Derived Reagents for the Direct

- Preparation of Unprotected Amines. Chem. Commun. 2022, 58 (72), 9991–10003.
- (44) Nakafuku, K. M.; Fosu, S. C.; Nagib, D. A. Catalytic Alkene Difunctionalization via Imidate Radicals. *J. Am. Chem. Soc.* **2018**, *140* (36), 11202–11205.
- (45) Li, G.; Chang, H.-T.; Sharpless, K. B. Catalytic Asymmetric Aminohydroxylation (AA) of Olefins. *Angew. Chem., Int. Ed. Engl.* **1996**, 35 (4), 451–454.
- (46) Lu, M.-Z.; Wang, C.-Q.; Loh, T.-P. Copper-Catalyzed Vicinal Oxyazidation and Diazidation of Styrenes under Mild Conditions: Access to Alkyl Azides. *Org. Lett.* **2015**, *17* (24), 6110–6113.
- (47) Kang, T.; González, J. M.; Li, Z.-Q.; Foo, K.; Cheng, P. T. W.; Engle, K. M. Alkene Difunctionalization Directed by Free Amines: Diamine Synthesis via Nickel-Catalyzed 1,2-Carboamination. *ACS Catal.* **2022**, *12* (7), 3890–3896.
- (48) van der Puyl, V. A.; Derosa, J.; Engle, K. M. Directed, Nickel-Catalyzed Umpolung 1,2-Carboamination of Alkenyl Carbonyl Compounds. *ACS Catal.* **2019**, *9* (1), 224–229.
- (49) Fumagalli, G.; Rabet, P. T. G.; Boyd, S.; Greaney, M. F. Three-Component Azidation of Styrene-Type Double Bonds: Light-Switchable Behavior of a Copper Photoredox Catalyst. *Angew. Chem., Int. Ed.* **2015**, *54* (39), 11481–11484.
- (50) Tan, G.; Das, M.; Keum, H.; Bellotti, P.; Daniliuc, C.; Glorius, F. Photochemical Single-Step Synthesis of β -Amino Acid Derivatives from Alkenes and (Hetero)Arenes. *Nat. Chem.* **2022**, *14* (10), 1174–1184.
- (51) Tan, G.; Paulus, F.; Rentería-Gómez, Á.; Lalisse, R. F.; Daniliuc, C. G.; Gutierrez, O.; Glorius, F. Highly Selective Radical Relay 1,4-Oxyimination of Two Electronically Differentiated Olefins. *J. Am. Chem. Soc.* **2022**, *144* (47), 21664–21673.
- (52) Govaerts, S.; Angelini, L.; Hampton, C.; Malet-Sanz, L.; Ruffoni, A.; Leonori, D. Photoinduced Olefin Diamination with Alkylamines. *Angew. Chem., Int. Ed.* **2020**, 59 (35), 15021–15028.
- (53) Siu, J. C.; Sauer, G. S.; Saha, A.; Macey, R. L.; Fu, N.; Chauviré, T.; Lancaster, K. M.; Lin, S. Electrochemical Azidooxygenation of Alkenes Mediated by a TEMPO-N3 Charge-Transfer Complex. J. Am. Chem. Soc. 2018, 140 (39), 12511-12520.
- (54) Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. Mn-Catalyzed Highly Efficient Aerobic Oxidative Hydroxyazidation of Olefins: A Direct Approach to β -Azido Alcohols. *J. Am. Chem. Soc.* **2015**, 137 (18), 6059–6066.
- (55) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Metal-Catalyzed Electrochemical Diazidation of Alkenes. *Science* **2017**, *357* (6351), 575–579.
- (56) Ciesielski, J.; Dequirez, G.; Retailleau, P.; Gandon, V.; Dauban, P. Rhodium-Catalyzed Alkene Difunctionalization with Nitrenes. *Chem. Eur. J.* **2016**, 22 (27), 9338–9347.
- (57) Yan, W.; Lin, M.; Little, R. D.; Zeng, C.-C. Electrochemical Regioselective Azidoiodination of Alkenes. *Tetrahedron* **2017**, *73* (6), 764–770.
- (58) Internal alkene substrates could be efficiently transformed into the requisite dicationic adducts; however, attempts to substitute these intermediates with potassium phthalimide resulted in at most trace yield of the phthalimidosulfonium salts (see the SI for details).
- (59) Benalil, A.; Carboni, B.; Vaultier, M. Synthesis of 1,2-Aminoazides. Conversion to Unsymmetrical Vicinal Diamines by Catalytic Hydrogenation or Reductive Alkylation with Dichloroboranes. *Tetrahedron* 1991, 47 (38), 8177–8194.
- (60) Clapp, L. B. Reactions of Ethylenimines: With Ammonia and Amines. J. Am. Chem. Soc. 1948, 70 (1), 184–186.
- (61) Wuts, P. G. M.; Greene, T. W. Protection for the Amino Group. *Greene's Protective Groups in Organic Synthesis*; John Wiley & Sons, Ltd., 2006; pp 696–926.
- (62) Saibabu Kotti, S. R. S.; Timmons, C.; Li, G. Vicinal Diamino Functionalities as Privileged Structural Elements in Biologically Active Compounds and Exploitation of Their Synthetic Chemistry. *Chem. Biol. Drug Des.* **2006**, 67 (2), 101–114.

- (63) De Jong, S.; Nosal, D. G.; Wardrop, D. J. Methods for Direct Alkene Diamination, New & Old. *Tetrahedron* **2012**, *68* (22), 4067–4105.
- (64) For selected recent examples of progress in alkene unsymmetric diamination, see refs 65–75.
- (65) Li, G.; Wei, H.-X.; Kim, S. H.; Carducci, M. D. A Novel Electrophilic Diamination Reaction of Alkenes. *Angew. Chem., Int. Ed.* **2001**, *40* (22), 4277–4280.
- (66) Zhang, B.; Studer, A. Copper-Catalyzed Intermolecular Aminoazidation of Alkenes. *Org. Lett.* **2014**, *16* (6), 1790–1793.
- (67) Zhang, H.; Pu, W.; Xiong, T.; Li, Y.; Zhou, X.; Sun, K.; Liu, Q.; Zhang, Q. Copper-Catalyzed Intermolecular Aminocyanation and Diamination of Alkenes. *Angew. Chem., Int. Ed.* **2013**, *52* (9), 2529–2533.
- (68) Makai, S.; Falk, E.; Morandi, B. Direct Synthesis of Unprotected 2-Azidoamines from Alkenes via an Iron-Catalyzed Difunctionalization Reaction. *J. Am. Chem. Soc.* **2020**, *142* (51), 21548–21555.
- (69) Tan, G.; Das, M.; Kleinmans, R.; Katzenburg, F.; Daniliuc, C.; Glorius, F. Energy Transfer-Enabled Unsymmetrical Diamination Using Bifunctional Nitrogen-Radical Precursors. *Nat. Catal.* **2022**, *5* (12), 1120–1130.
- (70) Martínez, C.; Muñiz, K. Palladium-Catalyzed Vicinal Difunctionalization of Internal Alkenes: Diastereoselective Synthesis of Diamines. *Angew. Chem., Int. Ed.* **2012**, *51* (28), 7031–7034.
- (71) Kirsch, J. K.; Gonzalez, G. A.; Faculak, M. S.; Wolfe, J. P. Pd-Catalyzed Alkene Diamination Reactions with O-Benzoylhydroxylamine Electrophiles: Evidence Supporting a Pd(II/IV) Catalytic Cycle, the Role of 2,4-Pentanedione Derivatives as Ligands, and Expanded Substrate Scope. *J. Org. Chem.* **2021**, *86* (17), 11378–11387.
- (72) Peterson, L. J.; Kirsch, J. K.; Wolfe, J. P. Pd-Catalyzed Alkene Diamination Reactions of Nitrogen Electrophiles: Synthesis of Cyclic Guanidines and Ureas Bearing Dialkylaminomethyl Groups. *Org. Lett.* **2018**, *20* (12), 3513–3517.
- (73) Lee, S.; Jang, Y. J.; Phipps, E. J. T.; Lei, H.; Rovis, T. Rhodium(III)-Catalyzed Three-Component 1,2-Diamination of Unactivated Terminal Alkenes. *Synthesis* **2020**, *52* (08), 1247–1252.
- (74) Olson, D. E.; Su, J. Y.; Roberts, D. A.; Du Bois, J. Vicinal Diamination of Alkenes under Rh-Catalysis. *J. Am. Chem. Soc.* **2014**, 136 (39), 13506–13509.
- (75) Béke, F.; Mészáros, Á.; Tóth, Á.; Botlik, B. B.; Novák, Z. Vicinal Difunctionalization of Carbon—Carbon Double Bond for the Platform Synthesis of Trifluoroalkyl Amines. *Nat. Commun.* **2020**, *11* (1), 5924.
- (76) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. *J. Med. Chem.* **2014**, *57* (24), 10257–10274.
- (77) Umemura, K.; Matsuyama, H.; Kamigata, N. Alkylation of Several Nucleophiles with Alkylsulfonium Salts. *Bull. Chem. Soc. Jpn.* **1990**, *63* (9), 2593–2600.
- (78) Doering, W. v. E.; Schreiber, K. C. D-Orbital Resonance. II. Comparative Reactivity of Vinyldimethylsulfonium and Vinyltrimethylammonium Ions ¹. *J. Am. Chem. Soc.* **1955**, 77 (3), 514–520.
- (79) Mondal, M.; Chen, S.; Kerrigan, N. J. Recent Developments in Vinylsulfonium and Vinylsulfoxonium Salt Chemistry. *Molecules* **2018**, 23 (4), 738.
- (80) Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. *Chem. Rev.* **2019**, *119* (14), 8701–8780
- (81) Yar, M.; McGarrigle, E. M.; Aggarwal, V. K. Sulfonium, Ethenyldiphenyl-, 1,1,1-Trifluoromethanesulfonate. *Encyclopedia of Reagents for Organic Synthesis*; John Wiley & Sons, Ltd., 2012.
- (82) Kozhushkov, S. I.; Alcarazo, M. Synthetic Applications of Sulfonium Salts. Eur. J. Inorg. Chem. 2020, 2020 (26), 2486–2500.
- (83) For selected recent examples using vinyl sulfonium salts as reagents, see refs 83–89.

- (84) Zhou, M.; Hu, Y.; En, K.; Tan, X.; Shen, H. C.; Qian, X. Efficient Cyclopropanation of Aryl/Heteroaryl Acetates and Acetonitriles with Vinyl Diphenyl Sulfonium Triflate. *Tetrahedron Lett.* **2018**, 59 (14), 1443–1445.
- (85) Zhou, M.; En, K.; Hu, Y.; Xu, Y.; Shen, H. C.; Qian, X. Zinc Triflate-Mediated Cyclopropanation of Oxindoles with Vinyl Diphenyl Sulfonium Triflate: A Mild Reaction with Broad Functional Group Compatibility. *RSC Adv.* **2017**, *7* (7), 3741–3745.
- (86) Wang, C.; Liu, B.; Shao, Z.; Zhou, J.; Shao, A.; Zou, L.-H.; Wen, J. Synthesis of 1,2-Diamines from Vinyl Sulfonium Salts and Arylamines. *Org. Lett.* **2022**, *24* (35), 6455–6459.
- (87) Zhu, J.; Ye, Y.; Huang, Y. Palladacycle-Catalyzed Olefinic C–P Cross-Coupling of Alkenylsulfonium Salts with Diarylphosphines to Access Alkenylphosphines. *Organometallics* **2022**, *41* (16), 2342–2348
- (88) Yamada, K.; Kintzel, M. B.; Perry, G. J. P.; Saito, H.; Yorimitsu, H. Zincation of Styrylsulfonium Salts. *Org. Lett.* **2022**, *24* (40), 7446–7449.
- (89) Zou, L.-H.; Liu, B.; Wang, C.; Shao, Z.; Zhou, J.; Shao, A.; Wen, J. Selective Synthesis of Alkyl Amines and N-Vinylazoles from Vinyl Sulfonium Salts with N-Nucleophiles. *Org. Chem. Front.* **2022**, *9* (12), 3231–3236.
- (90) Yar, M.; McGarrigle, E. M.; Aggarwal, V. K. An Annulation Reaction for the Synthesis of Morpholines, Thiomorpholines, and Piperazines from β -Heteroatom Amino Compounds and Vinyl Sulfonium Salts. *Angew. Chem., Int. Ed.* **2008**, 47 (20), 3784–3786.
- (91) Bornholdt, J.; Felding, J.; Kristensen, J. L. Synthesis of Enantiopure 3-Substituted Morpholines. *J. Org. Chem.* **2010**, 75 (21), 7454–7457.

TRecommended by ACS

Polarity Transduction Enables the Formal Electronically Mismatched Radical Addition to Alkenes

Subhasis Paul, Mattia Silvi, et al.

JANUARY 31, 2023

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 🗹

Resolving the Mechanistic Complexity in Triarylborane-Induced Conjugate Additions

Robert J. Mayer, Herbert Mayr, et al.

NOVEMBER 30, 2022

ACS CATALYSIS

READ 🗹

Biomimetic Cationic Cyclopropanation Enables an Efficient Chemoenzymatic Synthesis of 6,8-Cycloeudesmanes

Phillip S. Grant, Nuno Maulide, et al.

FEBRUARY 28, 2023

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 🗹

Direct Deaminative Functionalization

Balu D. Dherange, Mark D. Levin, et al.

DECEMBER 22, 2022

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ 🗹

Get More Suggestions >