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Abstract— Cyber-attacks continue to create havoc for 
Internet connected services and systems. Cyber-attacks can 
compromise not only a single computer system but also a 
distributed computing system such as Internet of Things (IoT) 
devices and networks.  Distributed Denial of Service (DDoS) 
based cyber security attacks can have varying adverse impacts on 
the operation of a computing system. There are different types of 
DDoS flood attacks found to be commonly used include Ping 
flood attacks and TCP-SYN flood attacks against distributed 
systems and IoTs. In this paper, for evaluation purposes, we 
conducted experiments to measure the impact of these two 
common flood attacks on the operation of an Internet connected 
computer system. The impact of flood attacks on the computing 
system under two flooding mechanisms were measured and 
compared for risk assessment and risk profiling for AI training 
for effective protection.  
  
Key Terms— AI, Cybersecurity flood attacks, Distributed IoT 
systems, Risk assessment. 

I. INTRODUCTION 
Today, electronic devices with Internet capabilities have 
become a necessity in modern society. However, these devices 
are prone to cyber-security attacks such as the Distributed 
Denial of Service (DDoS) attacks, which can involve multiple 
Denial of Service (DoS) agents configured to send attack 
traffic to a single victim computer or to the entire distributed 
computer system such as IoT network shown in Figure 1, to 
exhaust its resources [1-5], [9-16]. Figure 1 depicts the 
cybersecurity risks due to DDoS based attacks not only for a 
single computing system but also for a distributed computing 
system such as IoT system.  
 
Flood attack is a type of DDoS attack where a barrage of 
certain traffic is sent to the victim computing or IoT system 
causing exhaustion of computing resources. When the 
computer system’s available resources are exhausted under 
flood attacks then the victim computing system is unable to 
deliver intended services. For IoT systems, under such attacks, 
their availability component of the CIA security triad will be 
affected, and they will be unable to operate as intended.   
 

The CIA security triad is comprised of three main 
components, which includes- Confidentiality, Integrity, and 
Availability. In DDoS attacks, the availability component is 
affected due to exhaustion of resources of the victim IoT 
systems, whose performance can be degraded or becomes 
inoperable, or become unable to deliver the intended quality of 
service [2-5]. 
 

 
Figure 1:  Cybersecurity risks for IoT networks 

 
 
In this experimental work, a group of simulated botnets were 
used to simulate DDoS attacks of different types and intensity 
for comparison purposes and a victim computer system was 
used to evaluate their impact for comparison purposes. 
Botnets are a group of Internet connected computers 
compromised by a security breach (introduced by distribution 
of malware) where a third party takes over the control of such 
a group of computers or distributed IoT systems [6]. Then the 
compromised computers, called bots, are controlled by an 
attacker to send harmful traffic to a victim computer system 
which can be a single system or a distributed IoT system. The 
attacker attempts to exhaust a victim computer’s resources to 
potentially disrupt its normal operation. As a result, a victim 
computing system becomes inoperable and unavailable to 
deliver intended services to legitimate users. 
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II. DDOS FLOOD ATTACKS 
In this experimental work, two common DDoS flood attacks, 
namely the Ping flood and TCP-SYN flood attacks were used, 
and their impacts were measured. A Ping flood attack 
primarily exploits Internet Control Message Protocol (ICMP) 
which is one of the commonly used diagnostics tools aiding in 
network troubleshooting [1] [14]. Figure 2 shows the frame 
format of ICMP echo request and echo-reply messages.  

 
Figure 2: ICMP Echo Request/Reply Message Format 

 
Common ICMP messages known as echo request (Ping) and 
echo reply allow communication between hosts for inquiries 
of reachability and packet size in bytes [9]. Additionally, an 
echo reply is mandatory to be sent for each echo-request 
received as required by RFC-792 [9]. 

 
ICMP messages are commonly exploited by hackers to pose 
cyber-security attacks on a host or multiple hosts. For 
instance, Ping flood attacks send an excessive amount of echo 
request packets to a victim computing system to saturate their 
capacity. As mentioned before, each request requires a 
response which further exhausts a victim system of resources 
to operate properly [12]. Typically, a botnet distributes echo 
requests to a victim computer, which determines the severity 
of each DDoS attack. 
 
A TCP-SYN flood attack manipulates the Transmission 
Control Protocol (TCP) three-way handshake (Figure 3), 
which is defined as a network communication between two 
hosts to establish connection between both parties [13]. 
Essentially, the three-way handshake is an exchange of 
multiple TCP packets between two hosts as described and 
shown below [13-14]: 
 

1. Request (TCP-SYN) packet sent from Host A to Host 
B 

2. A new TCP SYN packet and Acknowledgment 
(SYN-ACK) packets sent from Host B to Host A 

3. Final Acknowledgement (ACK) packet sent back to 
Host A from Host B 

 
Figure 3: TCP Three-Way Handshake 

 
In TCP-SYN attack, this packet exchange process is 
manipulated by sending an overwhelming amount of TCP 
connection requests to a victim host. Furthermore, a victim 
system is required by RFC-793 to respond to each individual 
TCP connection request message [8]. For each SYN-ACK 
packet sent by a system under SYN flood attack, an attacker 
does not send the final ACK packet creating a half-open 
connection [13]. Thus, a half open connection is a partial 
completion of the first two handshakes of the TCP three-way 
handshake (Figure 3) protocol. Ultimately, a victim computing 
system under a TCP-SYN flood attack cannot close the 
connection and keeps it open for some time hoping to receive 
the final ACK packet required by the three-way handshake 
[8]. Eventually the connection between the two systems will 
close by executing a time-out instruction, as described in RFC 
793 [8] but it may be too late to avoid the attack. Lastly, the 
result of a TCP-SYN flood attack is network saturation of a 
victim system (single system or a distributed IoT system) due 
to a large number of half-open connections [13]. 
 

III. BOTNET SIZE CONFIGURATION 
In this experiment, a large-scale botnet size was used to 
simulate Ping and TCP-SYN flood attacks, where botnet size 
varied for different intensities of an attack.  Botnet sizes are 
configured by manipulating the source Internet Protocol (IP) 
address of an attack system. Moreover, IP addresses are 
classified in the following two categories: Classful & 
Classless Interdomain Routing (CIDR) IP addresses, as 
described in detail below. A more practical IP address scheme 
widely used today is CIDR addresses because more address 
space becomes available by not restricting network or host 
space to only three different classes [10]. By restricting 
network or host space, therein lies potentially unused IP 
address space [10]. CIDR addresses only consider network 
address and prefix simplifying the addressing itself in 
comparison to Classful IP addresses [10]. Each class can be 
used to simulate different botnet sizes. For a large-scale 
botnet, Class A subnet can be configured to simulate 
approximately sixteen million compromised hosts [9-10].  
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IV. EXPERIMENTAL SETUP 
In this experiment, a DDoS flood attack was simulated in a 
controlled & closed network environment where DDoS flood 
attacks utilized Class A botnet size configuration. In this case, 
for experimentation, the victim system under attack was an 
Apple iMac with Windows 10 Pro version-1809 installed. 
Additionally, the victim system had the following 
specifications: 

• 2.5GHz Quad-Core Intel Core i5  
• 8GB (two 4GB) of 1333MHz DDR3 Random Access 

Memory (RAM) 
• Network interface bandwidth of 1 Gbps 

 
Figure 4 depicts an experimental configuration for simulation 
of flood attack traffic under experimentation [9]. 

 
Figure 4: Experimental Setup [9] 

 
The DDoS attacks include a set of simulated hosts with a range 
of over sixteen million IP address spaces. DDoS attacks 
implemented for comparing their impact in this experiment are 
Ping flood and TCP SYN floods which targeted an Apple iMac 
platform with a Microsoft Windows operating system installed 
for measurements. Similar impact can be observed with the 
distributed IoT system if used as a victim system, however here 
the goal is to rather compare the flood attacks themselves 
irrespective of the victim system being used. 

In each flood attack experimentation, two different types of 
network traffic are sent to the victim system simultaneously, 
which are legitimate traffic mixed with attack traffic. In this 
case, legitimate traffic is defined as host simulations 
performing multiple requests of a website for reachability. 
These simulated legitimate hosts send 3000 HTTP 
transactions per second (Baseline value for the legitimate 
connections under no attack traffic) to the victim computer 
system to simulate legitimate traffic. Additionally, the victim 
system (Apple’s iMac) hosts a website originating from a 
built-in Microsoft Windows service called Internet 
Information Services. The service uses sub-services called 
Web Management Tools and World Wide Web Services to 

support the Web server. The website generated consists of a 
single webpage simply to provide availability.  
To measure the impact of different attacks, attack traffic is 
generated by a simulated large-scale botnet size of varying 
attack traffic intensity. Attack traffic is divided into low scale 
and high scale traffic scenario. A low scale attack refers to an 
attack traffic bandwidth being less than 20% of the link 
bandwidth, remaining 80% can be good Internet traffic. The 
high scale attack refers to the attack traffic that can consume 
entire link-bandwidth. For the case of low scale attack, attack 
traffic was sent to the victim system beginning with two 
percent of the total link bandwidth (1Gbps) and it was 
increased by two percent until twenty percent of 1Gbps was 
reached. Furthermore, an additional experiment is conducted 
where attack traffic intensifies by extending each increment 
and amounts of data within each increment being sent to the 
victim system. Essentially, attack traffic was sent beginning 
with ten percent of the maximum data rate with increments of 
ten ending with the total link bandwidth. Here we investigate 
the impact endured by the victim system under low attack 
traffic and high attack traffic conditions.  
 
All DDoS attacks are simulated to obtain the following 
information: HTTP transaction rates, overall processor 
utilization, and available memory under flood attack 
conditions. Analysis and evaluation of each data set consider 
the effects of each DDoS flood attack and risk posed on the 
victim system. 

V. EXPERIMENTAL RESULTS 
We conducted experiments under Ping and SYN flood attacks 
in a simulated large-scale botnet configuration. Results 
presented in this section consist of three different experiments 
which vary in flood attack type and intensity. Two Ping flood 
attacks of small-scale and large-scale are sent to the victim 
system with different attack traffic intensities, as shown in 
Figures 4 & 5. Also, results of a single SYN flood attack (small 
scale, lower intensity) on the victim computer system are 
shown in Figure 4 for comparison purposes. Essentially, in 
these experiments we intended to measure the impact of these 
flood attacks on HTTP transaction rates and to find at what 
intensity these transactions stopped completely. Subsequent 
paragraphs describe Ping and SYN flood attacks individually 
then in comparison for an analysis of the data obtained during 
each experiment. Small-scale attack ranges from 0 to 200Mbps 
(20% of 1Gbps link bandwidth), whereas the large-scale attack 
traffic ranges from 0 to 1Gbps i.e., up to 100% of the link 
bandwidth. 
 
Small-scale Ping flood and TCP-SYN flood attacks:  
For small-scale attacks (Figure 5), Ping flood attacks didn’t 
have significant adverse impact on HTTP transactions 
exchanged with the victim computer system. However, small-
scale TCP-SYN flood attack of lower intensity impacted the 
victim system more so than Ping flood after it exceeded eight 
percent of total link bandwidth, as shown in Figure 4. For 
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large-scale attack (Figure 6) shows HTTP transactions 
exchanged within the experimental system during a Ping flood 
attack where the attack traffic increased to 1Gbps. Figure 6 
shows a steep decline in HTTP transaction rates for large-scale 
Ping flood attacks starting as the attack increased beyond the 
20% of the link bandwidth (i.e., > 200 Mbps) and it resulted in 
total blocking of HTTP transactions at 1 Gbps. As seen in 
Figures 5 & 6, the Ping flood attacks show their adverse impact 
on the HTTP exchanges with the victim computer only under 
the large-scale attacks, i.e. higher Ping-flood traffic flows. 
 
 

 
Figure 5: HTTP Transaction Rates measured under Ping and 

TCP-SYN flood attacks of small-scale load < 20% of link 
speed. 

 
 
 

 

 
Figure 6: HTTP Transaction Rates measured under Ping flood 

attack with large-scale load up to 100% of link speed.  
 

We observed the complete loss of HTTP transactions under 
these flood attacks for both the small-scale (<20% of link 
speed) and large-scale attacks. The computing system was not 
able to deliver intended services under these flood attacks. The 
degree of impact depended on the traffic flow type and flow 
intensity. There was a complete loss of HTTP transactions 
(Figure 5) under small-scale TCP-SYN flood attacks (<20% of 
link speed).  A relatively lower rate of 14% of TCP Syn attack 

traffic flow caused all HTTP connections to be disrupted. 
However, the HTTP transactions were not affected (Figure 5) 
by the same small-scale Ping flood attack traffic (< 20% link 
speed). It took large-scale, higher intensity of Ping flood attack 
traffic (more than 70% load) to cause complete loss of HTTP 
transactions (Figure 6). 
 
We investigated what was causing the loss of HTTP 
transactions under these flood attacks. We measured the 
memory consumption and the processor utilization under these 
flood attacks. It was found that the computer system’s memory 
was not affected much by these flood attacks compared to the 
baseline memory utilization. 
 

 

 
Figure 7: Total processor utilization for small-scale low 

intensity attacks under Ping floods and TCP-SYN floods. 
 
However, the processor was excessively consumed by these 
flood attacks (Figure 7) resulting in high processor utilization. 
Clearly, the cause of loss of HTTP sessions was due to 
processor exhaustion instead of memory exhaustion hence 
these flood attacks were processor intensive. It was observed 
that TCP SYN flood attacks exhausted the processor much 
more quickly compared to the Ping flood attack for the same 
traffic intensity. This measurement shows that TCP SYN attack 
is capable of doing more damage with less traffic intensity, and 
hence it is assigned a high-risk category based on our risk 
assessment. Similarly, Ping attack can be assigned a lower risk-
level as the damage to computing performance was not 
affected by small-scale attack traffic. The computing 
performance started to get affected only when the Ping attack 
traffic was increased to higher traffic loads (Figure 6). 
 
Based on our experiments we created a risk-assessment profile 
for these two different traffic flows, Ping traffic and TCP-SYN 
traffic, and assigned a risk level to them in Table 1.  
 
Risk profiling helps in mitigation of flood attacks. To mitigate 
these flood attack problems, appropriate Artificial Intelligence 
(AI) / Machine learning (ML) schemes can be used to design 
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self-learning systems to detect and prevent cyberattacks on an 
IoT network [17]. Some of the machine learning schemes [18] 
used for AI-based cyberattack detection are ensemble learning, 
inductive learning, artificial neural networks, decision trees, 
Bayesian networks, naïve Bayes etc.  A well-trained AI based 
Intrusion Prevention System can detect known and unknown 
attacks (zero-day attacks) based on different traffic flows.   
 

Table 1: Risk assessment for different traffic flows 
Traffic 
flows 

Memory 
Intensive 

Processor 
Intensive 

Risk 
Assessment 

Ping traffic 
flows 

 

No, 
Memory 

consumption 
not 

impacted  

Yes,  
low processor 
exhaustion at 

low traffic 
 (< 20% of 
link speed) 

 
 

Low risk 

TCP SYN 
traffic flows 

No, 
Memory 

consumption 
not 

impacted 

Yes,  
high 

processor 
exhaustion at 

low traffic 
 

 
 

High risk 

 
 
Here in this work, we measured and analyzed only two 
different types of harmful traffic flows that can compromise 
performance of a distributed computing system or an IoT 
system. However, there are many more known and unknown 
flood attacks that can compromise the performance of a 
computing system or an IoT system. They are not the same in 
their impact on the computing system. By monitoring different 
traffic flows, an AI based protection system can automatically 
create a risk profile for different types of known and unknown 
flood attacks against an IoT distributed system. Automated risk 
profiling can help AI based intrusion prevention systems to 
improve accuracy of detection and effectiveness of mitigation 
against different types of known and unknown (zero-day) 
attacks. 
 

VI. CONCLUSION 
Both the Ping flood and TCP SYN flood attacks pose risks to a 
computer system which may be a single system or a distributed 
IoT system. It was found that different types of flood attacks 
pose different levels of risks to the victim computers in 
delivery of their services. The small-scale TCP-SYN flood 
attack was found to be capable of causing the complete loss of 
legitimate good HTTP transactions, whereas the same 
computer system was not affected by the small-scale Ping 
flood attacks. The TCP-SYN attack caused more legitimate 
good connections to be dropped compared to the similar 
intensity of the PING flood attack. Only the large-scale Ping 
flood attacks had adverse impact on the computing system. 
Furthermore, TCP-SYN flood attack was found to exhaust the 
victim’s overall processor much quicker than the Ping flood 

attack of the same intensity. The TCP-SYN flood attack was 
more processor intensive causing greater processor exhaustion 
and higher HTTP-transaction drop rates. These experiments 
show the fact that all flood attacks are not the same, and 
different flood attacks have different risk profiles. Risk 
profiling can help in preventing attacks. AI based prevention 
systems can take advantage of risk profiling. Traditional non-
AI based prevention systems have many false positives, and 
many false negatives especially for zero-day attacks where 
attacks go unnoticed by the detection system. AI/ ML based 
detection and prevention system can use various AI/ML 
techniques to monitor and analyze traffic to identify anomaly 
in traffic patterns. AI/ML based detection systems can be 
trained to automatically create different risk profiles for 
different traffic flows. Risk assessment will help AI/ML based 
protection systems to detect attacks much in advance, with 
greater accuracy, reduce instances of false positives and false 
negatives for anomaly-based detections, and take automated 
preventive actions to defend IoT based distributed systems.  
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