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Abstract— Cyber-attacks continue to create havoc for
Internet connected services and systems. Cyber-attacks can
compromise not only a single computer system but also a
distributed computing system such as Internet of Things (IoT)
devices and networks. Distributed Denial of Service (DDoS)
based cyber security attacks can have varying adverse impacts on
the operation of a computing system. There are different types of
DDoS flood attacks found to be commonly used include Ping
flood attacks and TCP-SYN flood attacks against distributed
systems and IoTs. In this paper, for evaluation purposes, we
conducted experiments to measure the impact of these two
common flood attacks on the operation of an Internet connected
computer system. The impact of flood attacks on the computing
system under two flooding mechanisms were measured and
compared for risk assessment and risk profiling for Al training
for effective protection.

Key Terms— Al, Cybersecurity flood attacks, Distributed IoT
systems, Risk assessment.

1. INTRODUCTION

Today, electronic devices with Internet capabilities have
become a necessity in modern society. However, these devices
are prone to cyber-security attacks such as the Distributed
Denial of Service (DDoS) attacks, which can involve multiple
Denial of Service (DoS) agents configured to send attack
traffic to a single victim computer or to the entire distributed
computer system such as IoT network shown in Figure 1, to
exhaust its resources [1-5], [9-16]. Figure 1 depicts the
cybersecurity risks due to DDoS based attacks not only for a
single computing system but also for a distributed computing
system such as [oT system.

Flood attack is a type of DDoS attack where a barrage of
certain traffic is sent to the victim computing or IoT system
causing exhaustion of computing resources. When the
computer system’s available resources are exhausted under
flood attacks then the victim computing system is unable to
deliver intended services. For IoT systems, under such attacks,
their availability component of the CIA security triad will be
affected, and they will be unable to operate as intended.
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The CIA security triad is comprised of three main
components, which includes- Confidentiality, Integrity, and
Availability. In DDoS attacks, the availability component is
affected due to exhaustion of resources of the victim IoT
systems, whose performance can be degraded or becomes
inoperable, or become unable to deliver the intended quality of
service [2-5].
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Figure 1: Cybersecurity risks for IoT networks

In this experimental work, a group of simulated botnets were
used to simulate DDoS attacks of different types and intensity
for comparison purposes and a victim computer system was
used to evaluate their impact for comparison purposes.
Botnets are a group of Internet connected computers
compromised by a security breach (introduced by distribution
of malware) where a third party takes over the control of such
a group of computers or distributed IoT systems [6]. Then the
compromised computers, called bots, are controlled by an
attacker to send harmful traffic to a victim computer system
which can be a single system or a distributed [oT system. The
attacker attempts to exhaust a victim computer’s resources to
potentially disrupt its normal operation. As a result, a victim
computing system becomes inoperable and unavailable to
deliver intended services to legitimate users.
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II. DDOS FLOOD ATTACKS

In this experimental work, two common DDoS flood attacks,
namely the Ping flood and TCP-SYN flood attacks were used,
and their impacts were measured. A Ping flood attack
primarily exploits Internet Control Message Protocol (ICMP)
which is one of the commonly used diagnostics tools aiding in
network troubleshooting [1] [14]. Figure 2 shows the frame
format of ICMP echo request and echo-reply messages.

Host: B
(192.168.YYY.YYY)

Host: A
(192.168. XXX . XXX)

ECHO REQUEST

ECHO REPLY

TS o
ECHO REQUEST
ECHO REPLY

Figure 2: ICMP Echo Request/Reply Message Format

Common ICMP messages known as echo request (Ping) and
echo reply allow communication between hosts for inquiries
of reachability and packet size in bytes [9]. Additionally, an
echo reply is mandatory to be sent for each echo-request
received as required by RFC-792 [9].

ICMP messages are commonly exploited by hackers to pose
cyber-security attacks on a host or multiple hosts. For
instance, Ping flood attacks send an excessive amount of echo
request packets to a victim computing system to saturate their
capacity. As mentioned before, each request requires a
response which further exhausts a victim system of resources
to operate properly [12]. Typically, a botnet distributes echo
requests to a victim computer, which determines the severity
of each DDoS attack.

A TCP-SYN flood attack manipulates the Transmission
Control Protocol (TCP) three-way handshake (Figure 3),
which is defined as a network communication between two
hosts to establish connection between both parties [13].
Essentially, the three-way handshake is an exchange of
multiple TCP packets between two hosts as described and
shown below [13-14]:

1. Request (TCP-SYN) packet sent from Host A to Host
B

2. A new TCP SYN packet and Acknowledgment
(SYN-ACK) packets sent from Host B to Host A

3. Final Acknowledgement (ACK) packet sent back to
Host A from Host B

Figure 3: TCP Three-Way Handshake

In TCP-SYN attack, this packet exchange process is
manipulated by sending an overwhelming amount of TCP
connection requests to a victim host. Furthermore, a victim
system is required by RFC-793 to respond to each individual
TCP connection request message [8]. For each SYN-ACK
packet sent by a system under SYN flood attack, an attacker
does not send the final ACK packet creating a half-open
connection [13]. Thus, a half open connection is a partial
completion of the first two handshakes of the TCP three-way
handshake (Figure 3) protocol. Ultimately, a victim computing
system under a TCP-SYN flood attack cannot close the
connection and keeps it open for some time hoping to receive
the final ACK packet required by the three-way handshake
[8]. Eventually the connection between the two systems will
close by executing a time-out instruction, as described in RFC
793 [8] but it may be too late to avoid the attack. Lastly, the
result of a TCP-SYN flood attack is network saturation of a
victim system (single system or a distributed IoT system) due
to a large number of half-open connections [13].

III. BOTNET SIZE CONFIGURATION

In this experiment, a large-scale botnet size was used to
simulate Ping and TCP-SYN flood attacks, where botnet size
varied for different intensities of an attack. Botnet sizes are
configured by manipulating the source Internet Protocol (IP)
address of an attack system. Moreover, IP addresses are
classified in the following two categories: Classful &
Classless Interdomain Routing (CIDR) IP addresses, as
described in detail below. A more practical IP address scheme
widely used today is CIDR addresses because more address
space becomes available by not restricting network or host
space to only three different classes [10]. By restricting
network or host space, therein lies potentially unused IP
address space [10]. CIDR addresses only consider network
address and prefix simplifying the addressing itself in
comparison to Classful IP addresses [10]. Each class can be
used to simulate different botnet sizes. For a large-scale
botnet, Class A subnet can be configured to simulate
approximately sixteen million compromised hosts [9-10].
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IV. EXPERIMENTAL SETUP

In this experiment, a DDoS flood attack was simulated in a
controlled & closed network environment where DDoS flood
attacks utilized Class A botnet size configuration. In this case,
for experimentation, the victim system under attack was an
Apple iMac with Windows 10 Pro version-1809 installed.
Additionally, the victim system had the following
specifications:

e 2.5GHz Quad-Core Intel Core i5

e 8GB (two 4GB) of 1333MHz DDR3 Random Access

Memory (RAM)
e Network interface bandwidth of 1 Gbps

Figure 4 depicts an experimental configuration for simulation
of flood attack traffic under experimentation [9].

Legitimate Ilosts

Attacking System

Victim System

Compromised Hosts

Figure 4: Experimental Setup [9]

The DDoS attacks include a set of simulated hosts with a range
of over sixteen million IP address spaces. DDoS attacks
implemented for comparing their impact in this experiment are
Ping flood and TCP SYN floods which targeted an Apple iMac
platform with a Microsoft Windows operating system installed
for measurements. Similar impact can be observed with the
distributed IoT system if used as a victim system, however here
the goal is to rather compare the flood attacks themselves
irrespective of the victim system being used.

In each flood attack experimentation, two different types of
network traffic are sent to the victim system simultaneously,
which are legitimate traffic mixed with attack traffic. In this
case, legitimate traffic is defined as host simulations
performing multiple requests of a website for reachability.
These simulated legitimate hosts send 3000 HTTP
transactions per second (Baseline value for the legitimate
connections under no attack traffic) to the victim computer
system to simulate legitimate traffic. Additionally, the victim
system (Apple’s iMac) hosts a website originating from a
built-in  Microsoft Windows service called Internet
Information Services. The service uses sub-services called
Web Management Tools and World Wide Web Services to

support the Web server. The website generated consists of a
single webpage simply to provide availability.

To measure the impact of different attacks, attack traffic is
generated by a simulated large-scale botnet size of varying
attack traffic intensity. Attack traffic is divided into low scale
and high scale traffic scenario. A low scale attack refers to an
attack traffic bandwidth being less than 20% of the link
bandwidth, remaining 80% can be good Internet traffic. The
high scale attack refers to the attack traffic that can consume
entire link-bandwidth. For the case of low scale attack, attack
traffic was sent to the victim system beginning with two
percent of the total link bandwidth (1Gbps) and it was
increased by two percent until twenty percent of 1Gbps was
reached. Furthermore, an additional experiment is conducted
where attack traffic intensifies by extending each increment
and amounts of data within each increment being sent to the
victim system. Essentially, attack traffic was sent beginning
with ten percent of the maximum data rate with increments of
ten ending with the total link bandwidth. Here we investigate
the impact endured by the victim system under low attack
traffic and high attack traffic conditions.

All DDoS attacks are simulated to obtain the following
information: HTTP transaction rates, overall processor
utilization, and available memory under flood attack
conditions. Analysis and evaluation of each data set consider
the effects of each DDoS flood attack and risk posed on the
victim system.

V. EXPERIMENTAL RESULTS

We conducted experiments under Ping and SYN flood attacks
in a simulated large-scale botnet configuration. Results
presented in this section consist of three different experiments
which vary in flood attack type and intensity. Two Ping flood
attacks of small-scale and large-scale are sent to the victim
system with different attack traffic intensities, as shown in
Figures 4 & 5. Also, results of a single SYN flood attack (small
scale, lower intensity) on the victim computer system are
shown in Figure 4 for comparison purposes. Essentially, in
these experiments we intended to measure the impact of these
flood attacks on HTTP transaction rates and to find at what
intensity these transactions stopped completely. Subsequent
paragraphs describe Ping and SYN flood attacks individually
then in comparison for an analysis of the data obtained during
each experiment. Small-scale attack ranges from 0 to 200Mbps
(20% of 1Gbps link bandwidth), whereas the large-scale attack
traffic ranges from 0 to 1Gbps i.e., up to 100% of the link
bandwidth.

Small-scale Ping flood and TCP-SYN flood attacks:

For small-scale attacks (Figure 5), Ping flood attacks didn’t
have significant adverse impact on HTTP transactions
exchanged with the victim computer system. However, small-
scale TCP-SYN flood attack of lower intensity impacted the
victim system more so than Ping flood after it exceeded eight
percent of total link bandwidth, as shown in Figure 4. For
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large-scale attack (Figure 6) shows HTTP transactions
exchanged within the experimental system during a Ping flood
attack where the attack traffic increased to 1Gbps. Figure 6
shows a steep decline in HTTP transaction rates for large-scale
Ping flood attacks starting as the attack increased beyond the
20% of the link bandwidth (i.e., > 200 Mbps) and it resulted in
total blocking of HTTP transactions at 1 Gbps. As seen in
Figures 5 & 6, the Ping flood attacks show their adverse impact
on the HTTP exchanges with the victim computer only under
the large-scale attacks, i.e. higher Ping-flood traffic flows.

HTTP Transaction Rates
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Figure 5: HTTP Transaction Rates measured under Ping and
TCP-SYN flood attacks of small-scale load < 20% of link
speed.
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Figure 6: HTTP Transaction Rates measured under Ping flood
attack with large-scale load up to 100% of link speed.

We observed the complete loss of HTTP transactions under
these flood attacks for both the small-scale (<20% of link
speed) and large-scale attacks. The computing system was not
able to deliver intended services under these flood attacks. The
degree of impact depended on the traffic flow type and flow
intensity. There was a complete loss of HTTP transactions
(Figure 5) under small-scale TCP-SYN flood attacks (<20% of
link speed). A relatively lower rate of 14% of TCP Syn attack

traffic flow caused all HTTP connections to be disrupted.
However, the HTTP transactions were not affected (Figure 5)
by the same small-scale Ping flood attack traffic (< 20% link
speed). It took large-scale, higher intensity of Ping flood attack
traffic (more than 70% load) to cause complete loss of HTTP
transactions (Figure 6).

We investigated what was causing the loss of HTTP
transactions under these flood attacks. We measured the
memory consumption and the processor utilization under these
flood attacks. It was found that the computer system’s memory
was not affected much by these flood attacks compared to the
baseline memory utilization.
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Figure 7: Total processor utilization for small-scale low
intensity attacks under Ping floods and TCP-SYN floods.

However, the processor was excessively consumed by these
flood attacks (Figure 7) resulting in high processor utilization.
Clearly, the cause of loss of HTTP sessions was due to
processor exhaustion instead of memory exhaustion hence
these flood attacks were processor intensive. It was observed
that TCP SYN flood attacks exhausted the processor much
more quickly compared to the Ping flood attack for the same
traffic intensity. This measurement shows that TCP SYN attack
is capable of doing more damage with less traffic intensity, and
hence it is assigned a high-risk category based on our risk
assessment. Similarly, Ping attack can be assigned a lower risk-
level as the damage to computing performance was not
affected by small-scale attack traffic. The computing
performance started to get affected only when the Ping attack
traffic was increased to higher traffic loads (Figure 6).

Based on our experiments we created a risk-assessment profile
for these two different traffic flows, Ping traffic and TCP-SYN
traffic, and assigned a risk level to them in Table 1.

Risk profiling helps in mitigation of flood attacks. To mitigate
these flood attack problems, appropriate Artificial Intelligence
(AI) / Machine learning (ML) schemes can be used to design

0395
Authorized licensed use limited to: The University of Texas Rio Grande Valley. Downloaded on January 23,2024 at 17:09:39 UTC from IEEE Xplore. Restrictions apply.



self-learning systems to detect and prevent cyberattacks on an
IoT network [17]. Some of the machine learning schemes [18]
used for Al-based cyberattack detection are ensemble learning,
inductive learning, artificial neural networks, decision trees,
Bayesian networks, naive Bayes etc. A well-trained Al based
Intrusion Prevention System can detect known and unknown
attacks (zero-day attacks) based on different traffic flows.

Table 1: Risk assessment for different traffic flows

Traffic Memory Processor Risk
flows Intensive Intensive Assessment
Ping traffic No, Yes,
flows Memory low processor
consumption | exhaustion at Low risk
not low traffic
impacted (<20% of
link speed)
TCP SYN No, Yes,
traffic flows Memory high
consumption processor High risk
not exhaustion at
impacted low traffic

Here in this work, we measured and analyzed only two
different types of harmful traffic flows that can compromise
performance of a distributed computing system or an IoT
system. However, there are many more known and unknown
flood attacks that can compromise the performance of a
computing system or an IoT system. They are not the same in
their impact on the computing system. By monitoring different
traffic flows, an Al based protection system can automatically
create a risk profile for different types of known and unknown
flood attacks against an IoT distributed system. Automated risk
profiling can help Al based intrusion prevention systems to
improve accuracy of detection and effectiveness of mitigation
against different types of known and unknown (zero-day)
attacks.

VI. CONCLUSION

Both the Ping flood and TCP SYN flood attacks pose risks to a
computer system which may be a single system or a distributed
IoT system. It was found that different types of flood attacks
pose different levels of risks to the victim computers in
delivery of their services. The small-scale TCP-SYN flood
attack was found to be capable of causing the complete loss of
legitimate good HTTP transactions, whereas the same
computer system was not affected by the small-scale Ping
flood attacks. The TCP-SYN attack caused more legitimate
good connections to be dropped compared to the similar
intensity of the PING flood attack. Only the large-scale Ping
flood attacks had adverse impact on the computing system.
Furthermore, TCP-SYN flood attack was found to exhaust the
victim’s overall processor much quicker than the Ping flood

attack of the same intensity. The TCP-SYN flood attack was
more processor intensive causing greater processor exhaustion
and higher HTTP-transaction drop rates. These experiments
show the fact that all flood attacks are not the same, and
different flood attacks have different risk profiles. Risk
profiling can help in preventing attacks. Al based prevention
systems can take advantage of risk profiling. Traditional non-
Al based prevention systems have many false positives, and
many false negatives especially for zero-day attacks where
attacks go unnoticed by the detection system. Al/ ML based
detection and prevention system can use various AI/ML
techniques to monitor and analyze traffic to identify anomaly
in traffic patterns. AI/ML based detection systems can be
trained to automatically create different risk profiles for
different traffic flows. Risk assessment will help AI/ML based
protection systems to detect attacks much in advance, with
greater accuracy, reduce instances of false positives and false
negatives for anomaly-based detections, and take automated
preventive actions to defend IoT based distributed systems.
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