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ABSTRACT

The classical house allocation problem involves assigning n houses
(or items) to n agents according to their preferences. A key criteria in
such problems is satisfying some fairness constraints such as envy-
freeness. We consider a generalization of this problem wherein the
agents are placed along the vertices of a graph (corresponding to a
social network), and each agent can only experience envy towards
its neighbors. Our goal is to minimize the aggregate envy among
the agents as a natural fairness objective, i.e., the sum of the envy
value over all edges in a social graph.

When agents have identical and evenly-spaced valuations, our
problem reduces to the well-studied problem of linear arrangements.
For identical valuations with possibly uneven spacing, we show
a number of deep and surprising ways in which our setting is a
departure from this classical problem. More broadly, we contribute
several structural and computational results for various classes of
graphs, including NP-hardness results for disjoint unions of paths,
cycles, stars, or cliques; we also obtain fixed-parameter tractable
(and, in some cases, polynomial-time) algorithms for paths, cycles,
stars, cliques, and their disjoint unions. Additionally, a conceptual
contribution of our work is the formulation of a structural property
for disconnected graphs that we call separability which results in
efficient parameterized algorithms for finding optimal allocations.
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1 INTRODUCTION

The house allocation problem has attracted interest from the com-
puter science and multiagent systems communities for a long time.
The classical problem deals with assigning a set of n houses to
n agents with (possibly) different valuations over the houses. It
is often desirable to find assignments that satisfy some economic
property of interest. In this work, we focus on the well-motivated
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economic notion of fairness, and in particular, study the objective
of minimizing the aggregate envy among the agents.

Despite the historical interest in this problem, to the best of
our knowledge, the house allocation problem has not been studied
thoroughly over graphs, a setting in which the agents are placed on
the vertices of an undirected graph G and each agent’s potential
envy is only towards its neighbors in G [4, 25].

Incorporating the social structure over a graph enables us to
capture the underlying restrictions of dealing with partial infor-
mation, which is representative of constraints in many real-world
applications. Thus, the classical house allocation problem is the
special case of our problem when the underlying graph is complete.

Our work is in line with recent literature on examining various
problems in computational social choice on social networks, includ-
ing voting [10, 16, 32], fair division [2, 7], and hedonic games [18,
27]. By focusing on graphs, we aim to gain insights into how the
structure of the social network impacts fairness in house allocation.
We focus on identical valuation functions and show that even under
this seemingly strong restriction, the problem is computationally
hard, yet structurally rich. We provide a series of observations and
insights about graph structures that help identify, and in some cases
overcome, these computational bottlenecks.

1.1 Overview and Our Contributions

We assume that the agents are placed at the vertices of a graph
representing a social network, and that they have identical valuation
functions over the houses. Our objective is to find an allocation
of the houses among the agents to minimize the total envy in the
graph. We call this the graphical house allocation problem.

This is a beautiful combinatorial problem in its own right, as it
can be restated as the problem where, given an undirected graph
and a multiset of nonnegative numbers, the numbers need to be
placed on the vertices in a way that minimizes the sum of the
edgewise absolute differences.

In Section 2, we present the formal model and set up some pre-
liminaries, including the connection between the graphical house
allocation problem and the minimum linear arrangement problem,
which has several notable similarities and differences.

In Section 3, we present computational lower bounds and inap-
proximability results for the problem, even for very simple graphs.
In particular, we show NP-hardness even when the graph is a dis-
joint union of paths, cycles, stars, or cliques, which all have known
polynomial-time algorithms for linear arrangements.



In Section 4, we focus on connected graphs and completely char-
acterize optimal allocations when the graph is a path, cycle, star, or
a complete bipartite graph. We also prove a technically involved
structural result for rooted binary trees, and discuss general trees.

In Section 5, we focus on disconnected graphs, starting with a
fundamental difference between graphical house allocation and lin-
ear arrangements, motivating our definitions of separable, strongly
separable, and inseparable disconnected graphs. We employ these
characterizations to prove algorithmic results for a variety of graphs.
In particular, we show that disjoint unions of paths, cycles, stars,
and equal-sized cliques are strongly separable and develop natural
fixed parameter tractable algorithms for these graphs. Moreover,
we show that disjoint unions of arbitrary cliques satisfy separabil-
ity (but not strong separability) and admit XP algorithms.

In the interest of space, we mainly provide proof sketches and
defer the details to the full version of the paper [17].

1.2 Related Work

House allocation has been traditionally studied in the economics
literature under the housing market model, where agents enter the
market with a house (or an endowment) each and are allowed to
engage in cyclic exchanges [30]. This model has found important
practical applications, most notably in kidney exchange [1, 28].

While the initial work on house allocation focused on the eco-
nomic notions of core and strategyproofness [31], subsequent work
has explored fairness issues. Gan et al. [13] study the house alloca-
tion problem under ordinal preferences (specifically, weak rankings)
and provide a polynomial-time algorithm for determining the exis-
tence of an envy-free allocation. By contrast, the problem becomes
NP-hard when agents’ preferences are specified as a set of pair-
wise comparisons [21]. Kamiyama et al. [22] study house allocation
under cardinal preferences (similar to our work) and examine the
complexity of finding a “fair” assignment for various notions of
fairness such as proportionality, equitability, and maximizing the
number of envy-free agents (they do not consider aggregate envy).
They show that the latter problem is hard to approximate under
general valuations, and remains NP-hard even for the restricted case
of binary valuations. For binary valuations, the problem of finding
the largest envy-free partial matching has also been studied [3].

Recent studies have considered graphical aspects of house al-
location (similar to our work), though with different objectives.
Massand and Simon [25] consider house allocation under externali-
ties and study various kinds of stability-based objectives. Beynier
et al. [4] study local envy-freeness in house allocation, which entails
checking the existence of an allocation with no envy along any
edge of the graph. Their work is close to ours, but their model
involves agents with possibly distinct ordinal preferences and only
the zero-envy condition.

There is also a growing literature on fair allocation of indivisi-
ble objects among agents who are part of a social network. Bred-
ereck et al. [7] present fixed-parameter tractability results, mainly
parametrized by the number of agents, though they leave results
using graph structure to future work. Eiben et al. [11] extend these
results, showing a number of parametrized complexity results relat-
ing the treewidth, cliquewidth, number of agent types, and number

of item types to the complexity of determining if an envy-free allo-
cation exists on a graph. This line of work again focuses on deciding
if envy-free allocations exist, rather than minimizing envy. Other
works seek to obtain envy-free allocations, maximum welfare allo-
cations, or other objectives by swapping objects along a graphical
structure [5, 15, 19, 24].

2 PRELIMINARIES

We use [t] to denote the set {1,2,...,t}. There is a set of n agents
N = [n] and n houses H = {hy, ha, . .., h, } (often called items). Each
agent i has a valuation functionv; : H — Rx; v;(h) indicates agent
i’s value for house h € H.

An allocation 7 is a bijective mapping from agents to houses.
For each i € N, (i) is the house allocated to agent i under the
allocation 7, and v; (7(i)) is its utility.

Given a problem instance consisting of agents and houses, our
goal is to generate an allocation 7 that is “fair” to all the agents,
for some reasonable definition of fairness. A natural way to define
fairness is using envy. An agent i is said to envy agent j under
allocation 7 if v;(7(i)) < v;(7(j)). While we would ideally like
to find envy-free allocations, this may not always be possible —
consider a simple example with two agents and two houses but
(exactly) one of the houses is valued at 0 by both agents. Therefore,
we instead focus on the magnitude of envy that agent i has towards
agent j, for a fixed allocation 7. This is defined as envy;(r, j) :=
max{o; (2())) - 0;(x(i)), 0}.

We define an undirected graph G = (N, E) over the set of agents,
which represents the underlying social network. Our goal is to
compute an allocation that minimizes the fotal envy along the
edges of the graph, defined as Envy (7, G) := 3(; jyep(envy;(m, j) +
envyj(n, i)); note that edges are undirected. An allocation 7* that
minimizes the total envy is referred to as a minimum envy allocation.
When there are multiple minimum envy allocations, we abuse
notation slightly and use 7* to denote any of them.

When the graph G is a complete graph K;;, a minimum envy allo-
cation can be computed in polynomial time by means of a reduction
to a bipartite minimum-weight matching problem (proved in the
full version [17]). However, it is known that for several other simple
graphs like paths and matchings, computing a minimum envy allo-
cation is NP-complete [4]. Given this computational intractability,
we therefore explore a natural restriction of the problem, when all
agents have identical valuations, to gain insights into the computa-
tional and structural aspects of fairness in social networks. More
formally, we assume that there is a fixed valuation function v such
that v; = v for all i € N. Identical valuations capture a natural
aspect of real-world housing markets, where the house values are
independent of agents.

When all agents have the same valuation function v, the total
envy of an allocation 7 along the edges of a graph G = (N, E)
can be written as Envy (7, G) = 3(; j)eg [0((i)) — v(x(j))|. This
formulation also yields a new expression for envy along an edge
e=(i,j) € Eas envy,(r) = [o(n(i)) — v(x(j))|. This value equals
envy;(m, j) + envy;(, i), as one of those terms is zero under iden-
tical valuations.

When G is K}, under identical valuations, an optimal allocation
is trivially computable, as all allocations are equivalent.



For the rest of this paper, we will assume without loss of general-
ity that the house values are all distinct (refer to the full version [17]
for a formal justification). In particular, every agent’s valuation func-
tion (denoted by v) gives each house a unique nonnegative value,
with o(h1) < v(hy) < -+ < v(h,). We will say hy < hy to mean
U(h]) < U(hz).

For an allocation 7 and a subset N’ C N, we will refer to the
set of houses received by N” as 7 (N’). If G’ is a subgraph of G, we
will use 7(G’) in the same way.

We will use G1 + G2 to mean the disjoint union of G; and G;.

Definition 2.1. For an instance of the graphical house allocation
problem, the valuation interval is defined as the closed interval

[o(h1),v(hp)] € Rxo with eachv(hy) marked.

The motivation for Definition 2.1 is as follows. For an arbitrary
allocation 7, for each edge e = (i,j) € E, we can draw a line
segment from v(7(i)) to v(x(j)). This line segment has length
lo(z(i)) = v(x(j))| = envy, (). It follows that Envy(r, G) is the
sum of the lengths of all such line segments. An optimal allocation
7" is any allocation that attains this minimum sum. See Figure 1 for
an example of a valuation interval, together with a graph G, and a
particular allocation on G depicted under the valuation interval.

h1 hg h3 h4 hS
hs hs | 1 1 1 |
o I 1 2 4 5 6
hy hy hy Envy=15

Figure 1: (Left) A graph G on five agents along with a partic-
ular allocation 7. The valuations are identical and are given
by 7 = (1,2,4,5,6). (Right) The valuation interval is shown via
the thick horizontal line in black. The five line segments in
red denote the envy along the five edges of the graph G. The
total length of these line segments is Envy(r,G) = 15.

A subset of houses H = {hj,,...,h; } € Hwithh; <...<
hi, is called contiguous if there is no house h’ € H \ H’ with
hi, < h’ < hj,. Geometrically, the values in H’ form an uninter-
rupted sub-interval of the valuation interval, with no value outside
of H' appearing inside that sub-interval. In Figure 1 above, the
subsets {hy, hy, h3} and {hs} are contiguous, whereas the subsets
{h1, h2, hs} and {hs, hs} are not.

For simplicity, we will interchangeably talk about allocating h;
and allocating v(h;) to an agent, and we will also sometimes refer
to houses as being marked points on the valuation interval.

2.1 Connection to the Linear Arrangement
Problem

The minimum linear arrangement problem is the problem where,
given an undirected n-vertex graph G = (V, E), we want to find a
bijective function 7 : V' — [n] that minimizes ¥, ; ;) e |7 (1) =7 (j)|-
The minimum linear arrangement problem is a special case of the
graphical house allocation problem where the valuation interval
has evenly spaced values (H = [n]).

We may assume without loss of generality that the underlying
graph G in any instance of the minimum linear arrangement prob-
lem is connected. This is a consequence of the following folklore
observation, whose proof we omit (see, for instance, [29]).

Proposition 2.2 (Seidvasser [29]). IfG is any instance of the lin-
ear arrangement problem, then at least one optimal solution assigns
contiguous subsets of [n] to the connected components of G.

We will see in Section 5 that in the graphical house allocation
problem, it no longer suffices to only consider connected graphs.

Finding a minimum linear arrangement is NP-hard for general
graphs [14], with a best known run-time of O(2"m), where |V| =
n, |E| = m. The problem remains NP-hard even for bipartite graphs
[12]. However, the minimum linear arrangement problem can be
solved in polynomial time on paths, cycles, stars, wheels, and trees.
Minimum linear arrangement on trees takes time O(n'og23) [9].

One of the fundamental difficulties with the minimum linear
arrangement problem is that there are no natural approaches to
prove lower bounds on the objective: the best known general lower
bounds are trivial ones based on degrees or edge counts. All other
known lower bounds are graph-specific and not easy to generalize.

3 HARDNESS AND LOWER BOUNDS

In this section, we prove lower bounds on the general graphical
house allocation problem.

Our problem is NP-complete (for arbitrary graphs and valua-
tions), because the special case of minimum linear arrangements is
already NP-complete, as stated in Section 2.

A different NP-completeness proof, reducing from the MINIMUM
BISECTION PROBLEM, results in inapproximability results as well.

Definition 3.1. The MINIMUM BISECTION PROBLEM asks, for an
n-vertex graph G and a natural number k, if there is a partition of
V(G) into two parts of size n/2, with at most k edges crossing the cut.

The MINIMUM BISECTION PROBLEM is a known NP-complete prob-
lem [14]. Furthermore, it is also known to be hard to approximate
efficiently, a fact that is useful in light of the following observation.

THEOREM 3.2. There is a linear time reduction from the MINIMUM
BisecTIiOoN PROBLEM to the graphical house allocation problem with
identical valuations.

Proor SKETCH. Given an instance (G, k) of MiNIMuM BISEC-
TION, we construct an instance of the house allocation problem by
creating a cluster of n/2 values concentrated around 0, and a cluster
of n/2 values concentrated around 1 on the valuation interval. Then,
G has an allocation with total envy at most k + € (for sufficiently
small €) if and only if (G, k) € Minimum BisectioN. This reduction
is clearly linear time. O

It follows immediately that the inapproximability results for
minimum bisection carry over to the graphical house allocation
problem. In particular, for any fixed constant € > 0, unless P = NP,
there is no polynomial-time algorithm that can approximate the
optimal total envy under the house allocation problem within an
additive term of n>=€(o(hy) — v(hy)) [8]. Additionally, the house
allocation problem has no PTAS unless NP has randomized algo-
rithms in subexponential time [23]. Thus our problem is hard to
approximate even with identical valuations.



Finally, we show that graphical house allocation is NP-complete
even on simple instances of graphs which are solvable in linear
time in the case of linear arrangements, such as disjoint unions of
paths, cycles, cliques, or stars (and any combinations of them).

THEOREM 3.3 (HARDNESS OF DisjoINT UNIONS). Let A be any
collection of connected graphs, such that there is a polynomial time
one-to-one mapping from each nonnegative integer t (given in unary)
to a graph in A of size t. Let G be the class of graphs whose members
are the finite sub-multisets of A (as connected components). Then,
finding a minimum envy house allocation is NP-hard on the class G.

Proor SKETCH. We reduce from UNARY BIN PACKING, which
asks, given a finite set I of items with sizes s(i) for i € I, a bin
capacity B, and an integer k, all given in unary, whether there
exists a packing of all the items into at most k bins. This problem is
known to be NP-complete (see, for instance, [20]).

Given an arbitrary instance of UNARY BIN PACKING, we create
an instance of graphical house allocation by having k equispaced
clusters of width € separated by intervals of size C (for sufficiently
large C and small €), with each cluster containing B values. Our
graph G is a disjoint union of the graphs in A that form the image
of the sizes s(i) over all i € I. Note that G € G. Then, the given
instance is in UNARY BIN PACKING if and only if the graphical house
allocation instance has an allocation with envy less than C. O

Corollary 3.4. The house allocation problem under identical val-
uations is NP-complete on: (a) disjoint unions of arbitrary paths,
(b) disjoint unions of arbitrary cycles, (c) disjoint unions of arbitrary
stars, and (d) disjoint unions of arbitrary cliques.

In Section 5 we show that despite the hardness suggested by
Corollary 3.4, it is possible to exploit a structural property to develop
FPT algorithms for the first three problems.

4 CONNECTED GRAPHS

In this section, we characterize optimal house allocations when the
underlying graph G is a star, path, cycle, complete bipartite graph,
or rooted binary tree. We also provide some observations when G
is any (arbitrary) tree.

4.1 Stars

Consider the star graph K1 ,—1, which has a single central node and
n — 1 “spokes” connected to the central node but not to each other.

THEOREM 4.1. If G is the star Ky p—1, then the minimum envy
allocation * under identical valuations corresponds to:

o for odd n, putting the unique median value in the center of the
star, and all the houses on the spokes in any order; the value of
the envy is X5 (n-1) /241 9 (hi) = Xi<(n-1)/2 0(hi).

o foreven n, putting either of the medians in the center of the star,
and all other houses on the spokes in any order; the value of the
envy for either median is 3> (n41) /2 0 (hi) = X< (n41) /2 0 (hi).

Proor. The proof is a restatement of the well-known fact that
in any multiset of real numbers, the sum of the L;-distances is
minimized by the median of the multiset. It is easy to verify that
for even n, both medians yield the same value. O

4.2 Paths
Consider the path graph Py,.

THEOREM 4.2. IfG is the path graph Py, then the minimum envy
allocation 7* under identical valuations attains a total envy of v(hy)—
o(h1), is unique (up to reversing the values along the path), and
corresponds to placing the houses in sorted order along Py,.

Proor SKETCH. The houses h; and hj, have to go to two of the
vertices. The subpath between these two vertices must have envy
at least v(hy) — v(h1). The rest follows. o

4.3 Cycles
Now, consider the cycle graph C,.

THEOREM 4.3. If G is the cycle graph Cy, then any minimum
envy allocation ©* under identical valuations attains a total envy
of 2(v(hp) —v(h1)), and corresponds to the following: place hy and
hy arbitrarily on any two vertices of the cycle, and then place the
remaining houses so that each of the two paths from h; to h, along
the cycle consists of houses in sorted order.

PRrROOF SKETCH. In any allocation, there are two internally vertex-
disjoint subpaths from h; to h, on a cycle. Each of those subpaths
has an envy of at least v(hy) — v(h1). o

Corollary 4.4. Forn > 3, the number of optimal allocations along
the cycle Cp, is 273, up to rotations and reversals.

Perhaps slightly non-obviously, the proofs of Theorems 4.2 and
4.3 can be seen as purely geometric arguments using the valuation
interval. To see this, consider the path P,, and take any alloca-
tion 7 that does not satisfy the form stated in Theorem 4.2, and
consider how the allocation looks on the valuation interval. First,
observe that every sub-interval of the valuation interval between
consecutive houses needs to be covered by some line segment from
the allocation. Otherwise, there would be no edge with a house
from the left to a house from the right of the sub-interval, which is
impossible, as Py, is connected. But the only way to meet this lower
bound of one line segment for each sub-interval of the valuation
interval is to sort the houses along the path. The allocation looks
as follows on the valuation interval.

The geometric argument for cycles is similar (with an allocation
illustrated below).

4.4 Complete Bipartite graphs

Let us start with the complete bipartite graph K, (r > 1) where
both parts have equal size.
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(c) The cycle Cs (d) The graph K33

Figure 2: Examples of characterized connected graphs

THEOREM 4.5. When G is the graph K, », the minimum envy al-
location ©t* has the following property: for every i € [r] the houses
{h2i-1, ha;} cannot be allocated to agents in the same side of the bi-
partite graph. Moreover, all allocations which satisfy this property
have the same (optimal) envy.

Proor SKETCH. Consider an allocation 7 where the stated prop-
erty does not hold and consider the smallest i where the property
is violated. In this case we can find a simple swap that can improve
envy. Assume hy;—1 and hy; are allocated to one part. If k is the
least index greater than 2i such that Ay is not allocated to an agent
in the same part, then swapping h; and hj_; leads to a reduction
in envy. The exact calculation is quite technical; see the full version
of the paper [17]. O

This also implies a straightforward linear-time algorithm to com-
pute a minimum envy allocation for the graph K ;.

We can now generalize this result to complete bipartite graphs
where the two parts have unequal size. Due to the similarity of the
two proofs, we omit the proof sketch.

THEOREM 4.6. When G is the graph K, s (r > s), the minimum
envy allocation 7* has the following property:

o Ifr —s =: 2m is even, then the first and last m houses are
allocated to the larger part, and for all i € [s], the houses
hm+2i-1 and hymyo; are allocated to different parts.

o Ifr —s =:2m+ 1 is odd, then the first m and last m + 1 houses
are allocated to the larger part. For all i € [s], the houses
hm+2i-1 and hpmy2i are allocated to the larger and smaller
parts respectively.

Moreover, all allocations which satisfy this property have the same
(optimal) envy.

Corollary 4.7. For any complete bipartite graph K, s (r > s),

o Ifr —s is even, there are 2° optimal allocations;
o Ifr —s is odd, there is exactly one optimal allocation,

up to permutations over allocations to the same side of the graph.

It is easy to see that our linear time algorithm generalizes to
general complete bipartite graphs as well. Theorem 4.6 generalizes
Theorem 4.1. When the number of spokes in the star is odd, there
are two possible houses that can be allocated to the center in an
optimal allocation. However, when the number of spokes is even,
any optimal allocation allocates a unique house to the central node.

4.5 Rooted Binary Trees

In this section, we consider binary trees. A binary tree T is defined
as a rooted tree where each node has either 0 or 2 children.

Our main result is a structural property characterizing at least
one of the optimal allocations for any instance where the graph G
corresponds to a binary tree. We call this the local median property.

Definition 4.8 (Local Median Property). An allocation on a binary
tree satisfies the local median property if; for any internal node, exactly
one of its children is allocated a house with value less than that of the
node. In other words, the value allocated to any internal node is the
median of the set containing the node and its children.

The proofs in this section will use the following lemma. We
define the inverse of a valuation function v as a valuation function
o' such that o™V (k) = —o(h) for all h € H (appropriately shifted
so that all values are nonnegative). We note that any allocation
has the same envy along any edge with respect to the inverted
valuation and the original valuation, whose straightforward proof
we relegate to the full version [17].

Lemma 4.9. The envy along any edge of the graph G under an
allocation 7 with respect to the valuation v is equal to the envy along
the same edge of the graph G under the allocation s with respect to
the valuation o™

We will now show that at least one minimum envy allocation
satisfies the local median property. More formally, we show the
following: given a binary tree T and any allocation 7, there exists
an allocation that satisfies the local median property and has equal
or lower total envy. The proof relies on the following lemma.

Lemma 4.10. Given a binary tree T and an allocation n, let i be
some internal node which does not satisfy the local median property.
Then, there exists an allocation ’ such that

(a) For the subtree T’ rooted at i, we have that Envy(z(T’),T") >
Envy(x’'(T"),T’);

(b) For any other subtree T"' not contained by T’, we have that
Envy(x(T”),T”) > Envy(x’(T"), T").

Proor SKETCH. Consider an internal vertex not satisfying the
local median property; by Lemma 4.9, it suffices to consider the
case when this violating vertex has a value that is less than both
its children. We can now “push” the value allocated to this vertex
down the tree by a series of swaps until that value reaches a leaf or
satisfies the local median property. It can be shown that the total
envy at the end satisfies the two criteria stated. A full proof is given
in the full version [17]. o

Lemma 4.10 immediately gives rise to the following corollary,
which we state as a theorem.



THEOREM 4.11. For any binary tree T, at least one minimum envy
allocation satisfies the local median property.

Unfortunately, the local median property is too weak to exploit
for a polynomial-time algorithm. Ideally, we would like to use the
property to show that some minimum envy allocation satisfies an
even stronger property called the global median property.

Definition 4.12 (Global Median Property). An allocation on a
binary tree satisfies the global median property if, for every internal
node, all the houses in one subtree of the node have value less than
the house allocated to the node, and all the houses in the other subtree
have value greater than the house allocated to the node.

Empirically, it seems like minimum envy allocations on rooted
binary trees do indeed satisfy the global median property. If this
turned out to be true, we would be able to devise an algorithm that
would significantly reduce the search space for a minimum envy
allocation from ©(n!) to @(Zd), for a tree T of maximum depth d.
This would give us an 0(2¢) algorithm for computing minimum
envy allocations on such rooted binary trees.

Conjecture 4.13. There is an algorithm that computes an optimal
allocation on a rooted binary tree of maximum depth d in time O(24).
In particular, this algorithm runs in polynomial time on (nearly)
balanced trees.

4.6 General Trees

How do we take the approaches for rooted binary trees and build
towards arbitrary trees? Note that one consequence of Theorem
4.11 is that in an optimal allocation on a rooted binary tree, the
minimum and the maximum must both appear on leaves.

In the minimum linear arrangement problem, it is known [29]
that when the underlying graph is a tree, some optimal allocation
assigns both the minimum and maximum values to leaves, and
furthermore, the (unique) path from this minimum to the maximum
consists of monotonically increasing values. This characterization
is used crucially in designing the polynomial time algorithm on
trees [9].

Empirically, this same property for trees seems to hold for non-
uniformly spaced values as well. The proof technique used in [29]
does not extend to our setting, but testing the problem on 200
randomly generated trees and uniformly random values on the
interval [0, 100] always gave us both these properties on trees:
the minimum and maximum values both end up on leaves, with a
monotonic path between them.

We believe that graphical house allocation, unlike minimum
linear arrangements, is NP-hard on trees. It would be remarkable
if the structural characterization holds for our problem, but the
polynomial-time algorithm does not work. We relegate answering
this to future work.

5 DISCONNECTED GRAPHS

In this section, we consider disconnected graphs, starting with a
structural characterization, and then using that to obtain upper
bounds for several natural classes of disconnected graphs that all
had lower bounds in Section 3.

Figure 3: For the valuation interval on top, the optimal allo-
cation to P; + C3 is to give the two low-valued houses to the
edge, and to give the three high-valued houses to the triangle.
This is the only allocation where the envy is negligible. For
the valuation interval on the bottom, the optimal allocation
to P, + C3 is to give the two extreme-valued houses to the
edge, and the cluster in the middle to the triangle. Any other
allocation has to count one of the long halves of the interval
multiple times, and is therefore strictly suboptimal. This is
an instance where we see one of the connected components
being “split” by another in the valuation interval.

5.1 A Structural Characterization

We start by remarking that Proposition 2.2 is false in our setting,
and so we can no longer assume our graph is connected without
loss of generality. For instance, consider an instance when the
underlying graph G is a disjoint union of an edge and a triangle.
The two valuation intervals in Figure 3 yield very different optimal
structures for this same instance.

We remark that this is a major departure from the linear arrange-
ment problem, as the spacing of the values along the valuation
interval becomes a key factor in the structure of optimal allocations.
Recall from Proposition 2.2 that in the minimum linear arrangement
problem, in an optimal allocation, the connected components of a
graph take the houses in contiguous subsets along the valuation
interval. The example in Figure 3 shows that this is not necessarily
true in our problem, and therefore serves as a motivation to classify
disconnected graphs according to whether they have this property
or not. We call the relevant property separability, defined as follows.

Definition 5.1 (Splitting). Let G = (N1, E1) and G2 = (Ny, E3) be
two of the connected components of G = (N, E), and fix an arbitrary
allocation . We say Gy splits Gy in 7 if the values of ©(G1) form a
contiguous subset of the values in (G1) U 7(Gg).

Definition 5.2 (Separability). Let G be a disconnected graph with
connected components Gy, . . ., Gy.. Then,

(1) G is separable if there exists an ordering Gy, . . ., Gy of the com-
ponents where, for all valuation intervals, there is an optimal
allocation where for all1 < i < j < k, G; splits G;.

(2) G is strongly separable if, in addition, G; also splits G;. Note
that this is only possible if an optimal allocation assigns con-
tiguous subsets of values to all connected components.

(3) G is inseparable if there is a valuation interval where for each
optimal allocation 5, there are components G1 and Gy with
uw,u’ € 1(Gy) andv,v’ € n(Gy) such thatu < v <u’ <v’.

A class A of graphs is separable (resp. strongly separable) if every
graph in it is separable (resp. strongly separable). Conversely, A is
inseparable if it contains an inseparable graph.



We note that a graph G is inseparable if and only if it is not
separable. Furthermore, it is strongly separable only if it is separable.

For minimum linear arrangements, all disconnected graphs are
strongly separable, by Proposition 2.2. In contrast, for our problem,
Figure 3 already provides an example of a graph that is not separa-
ble. We discuss several examples of strongly separable graphs in
our problem in Section 5.2; in particular, disjoint unions of paths
(respectively, cycles or stars) satisfy strong separability.

Our formulation of separability and strong separability has an
immediate algorithmic consequence.

Proposition 5.3. Suppose G is strongly separable and has k con-
nected components. If we can find a minimum envy allocation for
each component in time O(poly(n)), then we can find a minimum
envy allocation on G in time O(poly(n) - k!). If G is separable, and
we can find a minimum envy allocation for each component in time
O(poly(n)), then we can find a minimum envy allocation on G in
time no(k)).

The proof follows straightforwardly from the definitions of
(strong) separability.

It is not immediately obvious that there are separable graphs
that are not strongly separable. Figure 3 shows an example of such
a graph (Theorem 5.15 proves separability). We will see more exam-
ples of this later, but we remark that there are even separable forests
that are not strongly separable (Figure 4). We state this formally
here, relegating the proof once again to the full version [17].

Proposition 5.4. There exists a separable forest that is not strongly
separable.

Figure 4: Example of a separable forest that is not strongly
separable. The forest is trivially separable. For the bottom val-
uation line, an optimal allocation must allocate the extreme
clusters in the interval to the larger connected component.
See the full version [17] for a detailed proof.

Less obviously, inseparable forests exist, as shown by the follow-
ing proposition (and Figure 5), whose proof'is in the full version [17].

Proposition 5.5. There exists an inseparable forest.

5.2 Disjoint Unions of Paths, Cycles, and Stars

We now move on to algorithmic approaches and characterizations
of minimum envy allocations, and start with the setting where G is
a disjoint union of paths. Suppose G = Py, + ...+ Pp,. What does
an optimal allocation on G look like?

s1+1 so+1 s3+1 sq4+1

Figure 5: Example of an inseparable forest. Suppose s; < sy <
s3 < s4, and they satisfy for all i, j, |s; —sj| > 3, and for all ;, j, k,
si +sj > si + 2. Then, an optimal allocation on this instance
must allocate the entire cluster of size s; + 1 on the valuation
interval to the corresponding star-like cluster of the given
forest. See the full version [17] for a detailed proof.

THEOREM 5.6. Let G be a disjoint union of paths, Pp, + ...+ Py, .
Then, G is strongly separable. Furthermore, in any optimal allocation,
within each path, the houses appear in sorted order.

PRrROOF SKETCH. In any allocation 7z, we may assume by Theorem
4.2 that the houses allocated to each path appear in sorted order
along that path. Next, in an allocation r, if there is any overlap
between two of the paths, then we can remove the overlap by
reassigning the houses among just those two paths, and obtain an
allocation with strictly less envy. O

The following corollary shows an FPT algorithm on the disjoint
union of paths, parameterized by the number of different paths.

Corollary 5.7. We can find an optimal allocation for an instance
on an undirected n-agent graph G that is the disjoint union of paths
in time O(nr!), where r is the number of paths.

Proor SKETCH. By Theorem 5.6, it suffices to find the optimal
ordering of the paths. There are r! such orderings, and for each, we
can test the envy in linear time. O

If G is a disjoint union of cycles, say G = Cp, + ...+ Cy,, the
same theorems characterizing optimal allocations go through, using
Theorem 4.3. We omit the proofs, but state the results formally.

THEOREM 5.8. Let G be a disjoint union of cycles, Cp, + ...+ Ch, .
Then G is strongly separable. Furthermore, in any optimal allocation,
within each cycle, the houses appear in the form characterized in
Theorem 4.3.

Corollary 5.9. We can find an optimal house allocation for an
instance on an undirected n-agent graph G that is the disjoint union
of cycles in time O(nr!), where r is the number of cycles.

We remark here that if ¢ is the number of different path (or cycle)
lengths, then a dynamic programming algorithm (details in the
full version [17]) computes the minimum envy allocation in time
O(n**1). Therefore, combining the two approaches, we have a time
complexity of O(min(nr!, n’*1)). An immediate application of this
dynamic programming algorithm is for graphs with degree at most



one. These graphs are special case of the disjoint union of paths
where the path length can either be 0 or 1.

Corollary 5.10. We can find an optimal house allocation for an
instance on an undirected n-agent graph G with maximum degree 1
in time O(n%).

Perhaps remarkably, there is no particularly elegant character-
ization when the underlying graph G is a disjoint union of paths
and cycles, even when there is only one path and one cycle. This is
a consequence of Figure 3.

Finally, a similar result holds for disjoint unions of stars, though
the proof is somewhat different. We omit the proof of Corollary 5.12,
which follows from Theorem 5.11.

THEOREM 5.11. Let G be a disjoint union of stars, K1 n, +. . .+Ki,n, .
Then G is strongly separable. Furthermore, in any optimal allocation,
within each star, the houses appear in the form characterized in
Theorem 4.1.

ProoOF SKETCH. We can “separate” any two stars while improv-
ing our objective. Given any allocation 7, suppose two of the stars
Ki,n, and Ky, overlap in their allocated values. Suppose their cen-
ters receive houses h; < hj respectively. We show that exchanging
Ki1,n,’s most-valuable house for Kj p, s least-valuable house strictly
decreases envy. We apply this repeatedly until the two stars split
each other. We apply Theorem 4.1 to every star at the beginning
of the process and after every swap to maintain the invariant that
each star has a median house at its center. O

Corollary 5.12. We can find an optimal house allocation for an
instance on an undirected n-agent graph G that is the disjoint union
of stars in time O(nr!), where r is the number of stars.

5.3 Disjoint Unions of Cliques

We now turn our attention to disjoint unions of cliques. We first
demonstrate that when all cliques have the same size, we maintain
strong separability.

THEOREM 5.13. Let G be a disjoint union of cliques with equal
sizes, Krll/r +...+ Krrl/r. Then, G is strongly separable.

Proor SKETCH. Without loss of generality, consider two cliques,
say K and K’, on n/2 vertices each, and consider an arbitrary in-
stance with n values. Suppose in some allocation 7, K receives
AU A’ and K’ receives B U B’, where A U B form the n/2 lower-
valued houses, and A’ U B” form the n/2 higher-valued houses. We
can show that we improve the envy by assigning them A U B and
A’ U B’ respectively. ]

Because the cliques are all of equal sizes and agents have identical
valuations, Theorem 5.13 implies that there is a trivial algorithm
for assigning houses to agents. We can assign the first n/r houses
to one clique, the next n/r houses to the next clique, and so on.

Corollary 5.14. We can find an optimal house allocation for an
instance on an undirected n-agent graph G that is the disjoint union
of equal-sized cliques in time O(n).

We now turn our attention to the case when the cliques are not
all of the same size.

As we saw in Figure 3, strong separability must be ruled out
when cliques have different sizes. We will show that separability
still holds. We show further that the largest clique splits all other
cliques, the second largest clique splits all cliques except possibly
the largest one, and so on. The proof is heavily technical, and we
relegate the casework and details to the full version [17].

THEOREM 5.15. Let G be a disjoint union of cliques with arbitrary
sizes, Kn, +...+Kp,, whereny > ... > n,. Then, G is separable (but
not strongly separable if the n;’s are not all equal). In particular, for
all1 < i < j <r, in every optimal allocation, Ky, splits Ky, .

Proor SkeTcH. Without loss of generality, consider two cliques
K and K’ with |[K| > |K’|. We will show that K receives a contiguous
subset among the houses received by K U K. The basic approach is
that if there are three values v(h;) < v(hj) < v(hg) with h; going
to K’ but h;, by going to K, we can swap houses around and obtain
a better allocation by a counting argument. O

Theorem 5.15 implies an XP algorithm for finding a minimum
envy allocation on unions of cliques.

Corollary 5.16. We can find an optimal house allocation for an
instance on an undirected n-agent graph G that is the disjoint union
of cliques in time O(n"*?), where r is the number of cliques.

There seems to be a separation between unions of differently-
sized cliques and unions of stars, cycles, and paths. We suspect the
problem may be W([1]-hard for unions of arbitrary cliques.

6 CONCLUSION AND DISCUSSIONS

We investigate a generalization of the classical house allocation
problem where the agents are on the vertices of a graph repre-
senting the underlying social network. We wish to allocate the
houses to the agents so as to minimize the aggregate envy among
neighbors. Even for identical valuations, we show that the problem
is computationally hard and structurally rich. Furthermore, our
structural insights facilitate algorithmic results for several natural
and well-motivated graph classes.

There are a few natural questions for future research. We might
consider other fairness objectives such as minimizing the maximum
envy present on any edge of the graph. For evenly-spaced valu-
ations, this corresponds to the classical graph theoretic property
of bandwidth, which is also known to be NP-complete for general
graphs, and quite hard to approximate as well [6, 26]. It would be
interesting to know whether trees admit polynomial time charac-
terizations of the minimum envy, or—more remarkably—whether
they are NP-complete but admit the structural similarities to the
minimum linear arrangement problem discussed in Section 4.6.
We might hope to completely characterize all strongly separable
graphs in terms of their graph theoretic structure. Another impor-
tant future direction would be to extend some of these results for
non-identical valuations.
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