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Bijecting hidden symmetries for skew

staircase shapes

Zachary Hamaker, Alejandro H. Morales, Igor Pak, Luis
Serrano & Nathan Williams

ABSTRACT We present a bijection between the set SYT(A/u) of standard Young tableaux of
staircase minus rectangle shape A = Ok, u = (b%), and the set ShSYT'(n) of marked shifted
standard Young tableauz of a certain shifted shape n = n(k,a,b). Numerically, this result is
due to DeWitt (2012). Combined with other known bijections this gives a bijective proof of the
product formula for [SYT(A/u)|. This resolves an open problem by Morales, Pak and Panova
(2019), and allows an efficient random sampling from SYT(A/u). Other applications include
a bijection for semistandard Young tableaux, and a bijective proof of Stembridge’s symmetry
of LR—coefficients of the staircase shape. We also extend these results to set-valued standard
Young tableaux in the combinatorics of K -theory, leading to new proofs of results by Lewis and
Marberg (2019) and Abney-McPeek, An and Ng (2020).

1. INTRODUCTION

The phrase ‘hidden symmetries’ in the title refers to coincidences between the num-
bers of seemingly different (yet similar) sets of combinatorial objects. When such
coincidences are discovered, they tend to be fascinating because they reflect underly-
ing algebraic symmetries — even when the combinatorial objects themselves appear
to possess no such symmetries.

It is always a relief to find a simple combinatorial explanation of hidden symmetries.
A direct bijection is the most natural approach, even if sometimes such a bijection is
both hard to find and to prove (cf. §5.5). Such a bijection restores order to a small
corner of an otherwise disordered universe, suggesting we are on the right path in
our understanding. It is also an opportunity to learn more about our combinatorial
objects.
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1.1. THE RESULTS. We start with the following unusual product formula. Denote by
0 = (k—1,...,2,1) the staircase shape.

THEOREM 1.1 (Staircase minus rectangle, see below). For all a,b,c € N, let A =
Satbize, and p = (b*). Then the number f* = |SYT()\/M)| is equal to
" Fla)F(O)F(¢)Fla4+b+¢) - G(c)Gla+b+¢)
"Fla+b)F(b+c)Fla+c) - Gla+c)Gb+c)Gla+b+2¢)’

where n = |\/p| = (‘H'b;'%) —ab, F(m) == 11-21--- (m — 1)!, and G(m) == 1! -
M- (2m —3)!!

This curious formula was first derived by DeWitt [15] in a somewhat different
form (see discussion after Theorem 1.7). The g-version was given in [41], and further
generalizations were obtained in [50] for a more general class of skew shapes. To
understand the product formula in the theorem, consider the following:

THEOREM 1.2 (DeWitt). Let A = & be a staircase and p = (b*) be a rectangle, such
that a +b < k. Then:

(1.1) ISYT(A/p)| = 2" [ShSYT(n)],

where ShSYT(n) is the set of shifted standard Young tableaux of shifted shape 1 =
n(k,a,b) defined in 1, and N :=1|n|—k+d= (’;) —ab— k + d where d = min{a, b}.

n=nkan X N be

FIGURE 1. Main bijection ¢ : SYT(d5/b%) — ShSYT'(n).

Our main result is a bijective proof of (1.1), where we interpret the RHS as the
number |ShSYT'(n)|of certain marked shifted standard Young tableauz (see below).
For the case of straight shapes, i.e. for a« = b= 0 and p = @, an equivalent bijection
was given by Purbhoo [59] (see §5.1). Our bijection has additional properties, as it
extends to the proof of a symmetric function identity (see Theorem 1.7). Theorem 1.1
follows from Theorem 1.2 and the hook-length formula (HLF) for shifted shapes due
to Thrall [76]. Combined with the bijection in [19], this gives the first direct bijective
proof of Theorem 1.1, resolving an open problem in [50, §9.2].

THEOREM 1.3. Let A = di be a staircase, p = (b*) be a rectangle, s.t. a +b < k.

Then there is a O(k®log k) time algorithm for uniform random generation of standard
Young tableaux in SYT(\/ ).

For the proof, we combine the bijection for (1.1) and the known uniform random
generation algorithms for shifted shapes: either the NPS—style two-dimensional bubble
sorting™ in [19], or the GNW-style hook walk in [62].

The uniform random generation of combinatorial objects is a classical problem
that is well understood for many planar structures (see §5.6). For standard Young

(DThis type of insertion is a close relative to jeu-de-taquin and promotion, all heavily studied in
this context.
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tableaux of skew shapes, the iterative application of the Aitken—Feit determinant
formula [2, 18], gives an easy O(k2+“) time algorithm. Here w > 2 is the matriz
multiplication constant with currently best known upper bound w < 2.3729 [3]. Our
algorithm is thus a substantial improvement over this approach.

Our final application is a bijective proof of the following unusual symmetry of
Littlewood—Richardson (LR-) coefficients c;, = |LR(A/p,v)|, where LR(A/p,v) C

v

SSYT(M\/u,v) denotes the set of LR-tableauz (see e.g. [64, §4.9]).
COROLLARY 1.4 (of Theorem 1.5). Let u,v C dy, such that |p| + |v| = |0k|. Then:
(12) = o,

where ' denotes the conjugate partition of u.

Since the LR—coefficients cf;l, determine the intersection numbers of three Schu-
bert varieties in a suitable Grassmannian, general LR—coefficients have an S3—
symmetry [74]. Combining this general symmetry with equation (1.2) implies that

Sk s S s 8, ) s 5
(1.3) oy = Gy, = Cohy = Coh =, =k =, = o

Note that LR coefficients satisfy two more symmetries (see e.g. [6]), hence

Cupy = Cgky = CZ(?ka
where \* denotes the complement to A in the (k — 1) x k rectangle, so that §; = 0.
This triples the number of equal LR—coefficients given by (1.3), with the staircase
0 as one of the partitions. In the next section we explain the algebra behind both
Theorem 1.2 and Corollary 1.4.

1.2. ALGEBRAIC INTERPRETATION. The ring of symmetric functions A has many
bases indexed by integer partitions, including the Schur functions sy. The subring
A generated by power sums p, = xf 4+ 25 + .-+ with k& odd has bases indexed by
strict integer partitions, one being the Schur P—functions. The hidden symmetry in
Theorem 1.2 was first proved using relations between skew staircase Schur functions
and certain Schur P—functions given in Theorem 1.7. We give the first bijective ex-
planations for these relations.

To state the identities in question, we introduce some notation. Let pu =
(1, pg) and A = (Ay,...,A;) be integer partitions, and let x’ be the transpose
of p. We write p € A if p; < A; for all 4, and let s)/, denote the associated skew
Schur function defined in §2.3.

THEOREM 1.5 (J. Stembridge, 2004, see §5.2). Let u C 0, Then S5, /, = S5, /. -

Stembridge’s theorem immediately implies Corollary 1.4; it is in fact equivalent to
the corollary.

A partition A with Ay > --- > A\ is called strict. When p C X are both strict,
let P/, denote the associated skew Schur P-function defined in §2.3. As before, let
0n = (n—1,n—2,...,1) be the staircase partition and p,, be the same partition,
viewed as a shifted shape. Since A is fixed under the w involution that maps s ap tO
Sx'/ur> the next result is an algebraic explanation of Theorem 1.5:

THEOREM 1.6 ([5, Thm 4.10]). Let o C 6,,. Then s5,/, € A. Moreover, in the expan-
sion ss,/,, = »_, au P, , all a, are non-negative integers.

This theorem was originally conjectured by Stanley in 2001, and proved by Ardila
and Serrano using algebraic methods. The bijection in (3.2) gives a bijective proof of
both Theorems 1.5 and 1.6.
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For u C g, strict, write g, — p for the partition whose diagram is obtained by
reflecting the diagram of g,,/u across the line y = x. Let p®™ = (m’) be the £ x m
rectangle partition, and when ¢ > m let 7™ = ({+m—1,¢+m—3,... (—m+1) be
the shifted trapezoid, see 1.

THEOREM 1.7 ([15, Thm V.3]). Let a,b and k be integers so that a +b < k. Then:

Sék/pa,‘b = Qk/.rn,,b = ng_.,-a,b

Note that 6, /p®® and g — 7%° are the shapes A/ and 7 appearing in Theorem 1.2.
Schur functions are weighted generating functions of semistandard Young tableaux
(see e.g. [44, 69, 68]). Similarly, Schur P—functions are weighted generating functions of
semistandard Young tableaux of shifted shape with marked entries [71]. As discussed
in §2.3, semistandard tableaux can be associated to standard tableaux via Gessel’s
fundamental quasisymmetric functions [22]. Using this correspondence, Theorem 1.2
becomes an immediate corollary of Theorem 1.7.

Our bijection for (1.1) uses Worley—Sagan insertion [63, 78], and the combinatorics
of reduced words for fully commutative permutations 7, 72].(2) The map is easily seen
to be surjective, hence bijectivity follows from Theorem 1.2. However, our goal is to
prove Theorem 1.7 and hence Theorem 1.2 using our bijection. To do this, we show
the map reverses descent sets and prove injectivity via a related map constructed
using RSK and mixed shifted insertion [25]. Note that our proof of injectivity gives a
different bijective proof of Theorem 1.2. A third bijection is introduced in §5.4.

In §5.9, we recall an elegant geometric interpretation of Theorem 1.7. This geo-
metric interpretation suggests that Theorems 1.5,1.6, and 1.7 should extend to stable
Grothendieck polynomials and K-theoretic analogues of Schur P-functions. We prove
these extensions in §4 as Theorem 4.7, Theorem 4.9 and Corollary 4.8, the first ap-
pearing in [8] and the last being a main result in [1]. Our proofs of Theorem 4.7 and
Corollary 4.8 are combinatorial as opposed to the previous algebraic proofs, but our
proof of Theorem 4.9 uses algebraic identities. As a consequence, in Theorem 4.10
we extend our original bijective proof of Theorem 1.2 to a bijection between certain
set-valued tableauz. Note the other bijections do not extend easily to this more general
context.

PAPER STRUCTURE. In the lengthy and detailed §2, we recall much of the background
on the usual and shifted Young tableaux, reduced words and insertion algorithms.
Although our notation is self-contained, our arguments are technical and rely on
many pieces of Young tableau technology. This appears to be unavoidable for a self-
contained proof that our map is bijective, and we disperse references to the literature
throughout the paper. A reader willing to assume Theorem 1.7 can find a concise
description of our bijection at the beginning of §3, with proof in Proposition 3.7,
which does not depend on earlier results in §3 (see also the equivalent maps discussed
after Lemma 3.8 and in §5.4).

We prove our main results in §3. Our arguments are both dense and concise, so ex-
amples are added for clarity. In a short §4, we give generalizations of Theorems 1.5 and
1.7 to Grothendieck polynomials and extend our bijections to work in this case. These
sections will be of greatest interest to experts on shifted tableaux, as they are quite
technical. We conclude with final remarks in §5, including some large simulations.

(@) These are also known as 321-avoiding permutations [7]. We will not use this characterization.
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2. TABLEAUX, REDUCED WORDS AND INSERTION ALGORITHMS

2.1. BAsIC NOTATION. We write N = {0, 1,...}, [n] = {1,...,n} and 2° for the power
set of S. We also fix the linear ordering 1’ <1 <2 <2< --- <n’ <n of marked
integers.

2.2. YOUNG DIAGRAMS AND YOUNG TABLEAUX. Recall an integer partition is a se-
quence A = (A1,...,Ar) of non-negative integers Ay > ... > A\ > 0. We identify A
with its Young diagram

Dy ={(i,j) e N> : 1< j < N},

which we view as a poset via pointwise comparison, so (,j) < (k,¢) if i« < k and
Jj <L Given p C A, ie. p, A such that D, C Dy, the skew partition \/u corresponds
to the diagram Dy \ D,,. A standard Young tableau of shape A/p is a linear extension
of Dy \ D,,, the set of which is denoted SYT(\/p).

There is a parallel theory for strict partitions A, which satisfy A = (Ay > -+ > Ag).
The shifted Young diagram of a strict partition A is

DY ={(i,j) eN*:i <j< Ni+i—1},

which we again view as a poset via pointwise comparison. The diagonal of D) is
the subset {(7,7) : ¢ € N} N Dy. For p,\ strict partitions with u C X, a shifted
standard Young tableau of shifted shape A\/u is a linear extension of DY \ D/ . Let
ShSYT(A/p) denote the set of shifted standard Young tableaux of shape A/u. A
shifted standard Young tableau with marked entries of shape \/p is a pair (T,5)
where T' € ShSYT(A/p) and S C Dy \ D,, such that S contains no diagonal entries.
Let ShSYT'(\/u) be the set of shifted standard Young tableaux with marked entries
of shape A/u. The entries in S are marked with symbol ’, see 2. For T a tableau, let
T;; =T((i,7)) denote its (7, j)th entry.

Note for any skew partition A\/u that D,,, and DY

A0y /pu+6p
posets, so the theory of (unshifted) Young tableaux can be viewed as a special case of

theory of shifted Young tableaux. Lastly, we recall that a semistandard Young tableau
of shape A/ is a tableau with positive integer entries whose rows are weakly increasing
and columns are strictly increasing. Let SSYT(A\/u) denote the set of semistandard
Young tableaux of shape A/pu. For shifted shapes, instead use ShSSYT(A/p). The set
ShSSYT'(A\/p) of marked shifted semistandard Young tableaus allows the off-diagonal
entries of a shifted semistandard Young tableaux to be marked by the symbol /, with
at most one ¢ in each column and at most one ¢’ in each row.

are isomorphic as

(4)

3[R 5 [ 3 N 3 NN 3 [ 3 N 3 RO £
e TS UEE U NP MR MR MR M

FIGURE 2. The sets (i) SYT(d4/(2)) and (i) ShSYT' (04 — (2)),

with columns corresponding to our bijection.

The reading word of an unmarked tableau T is the word r(T') obtained by reading
its rows from left to right, bottom to top. For example, the reading word of the third
tableau in 2(7) is 4132.
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2.3. DESCENTS AND SYMMETRIC FUNCTIONS. For T a tableau of shape A, let 27 =
1 jyep, ®1,;, where T;; is the (4, j)-th entry in T', and z; = z; for marked entries.
The Schur functions and Schur P-functions are defined as

(2.1) Sx = Z ¥ and P, = Z T (u strict).
TESSYT(A) TEShSSYT’ (u)

As we will see, there is a natural way to partition semistandard tableaux into sets
indexed by standard tableaux. This will give a formula for sy and P,.

For a = (ai,...,ap) a word in Z, the descent set of a is Des(a) = {1 € [p — 1] :
a; > a;41}. Similarly, for T € SYT(A) with A a partition of n, the descent set of T' is
defined as

Des(T) := {i € [n—1] : i is strictly above i+ 1}.
Here by strictly above we mean that the row number with entry 4 is strictly smaller

than that with (i + 1). For T' € ShSYT’(u) with p a strict partition of size n, the
descent set of T is defined as

i,(i+1) €T, or
Des(T) = i€ n—1]: i is strictly above i +1, or
i’ is strictly to the left of (i + 1)’

These sets are closely related to each other, as we will see in Theorem 2.6.

For T € ShSYT'()), let T° be the tableau obtained by marking all unmarked
off-diagonal entries and unmarking all marked entries. For example, if T is the first
tableau in 2 (i7), then T° is the seventh. Given S C [n — 1], its complement is S¢ =
[n — 1] . S. The next result follows from the definition of Des(T').

LEMMA 2.1. For X a shifted shape with |\| =n and T € ShSYT'()), we have:
Des(T°) = Des(T)".

Let S C [n—1], and define Ig = {(i; < -+- < i) : k € S = i < igy1}. For
i= (i1,...,9,) and T a shifted marked standard tableau with n entries, let T'(i) be
the tableau obtained from T by replacing entries labeled k with i;, and entries labeled
k" with 4}, for each k € [n].

THEOREM 2.2 ([22]). Let A\/v be a skew partition of size n and u/p be a strict skew
partition of n. Then (T,i) — T'(i) is a bijection from
(@) U AT} X Ipesir) = SSYT(A/v)
TESYT(\/v)

B) U AT} % Towiy - SHSSYT (/).
TeShSYT'(u/p)

Part (a) of Theorem 2.2 is essentially equivalent to Gessel’s formula for Schur func-
tions in terms of fundamental quasisymmetric functions, while part (b) is equivalent
to Stembridge’s analogous formula for Schur P—functions [71], both of which we now
state:

COROLLARY 2.3. Let \,v be partitions and p,p be strict partitions with v C X and
p C u. Then

= > > 2™ and P= > S T,

TEeSYT(A/v) i€lpes(T) TEShSYT’ (11/p) i€Ipes(T)

For S C [n—1], its reverseis S™ = {n—k : k € S}. The following is a corollary of [68,
A1.2.11], and can be proved bijectively using Schiitzenberger’s evacuation involution.
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LEMMA 2.4. Let X be a partition.

S\ = Z Z .%'T(i).

TESYT(N) i€lpes(ry™

As a consequence, we see that Theorem 1.7 follows from the existence of a bijection
between SYT(8,,/pr¢) and ShSYT'(0,,/7:¢) that reverses descent sets.

2.4. INSERTION ALGORITHMS AND JEU DE TAQUIN. To construct our bijection, we
use RSK as well as three closely related bijections for shifted tableaux: Worley—Sagan

insertion, mixed shifted insertion and jeu de taquin. We assume the reader is familiar

with ordinary RSK (see e.g. [64, 69, 68]), which we denote a RN (P(a),Q(a)).

Weak and strict insertion: For z a letter and r = (r1,...,7,) a word, let ¢ be the
smallest index so that r; > z or n+ 1 if r, < z. We weak insert x into r by replacing
r; with x, bumping r; if ¢ # n + 1. Similarly, if j is the smallest index so that r; > x
or n+ 1 if r, < x, we strict insert x into r by replacing r; with z, bumping r; if
jF#En+1.

Worley—Sagan bumping: For T a shifted tableau and z := x! a letter, insert '
into T by:
(1) Weak insert z' into the i-th row of T (viewing this row as a word); if no entry
is bumped, then the process terminates.
(2) If 2* bumps a letter 2™ that isn’t the first entry of the i-th row of T', return
to step (1) and continue to weak insert into rows.
(3) Otherwise, if ' bumps the first entry of the i-th row of T, begin to strict
insert 27 into the j-th column of T for j =i+ 1,i+2,... (again, viewing the
column as a word) until no entry is bumped, then terminate.

Worley—Sagan insertion: Given a word a = (a1, . .., ap), initialize Pgw and Qgw as
empty tableaux. For ¢ = 1,2,...,p, insert a; into Psw using Worley—Sagan bumping,
resulting in a new cell c¢. In Qgw, we label ¢ with ¢ if the final insertion was a row
insertion and 4’ if the final insertion was a column insertion.

The Knuth relations are the transformations:®)

achb <> cab with a<b<c¢ and bac<+> bca with a<b<ec

For a word a = (a1,...,ap), a Knuth move is the application of a Knuth relation to
a consecutive triple a;a;41a;12, and a shifted Knuth move is a Knuth move or the
exchange of the first two entries a; and as.

We say a and b are Knuth equivalent, denoted a = b, if they differ by a sequence
of Knuth moves. Similarly, a and b are shifted Knuth equivalent, denoted a = b, if
they differ by a sequence of shifted Knuth moves. Note that a = b implies a =b, but
the converse need not hold. The equivalence classes under the relations = and = are
called Knuth classes and shifted Knuth classes, respectively.

EXAMPLE 2.5. Applying Worley—Sagan insertion to the words a = (1, 3,2, 5,4, 3) and
b= (3,1,5,2,4,3), we see

[1]2
Psw(a) = Psw(b) = [3

[1]2

, Qsw(a) = 3

[1]2
) QSW (b) = 4

[ o] e

BES

[m Ul W

(3)See e.g. [68, §A1.1], where these are called Knuth equivalences and Knuth transformations.
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Note that a = b (so that a =b) via a = (1,3,2,5,4,3) <> (3,1,2,5,4,3) «
(3,1,5,2,4,3) = b.

We summarize some key properties of Worley—Sagan insertion.

THEOREM 2.6 ([63, 78]).

(1) Worley—Sagan insertion is a bijection from words to pairs (Psw,Qsw) of
tableauz, where Psw € ShSSYT(A) and Qsw € ShSYT'(N) for some shifted

shape A.
(2) The words a and b are shifted Knuth equivalent if and only if Psw(a) =
Pgw(b).
(3) Des(a) = Des(Qsw(a)).
For a = (a1, ...,ap), denote —a = coloneqq(—as,...,—ap).

THEOREM 2.7 ([25, Cor. 8.9]). In the notation above, we have: Qsw(—a) = Qsw(a)®.

Next, we introduce mixed shifted insertion.

Mixed shifted bumping: For T a shifted marked tableau and z := z' an unmarked
letter, set the index of the initial cell to be (y1,21) = (1,1).

(1) If 2% is unmarked, weak insert z* into the (y; + 1)st row of T’ if 2 is marked,
weak insert z° into the (z; + 1)-st column of T'; if no entry is bumped, then
the process terminates.

(2) If 2* bumps a letter, define (y;11,2;4+1) to be the cell of the bumped entry
and 't to be the bumped entry if y;11 < 2,41 and (1) if vy = 201
Return to step (1).

In other words, when a letter is bumped from the diagonal (which is unmarked, by
definition), the letter becomes marked and gets weak inserted into the next column.

Mixed shifted insertion: Given a word a = (ai,...,qa,), initialize Pyg and Qus
as empty tableaux. For i € [p], insert a; into Pyg using mixed shifted bumping. This
process terminates with a new cell ¢, which is added to Qng with label 7.

THEOREM 2.8 ([25]).

(1) Mizxed shifted insertion is a bijection from permutations to pairs (Pums, Qms)
of tableauz, where Pys € ShSYT'(N) and Qus € SYT(N) for some shifted
shape A.

(2) For w a permutation, Pys(w) = Qsw(w™!) and Qus(w) = Psw(w™1).

We now define jeu de taquin. An inner corner of the skew partition A/ is a maximal
element of D,, and an outer corner is a minimal entry of N2 \ D). When A and p are
strict partitions, the definition of inner and outer corners extends immediately using
DEH and Df i

For T € ShSYT(A/p) (not marked!) and ¢; = (41, 1) an inner corner of A\/u, we
perform an inner jeu de taquin slide using the following algorithm.

While ¢, = (ig, jx) is not an outer corner:

o fill Ck with min T1i+1 jaTi j+1,
o set cpp1 < (1+1,7) if Tip1 5 < T 41, and cgqq < (4,5 + 1) otherwise.
When ¢ is an outer corner, remove it from the resulting tableau, which we
denote Ji;, ;,)(T).
This definition applies equally well, mutatis mutandis, to shifted shapes.
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For a tableau T' € SSYT(\/u), choose S € SYT(u). Let c* be the cell in D, so
that S(c*) =k for all 1 < k < |u|. The rectification of T is

rect(T) = Ja oo Ju (T).

For T € ShSSYT(A/u), define rectsy analogously. It is known that rect(7) and
rectsp(T') do not depend on the choice of S, see e.g. [26].

EXAMPLE 2.9. We compute a jeu de taquin slide with inner corner ¢ = (1,2):

®[2]5]9] 2]2]5]9] 2]2]5]9] 2[2[5]9] 2[2]5]9]
= _[2[4[7[10 — [e[4]7[I0] — [4]e]7]i0] — [4[7[e[i0] — [4[7[I0[® — ] o (T)
[1]6]8 [1]6]8 [1]6]8 [1]4]8 [1]6]8 1,2)

Here, the equalities ignore the sliding square which we denote by “e”. In this case,
the rectification of T is given by

2[2[5]9]
7]L0]
8]

rect(T) =

[o]~]=

THEOREM 2.10 ([67, Thm 2.25]). For every permutation w, we have Qums(w) =
rectSH(Q(w)).

2.5. REDUCED WORDS FOR FULLY COMMUTATIVE PERMUTATIONS. The symmetric
group is generated by the simple transpositions {si,..., s, } with relations

sis; = sj8; for [i —j| > 1, 88418 = 8i418;8;41 and s7 = 1.

The first relation is called a commutation relation, while the second is called a
braid relation. For w € W, we say that a = (a1,...,ap) is a reduced word of w if
W = Sq, ...5q, and p = £(w) is the number of inversions in w. Let R(w) denote the
set of reduced words of w. In this setting, the Matsumoto—Tits theorem (see e.g. [11,
Thm 25.2]), says that R(w) is connected by commutation relations and braid relations.
A permutation w is called fully commutative if R(w) is connected only by commu-
tation relations. We summarize a key result about fully commutative permutations
from [7].

THEOREM 2.11 ([7, §2]). For each fully commutative permutation w, there is a skew
shape o(w) = A/p and a bijection ® : SYT(o(w)) — R(w), so that

Des(®(T)) = Des(T)".

Our description of ® follows [72]. Put a partial order (I(w),<) on the inversion

set
I(w) = {(i,j) i<y, wt(i) > w_l(j)}.
We say that (i,7) > (k,1) € I(w) if k =4 and [ = min{p > j : (j,p) € I(w)}, or
j=1and i = max{p < k : (p,k) & I(w)}. The skew shape o(w) is now defined
to be the poset (I(w),<). Each cell of o(w) corresponds to an inversion of w, while
each T € SYT(o(w)) provides an ordering of inversions for w, which corresponds to a
reduced word of w as follows. For L a linear extension of (I(w), <), we define a word
®(L) = (ai,...,ap), where a; is the index so that
i—1

[T 26 sa =TT L)

j=1 j=1
EXAMPLE 2.12. The permutations (given in one-line notation) v = 241635
and w = 246135 are fully commutative. We can visualize their inversion sets

I(v) = {(1,2), (1,4), (3,4), (3,6), (5,6)} and I(w) = I(v) U {(1,6)} using the
diagrams
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241635 246135

123456 123456

The corresponding shapes are ¢(241635) = (3,2,1)/(1) while ¢(246135) = (3,2, 1).

The reduced word (1,3,2,5,4,3) € R(w) with inversion sequence (1,2), (3,4),
(1,4), (5,6), (3,6), (1,6) corresponds to the linear order shown below. Complementing
the values, rotating 45° counter-clockwise and transposing, we obtain the desired
T € SYT(o(w)).

143\
2|5 =T
6

®
T G
One can check Des((1,3,2,5,4,3)) = {2,4,5} and Des(T) = {1,2,4} = {2,4,5}".

REMARK 2.13. The reason ® reverses descent sets is that our conventions identify the
skew shape A\/p with the permutation w such that I(w) is the reverse of D)/, as a
poset. This choice is necessary for our proof outline to work.

A permutation with exactly one descent is called Grassmannian.
PROPOSITION 2.14. For w Grassmannian, R(w) is a single Knuth class.

This proposition is a consequence of results in [17] and [7]. Specifically, Edelman
and Greene show for w Grassmannian that R(w) forms a single equivalence classes
under relations called Coxeter-Knuth moves that generalize Knuth relations. Billey,
Jockusch and Stanley show the Coxeter-Knuth moves coincide with Knuth moves for
fully commutative permutations. One can also observe Proposition 2.14 directly from
® by identifying the action of a Knuth move on a € R(w) with the corresponding
action on ®~!(a), which is a dual equivalence move as introduced in [26]. In either
case, the proof is bijective.

Fix a Grassmannian permutation w’ := 24...(2n)13...(2n—1). By identifying
its inversions, it is clear that o(w’") = d,,.

COROLLARY 2.15. The map ® is a bijection from SYT(8,) to R(w'), and R(w’")
is a single Knuth class.

When w is Grassmannian, Proposition 2.14 shows that ®~! differs from the RSK
recording tableau by a simple transformation (see also [17]). One can extend this
relationship to the skew setting. However, our proofs in §4 require working with ®.
Additionally, note that ® can be computed in O(nlogn) operations when || = n,
while computing an insertion algorithm or its inverse requires O (max{A;, \j}-nlogn)
operations, cf. [55].

3. MAIN RESULTS

Let p C 6, and T € SYT(d,,/pt). The proofs in this section rely on the map ¢ =
Qsw o :

(3.1) T2 a 2% Quwl(a).

By Theorem 2.6(3) and Theorem 2.11, ¢ reverses descent sets. When p = pg.m,, one
checks for an appropriate choice of T' that ¢(T') € ShSYT'(0,/7¢.m). By applying
properties of Knuth classes (see Proposition 3.5) and assuming Theorem 1.2, this
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implies ¢ is the desired bijection. In this section, we give an independent combinatorial
proof that ¢ is a bijection.

3.1. THE BIJECTION FOR STAIRCASES. As a warmup, we show ¢ is a bijection be-
tween SYT(8,,) and ShSYT’(g,,). Our proof relies on a simple observation that is used
implicitly in [33, §10].

PROPOSITION 3.1. For any n, R(w’") is a single shifted Knuth class.

Proof. By Corollary 2.15, the result will follow by confirming that exchanging the
first two entries of a € R(w’*) results in another element of R(w’). This follows
from the definition of ®, which implies in this case that the first two entries have the
same parity so the exchange is a commutation relation. O

For a shifted shape A, recall M* is the minimal increasing tableau of shape A in
the alphabet {1,2,...}. For example,

[1]2]3
3[4
5

— M.

BEES

LEMMA 3.2. Let a € R(w’). Then Psw(a) = M2,

Proof. By Proposition 3.1, the result follows if it holds for some a € R(w®"). This is
easy to check for a = (1,3,5,...,2n—1,2,4...,2n—2,3,5,...,2n-3,...). O

PROPOSITION 3.3. The map ¢ is a bijection from SYT(d,) to ShSYT'(p,). Hence,
56, = Pgn'

Proof. By Corollary 2.3 and Lemma 2.4, the result will follow from a bijec-
tion SYT(6,) — ShSYT'(p,) that reverses descent sets. By Proposition 3.1 and
Lemma 3.2, the map ¢ is a bijection. O

3.2. PROOF OF THEOREM 1.5. To prove Theorem 1.5, we will need to describe the
fully commutative permutation corresponding to d,,/p and a small extension of Propo-
sition 3.1.

Given pt = (p1,..., ) C 6, let wo/* be the permutation obtained from w®* by
sequentially moving (2i — 1) to the left p; positions for i € [k]. For example, for n = 6,
we have w’ = 24681013579 and w’/(Y) = 24168310 579.

LEMMA 3.4. For all p C §,, we have o(w’/*) = §,/u, so & : SYT(6,/p) —
R(wn/H).
Proof. The result follows from direct inspection. O

PROPOSITION 3.5. Let u C §,,. Then R(w‘s"/“) is a union of shifted Knuth classes.

Proof. The proof is essentially identical to that of Proposition 3.1, except that
R(w‘;"/ “) is a union of Knuth classes, hence a union of (possibly fewer) shifted
Knuth classes. O

Proof of Theorem 1.5. Let p C 6,. By Proposition 3.5, R(w%/*) is a union of shifted
Knuth classes. Hence, by Theorem 2.6(2), the map ¢ from (3.1) is a bijection

SYT(6n/u) — || ShSYT'(N),
)\eMén/M

for some multiset of partitions determined by d,,/u. This gives a bijective proof that
S6n/n € A
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To prove ss,,, = $5,/,/, we show that ¢, as applied to both SYT(d,/u) and
SYT(6,,/u'), results in the same multisets of shifted standard tableaux with marked
entries. Indeed, let ¢ be the map for SYT(é,/u), and let ¢’ be the map for
SYT(4,/'). Note that for T € SYT(d,/p) with ®(T) = (as,...,ap), we have
®(T") = (n—a1,...,n— ap). Therefore, Des(®(1”)) = Des(®(T))°.

Since Qgw is invariant under shifting each entry of a word, by Theorem 2.7 we
have

n\—1
(3:2) T % o(I) S p(T) s ()7 e(T))
is a descent set preserving bijection from SYT(d,/u) to SYT(d,/u'), so the result
follows by Corollary 2.3. O

Proof of Corollary 1.4. Recall the RSK interpretation of LR—coefficients, see e.g. [68,
Thm A1.3.1] and [80]. The desired bijection now follows combining our bijection
in (3.2) with RSK and RSK™'. The details are straightforward. O

3.3. PROOF OF THEOREM 1.7. We outline the strategy with an example.

EXAMPLE 3.6. Consider the shifted tableaux 7' € ShSYT’(gs — 722),T € ShSYT’(06)
such that

T = [1[2[4]6]9 and T = [1[2[4]679] .
3[5[8]1 3[5[8]L

70 7 [LOfL3

12[14

15

The Worley—Sagan inverse of (MQG,T) isa = (1,7,5,9,8,3,6,7,2,4,3,5,4,6,5).
Removing the last four entries of a, we have a = (1,7,5,9,8,3,6,7,2,4, 3) satisfying
Qsw(a) =T. Viewing a as a linear extension of its heap, we obtain:

Now we can compute:

[,

o(@) =

(=] K83

lee SYT(d6/p*?) and &~ *(a) = 2116 SYT(d6/p*?) .

3
4
9

13 1
4 7|10
8]

HEERE

Therefore, T = ©(®7*(a)), and our bijection maps ®~*(a) to T
We generalize Example 3.6 as follows:

PROPOSITION 3.7. For positive integers £ < m < n with £ + m < n, there is an
injection
¥ @ ShSYT (0n — 75™) — SYT(6,,/p"™)

that reverses descent sets.
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Proof. Let T € ShSYT' (0, — 7%™). Following Example 3.6, construct T by adding to
T as follows.

(33) Y

b ... ¢

Fill the entries of p"¢ column by column from left to right, top to bottom, with
values from {(g) —l-m+1,..., (g) }, in increasing order. Reflect the cutout staircase
po™ 7™ marking each entry and place the resulting tableau on top of p©™
76™. The values a,b,c in (3.3) show where corresponding entries are mapped by
this operation. Computing the Worley—Sagan inverse of (M Q"j:"), we obtain some
a € R(w’"). Removing the last £-m entries of a, we obtain a. Now define ¢(7T) := a.
Since map 1 is a restriction of ¢!, we see it reverses descent sets. What remains is
to show the image of v lies in SYT(d,,/p"™).

Let a := m — ¢£. We claim the last £ - m entries a are necessarily of the form
(3.4)

(n+l—1,n+£-2,...,n—a—1,n+€—2n+0-3,... ,n—a—2,...,n+m—1,...,n—1).

The proof is a straightforward induction using inverse Worley—Sagan insertion. Rather
than give complete details, we demonstrate the result with an example with ¢ = 2,
m = 3, and n = 6. Here we have:

[1]2]3]4]5 _ HEEEE
Mo = [3[4]5]6 and T° —T° = [[]-]2
5[6]7 - [1o[L3]

(7[5 i

9] &

When inverting the insertions that add the 15,14 and 13, we see they must come from
row insertions with all bumps in the last column. After this, we obtain

[1]2]3]4]8] - CLTTT
Mo = (3 9] and T° —T° = [ :1'021
i

i[5
1516
7]

Inverting the insertion that added 12’, we must use column insertion. Necessarily, the

9 was bumped by the 7, which was row bumped by the entries above it in the fourth
column. This results in:

[1]2

Mo = B

] _ T
and  T°-T° = LT
i

[ a]ee
BEEEE

The remaining entries necessarily came from insertions occurring in the fourth column
as well, resulting in

A2[3[78] B T 1]
Mo = |3§91 and T° —T7° = [[-[]

The last values of a in this example are (6,5,4,7,6,5), as claimed in (3.4). The reader
should be able to extend this example to an inductive proof of our claim with little
difficulty but some tedium. O
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Assuming Theorem 1.7, we see Proposition 3.7 gives a bijection from ShSYT’(g, —
76m) to SYT(8,/p"™). Since ¥ = ¢~! when ¢(T) € ShSYT'(g, — 7™), we can
conclude ¢ is the desired bijection. However, it remains to prove this fact directly
without resorting to Theorem 1.7. In principle, one could have some a € R(w’")
that ends with the values in (3.4) such that Qsw(a) does not contain T — T as a
subtableau.

Rather than prove directly that ¢ has the desired image, we outline a map essen-
tially equivalent to ¢ using RSK, mixed shifted insertion and jeu de taquin (this map
could also be used to prove Theorems 1.2 and 1.3). For \ a partition, let S* € SYT())
be the superstandard tableau, which is the unique standard tableau whose rows are
consecutive. Computing slides row-by-row, we observe:

(3.5) Ser = rect(S"S") .
The following lemma is implied by the proof of Proposition 3.7 and Theorem 2.8(2).

LEMMA 3.8. Let T € SYT'(7,.4) be obtained from the tableau in (3.3) by reflecting
across the line y = x and complementing values. Then T = Qgw (T(Sp“f)).

We now outline the alternate bijection to ¢:(*)

(1) For Py € SYT(0,/pr.e), complete it to Py € SYT(d,,) with the same relative
order
in Ds, /p, , so that T | pre = SPrt

(2) Let w:=RSK (T, S%)

(3) By Theorem 2.10 and Equation (3.5), the mixed shifted insertion maps w to
(Pus(w), S¢)

(4) Flip Pys(w) across the y = x line and complement its values to obtain P

(5) Define Py := 131 | Dy, 7.

By Lemma 3.8, we see the entries in 131 — P, are the same as those in the tableau
constructed in (3.3). Since each step outlined above is injective, we obtain an injection
from SYT(8,,/pre) to ShSYT' (0n/ — Tr.0)-

Note that Step (3) is not obviously bijective, since Theorem 2.10 only implies the
forwards direction. This completes our bijective proof of Theorem 1.7, hence also of
Theorem 1.2. 0

3.4. PrROOF OF THEOREM 1.3. Start by generating a random T € ShSYT’(gk —Te’m)
using either [19] or [62]. Each algorithm involves O(k?) iterations of O(k) steps, each
step involving moving a single square, giving the total O(k3) cost. Use the algorithm
above to compute ¢(T') € SYT(8;,/p"™). The cost of the Worley-Sagan insertion is
equal to that of RSK, thus bounded by O(k®logk) in this case [55]. This implies the
total bound as in the theorem. g

4. K-THEORETIC EXTENSIONS

4.1. K-THEORETIC OBJECTS. The objects and maps introduced in §2 have K-
theoretic analogues. We give compact descriptions of these objects, referring the
reader to our references for concrete examples.

For \ a partition, a set-valued standard Young tableau of shape X and size n is a func-
tion T': Dy — 2" so that T(i,j) # @, maxT(i,j) < minT(i+1,5), min T (i, j+1)
and UG jyep,T'(i,j) = [n]. Note the latter condition requires the entries of T' to be

(4)Strictly speaking, it follows from Theorem 1.7 that our map 1 in Proposition 3.7 is bijective.
The argument here is employed to obtain a self-contained proof.
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disjoint. Let SYT () be the set-valued tableaux of shape A and SYT,, () be the subset
of tableaux whose size is n.

Similarly, for p a shifted shape, one defines shifted set valued standard tableaur,
denoted by ShSYT (1) and ShSYT,, (1), as well as marked shifted set valued standard

tableauz, denoted by ShSYT/(,u) and ShSYT;(,u). In the latter case, when ¢ > j each
value in T'(i, j) is marked or unmarked individually. For || = n, note that SYT(\) =
SYT(A). Likewise, if |u| = m then ShSYT,,(x) = ShSYT(u) and ShSYT/(,u) =
ShSYT?(1).

For T € SYT,,()\), the descent set is Des(T) := {i € [n—1] : i is strictly above i+1}
as before. Similarly, for U € ShSYT;(M), the descent set of U is defined the same as
for marked shifted standard tableaux. Let U° be the tableau obtained from U by
marking every unmarked value and unmarking every marked value in off-diagonal
entries of U. It is easy to see that Lemma 2.1 extends to the set-valued setting.

LEMMA 4.1. For X a shifted shape and T € ShSYT;()\), we have: Des(T°) = Des(T')°.
For S C [n — 1], recall the definition of Ig from §2.3. Define

(4.1) Gy = Z Z ot and GP, = Z Z xt.

TeSYT()) i€Ipes(T) TEShSYT (p) i€Des(T)

These definitions are non-standard, differing from the standard definitions by the
invertible substitution of variables z; — == and a factor of (—1)M which is more or
less an application of the w involution for symmetric functions; see [56, Thm 6.11], [27,
Thm 1.3] and [8, Cor. 6.6]. The tableaux T arising from the summations of (4.1) are
multiset-valued semistandard tableaux, while the standard definition is in terms of
set-valued semistandard tableaux.

The K-theoretic analogue of Worley—Sagan insertion is called shifted Hecke inser-
tion, introduced in [57]. Rather than define this map, we refer the reader to [27, §2.2]
for a verbose definition, or [30, §5.2] for a pseudocode description. An implementation
of shifted Hecke insertion is available at [32].

The K-Knuth relations are the transformations:

achb <> cab, bac <> bca, aba <> bab, aa<+>a with a<b<e.

For a word a = (a1,a2,...,a,), a K-Knuth move is an application of a K—Knuth
relation, while a weak K-Knuth move is a K—Knuth move or the exchange of the
first two entries a; and as. Two words a and b are K-Knuth equivalent if they differ
by a sequence of K—Knuth moves and weak K-Knuth equivalent if they differ by a
sequence of weak K—Knuth moves. These notions of equivalence are introduced in [10]
as K-theoretic analogues of Knuth and shifted Knuth equivalence.

For p a shifted shape, let INC(p) € ShSSYT (1) be the subset of T whose rows are
strictly increasing.

THEOREM 4.2.
(1) [57, Thm 5.19] Shifted Hecke insertion is a bijection from words of length n
to pairs (Psm, Qsm) of tableauz where Pspy € INC(u) and Qsg € ShSYT;(u)
for some shifted shape p.
(2) [27, Cor. 2.18] and [10, Cor. 7.2] If Psy(a) = Psy(b), then a and b are
shifted K-Knuth equivalent. The converse holds when Psg(a) is a minimal

increasing tableau.
(3) [27, Prop. 2.24] For every word a, we have Des(a) = Des(Qgsu(a)).

REMARK 4.3. Note Theorem 4.2(2) is a weaker statement than Theorem 2.6(2). An
analogue of Theorem 2.7 should exist for shifted Hecke insertion, but does not appear
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in the literature. There is a K-theoretic analogue of jeu de taquin [75, 14] that we do
not require. At present, there is no K-theoretic analogue of mixed shifted insertion.

Hecke expressions. The 0-Hecke monoid (S,,0) of the symmetric group replaces
the relation 312 = 1 with the relation s; o s; = s;. For w a permutation, we say
a = (ay,...,ap) is a 0-Hecke expression for w if w = s,, 0 ---054,. Let H(w) be the
set of 0-Hecke expressions for w and H,,(w) be the subset of expressions of length n.

For p = {(w), note Hp(w) = R(w).

THEOREM 4.4 ([51, Prop. 14], see also [79, §3]). For each fully commutative permuta-
tion w, there is a bijection res : SYT,(o(w)) = Hn(w) so that

Des(res(T")) = Des(T')".

We should mention that the descent set relationship is not stated explicitly in [51],
but follows immediately from their proof. The construction of res parallels that of .
Let w be fully commutative and let a = (a1, ...,a,) € H(w). For each i € [p], s.t.

Salo...osaiil #Salo...osai,
place ¢ in the same entry as would be done in ®. Similarly, for each i € [p], s.t.
Salo...osaq‘,_l :salo..'OSai7

there exists maximal h < i with ap, = a;; place i in the same cell as h in this case.
Finally, there are K-theoretic analogues of Proposition 2.14 and Corollary 2.15.

PROPOSITION 4.5. For w Grassmannian, the set H(w) is a single K—Knuth class. In
particular, the set H(w’) is a single K-Knuth class.

A proof of the proposition is implicit in [10, Thm. 6.2], and follows directly by
combining [56, Thm. 3.16] and [61, Lem. 5.4], since Grassmannian permutations are
vexillary.

4.2. K-THEORETIC RESULTS. In this section, we explain how to extend Theorem 1.2
to set-valued tableaux. Along the way, we prove K-theoretic extensions of Theo-
rems 1.5,1.6, and 1.7. Our construction is essentially the same as ¢ with the necessary
K-theoretic substitutions:
7= TS a Qs Qsu(a).

The proofs from 3 will extend almost verbatim. By Theorem 4.4 and Theorem 4.2(3),
we see that p reverses descent sets.

To begin, we extend Proposition 3.3 and Theorems 1.5 and 1.6 to the K-theoretic
setting.

PROPOSITION 4.6. The map @ is bijection: SY T, (6,) — ShSYT;n(gn) that reverses
descent sets.

Proof. By Proposition 4.5, the set H(w’") is a single K-Knuth equivalence class.
Moreover, the first two entries in each a € H(w’") are odd, so it is a single weak K-
Knuth equivalence class. To see that @ is a bijection, apply Theorem 4.2(1) and (2).
Finally, observe that Pgp(a) is a minimal increasing tableau for some a € H(w®")
(this was already shown in the proof of Proposition 3.3). O

Denote by A the ring generated by GP,’s, see [37].
THEOREM 4.7 ([8, Thm. 6.7]). Let u C &,. Then Gs,;, € A. Moreover, we have

G[;"/” = ZV b, GP, where each b, is a non-negative integer.
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Proof. By Theorem 4.4, we have:

Gs,/u = Z Z Z 2t

n2l acH, (win/r) i€l(pes(a)e)r

Since H(w‘s"/ “) is closed under K—Knuth moves, it is a finite union of K—Knuth
classes. Additionally, the first two entries of a € "H(w‘s"/ “) must both be odd. This
implies ’H(w‘sn/ ) is a union of (possibly fewer) weak K-Knuth classes. Therefore
by Theorem 4.2(2), we see Gj, /, is a sum of finitely many GP,’s, and the result
follows. 0

COROLLARY 4.8 ([1, Thm 1.3]). For all . C 6, , we have G5, /, = G5,/ -

Proof. By Theorem 4.7, both Gs, ,, and Gj, /v can be expressed as generating
functions over marked shifted semi-standard set-valued tableaux, which have the
descent-set complementing involution o. Therefore, the result follows by observing
that a = (a1,...,a,) = (n —a1,...,n — a,) is descent-set complementing bijection
H(won/1) — H(wdn/1). O

Next, we give an algebraic proof for a K-theoretic analogue of Theorem 1.7, which
we will use to prove the K-theoretic analogue of Theorem 1.2.

THEOREM 4.9. For £ +m < n, Gs,/,, . = GP,,

—Tem

Proof. Combining [29, Cor 6.22] and [46, Cor. 4.6], we see Gy, /, is a single symplec-
tic stable Grothendieck polynomial for some fixed-point-free involution y. By Theo-
rem 1.7 we see S5, /5, = Po,—7,,,, 50 y is FPF-vexillary in the sense of [30]. The

result now follows from [47, Cor. 3.11] and [31, Cor. 5.9], since with each application
of Corollary 3.11 only one term occurs on the RHS after cancelling like terms. O

THEOREM 4.10. The map @ : SY T, (0n/pe.m) — ShSSYTIm(gn — To.m) @S a bijec-
tion.

Proof. We construct the inverse map as before. Fix T' € ShSYT;n(Qn — T¢.m). Con-
struct T by filling entries in g,,/(0n — Te,m) as described in (3.3), and let P; be the
minimal increasing tableau of shape g,. One can easily check the first £ - m steps to
invert shifted Hecke insertion will coincide with those used in inverting Worley—Sagan
insertion. Similarly, applying res~! will then result in a tableau T € SYT(4,,) that,
when restricted to D,, .., gives the super standard tableau of that shape. The forward
direction now follows by Theorems 1.2 and 4.9. O

For geometric reasons, it is easier to work with symplectic stable Grothendieck
polynomials in our proof of Theorem 4.9. This is the same identification used by
Lewis and Marberg in their proof of Theorem 4.7. However, we define © using shifted
Hecke insertion rather than its symplectic analogue [45], so that it is manifestly a
generalization of .

5. FINAL REMARKS

5.1. In [59], Purbhoo constructs a bijection SYT(6,) — ShSYT'(g,) via a jeu de
taquin-like algorithm called conversion. By [25, Prop. 7.1], his map is equivalent to
the alternate bijection we define after Lemma 3.8, which has a conversion formulation
in full generality.
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5.2.  John Stembridge proved Theorem 1.5 in June 2004, but the proof was never
published [70]. Two proofs of Theorem 1.5 were given in [60, Cor. 7.32], where the
authors also attributed this result to Stembridge. A different algebraic proof was given
in [24, Solution to Exc. 2.9.25]. Recently, a generalization of the theorem to stable
Grothendieck polynomials is given in [1]

A different generalization to Macdonald’s ninth variation Schur functions was given
in [20]; the proof is based on the Hamel-Goulden identities.

5.3.  The approach in [41] to the proof of Theorem 1.1 is based on explicit computa-
tion of determinants. This type of argument somewhat hides the role of the staircase
shape which is crucial for the proof. In a forthcoming paper [42] the authors extend
the determinant approach from 0y /(b%) to all dx/u using certain new determinantal
and g-determinantal identities.

5.4. Let q(n) be the queer Lie superalgebra. There is a q(n)-crystal structure on
the set of words [n]™ of length m on the alphabet [n]. The semistandard version of
Theorem 2.8(1) [67, Def. 1.2] gives

MS: [n]™ — | | ShSSYT'()) x ShSYT()),
AFEm
where w — (Pus(w), Qus(w)).

The connected component of the crystal in which a word w € [n]™ is found is spec-
ified by Qums(w), giving a q(n)-crystal structure on shifted marked semistandard
tableaux [36, Thm 3.2] (see also [35]). Using the obvious correspondence between a
partition without a staircase and the complementary shape in a larger square, by [12,
Prop. 23|, a q(n)-crystal structure on the set of semistandard skew tableaux with
maximum entry n of shape staircase minus rectangle is obtained by sending a tableau
T to a word wr € [n]™ by scanning rows from top to bottom, with each row read
from right to left and where a box with the entry ¢ is recorded as n + 1 — .

By uniqueness of crystals, it follows that a bijection from skew semistandard
tableaux to shifted marked semistandard tableaux (each with entries bounded by n)
is given by Puys(wr), where wr is the reading word (as above) of a skew tableau T
The bijective correspondence of Theorem 1.2 follows by restricting to the zero-weight
space when n = m (containing tableaux with standard content).

ExAMPLE 5.1. Continuing with Example 3.6, for

1[3[11]
T = 2[6
5[9

[oo] <]
=
o

we construct the reading word wp = (1,9,11,6,10,3,7,8,2,5,4), which mixed inserts
to the pair
78]
1iq ) -
11

Restricting to Pyg(wr) gives the desired bijection; it is possible to explicitly char-
acterize Qus(wr). Note that this bijection works equally well when starting with a
skew semistandard tableau instead of a skew standard tableau.

(PMS(U}T);QMS(U)T)) = (Ilﬁ g 81 » |4
7

[0]

BEE
©
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5.5. For symmetries of LR—coefficients, see [6, 34]. See also a bijective proof in [54]
relating the highly symmetric BZ—triangles and the (usual) LR-tableaux. In summary,
all these hidden symmetries of LR-tableaux have now been established via a chain of
bijections. See also an unusual construction in [74] which trades off effectiveness of a
combinatorial interpretation for greater symmetry. Finally, we refer to [53] for a brief
overview of further examples of hidden symmetry.

5.6. Random generation (sampling) of combinatorial objects from the (exactly) uni-
form distribution is a classical problem in both Combinatorics, see e.g. [52], and Theo-
retical Computer Science, see e.g. [38]. The approach of using determinantal formulas
for uniform random generation of planar structures was introduced by Wilson [77].

For Young tableaux of staircase minus rectangle shape, our approach is also greatly
superior to the MCMC approach for the nearly uniform generation of linear extensions
of all posets. Indeed, the best known general bound is O(n3logn) time for n-element
posets, due to Bubley and Dyer [9]. In our case, we have n = O(k?), giving only
a O(kSlogk) time, which is much weaker compared with the O(k®logk) time in
Theorem 1.3. It would be interesting to see if a nearly linear MCMC algorithm can
be obtain for nearly uniform sampling from SYT(A/u) in our case, or (even better)
for general skew shapes.

Finally, we should mention a detailed complexity analysis of the NPS algorithm
given in [66]; similar results likely hold for Fischer’s algorithm [19]. Note that a rough
O(k?) suffices for our purposes as the cost of the algorithm is (marginally) dominated
by the Worley—Sagan insertion.

5.7. Theorem 4.7 does not have the same applications as Theorem 1.3, since there
is no known probabilistic algorithm to sample from ShSSYT/(Qn — Tg,m) uniformly
at random, or even nearly-uniformly. In fact, we are only aware of a few incremental
results for the number of certain set-valued tableaux in some nice special cases, see
e.g. [16, 61]. In particular, no determinantal formula is known for the number of set-
valued standard tableaux, cf. the discussion in [48, §5]. It would be interesting to show
that the number of such tableaux is #P-complete.

5.8. Note that our bijection proving (1.2) is not computable in linear time in con-
trast with bijections in [54], nor is it easily comparable with bijections in [55] since
the lengths of parts are not in binary. It would be interesting to show that in the
terminology of [55], this bijection is linear time equivalent to the bijection in [34].

5.9. Theorem 1.7 has a geometric explanation in terms of certain spherical orbit clo-
sures on the type A flag varieties (see [30, Thm 4.58]). Here, the skew Schur functions
are geometric representatives for Schubert varieties indexed by fully commutative
permutations, while the Schur P—functions represent certain involution Schubert va-
rieties. The use of R(w’) in our proof reflects the fact, shown in [28, Prop. 3.30],
that the varieties in question have the same cohomology representatives.

From this perspective, the desired bijection follows from applying both ®~! and
involution Coxeter—Knuth insertion [30, Thm 5.17] to R(w’"/#). In this setting, the
involution Coxeter—Knuth insertion restricts to the Worley—Sagan insertion, recover-
ing . We use the parallel theory for fixed-point-free involution Schubert varieties in
our proof of Theorem 4.9 since their K-theory is easier to understand.

The corresponding involutions are Z-Grassmannian in the sense of [30]. By analogy
with the map @, it is an interesting open question to give a direct bijection between
reduced involution words for Z-Grassmannian involutions and marked shifted tableaux
of the appropriate shape. Here, direct can mean either without using an insertion
algorithm or while using O(|A| log |A|) operations.
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FIGURE 3. Simulations for ¥ = 300. Left column: SYT(d;) and
ShSYT (o). Middle column: SYT(d;/b%) and ShSYT(p — 7%°) with
(a,b) = (60,100). Right column: SYT(8;/b%) and ShSYT(o — 7?)
with (a,b) = (100, 160).

5.10. Our proof of Theorem 4.9 in fact proves a stronger statement. If y is a
FPF-vexillary fixed-point-free involution in the sense of [31], we show its symplectic
Grothendieck polynomial is a single GP,. The analogous statement for vexillary
permutations appears in [61, Lem. 5.4]. As a consequence, the insertion tableau Pgp
associated to y must be a unique rectification target in the sense of [10]. Identify-
ing unique rectification targets is an interesting and challenging question that has
received some attention [21]

5.11. The limit curves of random standard Young tableaux are of interest in inte-
grable probability as in some cases they can be computed exactly. Most recently, their
existence has been shown for a large class of skew shapes [23, 73]. For both the stair-
case [4] and the shifted staircase [43], these limit curves coincide with limit curves for
the square [58] when restricted to either triangle.

We implemented our bijection for uniformly sampling from SYT(d5/b%) in Sage,
see the proof of Theorem 1.3. Our code is available online on CoCalc [32]. It would
be interesting to see if there are exact formulas for limit shapes in this case.

5.12. It follows from Lemma 2.1 and our bijective proof of Theorem 1.2, that this
theorem has a g-analogue where the tableaux are weighted with ¢™*(7) where maj(T)
is the major index (see e.g. [68, §7.19]). It would be interesting to find a g-analogue
of Theorem 1.3.

Let us note that the same (numerical) g-analogue of Theorem 1.1 is given in [41, 50].
Paper [49] gave a combinatorial interpretation for the GF over semistandard Young
tableaux of skew and shifted skew shapes, which can be viewed as another natural
g-analogue of f# = |SYT(\/u)|. Finally, Kerov defined a g-hook walk in [39]. His
approach extends to the weighted case [13] and then can be modified to the shifted
weighted case [40], which includes the g-shifted case as a special case.
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