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Abstract

Large atmospheric boundary layer fluctuations and smaller turbine-scale vorticity dynamics are separately hypothesized
to initiate the wind turbine wake meandering phenomenon, a coherent, dynamic, turbine-scale oscillation of the far
wake. Triadic interactions, the mechanism of energy transfers between scales, manifest as triples of wavenumbers or
frequencies and can be characterized through bispectral analyses. The bispectrum, which correlates the two frequencies
to their sum, is calculated by two recently developed multi-dimensional modal decomposition methods: scale-specific
energy transfer method and bispectral mode decomposition. Large-eddy simulation of a utility-scale wind turbine in an
atmospheric boundary layer with a broad range of large length-scales is used to acquire instantaneous velocity snapshots.
The bispectrum from both methods identifies prominent upwind and wake meandering interactions that create a broad
range of energy scales including the wake meandering scale. The coherent kinetic energy associated with the interactions
shows strong correlation between upwind scales and wake meandering.
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1. Introduction1

Wind energy is derived from the kinetic energy avail-2

able in the large-scale motions (> 1km) in the atmospheric3

boundary layer (ABL). However, the energy is harvested4

in the small surface sub-layer on the order of the scale of5

the turbine rotor (∼ 100m), while the blades have length-6

scales that are only a fraction of that size (∼ 1m). The7

disparate length-scales present around a wind turbine have8

been shown to have an effect on the formation and dy-9

namic evolution of the wind turbine wake [1, 2, 3, 4] as10

well as effect the variability of power production [5]. New11

wind farms face substantial uncertainty in power produc-12

tion [6], and some developers [7] have been forced to lower13

estimates citing model inaccuracy. In order reduce the lev-14

elized cost of electricity to remain competitive compared15

to other power producers, wind farm models must become16

more accurate. The interactions among these disparate17

length-scales drive serious challenges to explain the tur-18

bulence mechanisms that transport energy and dynamics19

between the atmosphere and wind farms.20

The genesis and evolution of wake meandering, a turbine-21

scale coherent oscillation of the wind turbine far wake, is22

still not understood. The wake motion affects wind tur-23

bines downstream in a wind farm [5], increases the vari-24

ability of energy production [5], and has a negative influ-25

ence on dynamic loading and aeroelasticity of downstream26

wind turbines [8, 9]. The stochastic meandering amplitude27
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and wavelength play a particularly crucial role in the un-28

steady dynamics of wake recovery and wake interactions29

in wind farms [5]. The large ABL-scales [10] and the small30

turbine-scales [11] have been separately hypothesized to31

initiate the wake meandering phenomenon. However, it32

is not known what scale is dominant in producing wake33

meandering.34

Velocity scale interactions are a consequence of the35

quadratic nonlinearity embedded in the momentum equa-36

tion. This is commonly observed in the theory of the en-37

ergy cascade, where energy transfers from energy-containing38

scales through the inertial sub-scale range and finally dis-39

sipated in the dissipation range. However, quadratic non-40

linearity stipulates that scales interact in a triad of three41

wavenumbers or frequencies (κ1,κ2 and κ3 or f1, f2 and42

f3) under the sum-zero condition: (e.g., κ1 ±κ2 ±κ3 = 043

or f1 ± f2 ± f3 = 0) [12, 13]. Triadic interactions have44

been widely studied [14, 15, 16] as deviations from classi-45

cal energy cascade. They can be used to understand non-46

locality [17, 16], which can lead to events such as inverse47

cascade and extreme dissipation.48

Assessment of triads can be accomplished through sig-49

nal processing of a higher-order spectral analysis: the bis-50

pectrum, an analysis of quadratic phase coupling. While51

similar to the power spectrum, the second-order spectrum,52

the bispectrum is related to the skewness and is a function53

of two frequencies. It has been used to identify triadic in-54

teractions in high Reynolds number shear layers [18, 19,55

20]. However, classical bispectrum signal processing anal-56

ysis is only capable of detecting phase coupling in one-57
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dimensional signals.58

Multi-dimensional analysis with large quantities of spatio-59

temporal data have become ubiquitous in fluid dynam-60

ics. A class of analyses that provides clear analysis and61

data reduction is modal decomposition. Flow variables62

are decomposed into the sum of the products of ampli-63

tude, temporal coefficient, and spatial mode. The most64

common approach is the method of snapshots [21], which65

uses an eigendecomposition of the covariance matrix to66

produce the proper orthogonal decomposition (POD). In67

wind energy, POD has been employed to assess coherent68

features [22, 23], which are based on orthogonality to op-69

timally represent the variance of flow variables. Spectral70

analysis using dynamic mode decomposition [24], spectral71

POD [25] and Koopman mode decomposition [26] include72

analysis based on the frequency domain, which has been73

used to identify wind turbine wake features [2, 27, 28]74

Recently, several modal decomposition analyses to assess75

scale interactions have been developed. Bispectral mode76

decomposition (BMD) was developed to extend classical77

bispectral analysis to multi-dimensional data [29]. A scale-78

specific energy transfer method (SSETM) [30] builds on79

DMD, the triple decomposition of velocity, and transport80

of kinetic energy to derive transport equations for scales81

and explicitly quantifies triadic interaction and their ki-82

netic energy.83

In this work, we assess the wake meandering scale and84

its interactions with upwind scales of a wind turbine. We85

compare the bispectrum and inter-related modal analyses86

produced by the BMD and SSETM with respect to wake87

meandering. Section 2 details the bispectral analysis re-88

lated to BMD and SSETM. Section 3 discusses the numer-89

ical methods and computational details of the large-eddy90

simulation of a wind turbine. Section 4 discusses results of91

the bispectral analyses, and section 5 provides conclusions.92

2. Bispectral Analysis93

Triadic interactions arise from the quadratic nonlin-
earity in the Navier-Stokes equations. They are a triplet
of wavenumbers or frequencies that sum to zero [13, 31].
The sum-zero condition for wavenumbers or frequencies is
given by

κl ± κm ± κn = 0, f l ± fm ± fn = 0, (1)

respectively, where we can consider both sum-interactions
(e.g., f3 = f1 + f2) and difference-interactions (e.g., f3 =
f1 − f2). For a random signal, power spectral density
Φuu(f) is related to the autocorrelation function Ruu(τ) =
E[u(t)u(t − τ)], where E[·] is the expectation operator,
through a Fourier transform as the following:

Φuu(f) =

∫ ∞

−∞
Ruu(τ) exp(−i2πfτ)dτ. (2)

Analogously, the bispectral density is related to the third
moment, Ruuu(τ1, τ2) = E[u(t)u(t− τ1)u(t− τ2)], through

a double Fourier transform of two frequencies:

Φuuu(f1, f2) =

∫ ∞

−∞

∫ ∞

−∞
Ruuu(τ1, τ2)×

exp(−i2π(f1τ1 + f2τ2))dτ1dτ2. (3)

The bispectral density is composed of two frequencies, cor-
relates those frequencies to their sum, and can detect the
triadic interactions of the frequencies. Similar to the power
spectral density, the bispectral density can be defined in
terms of the expectation of Fourier modes û(f) as follows:

Φuuu(f1, f2) = lim
T→∞

1

T
E[û(f1)

∗û(f2)
∗û(f1 + f2)]. (4)

The bispectrum is a hexagonal region that is function94

of the two frequencies and is restricted by the Nyquist95

frequency fN . The principal region corresponds to sum-96

interactions and the conjugate region corresponds to difference-97

interactions. All other regions due to symmetry contain98

only redundant information.99

We detail the two recently developed methods employed100

in the work herein to assess triadic interactions based on101

mode decompositions of the velocity variables. Both meth-102

ods quantify a bispectrum based on two frequencies and103

enforces the triadic sum-zero condition.104

2.1. Scale-specific Energy Transfer Method105

The method is built on the assumption that coher-106

ent turbulent fluctuations can be related to a specific fre-107

quency scale. In particular, the method employs the triple108

decomposition of the spatio-temporally varying velocity109

variable (u(x, t)) into mean (U(x)), coherent (ũ(x, t)),110

and random (u′′(x, t)) components, which is given by the111

following: u(x, t) = U(x) + ũ(x, t) + u′′(x, t). Triple de-112

composition requires criteria to separate the three compo-113

nents. The mean velocity can be extracted via time aver-114

aging; however, that does not provide enough information115

to separate the coherent and random signals. Additionally116

in this method, the coherent velocity will be decomposed117

into R coherent velocities identified by a specific discrete118

frequency scale. We consider our data to be a matrix of119

columns of the instantaneous snapshots of the velocity flow120

field.121

Mode decomposition is tasked to separate the coher-
ent velocity from the random velocity and separate the
coherent velocity into a series of scale-specific coherent ve-
locities. The mode decomposition of the velocity employs
dynamic mode decomposition (DMD), which is a linear
approximation of the Koopman operator. The first aspect
of DMD is singular value regularization, which projects
the fluctuating velocity (velocity minus the mean veloc-
ity) into POD modes. Typically, only a percentage (in
most cases > 90%) of the total accumulated energy of the
POD modes are retained. DMD proceeds to decompose
the flow field based on discrete frequencies. Each mode
is associated with a discrete frequency based on the spec-
tral characteristics of linear discrete dynamical system of
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ui+1 = Aui, where ui is the ith time snapshot of the multi-
dimensional velocity field and A is the approximate linear
operator. The scale-specific coherent velocity is quantified
by the product:

ũl = ϕlαlµl, (5)

where a scalar amplitude αl, complex temporal coefficient
µl(t) = iµl

i + µl
r = eλlt, and spatial mode ϕl(x) are com-

puted by DMD. The eigenvalue, λl, is associated with
a specific time or frequency scale. The summation of R
modes gives the coherent velocity

ũ =
R∑
l=0

ũl. (6)

Using a sparsity-promoting DMD [32], a final R number122

of modes are selected. These R modes are used to directly123

calculate the scale-specific coherent velocity. The random124

velocity is obtained from the difference of the total velocity125

and sum of mean and coherent velocity.126

The scale-specific coherent kinetic energy (CKE) asso-
ciated with the velocity of two scales is obtained by the
inner product of the lth and mth coherent velocities

k̃l,m =
1

2
ũl · ũm∗ =

1

2
µlµm∗αlαm

(
ϕl · ϕm∗) , (7)

where ∗ is the complex conjugate and · averaging is tem-127

poral averaging.128

The sum-zero condition of triadic interactions is im-
plied in scale-specific CKE through the product of tem-
poral components: µlµm∗ = exp[(λl + λm∗)t] = exp[λnt],
a sum-interaction. Using the condition, the scale-specific
CKE can be summed over all triads to obtain the summed
scale-specific CKE of one scale

k̃l =
∑

l=±m±n

k̃m,n. (8)

Finally, the total CKE is obtained by summing over all
combinations as follows

k̃ =
∑
l

k̃l =
∑
l

∑
l=±m±n

k̃
m,n

. (9)

This method quantifies the kinetic energy associated with129

triadic interactions. Following Ref. [30], the transport130

of scale-specific CKE and the interscale transfer can be131

quantified. Here, the focus will be on the kinetic energy132

associated with the scales to quantify the bispectrum of133

dominant coherent scales.134

2.2. Bispectral Mode Decomposition135

The bispectral mode decomposition is a relatively new136

method that inherits properties of the bispectral density137

for multi-dimensional data. Triadic interactions are em-138

bedded directly as the method correlates two frequencies139

to their sum. As described in Ref. [29], the method adapts140

Welch’s method to calculate an ensemble average over re-141

alizations with the Fourier transforms. For brevity, we142

will not re-derive the entire method herein, but detail the143

important aspects that will be employed in the analysis.144

Similar to SSETM, we start with a series of snapshots145

of the instantaneous velocity flowfield u(x, t). The dis-146

crete Fourier transform at the lth frequency is given by147

ûl = û(x, fl) and the element-wise product of two trans-148

forms is given by ûl◦m = û(x, fl) ◦ û(x, fm), where ◦ is149

the element-wise product. Using the Welch’s like method,150

Nblk realization of the Fourier transform of are obtained,151

û1(x, fl), û
2(x, fl), . . . û

Nblk(x, fl), where superscript in-152

dicates realization.153

The bispectral decomposition is similarly computed to
the bispectral density in Eq. (4) by defining an integral
measure of the point-wise bispectral density as

b(fl, fm) ≡ E

[∫
Ω

û∗
l ◦ û∗

m ◦ ûl+mdx

]
= E[ûH

l◦mWûl+m], (10)

where ∗ is the complex conjugate, H is the complex conju-154

gate transpose, W is a diagonal matrix of spatial quadra-155

ture weights and Ω is the spatial domain of the flow.156

Similar to other mode decompositions, modes are re-
lated to expansions. Two linear expansions with coeffi-
cients aij accounting for the interaction of the two frequen-
cies, ûl◦m or cross-frequency field, and outcome, ûl+m or
bispectral modes, as follows

ϕi
l◦m =

Nblk∑
j=1

aij(fl+m)ûj
l◦m = Ûl◦mai (11)

ϕi
l+m =

Nblk∑
j=1

aij(fl+m)ûj
l+m = Ûl+mai, (12)

where Ûl◦m and Ûl+m are data matrices made of col-
umn vectors of ûj

l◦m and ûj
l+m, respectively, and ai =

[ai1(fl+m), ai1(fl+m), . . . , aiNblk(fl+m)]T is the i-th vector
of expansion coefficients for the lth and mth frequency
pair. The goal is the find the values of aij(fl+m) that max-
imize the absolute value of b(fl, fm) in Eq. (10). The opti-
mal coefficients a1 are found on the unit vector ∥a1∥ = 1,
which reduce the optimization to

a1 = arg max
∣∣∣∣aHBa

aHa

∣∣∣∣ , (13)

where B is the weighted bispectral density matrix and is
given as

B =
1

Nblk
ÛH

l◦mWÛl+m. (14)

The optimization problem entails finding the vector that
maximizes the Rayleigh quotient of B. The numerical
range of the set of all Rayleigh quotients is

F (B) =
aHBa

aHa
, (15)
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where the largest absolute value of the numerical range is
defined as the numerical radius

r(B) = max |λ| : λ ∈ F (B),

= max

∣∣∣∣aH
1 Ba1

aH
1 a1

∣∣∣∣ (16)

where λ are the eigenvalues of F (B). Hence, the opti-
mization problem is tasked to find the numerical radius,
largest eigenvalue, of the Rayleigh quotient. The numer-
ical radius, referred to as the complex mode bispectrum
λ1, is given as

λ1 =

∣∣∣∣aH
1 Ba1

aH
1 a1

∣∣∣∣ . (17)

We follow the algorithm in Ref. [29], which employs the157

method of He and Watson [33].158

3. Large-eddy Simulations159

We employ the Virtual Flow Simulator (VFS-Wind)[34]
for large-eddy simulations. The incompressible, spatially-
filtered continuity and momentum equations in generalized
curvilinear coordinates [35] are formulated as follows in in-
dex notation where indices i, j, k, l = 1, 2, 3 and repeated
indices imply summation:

J
∂U i

∂ξi
= 0, (18)

1

J

∂U i

∂t
=

ξil
J

(
− ∂

∂ξj
(U jul) +

µ

ρ

∂

∂ξj

(
gjk

J

∂ul

∂ξk

)
−1

ρ

∂

∂ξj

(
ξjl p

J

)
− 1

ρ

∂τlj
∂ξj

)
,

(19)

where ξi are the curvilinear coordinates, ξil = ∂ξi/∂xl are
the transformation metrics, J is the Jacobian of the ge-
ometric transformation, ui is the i-th component of the
velocity vector in Cartesian coordinates, U i=(ξim/J)um is
the contravariant volume flux, gjk = ξjl ξ

k
l are the compo-

nents of the contravariant metric tensor, ρ is the density,
µ is the dynamic viscosity, p is the pressure, and τij repre-
sents the anisotropic part of the subgrid-scale stress tensor.
The closure for τij is provided by a dynamic Smagorinsky
model [36, 37]

τij −
1

3
τkkδij = −2ρνtS̃ij , (20)

where the (̃·) denotes the grid filtering operation, ρ is the
density, and S̃ij is the filtered strain-rate tensor. The sub-
grid scale (SGS) eddy viscosity νt is given by

νt = Cs∆
2|S̃|, (21)

where Cs is a dynamic Smagorinsky coefficient [38], ∆ is160

the filter size taken as the cubic root of the cell volume,161

and |S̃| = (2S̃ij S̃ij)
1
2 .162

Figure 1: The upwind (a) mean streamwise velocity normalized by
the turbine hub height velocity, Uh and (b) turbulence kinetic energy
normalized by the upwind friction velocity, uτ . The blue shaded
region shows the extent of the turbine rotor.

The forces exerted by the wind turbine are parame-163

terized by an actuator surface model [39]. The blade is164

represented by a two-dimensional discretized surface along165

the chord and radial directions where the forces are de-166

termined using a blade element method based on tabu-167

lated blade twist angle and chord length. The lift L =168
1
2ρCLc|Vrel|2nL and drag D = 1

2ρCDc|Vrel|2nD, where169

CL and CD are tabulated lift and drag coefficients at angle170

of attack, c is the blade chord, Vrel is the relative incom-171

ing velocity, and nL and nD are the unit vectors in the172

directions of lift and drag, respectively. The relative in-173

coming velocity Vrel = ux(XLE)ex + (uθ(XLE)− Ωr)eθ,174

where XLE represents the leading edge coordinates of the175

blade, Ω is the rotational speed of the rotor, ex and eθ176

are the unit vectors in the axial flow and rotor rotating177

directions, respectively. A smoothed discrete delta func-178

tion [40] is employed to interpolate the background ve-179

locity to the blade. Stall delay model [41] and the tip-loss180

correction [42] are employed to take into account the three-181

dimensional effects.182

A model for the nacelle [43] is used to represent the183

nacelle geometry by the actual surface of the nacelle with184

distributed forces decomposed into two parts, the normal185

component and the tangential component. The normal186

component of the force is computed in a way to satisfy the187

non-penetration condition, which is similar to the direct188

forcing immersed boundary methods [44]. The tangential189

forces are based on the incoming velocity and an empirical190

friction coefficient [45].191

We undertake a large-eddy simulation of a single wind192

turbine to resemble the Clipper Liberty C96 2.5 MW tur-193

bine [46, 47], with a diameter D = 96 m and hub height194

H = 80 m. A constant tip-speed ratio λ = θ̇D/2Uh = 8.0,195

where θ̇ is the angular velocity and Uh is the hub height196

velocity, is enforced. A precursory simulation of a bound-197

ary layer inflow is performed to provide an instantaneous198

incoming velocity resembling an atmospheric boundary199

layer. The domain of (Lx × Ly × Lz) = (120δ × δ × 6δ),200

where δ is the boundary layer height, discretized with a201
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uniform mesh in the vertical direction of δ/∆y = 200 and202

in the streamwise and spanwise by δ/∆x = 30. Figure 1203

shows the mean streamwise velocity profile and the tur-204

bulence kinetic energy, which shows strong velocity and205

kinetic energy gradients across the turbine rotor. The pre-206

cursory simulation is used to resolve a broad range of up-207

wind length scales including long and very long coherent208

structures, spanwise features that appear in boundary lay-209

ers [48, 49], which have been hypothesized have an effect210

on wind turbine wake meandering. These features are typ-211

ically 2δ − 10δ long. The Reynolds number based on the212

boundary layer bulk velocity Reb = Ubδ/ν = 6.6×108 and213

friction velocity and hub height Reτ = uτH/ν = 2.5×106.214

The computational domain of the primary wind tur-215

bine (Lx × Ly × Lz) = (14D × δ × 6D) is discretized in216

a Cartesian grid (Nx × Ny × Nz) = (500 × 150 × 200),217

where a uniform grid with space of D/50 is located in a218

2D cubic box around the turbine blades. The grid is then219

stretched towards the domain boundaries. The turbine is220

positioned 2D downwind of the inflow at the center of the221

y − z plane and provides buffer region to allow the inflow222

from the precursory simulation to relax to the finer pri-223

mary turbine grid. Instantaneous velocity planes from the224

precursory simulation are interpolated to the primary grid225

locations at the inflow at every time step. Free-slip bound-226

ary conditions are imposed in the top (+y) and spanwise227

(±z) directions, while the bottom wall (−y) is a no-slip228

condition with a wall model. For validation of the numer-229

ical methods of this turbine and grid spacing, please see230

Ref. [47].231

4. Results232

The instantaneous streamwise velocity in the wake of233

the wind turbine is shown in Fig. 2(a). Several coherent234

features are readily apparent, including the large velocity235

deficit that forms behind the wind turbine and the in-236

ner wake that forms due to the nacelle at the center of237

the rotor. Both persist for several diameters downwind238

as the inner wake expands into the outer wake formed by239

the velocity deficit. Within three diameters downwind,240

the motions of wake meandering become evident with an241

oscillation of the velocity deficit in the vertical direction.242

Due to the strong turbulence in the incoming boundary243

layer flow, and the influence of the wall downwind of the244

turbine, the coherent velocity deficit collapses. Wake me-245

andering is present in the far wake at x/D > 6, albeit246

more obvious in the spanwise direction (see Ref. [47]), as247

the periodic oscillation will convect downwind.248

The turbulence kinetic energy (TKE) at the centerline249

plane, as shown in Fig. 2(b), shows the strong fluctuations250

behind the nacelle and at the tip position, similar to Refs.251

[3, 27, 50, 51, 46]. As the inner and outer wake close to252

the rotor evolve, the TKE spreads. Around x/D = 5, the253

maximum TKE in the far wake is co-located where wake254

meandering begins to appear in Fig. 2(a). Wake mean-255

dering increases the variations in the velocity as strong256

0
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−0.1 0.5 1.0

0 2 4 6 8 10 12
x/D
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h

Figure 2: Contours of the centerline plane of the (a) instantaneous
streamwise velocity u and (b) turbulence kinetic energy k normalized
by the mean hub height velocity.

periodic motions appear. The high TKE in the far wake257

persists downstream to mark the region where the wake258

meanders. The convergence of the statistics of the ve-259

locity, including the mean, variance, and skewness, are260

described in Appendix A.261

The pre-multiplied spectra of the transverse fluctuating262

velocity fΦww upwind and at various locations downwind263

are shown in Fig. 3(a) at the blade midpoint above the264

centerline, y = H + D/4 to capture signatures of both265

tip- and hub-located coherent structures. The transverse266

velocity is employed due to the strong spanwise regular267

fluctuations due to wake meandering. From the spectra,268

we can identify important frequency modes, in terms of269

Strouhal number normalized by the Uh and D, in the flow270

pertaining to the wake meandering. In the wind turbine271

wake, these are the characteristics scales. Starting with272

the upwind position at x/D = −2, the spectrum peaks273

broadly and flatly around St ≈ 0.2 − 0.4, and quickly274

decreases. Note that for the upwind turbulence bound-275

ary, D and Uh are the not characteristic scales, the dis-276

tance from the wall H and the friction velocity are char-277

acteristic scales, prominent scales on the pre-multiplied278

(compensated) spectrum are shifted to the left for the up-279

wind location due to the scaling. In the low frequency280

range under St < 0.2, about a decade of the frequency281

range scales with f and is dynamically important to in-282

coming flow. Two frequencies in the range as labeled in283
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Fig. 3(a), St l1 = 0.06 and St l2 = 0.12 have relatively284

higher energy locally. The peaks are related to the long285

and very long coherent structures that appear in turbu-286

lent boundary layers [49, 48]. The precursory simulation287

was specifically designed to capture these long physical288

features. The location of the turbine is within the lower289

10% of the boundary layer (inner region) and located in290

the log-layer. Spectral peaks at St l1 and St l2 correspond291

well to peaks identified in Ref. [52] in the log-layer with292

a non-dimensional frequency fδ/U∞ = 5 and 10. The293

effects of these frequencies will be explored below. Aft of294

the wind turbine, the range of peak frequencies spans from295

0.1 < St < 3, before energy decreases. The turbulence296

produced by the wind turbine add markedly more fluctu-297

ations to the wake over this broad range. At the closest298

location to the rotor plane of x/D = 1, a peak around hub299

vortex frequency St = Sth = 0.55 is consistent with the300

previous studies [47, 53] and the frequency of the rotor301

rotation Str = D/(TUh) = 2.5, where T is the period of302

rotation, clearly appear. Both the hub vortex and the tip303

vortices quickly dissipate downwind. The energy modes304

at x/D = 2 are similar, but the effect of the hub vortex is305

slightly diminished compared to closer to the rotor plane.306

This is due to the expansion of the inner shear layer as307

discussed in Fig. 2(b). A dominate frequency around the308

wake meandering frequency Stw ≈ 0.15 is present down-309

wind at locations x/D = 4 and 6. This is consistent with a310

long list of published studies [11, 54, 55, 56, 57, 3, 47, 27].311

In comparison to the spectra at x/D = −2, no spectra in312

the wake demonstrates high energy at St l1 or St l2. How-313

ever, all have similar energy ranges around the wake me-314

andering frequency. This will be explored further below.315

Figure 3(b) shows contours of the pre-multiplied spec-316

trum of the streamwise velocity fΦuu along the centerline317

at hub height. Both the wake meandering and hub vortex318

modes appear at the hub height. Additional peaks ap-319

pear for frequencies greater and less than wake meander-320

ing frequency. A peak, that can also be observed in Fig.321

3(a) at St = 0.3 can be related to wake meandering as322

the first harmonic of the periodic oscillation (2Stw). This323

frequency mode continues far downstream, but does not324

appear until x/D > 5, where wake meandering has com-325

menced. Additional very low frequencies could be related326

to spectral energy in the incoming flow that is modulated327

by the wind turbine. From the centerline at hub height,328

it is difficult to observe any modes related to the rotor329

rotation.330

Next, we focus on the calculation of the bispectrum and331

start with examining the results of DMD, which is used to332

calculate the bispectrum and scale-specific kinetic energy333

for SSETM. Furthermore, DMD provides an alternative334

method to identify dominant modes based on frequency.335

We employ the DMD algorithm that projects the snapshot336

matrix into POD modes for dimensionality reduction and337

elimination of some spurious modes. The snapshot matrix338

is populated with slices of the three-dimensional velocity339

vector on the x − y centerline plane. The constant time340

Figure 3: (a) Pre-mulitplied power spectral density of the transverse
velocity fΦww at locations x/D = −2, 1, 2, 4 and 6 at y = H +D/4
(vertical lines indicate St l1, St l2 Stw, Sth, and Str) and (b) con-
tours of the pre-mulitplied power spectral density of the streamwise
velocity fΦuu at the hub height y = H. (vertical lines indicate Stw,
2Stw, and Sth).
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step between each snapshot is T/30 and a total of 10,000341

snapshots where collected. The mode decomposition is342

performed on the largest POD modes, which has the ac-343

cumulated energy corresponding to 90% of the total TKE344

in the flow. Based on previous analyses in Refs. [27, 53],345

TKE associated with wake meandering and hub vortex is346

expected to make up a large fraction of the total TKE and347

be identified as one of the most amplified dynamic modes.348

The total number of dynamic modes that are identified in349

the top 90% of TKE is R = 990. A sparse sampling algo-350

rithm [32] is utilized to identify the most important modes351

based on the criterion of an L1 error minimization of the352

selected modes and the full POD space. Two additional353

selections are identified R = 775 and R = 492, where the354

error residual increases with fewer selected modes.355

Figure 4 shows the spectra of the DMD frequency and356

normalized DMD amplitude of three selected mode set.357

The frequency is obtained from the imaginary part of the358

Ritz values µi, the spectra component of the DMD tu-359

ple, as St = I(lnµi)/∆t(D/Uh). As the number of modes360

selected decreases fewer modes at higher frequencies as361

well as some lower frequencies are selected. From Fig. 4,362

it is most obvious that the large frequency modes up to363

St ≈ 2.5 are removed by sparse sampling. Modes with364

frequencies higher than this value, including modes re-365

lated to the rotor frequency are not identified based on366

the coherence in the top 90% of the TKE, suggesting that367

the energy related the tip vortices is relatively small com-368

pared to the overall wake and atmospheric boundary layer369

flow. The highest amplitudes are located near the same370

frequency range shown in the pre-multiplied spectra in371

Fig. 3, where the highest amplitude is related to wake372

meandering. In fact, the highest amplitude is associated373

with the frequency of St = Stw. Other high amplitudes374

are associated with lower frequencies of the incoming flow375

as well. Furthermore, DMD is able to identify the hub376

vortex mode as well, but it is not present in the smallest377

sparse sampling set of R = 493.378

The bispectrum as computed for SSETM is the rela-
tionship between scales quantified by the magnitude of the
correlation of the amplitudes and temporal (spectral) co-
efficients: αlµlαmµm. The triadic non-zero conditions are
explicitly imposed by the relationship:

µlµm = exp(i2πf lt/∆t) exp(i2πfmt/∆t)

= exp(i2π(f l + fm)t/∆t). (22)

The natural log of the coefficient, lnαlµlαmµm, is shown379

in Fig. 5(a), 5(b), and 5(c), where Fig. 5(b) zooms in380

on the important difference-interactions at low frequencies381

and Fig. 5(c) zooms in on the important sum-interactions382

at low frequencies. In Fig. 5(a), the bispectrum of all383

modes computed from DMD modes are shown for the sum-384

interactions and the difference-interactions. Note that all385

other quadrants of the bispectrum contain redundant data386

and only these two triangular regions are required to ob-387

serve the entire bispectrum. The bispectrum is also bounded388

Figure 4: DMD amplitudes |αi|/max(α) and positive St for different
sparse sampling levels. Vertical lines indicate Stw, Sth, and Str

by the Nyquist limit, which is Sts = 15, to create a quadri-389

lateral region instead of a triangular region; however, the390

frequencies obtained from DMD and those that are im-391

portant to this analysis are much lower than the Nyquist392

frequency. The convergence of the bispectrum is discussed393

in Appendix A.394

Figure 5(a) also shows the outline of the bispectrum395

that is created by reducing the number of modes selected.396

As the number of modes is reduced, more are concen-397

trated near the lower frequencies. At higher frequencies,398

only select frequency interactions are identified. Bands of399

high bispectral coefficient are observed running at constant400

St l or Stm. The higher bands as well as diagonal bands401

are observed at lower frequencies St l,Stm < 1. There402

are some differences between the sum-interactions and the403

difference-interactions around St l = ±0.15 as shown in404

Fig. 5(b). The bispectral coefficient is higher for the sum-405

interactions compared to the difference-interactions in the406

low frequencies. This is an indication that around the wake407

meandering frequency, it is more prevalent for modes to in-408

teract and form higher frequency modes. Some of the dom-409

inant difference-interactions are highlighted in Fig. 5(b).410

These include the wake meandering self-interaction, where411

the third frequency in the triad is the mean flow distortion.412

This shows the prominence of interactions to add to CKE413

in the zero frequency. There are also interactions with414

other low frequencies including the upwind frequencies.415

Prominent sum-interactions are highlighted in Fig. 5(c).416

In this view, the sum-interactions between the wake mean-417

dering modes and other dominant scales can be identified.418
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Figure 5: (a) Magnitude of the bispectral correlation for SSETM for R = 990. Contour lines outlines all selected scales for R = 755 (green)
and R = 493 (blue). (b) Zoom-in to dashed squared outlined area showing difference-interactions on (a). (c) Zoom-in to solid squared outlined
area showing sum-interactions on (a)
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The wake meandering mode interacts strongly with itself419

and the first harmonic interacts with itself. Additionally,420

we identify interactions with wake meandering from the421

lower frequency signals highlighted in the upwind spec-422

trum at x/D = −2 in Fig. 3(a). The bispectral coeffi-423

cients of these sum-interactions are high and suggest that424

upwind flow features interact with downwind wake mean-425

dering. These produce energy at new frequencies that are426

unrelated to both wake meandering and the incoming flow.427

The BMD is performed on the same snapshot ma-428

trix described above and employed for the SSETM with429

DMD. Because it is similar to Welch’s method, BMD splits430

the snapshot matrix into several overlapping segments of431

N = 211, with an overlap of N/2. This is the same segmen-432

tation used for the spectral power density shown in Fig.433

3(b), which also is produced from the same snapshots, for434

consistency. The convergence of the bispectrum is dis-435

cussed in Appendix A. The mode bispectrum λ1 is cal-436

culated for the sum-interaction and difference-interaction437

regions as shown in Fig. 6(a). The bispectrum of BMD438

is both similar and different in comparison to the SSETM439

bispectrum. First, the frequency range is significantly dif-440

ferent as BMD captures discrete frequencies from the low-441

est range to the Nyquist frequency. The top bound of the442

bispectrum region is based on the Nyquist frequency of the443

data acquisition Sts. Figure 6(a) shows high correlation in444

the lowest frequency ranges, similar to Fig. 5(a), but inter-445

actions at St l = 0 = St0 are especially high. Additionally,446

there are two strong interaction regions that exist, which447

are not identified with SSETM, these are the interactions448

with the rotor frequency, specifically, the blade frequency449

Stb = 3Str, which is shown in Fig. 6(b). One region is450

designated with interactions with the low frequencies, in-451

cluding St0 and the wake meandering frequency, Stw. The452

second region is the self-interaction of the blade frequency453

with itself. The bispectra of higher harmonics of the blade454

frequency are relatively lower and are not readily identifi-455

able in Fig. 6(a).456

Figure 6(c) shows the low frequency region of the difference-457

interactions, similar to the focus in Fig. 5(b). There are458

several peaks that corresponds to the wake meandering fre-459

quency and its harmonic. These locations are difference-460

interactions that total to a third frequency of zero, the461

mean flow distortion. Similar to SSETM, BMD captures462

these interactions. Figure 6(d) focuses on the dominant463

low frequency region of the sum-interactions. Peaks in the464

bispectrum appear at each of the same locations as seen465

in Fig. 5(c), including the incoming low frequency scales,466

the wake meandering scale and the first harmonic of the467

wake meandering scale. The relative peaks compared to468

the other frequency pairs are similar to the SSETM bispec-469

trum. This is an additional confirmation that these scales470

are dominant and identified by several different method-471

ologies. Additionally, the bispectrum is higher along the472

constant Stw lines, indicating that many scales interact473

with the bispectrum. As the frequencies approach St0, the474

bispectrum increases to its highest value. This is slightly475

different than the SSETM bispectrum where the wake me-476

andering self-interaction is the highest value. The BMD477

method produces a higher resolution of frequencies com-478

pared to the SSETM. Nevertheless, both methods pro-479

duce a similar bispectrum that can be used to investi-480

gate how scales interact. However, one interesting ob-481

servation is the difference in the relative magnitude of482

the difference-interactions to the sum-interactions between483

the two methods. BMD shows much stronger difference-484

interactions at low frequencies over a larger range than485

the sum-interactions. SSETM does not capture the same486

differences.487

Next, we look at the spatial distribution of how se-488

lect, dominant scales interact with each other starting with489

the kinetic energy identified from the SSETM. Figure 7490

shows the scale-specific CKE of the interactions between491

the wake meandering scale and three other scales: mean492

(St0), upwind (St l1), and first harmonic of wake mean-493

dering (2Stw). In SSETM, the CKE attributed to the494

interaction of two scales is explicitly calculated. First, the495

interaction of wake meandering with the mean flow distor-496

tion is quantified. Note that based on the sum-zero con-497

dition, the sum-interaction of these two scales adds to ki-498

netic energy in the wake meandering scale. In other words,499

the CKE in this interaction is a portion of the total wake500

meandering CKE. Strong interactions occur in the wake501

shear layer at the top and the bottom in the far wake af-502

ter x/D > 2. However, there is little interaction between503

the scales along the centerline. Wake meandering in the504

vertical direction is significantly affected by the presence505

of the wall and the high shear in the wall boundary layer506

formed by the recovering wake and the wall. The vertical507

wake meandering amplitude is attenuated in the far wake508

with larger attenuation with increased distance from the509

turbine. The turbulent scales in the wall boundary layer510

for this analysis are not coherent so there is no scale as-511

sociated with it. The effects on the wake meandering are512

captured by this triad of the interaction of wake meander-513

ing and mean flow distortion. Similarly, the shear layer514

of the mean flow above the turbine has an increased in-515

teraction with wake meandering, but is not as strong as516

there are upwind scales that also contribute to the kinetic517

at this location. The interaction between the upwind scale518

and wake meandering in Fig. 7(b) shows that the inter-519

action of these two modes has highest energy in the far520

wake in x/D > 6, which suggests that wake meandering521

is augmented by upwind energy far downwind. This sum-522

interaction produces a scale at a new frequency slightly523

larger than the wake meandering frequency that could ex-524

plain the broadness of the power spectral density in Fig.525

3(a) and 3(b) around the wake meandering frequency peak.526

Finally, Fig. 7(c) shows the difference-interaction of the527

first harmonic of the wake meandering and the wake me-528

andering scale. These sum to the wake meandering scale.529

The CKE in this interaction is relatively small compared530

to the other examples shown. This suggests that energy531

does not transfer to the wake meandering scale from higher532
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Figure 6: (a) Magnitude of the BMD. (b) Zoom-in to white dashed squared outlined area on (a). (c) Zoom-in to black dashed squared
outlined area on (a). (d) Zoom-in to solid squared outlined area on (a),
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Figure 7: Contours of SSETM scale-specific coherent kinetic energy
of select interactions of the wake meandering mode for (a) mean-wake
meandering sum-interaction (St0,Stw), (b) upwind-wake meander-
ing sum-interaction (St l1,Stw), and (c) first harmonic-wake mean-
dering difference-interaction (2Stw,Stw).

harmonics.533

The sum of all scale interactions (both sum-interactions534

and difference-interactions) that correspond to the mean535

flow distortion (St0) scale are shown as the summed scale-536

specific CKE in Fig. 8. This scale has the most CKE com-537

pared to all other scales in the flow, and due to this, the538

spatial distribution mirrors that of the TKE shown in Fig.539

2(b). There is high energy near the hub vortex in the near540

wake, along the top and bottom tip shear layers starting541

at the rotor, and in the far wake due to wake meandering.542

Figures 8(b) and 8(c) show the summed scale-specific CKE543

for the wake meandering (Stw) and first harmonic of the544

wake meandering (2Stw), respectively. There is signifi-545

cantly less CKE in the scale compared to that of the mean546

flow, however, the wake meandering scale accounts for the547

second most CKE after St0. The CKE in wake meander-548

ing, shows a patterned oscillation that is expected from the549

wave-like pattern of wake meandering. The first harmonic550

shows similar patterns with a higher wavenumber. The551

peak CKE in wake meandering is at the top-tip position552

around x/D = 4, where TKE peaks and wake meandering553

oscillations are observed to be strongest.554

Now, we focus on the spatial distribution of BMD bis-555

pectral modes of the streamwise velocity. These quantify556

the interaction of two scales where one of the scales is the557

wake meandering scale. Note that these calculate a mode558

field corresponding to the streamwise velocity and not the559

CKE identified in SSETM. This provides a complementary560

view of how scales interact with each other. Figure 9(a)561

shows the sum-interaction of the upwind scale St l1 and562

wake meandering Stw, similar to Fig. 7(b). The mode is563
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Figure 8: Contours of SSETM summed scale-specific coherent ki-
netic energy of (a) mean (St0), (b) wake meandering (Stw), and (c)
first harmonic of wake meandering (2Stw) modes. Note the scale
transformation in (b) and (c).

distributed with the wave-like oscillation with a wavenum-564

ber similar to Fig. 8(b). The interaction is highest in565

the top-tip shear layer peaking in the far wake. This cor-566

roborates the scale-specific CKE of the interaction where567

CKE peaks in the far wake. The mode suggests that the568

upwind scale and wake meandering interact in the shear569

layer and energy is transported into the wake, which helps570

explain high CKE of this interaction throughout the far571

wake. Figure 9(b) shows the self sum-interaction of the572

wake meandering mode. Note that the sum of this inter-573

action creates the first harmonic of wake meandering. This574

interaction represents a significant portion of total CKE575

in the first harmonic, which is corroborated by SSETM.576

The spatial distribution is similar to the summed scale-577

specific CKE of the first harmonic in Fig. 8(c), especially578

with a similar wavenumber. Finally, we look at an inter-579

action that is only captured by the BMD and shown in the580

bispectrum in Fig. 6(a), the interaction of the mean flow581

and blade frequency. The spatial distribution is only non-582

zero around the rotor and does not appear downwind. Any583

sum-interaction between the blade frequency and wake me-584

andering frequency is significantly smaller than this inter-585

action.586

The BMD cross-frequency field shows the “cause” of587

the interactions compared to the “effect” shown by the588

bispectral modes in Fig. 9. Figure 10(a) shows the cross589

frequency field corresponding to the interaction of the up-590

wind scale and wake meandering scale. The cross fre-591

quency shows a similar spatial distribution that identifies592

the peak interaction in the top-tip shear layer. However,593

it also demonstrates that the far wake is affected by the594

interaction. Figure 10(b) is the cross-frequency field of595
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Figure 9: Contours of the BMD bispectral mode ϕl+m streamwise
velocity component of select interactions related to wake meander-
ing (a) upwind-wake meandering sum-interaction (St l1,Stw), (b) self
wake meandering sum-interaction (Stw,Stw), and (c) mean-blade
sum-interaction (St0,Stb).

the wake meandering self-interaction and shows the peak596

interactions occur in the shear layer of the wake. The597

cross-frequency field of the mean flow and blade frequency598

where the interaction is only observed near the rotor.599

5. Conclusion600

Wake meandering has a dominant effect on the dy-601

namics of a wind turbine wake, but is just one of many602

frequency scales that are present. Scales interact in triads603

under the sum-zero condition. While the interactions are604

difficult to examine under commonly used spectral anal-605

yses of the power spectral density, they are fundamental606

in energy transfer in turbulent flows. Bispectral analyses607

offer a new tool to understand the scale interactions. We608

presented two different analyses that are based on modal609

decomposition to address the multi-dimensionality of the610

data. The first is the method developed through DMD and611

the triple decomposition of turbulence (SSETM), which612

quantifies the kinetic energy and energy transfer and trans-613

port of specific scale interactions. The second is a method614

based on the bispectral density, which uses correlations615

between three frequencies to identify triads (BMD). Both616

methods produced a bispectrum of frequencies of a util-617

ity wind turbine in a boundary layer. Upwind, rotor,618

and downwind dominant frequencies were identified by619

the spectral analyses. All were able to identify low up-620

wind frequencies and far wake meandering. These inter-621

actions were the most dominant and shown to contain sig-622

nificant amount of energy. While the SSETM was able to623

quantify the kinetic energy related to triadic interactions,624

Figure 10: Contours of the BMD cross-frequency field ϕl◦m stream-
wise velocity component of select interactions related to wake mean-
dering for (a) upwind-wake meandering sum-interaction (St l1,Stw),
(b) self wake meandering sum-interaction (Stw,Stw), and (c) mean-
blade sum-interaction (St0,Stb).

the BMD was able to quantify modes and cross-frequency625

fields showing how scales interact. Both corroborated evi-626

dence of the effects of upwind scales on wake meandering627

and how higher-order harmonics of the wake meandering628

frequency are produced. Identifying the effects of rotor629

frequency scales on wake meandering proved to be more630

difficult as those interactions were not shown to be as sig-631

nificant compared to upwind or self wake meandering in-632

teractions. Further work will seek to enhance on identifi-633

cation and data reduction and quantify energy transfer to634

elucidate cause-and-effects of wake meandering.635
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Appendix A. Statistical Convergence645

Obtaining statistical convergence of the velocity is a646

challenge due to the long time averaging intervals that are647

necessary. The power spectral density requires the second648

moment of the velocity to be converged, while the bis-649

pectral density requires the third moment or skewness to650

be converged. Time averaging of the LES was performed651
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over almost 1000 turbine rotation periods, which is over a652

considerably longer time period compared to other stud-653

ies [27, 51]. Figure A.11 shows the effect of time aver-654

aging over a time interval equal to tT0, where T0 is the655

initial time, of the mean velocity components U , velocity656

variances uu, and the skewness of the velocity components657

uuu. The variance and skewness are normalized by the up-658

wind friction velocity uτ . The convergence study is shown659

for four locations downwind of the rotor at hub height660

along the centerline. Each component of each statistic661

shows that a final converged statistic is reached before the662

end of the time averaging period.663

Appendix A. Bispectral Method Convergence664

The convergence of the bispectral methods for both665

cases is based on the parameters and tolerances of the al-666

gorithms and the amount of data retained from the snap-667

shots. For SSETM the most dominant effect on the bispec-668

trum in terms of convergence and the accuracy is number669

of modes retained for DMD both from the SVD regulariza-670

tion and the sparsity promoting DMD. Figure A.12 shows671

the convergence of the summed bispectrum, which is the672

some of all frequency pairs that equal the third frequency673

as defined in Eq. (8). As the number of modes is reduced,674

the high frequency modes begin to diverge. However, in675

our analysis, we focus only on the low frequency modes,676

which are the same for each case. For the BMD, the con-677

vergence is based on the number of realizations Nblk that678

are employed. Figure A.13 shows the convergence of BMD679

method for different number of realizations. All tolerances680

used in the methods are based on relative errors less than681

1× 10−8.682
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