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Assessment of scale interactions associated with wake meandering using bispectral
analysis methodologies

Dinesh Kumar Kinjangi and Daniel Foti®

Department of Mechanical Engineering, University of Memphis, Memphis, Tennessee, USA

Abstract

Large atmospheric boundary layer fluctuations and smaller turbine-scale vorticity dynamics are separately hypothesized
to initiate the wind turbine wake meandering phenomenon, a coherent, dynamic, turbine-scale oscillation of the far
wake. Triadic interactions, the mechanism of energy transfers between scales, manifest as triples of wavenumbers or
frequencies and can be characterized through bispectral analyses. The bispectrum, which correlates the two frequencies
to their sum, is calculated by two recently developed multi-dimensional modal decomposition methods: scale-specific
energy transfer method and bispectral mode decomposition. Large-eddy simulation of a utility-scale wind turbine in an
atmospheric boundary layer with a broad range of large length-scales is used to acquire instantaneous velocity snapshots.
The bispectrum from both methods identifies prominent upwind and wake meandering interactions that create a broad
range of energy scales including the wake meandering scale. The coherent kinetic energy associated with the interactions

shows strong correlation between upwind scales and wake meandering.
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1. Introduction 28

29
Wind energy is derived from the kinetic energy avail-

able in the large-scale motions (> 1km) in the atmospheric |
boundary layer (ABL). However, the energy is harvested .,
in the small surface sub-layer on the order of the scale of
the turbine rotor (~ 100m), while the blades have length-
scales that are only a fraction of that size (~ 1m). The
disparate length-scales present around a wind turbine have __
been shown to have an effect on the formation and dy- .
namic evolution of the wind turbine wake [1, 2, 3, 4] as
well as effect the variability of power production [5]. New
wind farms face substantial uncertainty in power produc-
tion [6], and some developers [7] have been forced to lower
estimates citing model inaccuracy. In order reduce the lev-
elized cost of electricity to remain competitive compared
to other power producers, wind farm models must become ,,
more accurate. The interactions among these disparate
length-scales drive serious challenges to explain the tur-
bulence mechanisms that transport energy and dynamics
between the atmosphere and wind farms. s

The genesis and evolution of wake meandering, a turbine;
scale coherent oscillation of the wind turbine far wake, is
still not understood. The wake motion affects wind tur-
bines downstream in a wind farm [5], increases the vari-
ability of energy production [5], and has a negative influ-
ence on dynamic loading and aeroelasticity of downstream ,
wind turbines [8, 9]. The stochastic meandering amplitude .

1

5

56

1 57

email: dvfoti@memphis.edu

Preprint submitted to Elsevier

and wavelength play a particularly crucial role in the un-
steady dynamics of wake recovery and wake interactions
in wind farms [5]. The large ABL-scales [10] and the small
turbine-scales [11] have been separately hypothesized to
initiate the wake meandering phenomenon. However, it
is not known what scale is dominant in producing wake
meandering.

Velocity scale interactions are a consequence of the
quadratic nonlinearity embedded in the momentum equa-
tion. This is commonly observed in the theory of the en-
ergy cascade, where energy transfers from energy-containing
scales through the inertial sub-scale range and finally dis-
sipated in the dissipation range. However, quadratic non-
linearity stipulates that scales interact in a triad of three
wavenumbers or frequencies (K1, ke and k3 or fi, fo and
f3) under the sum-zero condition: (e.g., kK1 £ ko £ k3 =0
or fi + fo + f3 = 0) [12, 13]. Triadic interactions have
been widely studied [14, 15, 16] as deviations from classi-
cal energy cascade. They can be used to understand non-
locality [17, 16], which can lead to events such as inverse
cascade and extreme dissipation.

Assessment of triads can be accomplished through sig-
nal processing of a higher-order spectral analysis: the bis-
pectrum, an analysis of quadratic phase coupling. While
similar to the power spectrum, the second-order spectrum,
the bispectrum is related to the skewness and is a function
of two frequencies. It has been used to identify triadic in-
teractions in high Reynolds number shear layers [18, 19,
20]. However, classical bispectrum signal processing anal-
ysis is only capable of detecting phase coupling in one-
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dimensional signals.

Multi-dimensional analysis with large quantities of spatio-

temporal data have become ubiquitous in fluid dynam-
ics. A class of analyses that provides clear analysis and
data reduction is modal decomposition. Flow variables
are decomposed into the sum of the products of ampli-
tude, temporal coefficient, and spatial mode. The most
common approach is the method of snapshots [21], which
uses an eigendecomposition of the covariance matrix to
produce the proper orthogonal decomposition (POD). In
wind energy, POD has been employed to assess coherent
features [22, 23], which are based on orthogonality to op-
timally represent the variance of flow variables. Spectral
analysis using dynamic mode decomposition [24], spectral
POD [25] and Koopman mode decomposition [26] include o
analysis based on the frequency domain, which has been
used to identify wind turbine wake features [2, 27, 28] ¢
Recently, several modal decomposition analyses to assess 97
scale interactions have been developed. Bispectral mode 9
decomposition (BMD) was developed to extend classical o
bispectral analysis to multi-dimensional data [29]. A scale-10
specific energy transfer method (SSETM) [30] builds ontor
DMD, the triple decomposition of velocity, and transportio:
of kinetic energy to derive transport equations for scalesios
and explicitly quantifies triadic interaction and their ki-104
netic energy.

In this work, we assess the wake meandering scale and1es
its interactions with upwind scales of a wind turbine. Weaos
compare the bispectrum and inter-related modal analysesior
produced by the BMD and SSETM with respect to wakeios
meandering. Section 2 details the bispectral analysis re-io
lated to BMD and SSETM. Section 3 discusses the numer-io
ical methods and computational details of the large-eddyu
simulation of a wind turbine. Section 4 discusses results ofi
the bispectral analyses, and section 5 provides conclusions.s
114
115

2. Bispectral Analysis

116

Triadic interactions arise from the quadratic nonlin-117
earity in the Navier-Stokes equations. They are a triplets
of wavenumbers or frequencies that sum to zero [13, 31].1
The sum-zero condition for wavenumbers or frequencies is20
given by 121

frefmem=0, (1)

respectively, where we can consider both sum-interactions
(e.g., f2 = f1 + f?) and difference-interactions (e.g., f3 =
f'' — f?). For a random signal, power spectral density
@, (f) is related to the autocorrelation function Ry, (7) =
Elu(t)u(t — 7)], where E[-] is the expectation operator,
through a Fourier transform as the following:

Kl K™+ K" =0,

@uu(f)::l/fnARuu(T)exp(—dQWfT)dT. )

Analogously, the bispectral density is related to the third
moment, Ry (71, 72) = Elu(t)u(t — 71 )u(t — 72)], through

a double Fourier transform of two frequencies:

Puuu(f1, f2) = /Z /0; Ry (71, 72) %

GXp(fiQ’/T(flTl +f27'2))d7'1d7’2. (3)

The bispectral density is composed of two frequencies, cor-
relates those frequencies to their sum, and can detect the
triadic interactions of the frequencies. Similar to the power
spectral density, the bispectral density can be defined in
terms of the expectation of Fourier modes i(f) as follows:

L Bla(f) alf) ath + f2))-

dsuuu(fla f2) = Th_r)noo T (4)
The bispectrum is a hexagonal region that is function
of the two frequencies and is restricted by the Nyquist

frequency fny. The principal region corresponds to sum-

interactions and the conjugate region corresponds to difference-

interactions. All other regions due to symmetry contain
only redundant information.

We detail the two recently developed methods employed
in the work herein to assess triadic interactions based on
mode decompositions of the velocity variables. Both meth-
ods quantify a bispectrum based on two frequencies and
enforces the triadic sum-zero condition.

2.1. Scale-specific Energy Transfer Method

The method is built on the assumption that coher-
ent turbulent fluctuations can be related to a specific fre-
quency scale. In particular, the method employs the triple
decomposition of the spatio-temporally varying velocity
variable (u(x,t)) into mean (U(x)), coherent (u(x,t)),
and random (u”(x,t)) components, which is given by the
following: w(x,t) = U(x) + u(x,t) + u”(x,t). Triple de-
composition requires criteria to separate the three compo-
nents. The mean velocity can be extracted via time aver-
aging; however, that does not provide enough information
to separate the coherent and random signals. Additionally
in this method, the coherent velocity will be decomposed
into R coherent velocities identified by a specific discrete
frequency scale. We consider our data to be a matrix of
columns of the instantaneous snapshots of the velocity flow
field.

Mode decomposition is tasked to separate the coher-
ent velocity from the random velocity and separate the
coherent velocity into a series of scale-specific coherent ve-
locities. The mode decomposition of the velocity employs
dynamic mode decomposition (DMD), which is a linear
approximation of the Koopman operator. The first aspect
of DMD is singular value regularization, which projects
the fluctuating velocity (velocity minus the mean veloc-
ity) into POD modes. Typically, only a percentage (in
most cases > 90%) of the total accumulated energy of the
POD modes are retained. DMD proceeds to decompose
the flow field based on discrete frequencies. Each mode
is associated with a discrete frequency based on the spec-
tral characteristics of linear discrete dynamical system of
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u;+1 = Au;, where u; is the ith time snapshot of the multi-ia
dimensional velocity field and A is the approximate linearis
operator. The scale-specific coherent velocity is quantifiedis
by the product: 144

’lNLZ = (Zsl()tl/.tl, (5)145
where a scalar amplitude o, complex temporal coefficient™*
pl(t) = il + pl = eM't, and spatial mode ¢!(x) are com-
puted by DMD. The eigenvalue, A, is associated withjz
a specific time or frequency scale. The summation of R150
modes gives the coherent velocity

R
= § al.
=0

Using a sparsity-promoting DMD [32], a final R number
of modes are selected. These R modes are used to directly
calculate the scale-specific coherent velocity. The random
velocity is obtained from the difference of the total velocity
and sum of mean and coherent velocity.

The scale-specific coherent kinetic energy (CKE) asso-
ciated with the velocity of two scales is obtained by theiss
inner product of the Ith and mth coherent velocities 155

151

152

(6)153

156

(7)

7.l,m 1— ~ 1 m m*
RO = salams = Splpmrala™ (¢ - ¢™)

where *x is the complex conjugate and - averaging is tem-
poral averaging.

The sum-zero condition of triadic interactions is im-
plied in scale-specific CKE through the product of tem-
poral components: u!u™* = exp[(Al + \*)t] = exp[A\"t],
a sum-interaction. Using the condition, the scale-specific
CKE can be summed over all triads to obtain the summed
scale-specific CKE of one scale

K=Y k.

l=+m+n

(8)

Finally, the total CKE is obtained by summing over all
combinations as follows

=Y R =Y

This method quantifies the kinetic energy associated with
triadic interactions. Following Ref. [30], the transport
of scale-specific CKE and the interscale transfer can be
quantified. Here, the focus will be on the kinetic energy
associated with the scales to quantify the bispectrum of
dominant coherent scales.

SOE

l=+m+n

(9)

2.2. Bispectral Mode Decomposition

The bispectral mode decomposition is a relatively new
method that inherits properties of the bispectral density
for multi-dimensional data. Triadic interactions are em-
bedded directly as the method correlates two frequencies
to their sum. As described in Ref. [29], the method adapts

Welch’s method to calculate an ensemble average over re-
alizations with the Fourier transforms. For brevity, we
will not re-derive the entire method herein, but detail the
important aspects that will be employed in the analysis.
Similar to SSETM, we start with a series of snapshots
of the instantaneous velocity flowfield w(x,t). The dis-
crete Fourier transform at the lth frequency is given by
u; = u(x, f1) and the element-wise product of two trans-
forms is given by o = w(x, fi) o w(x, fm), where o is
the element-wise product. Using the Welch’s like method,
Ny realization of the Fourier transform of are obtained,
al(z, fi),a?(x, f;),... 4o (x, f;), where superscript in-
dicates realization.

The bispectral decomposition is similarly computed to
the bispectral density in Eq. (4) by defining an integral
measure of the point-wise bispectral density as

b(flvfm) =F |:/ '&? O’ll;kn O’Ill+md:11
2

= E[’a{ng’ﬁ,ler], (10)

where * is the complex conjugate, H is the complex conju-
gate transpose, W is a diagonal matrix of spatial quadra-
ture weights and (2 is the spatial domain of the flow.

Similar to other mode decompositions, modes are re-
lated to expansions. Two linear expansions with coeffi-
cients a;; accounting for the interaction of the two frequen-
cies, Ujom or cross-frequency field, and outcome, ;4 or
bispectral modes, as follows

‘ Nk _ )
Plom = Z @ij (fr4m) 8oy, = Uloma; (11)
j=1
' Npix ) R
¢;+m = Z aij(fl+7rz)ﬂ{+m = Ul+maia (12)
j=1

where Ulo'rn and Ul+m are data matrices made of col-
umn vectors of 4y, and @], respectively, and a; =
[aﬂ(fl_,_m), aﬂ(fH_m), ooy QN (fH_m)]T is the i-th vector
of expansion coefficients for the I/th and mth frequency
pair. The goal is the find the values of a;;( fi4+m) that max-
imize the absolute value of b(f, f,) in Eq. (10). The opti-
mal coefficients a; are found on the unit vector |la1|| = 1,
which reduce the optimization to

a?Ba
afa

a; = arg max

: (13)

where B is the weighted bispectral density matrix and is

given as
1

blk

B ﬁllc;[mWﬁler' (14)
The optimization problem entails finding the vector that
maximizes the Rayleigh quotient of B. The numerical

range of the set of all Rayleigh quotients is

—F (15)
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where the largest absolute value of the numerical range is
defined as the numerical radius

r(B) =max |\ : A € F(B),
al’ Ba,

H
a; a

— max

(16)

where A are the eigenvalues of F(B). Hence, the opti-
mization problem is tasked to find the numerical radius,
largest eigenvalue, of the Rayleigh quotient. The numer-
ical radius, referred to as the complex mode bispectrum
A1, is given as

al’Ba,

a{{al

We follow the algorithm in Ref. [29], which employs the
method of He and Watson [33].

AL = . (17)

3. Large-eddy Simulations 103
164

We employ the Virtual Flow Simulator (VFS-Wind)[34]ss
for large-eddy simulations. The incompressible, spatially-16s
filtered continuity and momentum equations in generalized1s?
curvilinear coordinates [35] are formulated as follows in in-1es

dex notation where indices i, j, k,l = 1,2,3 and repeated1s

indices imply summation: 170
aUZ 172
- =0 18
38 ’ ( )173
VoU g a0 d (g o -
Jor U ( o+ oe U e
(19)

_10 (&p

pO&i \ J
where ¢% are the curvilinear coordinates, g;’ = 0% /Ox; arer®
the transformation metrics, J is the Jacobian of the ge-1
ometric transformation, w; is the i-th component of thes?
velocity vector in Cartesian coordinates, U'=(&!, /J )uy, ist
the contravariant volume flux, ¢/% = & {lk are the compo-1
nents of the contravariant metric tensor, p is the density,s
i is the dynamic viscosity, p is the pressure, and 7;; repre-
sents the anisotropic part of the subgrid-scale stress tensor.s?

The closure for 7;; is provided by a dynamic Smagorinsky?es

19 i
- ;@ ) 178

179

model [36, 37] 199
190

1 ~
Tijg — g’rkk(;ij = 72,01/2552']', (20)12:

—~ 193
where the (-) denotes the grid filtering operation, p is the,
density, and S;; is the filtered strain-rate tensor. The sub-
grid scale (SGS) eddy viscosity v; is given by 196

197

(21)198

where Cj is a dynamic Smagorinsky coefficient [38], A is™

the filter size taken as the cubic root of the cell volume,™
=, =~ =~ 1

and |S| = (ZSij Sij)f. 2o

vy = C,A?|S],

4
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Figure 1: The upwind (a) mean streamwise velocity normalized by
the turbine hub height velocity, U, and (b) turbulence kinetic energy
normalized by the upwind friction velocity, ur. The blue shaded
region shows the extent of the turbine rotor.

The forces exerted by the wind turbine are parame-
terized by an actuator surface model [39]. The blade is
represented by a two-dimensional discretized surface along
the chord and radial directions where the forces are de-
termined using a blade element method based on tabu-
lated blade twist angle and chord length. The lift L =
%pCLc|Vrel|2nL and drag D = %pC,;;c|V}el|2nD7 where
Cp, and Cp are tabulated lift and drag coeflicients at angle
of attack, c is the blade chord, V,.; is the relative incom-
ing velocity, and n; and np are the unit vectors in the
directions of lift and drag, respectively. The relative in-
coming velocity V,.o; = u(Xpg)e: + (ug(Xrg) — 2r)eq,
where X g represents the leading edge coordinates of the
blade, {2 is the rotational speed of the rotor, e, and ey
are the unit vectors in the axial flow and rotor rotating
directions, respectively. A smoothed discrete delta func-
tion [40] is employed to interpolate the background ve-
locity to the blade. Stall delay model [41] and the tip-loss
correction [42] are employed to take into account the three-
dimensional effects.

A model for the nacelle [43] is used to represent the
nacelle geometry by the actual surface of the nacelle with
distributed forces decomposed into two parts, the normal
component and the tangential component. The normal
component of the force is computed in a way to satisfy the
non-penetration condition, which is similar to the direct
forcing immersed boundary methods [44]. The tangential
forces are based on the incoming velocity and an empirical
friction coefficient [45].

We undertake a large-eddy simulation of a single wind
turbine to resemble the Clipper Liberty C96 2.5 MW tur-
bine [46, 47], with a diameter D = 96 m and hub height
H =80 m. A constant tip-speed ratio A = 9D/2Uh = 8.0,
where 0 is the angular velocity and Uy, is the hub height
velocity, is enforced. A precursory simulation of a bound-
ary layer inflow is performed to provide an instantaneous
incoming velocity resembling an atmospheric boundary
layer. The domain of (L, x Ly x L.) = (120§ x § x 60),
where § is the boundary layer height, discretized with a
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uniform mesh in the vertical direction of 6/A, = 200 and
in the streamwise and spanwise by §/A, = 30. Figure 1
shows the mean streamwise velocity profile and the tur-
bulence kinetic energy, which shows strong velocity and
kinetic energy gradients across the turbine rotor. The pre-
cursory simulation is used to resolve a broad range of up-
wind length scales including long and very long coherent
structures, spanwise features that appear in boundary lay-
ers [48, 49], which have been hypothesized have an effect
on wind turbine wake meandering. These features are typ-
ically 20 — 104 long. The Reynolds number based on the
boundary layer bulk velocity Re, = Upd/v = 6.6 x 108 and
friction velocity and hub height Re, = u, H /v = 2.5 x 106.

The computational domain of the primary wind tur-
bine (L, x L, x L.) = (14D x § x 6D) is discretized in
a Cartesian grid (V; x N, x N;) = (500 x 150 x 200),
where a uniform grid with space of D/50 is located in a
2D cubic box around the turbine blades. The grid is then
stretched towards the domain boundaries. The turbine is
positioned 2D downwind of the inflow at the center of the
y — z plane and provides buffer region to allow the inflow
from the precursory simulation to relax to the finer pri-
mary turbine grid. Instantaneous velocity planes from the
precursory simulation are interpolated to the primary grid
locations at the inflow at every time step. Free-slip bound-
ary conditions are imposed in the top (+y) and spanwise
(+2) directions, while the bottom wall (—y) is a no-slip
condition with a wall model. For validation of the numer-
ical methods of this turbine and grid spacing, please see
Ref. [47].

257
258

4. Results

259

The instantaneous streamwise velocity in the wake of2s0
the wind turbine is shown in Fig. 2(a). Several coherent:
features are readily apparent, including the large velocity2s2
deficit that forms behind the wind turbine and the in-263
ner wake that forms due to the nacelle at the center ofzs+
the rotor. Both persist for several diameters downwind2ss
as the inner wake expands into the outer wake formed byz2ss
the velocity deficit. Within three diameters downwind,27
the motions of wake meandering become evident with an2ss
oscillation of the velocity deficit in the vertical direction.2s
Due to the strong turbulence in the incoming boundaryz2m
layer flow, and the influence of the wall downwind of then
turbine, the coherent velocity deficit collapses. Wake me-272
andering is present in the far wake at x/D > 6, albeites
more obvious in the spanwise direction (see Ref. [47]), as>n
the periodic oscillation will convect downwind. 215

The turbulence kinetic energy (TKE) at the centerliner
plane, as shown in Fig. 2(b), shows the strong fluctuations>
behind the nacelle and at the tip position, similar to Refs.27
[3, 27, 50, 51, 46]. As the inner and outer wake close to2
the rotor evolve, the TKE spreads. Around z/D = 5, the2o
maximum TKE in the far wake is co-located where wakezs
meandering begins to appear in Fig. 2(a). Wake mean-2
dering increases the variations in the velocity as strongzs

5
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Figure 2: Contours of the centerline plane of the (a) instantaneous
streamwise velocity u and (b) turbulence kinetic energy k normalized
by the mean hub height velocity.

periodic motions appear. The high TKE in the far wake
persists downstream to mark the region where the wake
meanders. The convergence of the statistics of the ve-
locity, including the mean, variance, and skewness, are
described in Appendix A.

The pre-multiplied spectra of the transverse fluctuating
velocity f@,,, upwind and at various locations downwind
are shown in Fig. 3(a) at the blade midpoint above the
centerline, y = H + D/4 to capture signatures of both
tip- and hub-located coherent structures. The transverse
velocity is employed due to the strong spanwise regular
fluctuations due to wake meandering. From the spectra,
we can identify important frequency modes, in terms of
Strouhal number normalized by the Uy, and D, in the flow
pertaining to the wake meandering. In the wind turbine
wake, these are the characteristics scales. Starting with
the upwind position at /D = —2, the spectrum peaks
broadly and flatly around St =~ 0.2 — 0.4, and quickly
decreases. Note that for the upwind turbulence bound-
ary, D and Uy, are the not characteristic scales, the dis-
tance from the wall H and the friction velocity are char-
acteristic scales, prominent scales on the pre-multiplied
(compensated) spectrum are shifted to the left for the up-
wind location due to the scaling. In the low frequency
range under St < 0.2, about a decade of the frequency
range scales with f and is dynamically important to in-
coming flow. Two frequencies in the range as labeled in
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Fig. 3(a), St;1 = 0.06 and St;2 = 0.12 have relatively
higher energy locally. The peaks are related to the long
and very long coherent structures that appear in turbu-
lent boundary layers [49, 48]. The precursory simulation
was specifically designed to capture these long physical
features. The location of the turbine is within the lower
10% of the boundary layer (inner region) and located in
the log-layer. Spectral peaks at St;; and St;o correspond
well to peaks identified in Ref. [52] in the log-layer with
a non-dimensional frequency f0/Us = 5 and 10. The
effects of these frequencies will be explored below. Aft of
the wind turbine, the range of peak frequencies spans from
0.1 < St < 3, before energy decreases. The turbulence
produced by the wind turbine add markedly more fluctu-
ations to the wake over this broad range. At the closest
location to the rotor plane of /D = 1, a peak around hub
vortex frequency St = St;, = 0.55 is consistent with the
previous studies [47, 53] and the frequency of the rotor
rotation St, = D/(TU,) = 2.5, where T is the period of
rotation, clearly appear. Both the hub vortex and the tip
vortices quickly dissipate downwind. The energy modes
at /D = 2 are similar, but the effect of the hub vortex is
slightly diminished compared to closer to the rotor plane.
This is due to the expansion of the inner shear layer as
discussed in Fig. 2(b). A dominate frequency around the
wake meandering frequency St,, =~ 0.15 is present down-
wind at locations /D = 4 and 6. This is consistent with a
long list of published studies [11, 54, 55, 56, 57, 3, 47, 27].
In comparison to the spectra at /D = —2, no spectra in
the wake demonstrates high energy at St;; or St;. How-
ever, all have similar energy ranges around the wake me-
andering frequency. This will be explored further below.

Figure 3(b) shows contours of the pre-multiplied spec-
trum of the streamwise velocity f®,, along the centerline
at hub height. Both the wake meandering and hub vortex
modes appear at the hub height. Additional peaks ap-
pear for frequencies greater and less than wake meander-
ing frequency. A peak, that can also be observed in Fig.
3(a) at St = 0.3 can be related to wake meandering as
the first harmonic of the periodic oscillation (2 St,,). This
frequency mode continues far downstream, but does not
appear until /D > 5, where wake meandering has com-
menced. Additional very low frequencies could be related
to spectral energy in the incoming flow that is modulated
by the wind turbine. From the centerline at hub height,
it is difficult to observe any modes related to the rotor
rotation.

Next, we focus on the calculation of the bispectrum and
start with examining the results of DMD, which is used to
calculate the bispectrum and scale-specific kinetic energy
for SSETM. Furthermore, DMD provides an alternative
method to identify dominant modes based on frequency.
We employ the DMD algorithm that projects the snapshot
matrix into POD modes for dimensionality reduction and
elimination of some spurious modes. The snapshot matrix
is populated with slices of the three-dimensional velocity
vector on the x — y centerline plane. The constant time
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step between each snapshot is T'/30 and a total of 10,000
snapshots where collected. The mode decomposition is
performed on the largest POD modes, which has the ac-
cumulated energy corresponding to 90% of the total TKE
in the flow. Based on previous analyses in Refs. [27, 53],
TKE associated with wake meandering and hub vortex is
expected to make up a large fraction of the total TKE and
be identified as one of the most amplified dynamic modes.
The total number of dynamic modes that are identified in
the top 90% of TKE is R = 990. A sparse sampling algo-
rithm [32] is utilized to identify the most important modes
based on the criterion of an L1 error minimization of the
selected modes and the full POD space. Two additional
selections are identified R = 775 and R = 492, where the
error residual increases with fewer selected modes.

Figure 4 shows the spectra of the DMD frequency and
normalized DMD amplitude of three selected mode set.
The frequency is obtained from the imaginary part of the
Ritz values p;, the spectra component of the DMD tu-
ple, as St = Z(Iln u;)/At(D/Up). As the number of modes
selected decreases fewer modes at higher frequencies as
well as some lower frequencies are selected. From Fig. 4,
it is most obvious that the large frequency modes up to
St =~ 2.5 are removed by sparse sampling. Modes with
frequencies higher than this value, including modes re-
lated to the rotor frequency are not identified based on
the coherence in the top 90% of the TKE, suggesting that
the energy related the tip vortices is relatively small com-3s
pared to the overall wake and atmospheric boundary layersso
flow. The highest amplitudes are located near the samess
frequency range shown in the pre-multiplied spectra inss
Fig. 3, where the highest amplitude is related to wakess
meandering. In fact, the highest amplitude is associatedse
with the frequency of St = St,,. Other high amplitudessss
are associated with lower frequencies of the incoming flowsss
as well. Furthermore, DMD is able to identify the hubss
vortex mode as well, but it is not present in the smallestss
sparse sampling set of R = 493. 399

The bispectrum as computed for SSETM is the rela-4o
tionship between scales quantified by the magnitude of theso:
correlation of the amplitudes and temporal (spectral) co-«
efficients: o!pla™p™. The triadic non-zero conditions are:
explicitly imposed by the relationship: 404

405

plu™ = exp(i2m f't At) exp(i2m f™t ) At) 406

= exp(i2n(f' + f™)t/At). (22)7

408

The natural log of the coefficient, In ol pla™pu™, is shownso
in Fig. 5(a), 5(b), and 5(c), where Fig. 5(b) zooms insw
on the important difference-interactions at low frequenciess
and Fig. 5(c) zooms in on the important sum-interactions«2
at low frequencies. In Fig. 5(a), the bispectrum of allas
modes computed from DMD modes are shown for the sum-44
interactions and the difference-interactions. Note that allsas
other quadrants of the bispectrum contain redundant datass
and only these two triangular regions are required to ob-#7
serve the entire bispectrum. The bispectrum is also boundeds
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Figure 4: DMD amplitudes |o;|/ max(«) and positive St for different
sparse sampling levels. Vertical lines indicate St.,, Stp, and St,

by the Nyquist limit, which is Sty = 15, to create a quadri-
lateral region instead of a triangular region; however, the
frequencies obtained from DMD and those that are im-
portant to this analysis are much lower than the Nyquist
frequency. The convergence of the bispectrum is discussed
in Appendix A.

Figure 5(a) also shows the outline of the bispectrum
that is created by reducing the number of modes selected.
As the number of modes is reduced, more are concen-
trated near the lower frequencies. At higher frequencies,
only select frequency interactions are identified. Bands of
high bispectral coefficient are observed running at constant
St' or St™. The higher bands as well as diagonal bands
are observed at lower frequencies St', St™ < 1. There
are some differences between the sum-interactions and the
difference-interactions around St' = +0.15 as shown in
Fig. 5(b). The bispectral coeflicient is higher for the sum-
interactions compared to the difference-interactions in the
low frequencies. This is an indication that around the wake
meandering frequency, it is more prevalent for modes to in-
teract and form higher frequency modes. Some of the dom-
inant difference-interactions are highlighted in Fig. 5(b).
These include the wake meandering self-interaction, where
the third frequency in the triad is the mean flow distortion.
This shows the prominence of interactions to add to CKE
in the zero frequency. There are also interactions with
other low frequencies including the upwind frequencies.

Prominent sum-interactions are highlighted in Fig. 5(c).
In this view, the sum-interactions between the wake mean-
dering modes and other dominant scales can be identified.
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The wake meandering mode interacts strongly with itselfss
and the first harmonic interacts with itself. Additionally,sr
we identify interactions with wake meandering from theas
lower frequency signals highlighted in the upwind spec-s9
trum at /D = —2 in Fig. 3(a). The bispectral coeffi-sso
cients of these sum-interactions are high and suggest thatss
upwind flow features interact with downwind wake mean-ss»
dering. These produce energy at new frequencies that aresss
unrelated to both wake meandering and the incoming flow.sss

The BMD is performed on the same snapshot ma-sss
trix described above and employed for the SSETM withass
DMD. Because it is similar to Welch’s method, BMD splitsas
the snapshot matrix into several overlapping segments ofass
N = 2! with an overlap of N/2. This is the same segmen-ass
tation used for the spectral power density shown in Fig.so
3(b), which also is produced from the same snapshots, forsn
consistency. The convergence of the bispectrum is dis-a
cussed in Appendix A. The mode bispectrum A; is cal-s
culated for the sum-interaction and difference-interactionas
regions as shown in Fig. 6(a). The bispectrum of BMDuos
is both similar and different in comparison to the SSET Maos
bispectrum. First, the frequency range is significantly dif-aor
ferent as BMD captures discrete frequencies from the low-as
est range to the Nyquist frequency. The top bound of theas
bispectrum region is based on the Nyquist frequency of theso
data acquisition Sts. Figure 6(a) shows high correlation inso
the lowest frequency ranges, similar to Fig. 5(a), but inter-se
actions at St' = 0 = St are especially high. Additionally,sos
there are two strong interaction regions that exist, whichso
are not identified with SSETM, these are the interactionssos
with the rotor frequency, specifically, the blade frequencysos
Sty = 3 St,, which is shown in Fig. 6(b). One region isso
designated with interactions with the low frequencies, in-ses
cluding Sty and the wake meandering frequency, St,,. Thesoo
second region is the self-interaction of the blade frequencysio
with itself. The bispectra of higher harmonics of the bladesu
frequency are relatively lower and are not readily identifi-si
able in Fig. 6(a). 513

different than the SSETM bispectrum where the wake me-
andering self-interaction is the highest value. The BMD
method produces a higher resolution of frequencies com-
pared to the SSETM. Nevertheless, both methods pro-
duce a similar bispectrum that can be used to investi-
gate how scales interact. However, one interesting ob-
servation is the difference in the relative magnitude of
the difference-interactions to the sum-interactions between
the two methods. BMD shows much stronger difference-
interactions at low frequencies over a larger range than
the sum-interactions. SSETM does not capture the same
differences.

Next, we look at the spatial distribution of how se-
lect, dominant scales interact with each other starting with
the kinetic energy identified from the SSETM. Figure 7
shows the scale-specific CKE of the interactions between
the wake meandering scale and three other scales: mean
(Sto), upwind (St;1), and first harmonic of wake mean-
dering (2 St,,). In SSETM, the CKE attributed to the
interaction of two scales is explicitly calculated. First, the
interaction of wake meandering with the mean flow distor-
tion is quantified. Note that based on the sum-zero con-
dition, the sum-interaction of these two scales adds to ki-
netic energy in the wake meandering scale. In other words,
the CKE in this interaction is a portion of the total wake
meandering CKE. Strong interactions occur in the wake
shear layer at the top and the bottom in the far wake af-
ter /D > 2. However, there is little interaction between
the scales along the centerline. Wake meandering in the
vertical direction is significantly affected by the presence
of the wall and the high shear in the wall boundary layer
formed by the recovering wake and the wall. The vertical
wake meandering amplitude is attenuated in the far wake
with larger attenuation with increased distance from the
turbine. The turbulent scales in the wall boundary layer
for this analysis are not coherent so there is no scale as-
sociated with it. The effects on the wake meandering are
captured by this triad of the interaction of wake meander-

Figure 6(c) shows the low frequency region of the difference-ing and mean flow distortion. Similarly, the shear layer

interactions, similar to the focus in Fig. 5(b). There ares:s
several peaks that corresponds to the wake meandering fre-sis
quency and its harmonic. These locations are difference-siz
interactions that total to a third frequency of zero, thess
mean flow distortion. Similar to SSETM, BMD capturessi
these interactions. Figure 6(d) focuses on the dominantsz
low frequency region of the sum-interactions. Peaks in thesx
bispectrum appear at each of the same locations as seens»
in Fig. 5(c), including the incoming low frequency scales,szs
the wake meandering scale and the first harmonic of thesz
wake meandering scale. The relative peaks compared tos:s
the other frequency pairs are similar to the SSETM bispec-sss
trum. This is an additional confirmation that these scaless>
are dominant and identified by several different method-szs
ologies. Additionally, the bispectrum is higher along thesx
constant St,, lines, indicating that many scales interactss
with the bispectrum. As the frequencies approach Stg, thess
bispectrum increases to its highest value. This is slightlyss

9

of the mean flow above the turbine has an increased in-
teraction with wake meandering, but is not as strong as
there are upwind scales that also contribute to the kinetic
at this location. The interaction between the upwind scale
and wake meandering in Fig. 7(b) shows that the inter-
action of these two modes has highest energy in the far
wake in z/D > 6, which suggests that wake meandering
is augmented by upwind energy far downwind. This sum-
interaction produces a scale at a new frequency slightly
larger than the wake meandering frequency that could ex-
plain the broadness of the power spectral density in Fig.
3(a) and 3(b) around the wake meandering frequency peak.
Finally, Fig. 7(c) shows the difference-interaction of the
first harmonic of the wake meandering and the wake me-
andering scale. These sum to the wake meandering scale.
The CKE in this interaction is relatively small compared
to the other examples shown. This suggests that energy
does not transfer to the wake meandering scale from higher
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564
harmonics.

The sum of all scale interactions (both sum-interactions
and difference-interactions) that correspond to the mean,,
flow distortion (St() scale are shown as the summed scale-,,
specific CKE in Fig. 8. This scale has the most CKE com-,,
pared to all other scales in the flow, and due to this, the,,
spatial distribution mirrors that of the TKE shown in Fig.,,
2(b). There is high energy near the hub vortex in the near,,,
wake, along the top and bottom tip shear layers starting,,,
at the rotor, and in the far wake due to wake meandering.,,,
Figures 8(b) and 8(c) show the summed scale-specific CKE,,,
for the wake meandering (St,,) and first harmonic of the,,
wake meandering (2 St,,), respectively. There is signifi-,
cantly less CKE in the scale compared to that of the mean,,
flow, however, the wake meandering scale accounts for the,,,
second most CKE after Stg. The CKE in wake meander-,
ing, shows a patterned oscillation that is expected from the,,
wave-like pattern of wake meandering. The first harmonic
shows similar patterns with a higher wavenumber. The
peak CKE in wake meandering is at the top-tip position,,
around z/D = 4, where TKE peaks and wake meandering,,
oscillations are observed to be strongest. 56

Now, we focus on the spatial distribution of BMD bis-,,,
pectral modes of the streamwise velocity. These quantify,g,
the interaction of two scales where one of the scales is the,,
wake meandering scale. Note that these calculate a mode,,
field corresponding to the streamwise velocity and not the,,
CKE identified in SSETM. This provides a complementary,,,
view of how scales interact with each other. Figure 9(a),,,
shows the sum-interaction of the upwind scale St;; and,,
wake meandering St,,, similar to Fig. 7(b). The mode is,,
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Figure 8: Contours of SSETM summed scale-specific coherent ki-
netic energy of (a) mean (Stg), (b) wake meandering (St ), and (c)
first harmonic of wake meandering (2 St,,) modes. Note the scale
transformation in (b) and (c).

distributed with the wave-like oscillation with a wavenum-
ber similar to Fig. 8(b). The interaction is highest in
the top-tip shear layer peaking in the far wake. This cor-
roborates the scale-specific CKE of the interaction where
CKE peaks in the far wake. The mode suggests that the
upwind scale and wake meandering interact in the shear
layer and energy is transported into the wake, which helps
explain high CKE of this interaction throughout the far
wake. Figure 9(b) shows the self sum-interaction of the
wake meandering mode. Note that the sum of this inter-
action creates the first harmonic of wake meandering. This
interaction represents a significant portion of total CKE
in the first harmonic, which is corroborated by SSETM.
The spatial distribution is similar to the summed scale-
specific CKE of the first harmonic in Fig. 8(c), especially
with a similar wavenumber. Finally, we look at an inter-
action that is only captured by the BMD and shown in the
bispectrum in Fig. 6(a), the interaction of the mean flow
and blade frequency. The spatial distribution is only non-
zero around the rotor and does not appear downwind. Any
sum-interaction between the blade frequency and wake me-
andering frequency is significantly smaller than this inter-
action.

The BMD cross-frequency field shows the “cause” of
the interactions compared to the “effect” shown by the
bispectral modes in Fig. 9. Figure 10(a) shows the cross
frequency field corresponding to the interaction of the up-
wind scale and wake meandering scale. The cross fre-
quency shows a similar spatial distribution that identifies
the peak interaction in the top-tip shear layer. However,
it also demonstrates that the far wake is affected by the
interaction. Figure 10(b) is the cross-frequency field of
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the wake meandering self-interaction and shows the peakszs
interactions occur in the shear layer of the wake. Thes
cross-frequency field of the mean flow and blade frequencys2
where the interaction is only observed near the rotor. 628
629
630

5. Conclusion
631

Wake meandering has a dominant effect on the dy-**
namics of a wind turbine wake, but is just one of many®?
frequency scales that are present. Scales interact in triads®*
under the sum-zero condition. While the interactions are®®
difficult to examine under commonly used spectral anal-
yses of the power spectral density, they are fundamentalg,
in energy transfer in turbulent flows. Bispectral analyses
offer a new tool to understand the scale interactions. Wess
presented two different analyses that are based on modalsss
decomposition to address the multi-dimensionality of thesss
data. The first is the method developed through DMD ands
the triple decomposition of turbulence (SSETM), whichsa
quantifies the kinetic energy and energy transfer and trans-ss
port of specific scale interactions. The second is a methodss
based on the bispectral density, which uses correlationsss
between three frequencies to identify triads (BMD). Both
methods produced a bispectrum of frequencies of a util—645
ity wind turbine in a boundary layer. Upwind, rotor,
and downwind dominant frequencies were identified by
the spectral analyses. All were able to identify low up-e;
wind frequencies and far wake meandering. These inter-g,
actions were the most dominant and shown to contain sig-es
nificant amount of energy. While the SSETM was able togso
quantify the kinetic energy related to triadic interactions,ss
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Figure 10: Contours of the BMD cross-frequency field ¢!°™ stream-
wise velocity component of select interactions related to wake mean-
dering for (a) upwind-wake meandering sum-interaction (St;1, Stw),
(b) self wake meandering sum-interaction (St.w, Stw), and (c) mean-
blade sum-interaction (Sto, Stp).

the BMD was able to quantify modes and cross-frequency
fields showing how scales interact. Both corroborated evi-
dence of the effects of upwind scales on wake meandering
and how higher-order harmonics of the wake meandering
frequency are produced. Identifying the effects of rotor
frequency scales on wake meandering proved to be more
difficult as those interactions were not shown to be as sig-
nificant compared to upwind or self wake meandering in-
teractions. Further work will seek to enhance on identifi-
cation and data reduction and quantify energy transfer to
elucidate cause-and-effects of wake meandering.
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Appendix A. Statistical Convergence

Obtaining statistical convergence of the velocity is a
challenge due to the long time averaging intervals that are
necessary. The power spectral density requires the second
moment of the velocity to be converged, while the bis-
pectral density requires the third moment or skewness to
be converged. Time averaging of the LES was performed
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over almost 1000 turbine rotation periods, which is over azo
considerably longer time period compared to other stud-7°
ies [27, 51]. Figure A.11 shows the effect of time aver-ii
aging over a time interval equal to tTy, where Ty is the,;,
initial time, of the mean velocity components U, velocity7s
variances uu, and the skewness of the velocity components™®
wuu. The variance and skewness are normalized by the up—zj
wind friction velocity u. The convergence study is shown,,
for four locations downwind of the rotor at hub heightno
along the centerline. FEach component of each statistic™
shows that a final converged statistic is reached before the’

722
end of the time averaging period. 723

724

21

725
Appendix A. Bispectral Method Convergence s
727

The convergence of the bispectral methods for bothe

. 729
cases is based on the parameters and tolerances of the al-730

gorithms and the amount of data retained from the snap-,,,
shots. For SSETM the most dominant effect on the bispec-7:2
trum in terms of convergence and the accuracy is number’?
of modes retained for DMD both from the SVD regulariza—izz
tion and the sparsity promoting DMD. Figure A.12 shows,s
the convergence of the summed bispectrum, which is thers
some of all frequency pairs that equal the third frequency™®

as defined in Eq. (8). As the number of modes is reduced,iiz

the high frequency modes begin to diverge. However, ing,
our analysis, we focus only on the low frequency modes,2
which are the same for each case. For the BMD, the con-*

. . . 744
vergence is based on the number of realizations Ny that,,
are employed. Figure A.13 shows the convergence of BMD1
method for different number of realizations. All tolerances??
used in the methods are based on relative errors less thaniiz
1x 1078,
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