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1. Introduction

In the symmetric group Sn, a factorization of a permutation w as a product w =
t1 · · · tr of transpositions is said to be transitive if the group generated by the factors 
t1, . . . , tr acts transitively on the set {1, . . . , n}. In the late 19th century, Hurwitz [64] used 
such combinatorial structures in his study of branched Riemann surfaces. In particular, 
he showed that these factorizations correspond to classes of n-sheeted covers of the 
sphere with r + 1 branch points [77, Ch. 1], and to count these classes he gave the 
following formula for the number H0(λ) of transitive factorizations of minimum length 
(the Hurwitz number of w),1 where λ = (λ1, . . . , λk) is the cycle type of w:

H0(λ) = nk−3(n + k − 2)!
k∏

i=1

λλi
i

(λi − 1)! . (1.1)

Special cases of this formula have meaningful analogues in (finite) complex reflection 
groups, replacing the set of transpositions by the set of reflections [31,80,72,23]. This 
raises the question whether a full generalization may be possible. This paper is the 
second in a series of three (preceded by [40] and followed by [41]) that will culminate in 
such a generalization.

One of the first difficulties in defining Hurwitz numbers for other reflection groups W
is to find an analogue of the notion of transitivity of factorizations: there is no natural 
generalization of the set {1, . . . , n} in Sn for arbitrary W . In the first part of the series 
[40], we addressed this by defining full reflection factorizations as those factorizations
g = t1 · · · tk where the reflections {t1, . . . , tk} generate the full group W . In the third 
part [41], we will give uniform formulas for the number of minimum-length full reflec-
tion factorizations of a wide class of elements (the parabolic quasi-Coxeter elements) 

1 The index 0 of the notation H0(λ) here refers to the genus of the related Riemann surface and corre-
sponds to the factorization being of minimum length. We do not deal with higher genus factorizations here, 
but the interested reader may consult [40].
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in well generated complex reflection groups. It turns out that all elements in the sym-
metric group Sn are parabolic quasi-Coxeter, so that the formulas in [41] will be strict 
generalizations of (1.1) to reflection groups.

In the rest of the introduction, we present the main contributions of this paper. 
They are broadly divided in two parts, presented in §1.1 and §1.2. First, we define 
our main combinatorial objects (the parabolic quasi-Coxeter elements and the relative 
generating sets) and discuss the structural results we prove for them, including multiple 
characterizations. Then, we give our main enumerative results: formulas that count the 
number of reduced factorizations and the number of relative generating sets for various 
families of parabolic quasi-Coxeter elements. Apart from their independent interest, the 
majority of these findings will be necessary in [41] to prove the uniform formula counting 
full reflection factorizations. In §1.3, we briefly present (without proof) the main theorem 
of [41] for Weyl groups to motivate this connection. In §1.4, we give a summary of the 
structure of the paper.

1.1. Structural results

In a well generated complex reflection group W of rank n, an element g ∈ W is 
a quasi-Coxeter element if there exists a length-n reflection factorization t1 · · · tn = g

whose factors ti generate W . A quasi-Coxeter element of a parabolic subgroup of W is a 
parabolic quasi-Coxeter element of W . We introduce this definition in §3, extending the 
work of [4] on real groups.

These (parabolic) quasi-Coxeter elements generalize the (parabolic) Coxeter elements 
and share many of their properties. They are important in various mathematical areas 
ranging from singularity theory to combinatorics, particularly in the case that W is 
a Weyl group; see §3.1. The reduced (i.e., minimum-length) reflection factorizations of 
parabolic quasi-Coxeter elements have rigid geometric properties. Particularly in the case 
of Weyl groups, this allows us to give a characterization for them in terms of natural 
invariants of the group. Note that the part (i) ⇔ (ii) of this characterization was done 
in earlier work of Baumeister–Wegener [21]. (See §2 for definitions of technical terms.)

Theorem 3.4. Let W ! GL(V ) be a Weyl group of rank n, g an element of W , and Wg

the parabolic closure of g. Then the following statements are equivalent.

(i) g is a quasi-Coxeter element (respectively, parabolic quasi-Coxeter element).
(ii) There exists a reduced reflection factorization g = t1 · · · tk for which the associated 

roots ρti and coroots qρti form Z-bases of the root and coroot lattices of W (resp., 
of Wg).

(iii) g satisfies | det(g − IV )| = I(W ), where IV is the identity on V and I(W ) the 
connection index of W (resp., | pdet(g − IV )| = I(Wg) where pdet denotes the 
pseudo-determinant).

(iv) g does not belong to any proper reflection subgroup of W (resp., of Wg).
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Moving back to the context of parabolic quasi-Coxeter elements in an arbitrary well 
generated group, we discuss in §3.3 their interaction with the Hurwitz action, and we 
prove an analogue of the unique cycle decomposition for them in Proposition 3.13.

The second combinatorial object we introduce in this paper is the collection RGS(w)
of good generating sets for a complex reflection group W ; these are the sets of rank(W )-
many reflections that generate the full group W . Only well generated groups possess 
good generating sets. We also consider a generalization of this notion. Let #redW (g) denote 
the minimum length of a reflection factorization of g. We say that a set of 

(
rank(W ) −

#redW (g)
)
-many reflections that generate the full group W when combined with a reduced 

reflection factorization of g is a relative generating set for the element g ∈ W , and we 
denote by RGS(W, g) the collection of relative generating sets for g.

Remarkably, the existence of relative generating sets is tied to the parabolic quasi-
Coxeter property. Our main structural theorem gives three uniform characterizations of 
parabolic quasi-Coxeter elements in well generated groups, in terms of relative generating 
sets, in terms of their full reflection length (the minimum length of a full factorization), 
and in terms of the smaller collection of quasi-Coxeter elements.

Theorem 5.10 (Characterization of parabolic quasi-Coxeter elements). For a well gener-
ated group W of rank n and an element g ∈ W , the following are equivalent.

(i) The element g is a parabolic quasi-Coxeter element of W .
(ii) The collection RGS(W, g) of relative generating sets with respect to g is nonempty.
(iii) There exists a quasi-Coxeter element w ∈ W such that g !R w.
(iv) The full reflection length of g satisfies #full

W (g) = 2n − #redW (g).

The relationship between relative generating sets and parabolic quasi-Coxeter ele-
ments is reflected in the uniform formulas of [41] (see §1.3 below).

In the infinite families W = G(m, 1, n) and W = G(m, m, n) of “combinatorial” 
well generated groups, the relative generating sets RGS(W, g) correspond to tree-like 
structures where the vertices are the (generalized) cycles of the corresponding element 
g ∈ W . This is developed in detail in §4.2.

1.2. Enumerative results

The second family of results in this paper involves enumerative questions around 
parabolic quasi-Coxeter elements and their reduced factorizations and relative generating 
sets. It is a striking phenomenon, for which we do not have a complete explanation, that 
for all parabolic quasi-Coxeter elements g in a well generated group W , the number 
F red
W (g) of reduced reflection factorizations of g is always a product of small primes. In 

Section 6, we develop a (partially conjectural) framework to explain this phenomenon. 
We also give explicit formulas for the numbers F red

W (g) in many cases; in particular, in 
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§§6.3–6.4 we compute the numbers F red
W (g) for all (parabolic) quasi-Coxeter elements in 

the infinite families of the well generated groups G(m, 1, n) and G(m, m, n).
When c ∈ W is a Coxeter element, the number F red

W (c) is well understood and given 
by an explicit formula: when W is irreducible of rank n and with Coxeter number h, the 
Arnold–Bessis–Chapoton formula states that

F red
W (c) = hn · n!

#W
. (1.2)

There are many proofs of this formula; in §6.1 we review a geometric approach that relates 
the count (1.2) with the degree of the Lyashko–Looijenga (LL) morphism associated to 
the braid monodromy of the discriminant hypersurface H of W . In §6.2 we explain how 
most of this theory has analogues for arbitrary quasi-Coxeter elements, at least for real 
reflection groups, and we conjecture that the number F red

W (g) always agrees with the 
degree of an associated quasi-homogeneous LL map (Conjecture 6.4). This conjecture 
would explain the phenomenon that these counts are products of small primes.

The context of Conjecture 6.4 is the geometry of algebraic Frobenius manifolds, whose 
differential and analytic structure can be encoded via the reduced factorizations of quasi-
Coxeter elements. Even though we do not prove the conjecture, we verify it for many 
cases (see Remark 6.7 and §8.5). Moreover, it motivates an almost explicit, uniform 
generalization of (1.2) for the class of regular quasi-Coxeter elements in Weyl groups. The 
following proposition is proved case-by-case; the non-explicit part is the interpretation 
of the numbers δg (see Remark 6.7). The exponents of an element g ∈ W ! GL(V ) are 
certain positive integers ei(g) that encode the eigenvalues of g in V (see §6.2.2).

Proposition 6.6. For a regular quasi-Coxeter element g in an irreducible Weyl group W , 
we have

F red
W (g) = |g|n · n!∏n

j=1(ej(g) + 1) · δg, (6.8)

where the numbers ej(g) are the exponents of g and δg is a small integer. When g is a 
Coxeter element, δg is equal to 1, while the rest of the cases are given in Table 5.

The other major enumerative question we ask in this work is for the number of relative 
generating sets associated to a given parabolic quasi-Coxeter element g ∈ W . We show in 
Proposition 4.10 that the set RGS(W, g) only depends on the parabolic closure Wg of g (in 
which g is a quasi-Coxeter element). In the case of the infinite families W = G(m, 1, n)
and W = G(m, m, n), the enumeration reduces to counting certain weighted trees or 
unicycles whose vertices are the (generalized) cycles of g. In §7 we prove the following 
result by making repeated use of the weighted Cayley theorem (Theorem 7.1).

Theorem 7.3. Suppose that W is either G(m, 1, n) or G(m, m, n) for m > 1 and that g
is a parabolic quasi-Coxeter element for W .
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(i) If either W = G(m, 1, n) and g is a quasi-Coxeter element for the subgroup 
G(m, 1, λ0) ×Sλ1 × · · ·×Sλk , or W = G(m, m, n) and g is a quasi-Coxeter element 
for the subgroup G(m, m, λ0) × Sλ1 × · · ·× Sλk , then

# RGS(W, g) = mk · nk−1 ·
k∏

i=0
λi. (7.2)

(ii) If W = G(m, 1, n) and g is a quasi-Coxeter element for the subgroup Sλ1×· · ·×Sλk , 
then

# RGS(W, g) = ϕ(m) ·mk−1 · nk−1 ·
k∏

i=1
λi, (7.3)

where ϕ denotes Euler’s totient function.
(iii) If W = G(m, m, n) and g is a quasi-Coxeter element for the subgroup Sλ1 × · · ·×

Sλk , then

# RGS(W, g) = ϕ(m) ·mk−1

2 ·
(
nk−nk−1−

k∑

j=2
(j−2)! ·nk−jej(λ)

)
·

k∏

i=1
λi, (7.4)

where ei(λ) denotes the ith elementary symmetric function in the variables λ =
(λ1, . . . , λk).

The case of the symmetric group W = Sn is discussed in further detail in §7.4, where 
we relate the enumeration of our sets RGS(W, g) with that of Cayley cacti, which were 
used by Duchi–Poulalhon–Shaeffer [45] to give a bijective proof of the Hurwitz formula 
(1.1).

1.3. Towards counting full factorizations of parabolic quasi-Coxeter elements

Apart from their own individual interest, the results of this paper are crucial com-
ponents of the proofs for the uniform formulas in the third part [41] of this series. To 
motivate them further, we give here without proof the main theorem of [41] for Weyl 
groups.

Theorem. For any Weyl group W and any parabolic quasi-Coxeter element g ∈ W with 
generalized cycle decomposition g = g1 ·g2 · · · gm, the number F full

W (g) of minimum-length 
full reflection factorizations of g is given by the formula

F full
W (g) = #full

W (g)! · # RGS(W, g) · I(Wg)
I(W ) ·

m∏

i=1

F red
W (gi)
#R(gi)!

, (1.3)
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where #full
W (g) is the full reflection length of g, Wg is the parabolic closure of g, and I(W )

is the connection index of W .

The enumerative results of this paper, presented in §1.2, will be used in [41] to calculate 
the right-hand side of (1.3) for the infinite families An, Bn, Dn (and their generalization 
in the complex types), while the left-hand side has been calculated in [40]. The structural 
results presented in §1.1 will be used in an inductive argument that helps prove (1.3) for 
the exceptional Weyl groups E7 and E8, where the calculation of the numbers F full

W (g)
with the techniques of [40] is not computationally feasible. Moreover, we hope that the 
structural results presented in §1.1 support our case – reinforced by (1.3) – that the 
collection RGS(W, g) of relative generating sets is a natural combinatorial object in the 
study of reflection factorizations.

1.4. Summary

The structure of the present paper is as follows. In Section 2, we give background, 
introduce the supporting objects of our study, and include some preliminary properties. 
In Section 3, we introduce the main objects we study in this paper: the family of elements 
called parabolic quasi-Coxeter elements. In the next Section 4, we characterize such 
elements in terms of certain sets of reflections that we call relative reflection generating 
sets, which will be fundamental in the uniform formulas for W -Hurwitz numbers in the 
sequel [41]. In Section 5, we give two other characterizations of parabolic quasi-Coxeter 
elements, in terms of absolute order and in terms of full reflection length. After this, in 
Section 6, we study the number of reduced reflection factorizations of parabolic quasi-
Coxeter elements in well generated complex reflection groups. In Section 7, we give nice 
formulas for the numbers of (relative) generating sets in the combinatorial subfamily of 
well generated complex reflection groups. We wrap up this paper in Section 8 with some 
final remarks and open questions.

2. Reflection groups, good generating sets, and parabolic subgroups

In this section, we introduce the main supporting objects of our study and develop 
some preliminary properties. Standard background material for real reflections groups 
may be found in [66,63], and for complex reflection groups in [66,75,19]. In the literature, 
some authors considered infinite reflection groups (such as general Coxeter groups), but 
in the present paper all reflection groups considered are assumed finite.

2.1. Real reflection groups

Given a finite-dimensional real inner product space V , a reflection t is an orthogonal 
map whose fixed space V t := {v ∈ V : t(v) = v} is a hyperplane, that is, codim(V t) = 1. 
Equivalently, an orthogonal map is a reflection if it is diagonalizable, with one eigenvalue 
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equal to −1 and all others equal to 1. A finite subgroup W ! GL(V ) is called a (finite) 
real reflection group if it is generated by reflections.

The real reflection groups are precisely the finite Coxeter groups, those generated by 
a set S = {s1, . . . , sn} of reflections subject to relations s2

i = 1 and (sisj)mij = 1 for 
some integers mij > 1. The generating set S is called a set of simple reflections for W , 
and the pair (W, S) of a Coxeter group together with such a set of simple reflections is 
called a simple system. The size n of the set S is called the rank of W .

We say that a real reflection group W is irreducible if there is no nontrivial subspace 
of V stabilized by its action. It is easy to see that if W1 acts on V1, with reflections R1, 
and W2 acts on V2, with reflections R2, then W = W1 ×W2 acts on V = V1 ⊕ V2, with 
reflections R = (R1 × {id2}) ∪ ({id1} × R2). In this case, W fails to be irreducible (it 
stabilizes the subspace V1 of V ). Coxeter [29] classified real reflection groups, as follows: 
every real reflection group is a product of irreducibles, and the irreducibles belong to four 
infinite families An (the symmetric groups), Bn (the hyperoctahedral groups of signed 
permutations), Dn (index-2 subgroups of the hyperoctahedral groups), and I2(m) (the 
dihedral groups), and six exceptional types H3, H4, F4, E6, E7, and E8, where in all 
cases the indices correspond to ranks.

A real reflection group W is completely determined by its set R of reflections. Al-
ternatively, it is determined by the associated reflection arrangement AW , namely, the 
arrangement of fixed hyperplanes of the reflections in R. The reflection arrangement of 
W is often encoded as part of a structure known as a root system, which we define now. 
For any reflection t ∈ R, we may choose two vectors ρt and qρt, both orthogonal to the 
fixed hyperplane V t, that satisfy 〈ρt, qρt〉 = 2. They are known as the root and coroot
associated to the reflection t, which they determine via the relation

t(v) = v − 〈v, qρt〉 · ρt (2.1)

for all v in V . The collection Φ := {±ρt : t ∈ R} of roots and their negatives is the root 
system of W ; we choose the lengths of the roots ρt so that Φ is W -invariant. The simple 
(co)roots αi := ρsi and qαi := qρsi are the (co)roots associated to the simple reflections si.

2.1.1. Weyl groups
Although root systems may be defined for all finite real reflection groups, they behave 

particularly well for a subclass known as crystallographic or Weyl groups. Those are 
characterized by the existence of an essential, W -invariant root lattice Q, the integer 
span of the root system Φ. When this exists, the coroots also span a lattice, the coroot 
lattice qQ. The simple roots and coroots form a lattice basis for Q and qQ, respectively.

Weyl groups again decompose as products of irreducibles; the irreducible Weyl groups 
are the infinite families An, Bn, and Dn, and the five exceptional types E6, E7, E8, F4, 
and G2 = I2(6). In terms of the Coxeter presentation, these are exactly the finite Coxeter 
groups for which mij ∈ {2, 3, 4, 6} for all i and j.
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Table 1
The connection indices for irreducible Weyl groups.
W Sn+1 = An Bn Dn E6 E7 E8 F4 I2(6) = G2

I(W ) n + 1 2 4 3 2 1 1 1

For any Weyl group, there is a natural inclusion of the root lattice Q inside the dual 
lattice P of the coroot lattice qQ. (The lattice P, which will not play a major role in this 
paper, is called the weight lattice.) The connection index I (W ) := [P : Q] is an important 
invariant of W . It is equal to the determinant of the Cartan matrix K :=

(
〈αi, qαj〉

)n
i,j=1

of the Weyl group (where αi and qαj are the simple roots and coroots; see [66, §9-4]). 
We give in Table 1 the values I(W ) for the irreducible Weyl types; for a reducible group 
W = W1 × · · ·×Wr, we have that I(W ) =

∏r
i=1 I(Wi).

2.1.2. Parabolic Coxeter elements
In a (finite) real reflection group W , the product of the simple generators si ∈ S of 

W , in any order, is called a Coxeter element. They were introduced in [30], where it was 
shown that all such elements are conjugate to one another. We call any element c ∈ W

that belongs to this conjugacy class a Coxeter element; their common order h := |c| is 
the Coxeter number of W . There are many choices of sets S′ of reflections that turn 
(W, S′) into a simple system. When W is not crystallographic, different choices of S may 
lead to different conjugacy classes of Coxeter elements.2 Following [85], the elements of 
W that are Coxeter elements for some choice of simple system are called generalized 
Coxeter elements; they have the same order h as the Coxeter elements.

For any subset I ⊆ S of simple reflections, the subgroup WI := 〈I〉 of W generated by 
I is called a standard parabolic subgroup, and any subgroup conjugate to one of the WI

is called a parabolic subgroup. Each parabolic subgroup inherits a natural simple system 
from W . The Coxeter elements in any parabolic subgroup are the parabolic Coxeter 
elements of W .

In the following sections we introduce analogues of all the concepts we discussed here 
in the setting of complex reflection groups.

2.2. Complex reflection groups

Let V be a finite-dimensional complex vector space with a fixed Hermitian inner 
product. A (unitary) reflection t on V is a unitary map whose fixed space V t is a 
hyperplane, that is, codim(V t) = 1. A finite subgroup W ! GL(V ) is called a complex 
reflection group if it is generated by reflections. As in the real case, we denote the subset 
of reflections by R and the associated reflection arrangement (that consists of all the 
fixed hyperplanes of reflections t ∈ R) by AW , and we say that W is irreducible if there 

2 For example, in the dihedral group I2(5), any pair of reflections determines a simple system for the group; 
but the product of a pair whose hyperplanes make an angle of 36◦ (a rotation by 72◦) is not conjugate to 
the product of a pair whose hyperplanes make an angle of 72◦ (a rotation by 144◦).
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is no nontrivial subspace of V stabilized by its action. Shephard and Todd [93] classified 
the complex reflection groups, as follows: every complex reflection group is a product of 
irreducibles, and every irreducible either belongs to an infinite three-parameter family 
G(m, p, n), described below, or is one of 34 exceptional cases, numbered G4 to G37.

By extending scalars, every real reflection group may be viewed as a complex reflec-
tion group. This operation preserves irreducibility, with all four infinite families of real 
reflection groups subsumed into to the infinite family of complex reflection groups.

2.2.1. The combinatorial family
Let m, p, and n be positive integers such that p divides m. Such a triple indexes 

a member G(m, p, n) of the infinite family of complex reflection groups, which may be 
concretely described as

G(m, p,n) :=
{

n× n monomial matrices whose nonzero entries are
mth roots of unity with product an m

p th root of unity

}
.

It is natural to represent such groups combinatorially. We may encode each element 
w of G(m, 1, n) by a pair [u; a] with u ∈ Sn and a = (a1, . . . , an) ∈ (Z/mZ)n, as follows: 
for k = 1, . . . , n, the nonzero entry in column k of w is in row u(k), and the value of the 
entry is exp(2πiak/m). With this encoding, it’s easy to check that

[u; a] · [v; b] = [uv; v(a) + b], where v(a) :=
(
av(1), . . . , av(n)

)
.

This shows that the group G(m, 1, n) is isomorphic to the wreath product Z/mZ *Sn of 
a cyclic group with the symmetric group Sn.

The reflections in G(m, p, n) come in two families: for 1 ! i < j ! n and k ∈ Z/mZ
there is the transposition-like reflection

[(ij); k] := [(ij); kei − kej ] = [(ij); (0, . . . , 0, k, 0, . . . , 0,−k, 0, . . . , 0)],

which fixes the hyperplane xj = exp(2πik/m)xi, and if p < m then for i = 1, . . . , n and 
k = 1, . . . , mp − 1 there is the diagonal reflection

[id; kpei] = [id; (0, . . . , 0, kp, 0, . . . , 0)],

which fixes the hyperplane xi = 0. Observe that with this notation, [(ij); k] = [(ji); −k].
Given an element w = [u; a] ∈ G(m, p, n) and a subset S ⊆ {1, . . . , n}, we say that ∑
k∈S ak is the color of S; this notion will come up particularly when the elements of S

form a cycle in u. When S = {1, . . . , n}, we call a1 + . . . + an the color of the element 
w, and we denote it col(w). In this terminology, G(m, p, n) is the subgroup of G(m, 1, n)
containing exactly those elements whose color is a multiple of p, and col is a surjective 
group homomorphism from G(m, p, n) to pZ/mZ ∼= G(m, p, 1) ∼= Z/(m/p)Z. Meanwhile 
the map [u; a] ,→ u that sends an element of G(m, p, n) to its underlying permutation is 
a surjective group homomorphism onto Sn.
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2.3. Well generated groups and good generating sets

If W is a complex reflection group acting on V , the rank of W is the codimension 
codim(V W ) of the fixed space VW :=

⋂
w∈W V w of W (or, equivalently, the dimension 

of the orthogonal complement (V W )⊥). For all groups G(m, p, n) of the combinatorial 
family, the rank equals n, apart from the case of Sn = G(1, 1, n) that has rank n − 1. 
Every irreducible complex reflection group of rank n can be generated by either n or 
n + 1 reflections. The groups in the first category are called well generated; they are 
better understood and share many properties with the subclass of real reflection groups.

Definition 2.1 (Good generating sets). For a complex reflection group W and a subset 
S := {t1, . . . , tn} of reflections in W , we say that S is a good generating set for W if 
〈ti〉ni=1 = W and the cardinality n of S equals the rank of W . In particular, it is precisely 
the well generated groups that have good generating sets.

When W is a real reflection group, any set S of simple generators is a good generating 
set for W , but there are many more good generating sets than simple systems. For Weyl 
groups, good generating sets have a particularly nice characterization in terms of the 
root and coroot lattices.

Proposition 2.2 ([21, Cor. 1.2]). For a Weyl group W of rank n, a set {ti}ni=1 of reflec-
tions generates W if and only if the roots ρti and coroots qρti form Z-bases of the root 
and coroot lattices Q and qQ of W , respectively.

Next, we rephrase the criterion of Proposition 2.2 in terms of the connection index 
I(W ) of the Weyl group; this gives a computationally fast way to check whether a set of 
reflections is a good generating set or not. To begin, suppose that we have a set {ti}ni=1
of n reflections in a Weyl group W , with associated roots ρti and coroots qρtj . Let {αi}ni=1
be a set of simple roots for W , with associated coroots qαi. If we denote by U the matrix 
that expresses the ρti as Z-linear combinations of the αi and similarly we write qU for 
the matrix that expresses the qρtj in terms of the qαj , then it follows easily that

det
(
〈ρti , qρtj 〉

)
= det(U) · det

(
〈αi, qρtj 〉

)
= det(U) · det

(
〈αi, qαj〉

)
· det

(qU%)

= det(U) · I(W ) · det
(qU%) (2.2)

(where the last equality uses the fact that 
(
〈αi, qαj〉

)
is the Cartan matrix of W ). More-

over, since each coroot qρti is a positive multiple of the corresponding root ρti , and likewise 
for the αi, the two determinants det(U) and det( qU) have the same sign.

Corollary 2.3. In a Weyl group W of rank n, a set of reflections {ti}ni=1 is a good gener-
ating set for W if and only if

det
((

〈ρti , qρtj 〉
)n
i,j=1

)
= I(W ),
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where ρt and qρt are the root and coroot associated to t and I(W ) is the connection index 
of W .

Proof. Since the roots {ρti} (respectively, coroots {qρti}) belong to the lattice Q (resp., 
qQ) with Z-basis {αi} (resp., {qαi}), the matrix U (resp., qU) is an integer matrix, with 
integer determinant. Moreover, {ρti} (resp., {qρti}) forms a Z-basis for Q (resp., qQ) if 
and only if U (resp., qU) is invertible, i.e., if and only if it has determinant ±1. By 
Proposition 2.2, it follows that {ti}ni=1 is a good generating set if and only if det(U)
and det( qU) are both ±1. Then the result follows by (2.2), after noting that det(U) and 
det( qU) have the same sign. !

By the same methods, we can prove the following result (which we believe must be 
known, but for which we were not able to find a direct reference in the literature).

Corollary 2.4. If W is a Weyl group and W ′ ! W is a proper reflection subgroup of the 
same rank, then I(W ′) > I(W ).

Proof. Let n be the common rank of W and W ′ and {ti}ni=1 be a (good) generating set 
of reflections for W ′, and let ρti and qρtj denote the associated roots and coroots. By 
Corollary 2.3 and (2.2), we have that

I(W ′) = det
(
〈ρti , qρtj 〉

)
= |det(U)| · I(W ) · |det

(qU%)|.

Since the ti do not generate all of W , we have by Proposition 2.2 that at least one of U , 
qU will have (integer) determinant different from ±1. This completes the proof. !

Unlike the case of simple systems, the product of the elements of a good generating 
set need not be a (generalized) Coxeter element. For example, in W := D4 = G(2, 2, 4), 
the reflections s1 = [(12); 0], s2 = [(23); 0], s3 = [(34); 0] and t = [(13); 1] form a good 
generating set for W (since if s̃1 = [(12); 1] is the fourth simple generator, we have 
s2ts2 = s̃1). However, they have product s1s2s3t = [(14)(23); (1, 0, 1, 0)], which is not 
a (generalized) Coxeter element (all generalized Coxeter elements in D4 are of order 6
and have as underlying permutation a 3-cycle). We meet the products of arbitrary good 
generating sets again in §3, where they are called quasi-Coxeter elements; they are the 
main objects of study in this work.

2.3.1. The combinatorial family
In the infinite family, the groups G(m, 1, n) and G(m, m, n) are well generated, but 

the intermediate groups G(m, p, n) for 1 < p < m are not [75, §2.7]. We now describe 
the good generating sets in G(m, 1, n) and G(m, m, n).

It is natural to represent collections of reflections in G(m, p, n) as graphs on the vertex 
set {1, . . . , n}: a transposition-like reflection whose underlying permutation is (ij) can 
be represented by an edge joining i to j, while a diagonal reflection whose matrix entry 
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of nonzero color occurs at position (i, i) can be represented by a loop at vertex i. We 
say that a collection of reflections in G(m, p, n) is connected if the associated graph is 
connected. It is a basic fact of graph theory that any connected graph contains a spanning 
tree; consequently, any connected set of reflections in G(m, p, n) contains a connected 
subset of n − 1 transposition-like reflections. Such a subset always generates a subgroup 
of G(m, p, n) isomorphic to the symmetric group Sn [90, Lem. 2.7]. In particular, when 
m = p = 1 (so G(m, p, n) = G(1, 1, n) = Sn), the good generating sets correspond to 
the trees on {1, . . . , n}. In order to characterize good generating sets when m > 1, we 
introduce some additional terminology.

Every connected graph on n vertices with n edges contains a unique cycle. In the 
case that the cycle is a loop, we say that the graph is a rooted tree. Otherwise, the cycle 
contains at least two vertices, and in this case we call a graph a unicycle. Given a set S
of n reflections whose associated graph is a unicycle, define a quantity δ(S), as follows: 
if the unique (graph) cycle has vertices i0, i1, . . . , ik−1, ik = i0 in order,3 so that the 
associated reflections are [(ij ij+1); aj ] for some a0, . . . , ak−1 ∈ Z/mZ, we set

δ(S) = a0 + . . . + ak−1.

Shi showed that good generating sets in the combinatorial family can be characterized 
in terms of the objects just defined.

Lemma 2.5 ([90, Lem. 2.1, Thm. 2.8, and Thm. 2.19]).

(i) A set of n reflections in G(m, 1, n) generates the full group if and only if its graph 
is rooted tree and the color of the diagonal factor is a generator of Z/mZ.

(ii) A set S of n reflections in G(m, m, n) generates the full group if and only if its graph 
is a unicycle and δ(S) is a generator of Z/mZ.

Remark 2.6. It is not difficult to see (for example, by following the argument in [76, 
Prop. 3.30], conjugating by a diagonal element of G(m, 1, n) to send all but one of 
the elements of S to true transpositions) that if S is a unicycle then multiplying the 
factors of S together in any order produces an element of G(m, m, n) with exactly two 
(permutation) cycles, one of color δ(S) and the other of color −δ(S). This is compatible 
with the arbitrary choice in the definition of δ: choosing the other cyclic order would 
replace δ with −δ.

2.3.2. Coxeter elements
One of the most important characteristics of well generated groups is that they are 

precisely the reflection groups that have analogues of Coxeter elements. For an arbitrary 

3 There are two possible cyclic orders; for each (graph) cycle, we fix an arbitrary choice of the order in 
which to read its vertices.
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complex reflection group W of rank n, Gordon and Griffeth [55] defined the Coxeter 
number h as

h := #R + #AW

n
.

Following Springer [92], we say that a vector v ∈ V is a regular vector if it does not 
belong to any reflection hyperplane H ∈ AW , and that an element g ∈ W is a ζ-regular 
element if it has a regular ζ-eigenvector. If we do not need to emphasize the value of ζ
we may simply call g ∈ W a regular element. For a given ζ ∈ C×, all ζ-regular elements 
are conjugate [75, Cor. 11.25] and their order equals the multiplicative order of ζ [75, 
Thm. 11.56]. A Coxeter element is defined as an e2πi/h-regular element of W and a 
generalized Coxeter element as any regular element of order h [85]. In the case of real 
reflection groups, this definition agrees with the one we gave in §2.1 (see the discussion 
above [24, Def. 3.1]). It is an easy consequence of [10, Prop. 4.2] and standard properties 
of regular numbers that Coxeter elements exist solely for well generated groups.

2.4. Reflection factorizations and reflection length

Starting with an arbitrary group G and some generating set S ⊆ G, the Cayley graph 
of G with respect to S determines a natural length function on the elements of the 
group: we may define the length of an element g ∈ G as the size of the shortest path 
in the Cayley graph from the identity element to g. In the case of a complex reflection 
group W , we pick as the distinguished generating set the set R of reflections. Then the 
reflection length #redW (g) of an element g ∈ W is the smallest number k such that there 
exist reflections t1, . . . , tk whose product t1 · · · tk is equal to g.

Definition 2.7. For an arbitrary number N , if t1, . . . , tN are reflections such that 
t1 · · · tN = g, we say that the tuple (t1, . . . , tN ) is a reflection factorization of g of 
length N . If moreover N = #redW (g), we say that the factorization is reduced. We denote 
the set of reduced reflection factorizations of g ∈ W by RedW (g), i.e.,

RedW (g) :=
{
(t1, . . . , t#redW (g)) ∈ R#redW (g) : t1 · · · t#redW (g) = g

}
,

and we denote by F red
W (g) their number (i.e., the cardinality of the set RedW (g)).

The reflection length is subadditive over products: for any a, b one has #redW (ab) !
#redW (a) + #redW (b). Thus, it determines a partial order !R (the absolute order) on the 
elements of W via

u !R v ⇐⇒ #redW (u) + #redW (u−1v) = #redW (v).

Equivalently, u !R v if and only if every reduced reflection factorization of u can be 
extended to give a reduced reflection factorization of v.



662 T. Douvropoulos et al. / Journal of Algebra 641 (2024) 648–715

If W is either a real reflection group or the wreath product G(m, 1, n), there is a simple 
geometric formula for reflection length: one has in these cases that #redW (w) = codim(V w)
for all w in W [22, Lem. 2], [91, Rem. 2.3]. For the other complex reflection groups, the 
situation is more complicated: it is always the case that #redW (w) " codim(V w), but there 
exist elements where equality is not achieved [53].

The subgroups W ′ ! W that are generated by the reflections in a reduced reflection 
factorization of some element g ∈ W are of special interest. For a Weyl group W and a 
fixed g ∈ W , all such subgroups W ′ share an important invariant: they have the same 
connection index.4 This follows from the next proposition, which appears in Wegener’s 
thesis as part of the proof of [100, Thm. 4.2.15]. Recall that the pseudo-determinant 
pdet(A) of a linear transformation A is defined as the product of the non-zero eigenvalues 
of A.

Proposition 2.8 (See proof of Thm. 4.2.15 in [100]). Let W ⊂ GL(V ) be a Weyl group of 
rank n, g ∈ W an element, and (t1, . . . , tk) ∈ RedW (g) a reduced reflection factorization 
of g. If W ′ is the reflection subgroup of W generated by the factors ti, then

I(W ′) =
∣∣ pdet(g − IV )

∣∣,

where IV is the identity on V and I(W ′) denotes the connection index of W ′.

2.4.1. The combinatorial family
In the infinite families W = G(m, 1, n) and W = G(m, m, n), one may also give 

combinatorial formulas for reflection length.

Theorem 2.9 ([91, Thm. 4.4]).

(i) Given an element w in G(m, 1, n), its reflection length is

#redW (w) = n− c0(w),

where c0(w) is the number of cycles in w of color 0.
(ii) Given an element w in G(m, m, n), its reflection length is

#redW (w) = n + c(w) − 2vm(w),

where c(w) is the number of cycles in w and vm(w) is the largest number of parts 
into which it is possible to partition the cycles of w such that all parts have total 
color 0.

4 There is a notion of connection index for general complex reflection groups (see §8.4), but this statement 
is no longer valid in that generality and it is unclear how to extend it.
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In the case that m = 1, so that W = Sn, both formulas reduce to the usual formula 
#redW (w) = n −c(w) for reflection length in the symmetric group, where c(w) is the number 
of cycles of the permutation w.

2.5. Parabolic subgroups

As in the real case, the reflection arrangement AW of a complex reflection group W
determines much of its combinatorics and group theory. Its flats (arbitrary intersections 
of its hyperplanes) are linear subspaces; ordered by reverse-inclusion, they form the 
intersection lattice of W .

The pointwise stabilizer WU of any set U ⊆ V will be called a parabolic subgroup of W . 
(For real reflection groups, this definition is a priori different than the one we gave in §2.1, 
but it is a standard theorem that they agree, see [66, §5-2].) It is an easy observation, 
but so far based on the classification, that parabolic subgroups of well generated groups 
are themselves well generated. This means that (as discussed in §2.3) they will have 
their own Coxeter elements; we call such elements parabolic Coxeter elements. Arbitrary 
(i.e., not necessarily well generated) reflection groups may have well generated parabolic 
subgroups, but in this paper we only discuss parabolic Coxeter elements in well generated 
groups. The following theorem of Steinberg characterizes parabolic subgroups.

Theorem 2.10 (Steinberg’s theorem [95, Thm. 1.5]). Let W be a complex reflection group 
acting on V and U ⊆ V a subset. Then the pointwise stabilizer of U is a reflection group, 
generated by those reflections in W whose reflection hyperplanes contain U .

It follows from Steinberg’s theorem that, for any U ⊆ V , WU is the pointwise stabilizer 
of the (unique) minimal flat X that contains U . Thus, we index parabolic subgroups by 
their corresponding flat X. For a flat X, the parabolic subgroup WX acts naturally as 
a complex reflection group on the orthogonal complement X⊥, with rank equal to the 
codimension of X.

As a particular example, consider the case that W1 and W2 are irreducible complex 
reflection groups acting on V1 and V2, respectively, where then the product W := W1×W2
acts on V := V1 ⊕ V2. In this case the two factor subgroups W1 ∼= W1 × {idW2} = WV2

and W2 ∼= {idW1} × W2 = WV1 are parabolic subgroups of W . Consequently, if W
is any complex reflection group that decomposes into irreducibles as W1 × · · · × Wk, 
then each of the Wi is a parabolic for W in a natural way. Furthermore, if WX ! W

is some parabolic subgroup, then its decomposition into irreducibles will be given as 
WX = WX1 × · · · × WXk , where the WXi are parabolic subgroups of W and satisfy 
codim(X) =

∑k
i=1 codim(Xi).

It follows from Steinberg’s theorem that the collection of parabolic subgroups is closed 
under intersection. For any element g ∈ W we define the parabolic closure Wg of g to be 
the intersection of all parabolic subgroups that contain g. In this case the flat X indexing 
Wg is the fixed space X = V g, and in particular we have rank(Wg) = codim(V g). The 
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orthogonal complement X⊥ = (V g)⊥ is then known as the move space of g and is equal 
to Mov(g) := Im(g − id).

In the real case, Bessis proved [11, above Lem. 1.4.2] that if some element g ∈ W

belongs to a parabolic subgroup WX ! W , then all its reduced reflection factorizations 
are realizable in WX (that is, all the reflections in these factorizations belong to WX as 
well). We extend this statement to complex groups W , but only for the family of elements 
g ∈ W that satisfy #redW (g) = codim(V g) (for a discussion of the general case, see §8). 
This case is precisely what we will need later on (for instance for Proposition 3.13).

Proposition 2.11. Let W be a complex reflection group and g ∈ W an element for which 
#redW (g) = codim(V g). The following hold:

(1) Every reflection t that satisfies t !R g belongs to the parabolic closure Wg of g.
(2) For any parabolic subgroup WX ! W that contains g, we have the following equality 

of sets:

RedW (g) = RedWX (g).

Proof. Assume that k = #redW (g) and that t1 · · · tk = g is a reduced reflection factorization 
of g in W . If we write Y :=

⋂
i V

ti for the common intersection of the fixed hyperplanes 
V ti , it is clear that g fixes it pointwise; that is, V g ⊃ Y . On the other hand, since Y
is the intersection of k hyperplanes, we have that codim(Y ) ! k = codim(V g). Thus 
Y = V g.

Since V g =
⋂

i V
ti , we have V ti ⊃ V g for all factors ti. By Steinberg’s theorem 

(Theorem 2.10) we must then have that ti ∈ Wg. This means that all factors in every 
reduced reflection factorization of g must belong to Wg, and this completes the proof of 
part (1). Since all parabolic subgroups WX that contain g must, by definition, contain 
Wg as well, the second part is also proven. !

Proposition 2.11 allows us to give a finer description of the reduced reflection factor-
izations of such elements in terms of their parabolic closures.

Corollary 2.12. Let W be a complex reflection group and g ∈ W an element for which 
#redW (g) = codim(V g). Let Wg = W1 × · · · × Ws be the decomposition of the parabolic 
closure Wg into irreducibles and let g = g1 · · · gs be the corresponding expression for g
with gi ∈ Wi. Then Wi = Wgi and #redWi

(gi) = #redW (gi) = codim(V gi) = rank(Wi) for 
i = 1, . . . , s.

Proof. For each i, Wi is a parabolic subgroup of W that contains gi. If there were a 
smaller parabolic subgroup W ′

i of W that contained gi, then W1 × · · ·×W ′
i × · · ·×Ws

would be a parabolic subgroup of W containing g that is smaller than Wg, a con-
tradiction. Consequently, Wi = Wgi and so also codim(V gi) = rank(Wi). Combining 



T. Douvropoulos et al. / Journal of Algebra 641 (2024) 648–715 665

Proposition 2.11 (2) with the fact that reflection length is additive over direct product 
decompositions gives

#redW (g) = #redWg
(g) =

s∑

i=1
#redWi

(gi), (2.3)

and therefore

#redW (g) =
s∑

i=1
#redWi

(gi) "
s∑

i=1
#redW (gi) "

s∑

i=1
codim(V gi) =

s∑

i=1
rank(Wi)

= rank(Wg) = #redW (g),

where the first inequality is direct from the definition of reflection length, the second 
inequality is discussed in §2.4, rank-additivity comes from the discussion preceding 
Proposition 2.11, and the last equality is the hypothesis on g. This completes the 
proof. !

Remark 2.13. Proposition 2.11 (2) is no longer true if we replace WX with an arbitrary 
reflection subgroup W ′ (i.e., not necessarily parabolic), even in the real case. For ex-
ample, inside G(2, 1, 2) = B2, consider the element g = [id; (1, 1)] in G(2, 1, 2) and the 
subgroup W ′ of diagonal matrices, generated by the reflections [id; (1, 0)] and [id; (0, 1)]. 
Then RedW ′(g) fails to contain the factors in the reduced W -reflection factorization 
g = [(12); (0, 0)] · [(12); (1, 1)].

Remark 2.14. Another implication of Proposition 2.11 (2) is that the reflection length of 
g with respect to a parabolic subgroup WX is the same as with respect to W . In general, 
if we replace WX by an arbitrary reflection subgroup W ′, this is no longer true. Unlike the 
situation of the Remark 2.13, however, this is solely a phenomenon of the complex types, 
since in the real case we always have #redW (g) = codim(V g). For example, by Theorem 2.9, 
the element [id; (1, 1, 1)] has reflection length 3 as an element of G(3, 1, 3) (it is a product 
of three diagonal reflections), but it cannot be written as a product of fewer than four 
reflections in the non-parabolic subgroup G(3, 3, 3).

2.5.1. Parabolic subgroups of the combinatorial family
The parabolic subgroups of the group G(m, p, n) are easy to describe.

Theorem 2.15 (Essentially [97, Thm. 3.11]). Every parabolic subgroup of G(m, p, n) is 
either conjugate to a subgroup of the form

G(m, p,λ0) × Sλ1 × · · ·× Sλk
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for some partition5 (λ0, . . . , λk) of n or conjugate by an element of G(m, 1, n) to a 
subgroup of the form

Sλ1 × · · ·× Sλk

for some partition (λ1, . . . , λk) of n.

2.6. The Hurwitz action

For any group G, there is a natural action of the k-strand braid group

Bk :=
〈
σ1, . . . ,σk−1

∣∣∣∣∣
σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , k − 2
σiσj = σjσi if |i− j| > 1

〉

on the set of k-tuples of elements of G. The generator σi acts via

σi(g1, · · · , gi, gi+1, · · · , gk) = (g1, · · · , gi+1, g−1
i+1gigi+1, · · · , gk),

swapping two adjacent elements and conjugating one by the other, preserving the product 
of the tuple. We call this the Hurwitz action of Bk on Gk.

In addition to the product g1 · · · gk, the Hurwitz action respects the subgroup 
〈g1, . . . , gk〉 that is generated by the elements gi and the multiset of conjugacy classes 
they determine. This means that for a reflection group W , there is a well defined Hurwitz 
action on the set of length-k reflection factorizations of an element g ∈ W .

The orbit structure of the Hurwitz action has interesting connections with other areas 
of mathematics. In the symmetric group Sn, for example, orbits often correspond to 
path-connected components of spaces of polynomials or holomorphic maps [71,77, §5.4]. 
In well generated complex reflection groups, the transitivity of the Hurwitz action in 
the following theorem was an important ingredient in Bessis’ proof [12] of the K(π, 1)
conjecture.

Theorem 2.16 (Case-free for real W [11, Prop. 1.6.1], case-by-case in general [12, 
Prop. 7.6]). For a well generated group W and a parabolic Coxeter element g ∈ W

of length #redW (g) = k, the Hurwitz action of Bk on RedW (g) is transitive.

The following result shows that every Hurwitz orbit of reflection factorizations in a 
real reflection group contains factorizations in a particularly simple form; it will be very 
useful in §5 below.

Lemma 2.17 ([74, Cor. 1.4]). Let W be a real reflection group and g ∈ W an element 
of reflection length #redW (w) = k. Then any factorization of g into N reflections (with 
N " k) lies in the Hurwitz orbit of some tuple (t1, . . . , tN ) such that

5 Note that λ0 could be out of order in λ.
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t1 = t2, t3 = t4, . . . , tN−k−1 = tN−k,

and (tN−k+1, . . . , tN ) is a reduced factorization of g.

Remark 2.18. The proof of Lemma 2.17 given in [74] relies on case-by-case calculations. 
Recently, Wegener and Yahiatene followed a different approach [101] that furnishes a 
case-free proof for Lemma 2.17. This make the proofs of some of our statements below 
also case-free; see Remarks 5.3 and 5.9.

3. Parabolic quasi-Coxeter elements

In this section we introduce a family of elements in (well generated) complex re-
flection groups that we call parabolic quasi-Coxeter elements, and that are the main 
objects of study in this paper. In real reflection groups, these elements have appeared in 
multiple guises in the literature, with various definitions and names – see Remark 3.1, 
Theorem 3.4, and Corollary 3.7. We begin this section with a historical review of these 
various appearances, which we hope will convince the reader that we are discussing nat-
ural objects that are of interest in a variety of mathematical areas. After the overview, in 
§3.2, we give the formal definition that we use in the rest of the paper, and establish its 
equivalence with the earlier definitions in the real case. We then establish a number of 
structural properties of parabolic quasi-Coxeter elements, including an analogue of the 
cycle decomposition of permutations (§3.4) and the transitivity of the Hurwitz action on 
their reduced factorizations (§3.3). We rely on the results we prove here as we present 
various characterizations for the parabolic quasi-Coxeter elements in the following §§4
and 5.

3.1. Origins of (parabolic) quasi-Coxeter elements

In a real reflection group W , the easiest way to describe the family of quasi-Coxeter
elements is as the elements that do not belong to any proper reflection subgroup of W . 
One could then define parabolic quasi-Coxeter elements as the quasi-Coxeter elements 
of parabolic subgroups of W . This is the context underlying the earliest appearance of 
quasi-Coxeter elements, in Carter’s classification of the conjugacy classes of Weyl groups.

3.1.1. Conjugacy classes of Weyl groups
At the time of Carter’s work [22], the conjugacy classes of Weyl groups had been 

already described for all cases, but there was no case-free construction for them. The 
Borel–de Siebenthal algorithm ([9], see also [66, §12.1]) gave a case-free way to build 
up all reflection subgroups of W , and Carter used it to reduce the description of all 
conjugacy classes of W to the description of those that are not contained in any proper 
reflection subgroup. He didn’t give a name for these latter classes, but he showed that 
they always contain the class of Coxeter elements and he described the rest via certain 
Dynkin-like graphs that he called admissible diagrams.
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Table 2
Carter’s notation for conjugacy classes of Weyl groups W that do not live in proper reflection subgroups 
of W [22]. Some classes have two distinct associated diagrams, indexed ai and bi.

Weyl group list of quasi-Coxeter conjugacy classes
Sn+1 = An An

Bn Bn

Dn Dn, Dn(a1), Dn(a2), . . . , Dn(a#(n−4)/2%), Dn(a#(n−2)/2%) = Dn(b#(n−2)/2%)
G2 G2

F4 F4, F4(a1)
E6 E6, E6(a1), E6(a2)
E7 E7, E7(a1), E7(a2) = E7(b2), E7(a3), E7(a4)
E8 E8, E8(a1), E8(a2), E8(a3) = E8(b3), E8(a4), E8(a5)=E8(b5), E8(a6), E8(a7), E8(a8)

Carter’s admissible diagrams can be constructed for any element g in a Weyl group 
W . They encode the commutativity relations among reflections that form certain special 
reduced factorizations of g. Carter showed that such diagrams are sufficient to distinguish 
the quasi-Coxeter conjugacy classes and gave a complete list of them (see Table 2).

3.1.2. Distinguished bases in singularity theory
In the 1970s, Arnold [2] and his school developed a very rich mathematical area which 

studies the geometry and topology of hypersurface singularities. The second (chronolog-
ically) appearance of quasi-Coxeter elements took place in this singularity theory. An 
important object in this setting is the Milnor lattice of the singularity; it is defined via 
the Milnor fibration and deformation theory, and encodes many invariants associated to 
the singularity. There is a natural geometric construction for certain bases of the Milnor 
lattice: vaguely stated, the Picard–Lefschetz transformations associated to a collection 
of paths around the critical values of a deformation of the singularity always determine a 
basis. In general, such bases are called weakly distinguished, while if one further requires 
that the paths are non self-intersecting, the resulting bases are called distinguished.6
There is significant interest in the enumeration and study of structural properties of 
these bases [59,52,18].

Part of the theory developed by Arnold and his school describes an infinite hierarchy 
of singularities that starts with the so-called simple singularities, which are in natural 
correspondence with the simply laced Weyl groups An, Dn, E6, E7, E8. In particular, the 
Milnor lattice of a singularity is precisely the root lattice of the corresponding Weyl 
group W , and its distinguished bases correspond to the ordered sets of roots appearing 
in reduced reflection factorizations of some Coxeter element of W (see [18]).

In his thesis [99], Voigt extends the previous correspondence to weakly distinguished 
bases. He defines quasi-Coxeter elements as those whose reduced reflection factorizations 
determine a basis of the root lattice and he shows that all such bases are weakly distin-

6 Unfortunately, many authors have used different, conflicting names for this pair of properties (distin-
guished, weakly distinguished). Two common variants are (geometric, distinguished), used by Voigt [99], 
and (strongly distinguished, weakly distinguished).
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guished. A major ingredient in Voigt’s proof is that the Hurwitz action is transitive on 
the reduced factorizations of quasi-Coxeter elements.

3.1.3. Dual Coxeter systems
A third, more recent, appearance of quasi-Coxeter elements is in the context of the 

dual approach to Coxeter systems. Initiated in the seminal work of Bessis [11], the dual 
approach to a reflection group W and its generalized braid group B(W ) involves con-
sidering the whole set of reflections R as a generating set of W , instead of just the 
simple reflections, and studying the (more symmetric) presentations that arise in this 
way. Bessis proved that the Artin and dual presentations of B(W ) are equivalent [11,12]; 
an important component of his proofs is that the Hurwitz action is transitive on the set 
of reduced reflection factorizations of a Coxeter element (see also the exposition in [23, 
§6]).

Bessis’ work sparked considerable interest in the Hurwitz action on reflection factor-
izations (for instance in [79] and [3]). In [4], Baumeister et al. set out to describe its 
orbit structure in real reflection groups W . They found that the elements g ∈ W for 
which the Hurwitz action is transitive on their set of reduced reflection factorizations 
are precisely the elements whose reduced factorizations form good generating sets for 
parabolic subgroups of W . They called such elements parabolic quasi-Coxeter elements.

It is this last definition of the quasi-Coxeter property that is most relevant in our work. 
In the following section, we extend it to the case of well generated complex reflection 
groups. Although the result of [4] (involving Hurwitz orbits) does not extend to this 
setting (see §3.3 below), it turns out that it is precisely their definition that allows us to 
relate the quasi-Coxeter property with full reflection factorizations, as we do §§4 and 5
below.

Remark 3.1 (Tower of Babel). We hope that the preceding discussion makes clear that 
the class of quasi-Coxeter elements is natural, and in fact prominent, when viewing the 
theory of reflection groups from several different perspectives. However, because of the 
distance separating the various relevant research areas, this same class of elements often 
appears with different names in the literature, and, worse, sometimes the same name has 
been used to refer to distinct properties.

Carter [22] did not give a name to the conjugacy classes of Table 2 but he called their 
associated diagrams admissible diagrams. In a later paper [25], Carter and Elkington 
gave an explicit definition for a class of elements that they called semi-Coxeter elements. 
Taken literally, their definition accidentally allows more classes7 than those of Table 2, 
but subsequent authors (e.g., [4,81]) have used “semi-Coxeter” to mean exactly the classes 
of the table.

7 For example, the Coxeter element of Dn ! Bn, understood as an element of Bn, satisfies the definition 
of semi-Coxeter class in Bn as stated in [25], but it is not a quasi-Coxeter element in Bn.
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As discussed in §3.1.2, Voigt [99] used the term quasi-Coxeter elements for the ele-
ments with a reduced reflection factorization whose corresponding roots form a basis of 
the root lattice. In the simply laced Weyl groups (types An, Dn, En), this definition 
agrees with the definition given by Baumeister et al. [4] (discussed above in §3.1.3; and 
see Theorem 3.4 below for the proof). However, in other (non-simply laced) types, the 
two definitions are not equivalent. Both versions have appeared in the literature: Hertling 
and Balnojan [13] used Voigt’s definition unchanged for (non-simply laced) Weyl groups, 
while Proposition 2.2 (of Baumeister and Wegener [21]) suggests that it is better to add 
to the definition the condition that the corresponding coroots form a basis of the coroot 
lattice as well.

In many sources (e.g., [17,70,34]), the conjugacy classes of quasi-Coxeter elements in 
a Weyl group W ! GL(V ) are called primitive classes. They are usually defined as the 
conjugacy classes of elements g ∈ W such that the determinant of g − IV equals the 
determinant of the Cartan matrix of W up to sign (where IV is the identity on V ). In 
these references, it is often observed that primitive classes are precisely those that do not 
live in any proper reflection subgroup of W (again, see Theorem 3.4 for the equivalence 
of these definitions).

A different source of potential confusion comes from the labels used to denote the 
quasi-Coxeter conjugacy classes of a Weyl group W (as in Table 2). Carter’s notation 
is similar to the later Bala–Carter notation [6,7], which encodes conjugacy classes of 
nilpotent elements of the Lie algebra associated to W . This is not an accident; Carter 
had already observed in [22, §10] that admissible diagrams may form good combinatorial 
models also for such Lie algebra classes.

3.2. Explicit definition of (parabolic) quasi-Coxeter elements

We are finally ready to define parabolic quasi-Coxeter elements for well generated 
complex reflection groups, extending the definition of [4].

Definition 3.2 (Parabolic quasi-Coxeter elements). Let W be a well generated complex 
reflection group. We say that an element g ∈ W is a parabolic quasi-Coxeter element 
if it has a reduced reflection factorization g = t1 · · · t#redW (g) whose factors {ti} form a 
good generating set (as in Definition 2.1) for some parabolic subgroup of W . We say it 
is quasi-Coxeter if the factors {ti} form a good generating set for W .

Definition 3.2 does not specify which parabolic subgroup should be generated by 
the factors ti. In the next proposition we see that, in fact, the subgroup is completely 
determined by the parabolic quasi-Coxeter element.

Proposition 3.3. Let W be a complex reflection group and g ∈ W an arbitrary element. If 
the factors of a reduced reflection factorization of g form a good generating set for some 
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parabolic subgroup WX , then X = V g and WX is the parabolic closure of g. Moreover, 
in this case #redW (g) = codim(V g).

Proof. Assume that t1 · · · tk = g is a reduced reflection factorization of g as in the 
statement and that WX = 〈ti〉ki=1. Since the ti form a good generating set for WX , 
we have that rank(WX) = k, or equivalently that k = codim(X). Consider now the 
parabolic closure Wg of g, which is indexed by the flat Y = V g. Since g ∈ WX , we have 
Y ⊇ X, and therefore codim(Y ) " k. On the other hand, g can be written as a product 
of k reflections and hence has to fix the intersection of their fixed spaces; this forces 
codim(Y ) ! k. Putting the two inequalities together, we have that codim(Y ) = k and 
thus Y = X and Wg = WY = WX . !

With this preliminary result in hand, we are ready now to prove that the various 
definitions considered in §3.1 are equivalent for Weyl groups. The following arguments 
are case-free and constitute a combination of results from §2 that are mostly due to [4]
and [100].

Theorem 3.4. Let W ! GL(V ) be a Weyl group of rank n, g an element of W , and Wg

the parabolic closure of g. Then the following statements are equivalent.

(i) g is a quasi-Coxeter element (respectively, parabolic quasi-Coxeter element).
(ii) There exists a reduced reflection factorization g = t1 · · · tk for which the associated 

roots ρti and coroots qρti form Z-bases of the root and coroot lattices of W (resp., 
of Wg).

(iii) g satisfies | det(g − IV )| = I(W ), where IV is the identity on V and I(W ) the 
connection index of W (resp., | pdet(g − IV )| = I(Wg) where pdet denotes the 
pseudo-determinant).

(iv) g does not belong to any proper reflection subgroup of W (resp., of Wg).

Proof. It is sufficient to prove the case of parabolic quasi-Coxeter elements. The following 
relations prove the equivalence of all given statements.

(i) ⇒ (ii): For g parabolic quasi-Coxeter, we have by definition that there is a reduced 
factorization g = t1 · · · tk whose factors form a good generating set for some parabolic 
subgroup WX . By Proposition 3.3 this subgroup is Wg, and the conclusion follows 
by Proposition 2.2.

(ii) ⇒ (i): Take a reduced reflection factorization g = t1 · · · tk as in (ii). Since W is a 
real reflection group, we have k = codim(V g), and since codim(V g) = rank(Wg), 
Proposition 2.2 implies that the factors ti generate Wg. Since Wg is a parabolic 
subgroup of W , this means that (i) holds.
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(i) ⇒ (iii): Pick a reduced reflection factorization t1 · · · tk = g for which the factors 
ti generate Wg as in the step [(i) ⇒ (ii)]. The required property (iii) follows by 
Proposition 2.8.

(iii) ⇒ (iv): Choose a reflection group W ′ such that g ∈ W ′ ! Wg, and consider a W ′-
reduced reflection factorization t1 · · · tk = g and the rank-k group W ′′ = 〈ti〉ki=1 ! W ′

generated by its factors. Since W is a real reflection group, this factorization is also 
W -reduced and we have that k = #redW (g) = codim(V g) = rank(Wg); in other words, 
the group W ′′ is a maximal rank reflection subgroup of Wg. By Proposition 2.8, we 
must have that | pdet(g−IV )| = I(W ′′), which forces by the assumption in (iii) that 
I(W ′′) = I(Wg). Since W ′′ is a maximal rank reflection subgroup of Wg, it follows 
from Corollary 2.4 that W ′′ = Wg, and therefore that W ′ = Wg. Thus g satisfies 
(iv).

(iv) ⇒ (i): Take an arbitrary reduced reflection factorization t1 · · · tk = g and consider 
the group W ′ = 〈ti〉ki=1 generated by its factors. Since W is a real reflection group, 
Proposition 2.11 implies that all reflections ti belong to the parabolic closure Wg. 
Thus W ′ ! Wg. Since clearly g belongs to W ′, the assumption of (iv) implies that 
W ′ = Wg. This proves (i). !

We end this section with one further preliminary result about the complex case. The 
collection of reduced reflection factorizations of an element g depends on the ambient 
group W 3 g. This suggests that whether g is parabolic quasi-Coxeter should depend 
on W . In the next statement we prove that, to the contrary, the property is hereditary 
inside the family of parabolic subgroups of W .

Corollary 3.5. Let W be a well generated group and WX ! W a parabolic subgroup. 
Then an element g ∈ WX is parabolic quasi-Coxeter in WX if and only if it is parabolic 
quasi-Coxeter in W .

Proof. First, suppose g ∈ WX ! W is parabolic quasi-Coxeter in WX . By Proposi-
tion 3.3, we have that #redWX

(g) = codim(V g). Since WX ! W , we have #redW (g) ! #redWX
(g). 

On the other hand, as mentioned in §2.4, we have for all w ∈ W that #redW (w) "
codim(V w), and thus #redW (g) = #redWX

(g). Therefore, any reduced WX-reflection factor-
ization g = t1 · · · tk is also reduced as a W -reflection factorization. Since g is parabolic 
quasi-Coxeter in WX , the subgroup W ′ generated by the ti is parabolic in WX . It is easy 
an easy consequence of Steinberg’s theorem (Theorem 2.10) that a parabolic subgroup 
of a parabolic subgroup is parabolic in the parent group, and therefore g has a reduced 
W -factorization that generates a parabolic subgroup of W , as claimed.

Conversely, assume that g is parabolic quasi-Coxeter in W and g = t1 · · · tk is a 
reduced W -reflection factorization of g. We have by Proposition 3.3 that #redW (g) =
codim(V g). Therefore, by Proposition 2.11 (2), g = t1 · · · tk is also a reduced WX -
reflection factorization of g. Again by Proposition 3.3, the group 〈ti〉ki=1 is the parabolic 
closure in W of g, which (by Steinberg’s theorem) is also a parabolic subgroup of WX. 
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Thus g has a reduced WX-reflection factorization whose factors are a good generating 
set for a parabolic subgroup of WX , as needed. !

3.3. Interaction with the Hurwitz action

In the real case, parabolic quasi-Coxeter elements may be characterized in terms of 
the Hurwitz action on their reduced reflection factorizations.

Proposition 3.6 ([4, Thm. 1.1]). Let W be a real reflection group and g ∈ W an element 
that has reflection length #redW (g) = k. Then the Hurwitz action of the braid group Bk on 
the set of reduced reflection factorizations of g is transitive if and only if g is a parabolic 
quasi-Coxeter element.

This allows us to extend the equivalence (i) ⇔ (iv) of Theorem 3.4 to the set of all 
real reflection groups.

Corollary 3.7. Let W be a real reflection group and g an element of W . Then the following 
statements are equivalent.

(i) g is a quasi-Coxeter element (respectively, parabolic quasi-Coxeter element).
(ii) g does not belong to any proper reflection subgroup of W (resp., of Wg).

Proof. Again, it is sufficient to prove the parabolic case. The direction (ii) ⇒ (i) is proven 
exactly as in Theorem 3.4. For the other direction, pick a reduced reflection factorization 
g = t1 · · · tk whose factors generate a parabolic subgroup WX . Since W is a real reflection 
group, we have k = codim(V g). Then Proposition 3.3 implies WX = Wg. Since the 
group generated by the factors is invariant under the Hurwitz action, Proposition 3.6
implies that for every reduced reflection factorization of g, the factors generate Wg. 
Now suppose that W ′ is a reflection subgroup such that g ∈ W ′ ! Wg. Since W is a 
real reflection group, a reduced factorization in W ′ must also be W -reduced (because 
#redW ′(g) = codim(V g) = #redW (g)), and therefore must generate Wg (because every reduced 
factorization of g does). Thus W ′ = Wg, and so g does not belong to any proper reflection 
subgroup of Wg. !

In a real reflection group W , for every reduced reflection factorization g = t1 · · · tk, the 
element g is a quasi-Coxeter element of the reflection subgroup W ′ = 〈ti〉ki=1 generated 
by the factors. This observation, together with Corollary 3.7, leads to a finer understand-
ing of the whole collection of Hurwitz orbits on the set RedW (g) of reduced reflection 
factorizations of g. The following is a slight rephrasing of [58, Cor. 3.11].

Proposition 3.8. Let W be a real reflection group and g ∈ W an arbitrary element of W . 
There is a one-to-one correspondence between the Hurwitz orbits on RedW (g) and the 
minimal (under inclusion) reflection subgroups W ′ ! W that contain g.
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Proof. Gobet showed [58, Cor. 3.11] that the Hurwitz orbits on RedW (g) are in bijection 
with the reflection subgroups W ′ of W that contain g as a quasi-Coxeter element. The 
statement now follows from the previous Corollary 3.7. !

Proposition 3.6 is not valid for all complex reflection groups – for example, [76, Ex. 4.3]
shows that it fails in the exceptional group G16. However, some weaker forms of the result 
hold; we will need two of these in what follows.

Proposition 3.9 ([76, Cor. 5.4]). Let W = G(m, p, n) and g ∈ W an element of reflection 
length #redW (g) = k with a reduced factorization that generates W . Then the Hurwitz action 
of the braid group Bk on the set of reduced reflection factorizations of g is transitive.

Proposition 3.10. Let W be a complex reflection group and g ∈ W a parabolic quasi-
Coxeter element, and let g = t1 · · · tk be any reduced reflection factorization of g. Then 
the set {t1, . . . , tk} of factors is a good generating set for the parabolic closure Wg of g.

(For arbitrary Coxeter groups, the analogous statement has been conjectured by Go-
bet [58, Conj. 2.4].)

Proof. In [76, Thm. 5.6], it is proved that if G is any finite complex reflection group 
and h ∈ G satisfies #redG (h) = rank(G) and has a reduced reflection factorization that 
generates G, then every reduced reflection factorization of h generates G. Since the 
given element g is parabolic quasi-Coxeter, by definition, g has a reduced reflection 
factorization that generates a parabolic subgroup of W ; by Proposition 3.3, this subgroup 
is its parabolic closure Wg, and g has reflection length rank(Wg). Applying the former 
result in the case G = Wg completes the proof. !

Remark 3.11. The cited result [76, Thm. 5.6] was proved by combining Proposition 3.9
and an exhaustive computer check for exceptional groups W that compared all Hurwitz 
orbits in RedW (g) for all conjugacy classes of elements g ∈ W . For Weyl groups, however, 
Proposition 3.10 has an elegant case-free proof in [100, Thm. 4.3.1].

Remark 3.12. Proposition 3.8 also fails in the case of complex reflection groups, but here 
it is difficult even to conjecture an appropriate geometric object that indexes the Hurwitz 
orbits. For the combinatorial family, see [76, Thm. 3.2 and §6.1].

3.4. Unique cycle decomposition

In [58, Thm. 1.3], Gobet describes an extension of the cycle decomposition of per-
mutations in Sn to the collection of parabolic quasi-Coxeter elements in real reflection 
groups. Much of his work extends essentially verbatim to complex reflection groups, al-
though the proofs of some supporting statements (our Propositions 2.11 and 3.3) need 
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to be rewritten for the complex case. We sketch his argument below, with the necessary 
adjustments.

Proposition 3.13 (Generalized cycle decomposition). Let W be a well generated complex 
reflection group and g ∈ W a parabolic quasi-Coxeter element. Then there exists a unique 
(up to reordering the factors) decomposition g = g1 · · · gr with gi ∈ W non-identity 
elements such that

(1) gigj = gjgi for all i and j,
(2) #redW (g) = #redW (g1) + · · · + #redW (gr), and
(3) no gi can be further decomposed; that is, there do not exist elements a, b ∈ W such 

that gi = ab and the factorization gi = ab satisfies (1) and (2).

Moreover, if Wg = W1 × · · · × Ws is the decomposition of the parabolic closure Wg

into irreducibles, then r = s and (after an appropriate reordering) each factor gi is a 
quasi-Coxeter element of Wi.

Proof sketch. Let us start with the decomposition Wg = W1 × · · · × Ws of Wg into 
irreducible parabolic subgroups, as in §2.5, and consider the resulting factorization

g = g1 · · · gs (3.1)

with gi ∈ Wi for each i. Part (1) follows from the fact that the decomposition of Wg is a 
direct product, while part (2) follows from (2.3) in the proof of Corollary 2.12. We now 
consider part (3).

Any reduced reflection factorization of g determines for each i a Wi-factorization of 
gi, and therefore each gi is a quasi-Coxeter element of Wi according to Definition 3.2. 
Thus, it is sufficient to deal with the case that g is quasi-Coxeter in an irreducible group 
W . We assume that the factorization g = ab satisfies parts (1) and (2) and show that 
this contradicts the irreducibility of W . By condition (2), there is a reduced factorization 
g = t1 · · · tn and an index k such that a = t1 · · · tk and b = tk+1 · · · tn. Consider the two 
reflection subgroups W1 := 〈t1, . . . , tk〉 and W2 := 〈tk+1, . . . , tn〉. Then

codim(V ab) Prop. 3.3= #redW (ab) (2)= #redW (a) + #redW (b) "
codim(V a) + codim(V b) " codim(V a ∩ V b) " codim(V ab).

This forces the inequalities to be equalities, which implies that the move spaces (defined 
in §2.5) of a and b intersect trivially. Pick an arbitrary vector u ∈ Mov(b), say u =
b(v) − v. Since ab = ba we have a(u) = b(a(v)) − a(v) ∈ Mov(b). Hence a(u) − u ∈
Mov(a) ∩ Mov(b) = {0}. This means that u ∈ V a and thus that Mov(b) ⊆ V a. By 
Proposition 2.11 (1), for every reflection t !R a we have Mov(b) ⊆ V a ⊆ V t. Taking 
orthogonal complements, Mov(t) ⊆ V b. Repeating the argument with the roles of a and 
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b reversed, we have for any t′ !R b that Mov(t′) ⊆ V a. This implies that all reflections 
t1, . . . , tk commute with all reflections tk+1, . . . , tn, and therefore that W = W1 × W2, 
which contradicts the irreducibility of W .

The only remaining point is to show that (3.1) is the unique factorization satisfying the 
three conditions. For any decomposition g = g′1 · · · g′r as in the statement, any reflection 
t !R g′i must belong to Wg (by Proposition 2.11), and so we have g′i ∈ Wg. Each g′i must 
belong to a single irreducible component of Wg since otherwise, the decomposition would 
fail (3). Finally, if there is a component – without loss of generality W1 – that contains 
more than one of the factors g′i, then g1 from (3.1) must equal their product; but this 
contradicts part (3) for the factorization (3.1). This concludes the argument. !

Remark 3.14. The concept of a “generalized cycle” in Proposition 3.13 is best captured 
by a pair (g, G) of an irreducible (well generated) reflection group G and a quasi-Coxeter 
element g of G. A priori, this suggests that the cycle decomposition should depend on the 
choice of ambient group. For similar decompositions of non-quasi-Coxeter elements, this 
is indeed the case; for example, consider the element p := [(12)(34); (0, 1, 0, 1)], which 
belongs to both W = G(2, 2, 4) ∼= D4 and W ′ = G(2, 1, 2) ×G(2, 1, 2) ∼= B2 ×B2. In W , 
the decomposition of p coming from the parabolic closure is just p = p (the closure Wp

is the whole group), while in W ′ the natural decomposition is

p = [(12); (0, 1, 0, 0)] · [(34); (0, 0, 0, 1)].

However, the decompositions described in Proposition 3.13 are hereditary in some 
settings. For example, if we have real reflection groups8 W ′ ! W with w ∈ W ′ a 
parabolic quasi-Coxeter element of W , then w is parabolic quasi-Coxeter also in W ′, 
and its two generalized cycle decompositions (in W and W ′) are identical. (This comes 
down to the transitivity of the Hurwitz action and the fact that reduced factorizations 
in W ′ are also reduced in W .)

Remark 3.15. We will not make use of the strong uniqueness properties of the generalized 
cycle decomposition in this paper or the conclusion [41]. For us, the most important 
consequence of Proposition 3.13 is its last statement: that for parabolic quasi-Coxeter 
elements g ∈ W , the factors in this natural decomposition are all quasi-Coxeter elements 
of the irreducible components of Wg.

3.5. Parabolic quasi-Coxeter elements in the infinite family

In [76, Cor. 5.7], the following characterization was given for the quasi-Coxeter el-
ements in the well generated groups in the infinite family9: in G(m, 1, n), an element 

8 It is unclear to what extent this holds in the complex case; see §8 for more on this question.
9 When comparing the present work with [76], one should be aware of an important difference in terminol-

ogy: in [76, Def. 5.1], quasi-Coxeter elements are not required to have reflection length equal to the rank of 
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w is quasi-Coxeter if and only if its underlying permutation is an n-cycle and its color 
generates Z/mZ, while in G(m, m, n), an element is quasi-Coxeter if and only if its 
underlying permutation has exactly two cycles and their colors (which necessarily sum 
to 0) generate Z/mZ. Combining this result with Theorem 2.15 and Proposition 3.13
immediately yields the following characterization of parabolic quasi-Coxeter elements in 
G(m, 1, n) and G(m, m, n).

Corollary 3.16. Suppose that g is an element of G(m, 1, n). Then

(i) g is parabolic quasi-Coxeter for a subgroup of type Sλ1 × · · ·×Sλk if and only if g
has cycles of lengths λ1, . . . , λk, all of color 0, and

(ii) g is parabolic quasi-Coxeter for a subgroup of type G(m, 1, λ0) ×Sλ1 × · · ·×Sλk if 
and only if g has one cycle of length λ0 whose color generates Z/mZ and k cycles 
of lengths λ1, . . . , λk and color 0.

Suppose instead that g is an element of G(m, m, n). Then

(iii) g is parabolic quasi-Coxeter for a subgroup of type Sλ1 × · · ·×Sλk if and only if g
has cycles of lengths λ1, . . . , λk, all of color 0, and

(iv) g is parabolic quasi-Coxeter for a subgroup of type G(m, m, λ0) ×Sλ1 × · · ·×Sλk if 
and only if g has two cycles whose colors generate Z/mZ and sum to 0 and whose 
lengths add to λ0, and has cycles of lengths λ1, . . . , λk of color 0.

In all cases except the last, the generalized cycles of g are the cycles of g; in the case 
that Wg

∼= G(m, m, λ0) × Sλ1 × · · · × λk, the two cycles of nonzero color in g together 
form a generalized cycle.

Remark 3.17. Parabolic quasi-Coxeter classes make up a small percentage of all conju-
gacy classes in the combinatorial family. In the exceptional types, by contrast, there are 
often more classes that are parabolic quasi-Coxeter than the other way around. In Table 3
we give the relevant numbers for the real case. (These are easy to count by a computer, 
but for Weyl groups all necessary information is also available in the literature: the quasi-

Table 3
Comparison of types of conjugacy classes in exceptional real reflection groups.
W H3 H4 F4 E6 E7 E8

number of parabolic Coxeter classes 6 10 12 17 32 41
number of parabolic quasi-Coxeter classes 9 24 13 21 44 67
number of all conjugacy classes 10 34 25 25 60 112

W (unlike our Definition 3.2), but may also have larger reflection lengths. The statement of Corollary 3.16
has been adjusted to our more restrictive definition.
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Coxeter classes are listed in Carter’s work [22], the parabolic subgroups up to conjugacy 
are given in [83, Appendix C], and these may be combined using Proposition 3.13.)

4. Characterization via relative reflection generating sets

In this section, we give a characterization of parabolic quasi-Coxeter elements in terms 
of the existence of certain sets of reflections that we call relative reflection generating 
sets. These new objects are combinatorially appealing on their own (see §7) but they will 
also become a fundamental ingredient of the uniformly-stated formulas for W -Hurwitz 
numbers in the third instalment [41] of this series of papers. Our definitions are analogous 
to the notion of good generation in Definition 2.1, but relative to a given element or 
subgroup.

Definition 4.1 (Relative generating sets for reflection subgroups). Let W be a well gen-
erated complex reflection group of rank n and let W ′ be a reflection subgroup of W of 
rank k. We say that a set {t1, . . . , tn−k} of n − k reflections is a generating set for W
relative to W ′ (or relative generating set for short) if W = 〈W ′, t1, . . . , tn−k〉. We denote 
by RGS(W, W ′) the set of all generating sets for W relative to W ′.

Example 4.2. For any W , one has that RGS(W, {id}) is the set of good generating sets 
for W , while RGS(W, W ) = {∅}.

Definition 4.3 (Relative generating sets for elements). Let W be a well generated complex 
reflection group of rank n and let g be an element of W of reflection length #redW (g) = k. 
We say that a set {t1, . . . , tn−k} of n −k reflections is a generating set for W relative to g
(or relative generating set for short) if there exists a reduced reflection factorization g =
tn−k+1 · · · tn such that {t1, . . . , tn} is a generating set for W . We denote by RGS(W, g)
the set of all generating sets for W relative to g.

Example 4.4. For any W , one has that RGS(W, id) is equal to the set of good generating 
sets for W . If g is a quasi-Coxeter element for W , then RGS(W, g) = {∅}.

4.1. Compatibility with parabolic subgroups and parabolic quasi-Coxeter elements

Not every element or reflection subgroup of a reflection group has relative gener-
ating sets. Indeed, the next several results (culminating with Corollary 4.8 and Theo-
rem 4.9) show that relative generating sets exist precisely for parabolic subgroups and 
for parabolic quasi-Coxeter elements.

Proposition 4.5. Let W be a well generated complex reflection group of rank n and WX !
W a parabolic subgroup of rank k. Then there exist reflections {t1, . . . , tn−k} in W such 
that 〈WX , t1, . . . , tn−k〉 = W .
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We give two proofs of this result. The first is computational.

First proof. In the real case, any parabolic subgroup is conjugate (by some element g) 
to a standard parabolic, generated by a subset T of the simple reflections S. Then the 
conjugates (by g−1) of the simple reflections in S#T are the required ti. In the complex 
case, the result can be derived on a case-by-case basis using a similar argument, relying on 
the tables of [19, App. A] for generators and on [14, Fact 1.7] for the relationship between 
arbitrary and “standard” parabolic subgroups with respect to these generators. !

Since Proposition 4.5 is a very natural statement, we also briefly sketch a case-free10

topological argument.

Second proof. In [10], Bessis constructed geometric generators for every complex reflec-
tion group W , as follows. The Shephard–Todd–Chevalley theorem [93,27] identifies the 
space of orbits V/W with a complex affine space Cn. When W is well generated, there 
is a line L0 through the origin that is the image in V/W ∼= Cn of the e2πi/h-eigenspace 
of every Coxeter element. A generic affine line L, parallel to L0, intersects the discrim-
inant hypersurface H of W at n points. Loops around these points define generators 
of the generalized braid group B(W ) := π1(Cn −H) that, under a canonical surjection 
B(W ) # W , map to a set of reflections that generates W .

If we choose the line L to be close to the stratum X/W of the discriminant, the 
intersection L ∩H will consist of rank(WX) = k points near X/W and n − k more away 
from it. This is because the multiplicity of X/W as a stratum of H is equal to rank(WX)
[12, Lem. 5.4] and because the direction of L is always transversal to H [43, Prop. 37]. 
These n points define a generating set of reflections for W ; moreover, the first k of them 
generate WX because there is a local embedding of braid groups B(WX) ↪→ B(W ). The 
remaining n − k reflections are exactly what is asked for in the statement. !

The next two propositions provide complementary information to Proposition 4.5. 
Their original proofs by Taylor [97] rely on case-by-case arguments, but Proposition 4.6
does have a case-free proof (easily deducible from [100, Thm. 4.3.9]) for Weyl groups.

Proposition 4.6 ([97, Thm. 4.2]). Fix a well generated complex reflection group W of rank 
n and a good generating set G := {t1, . . . , tn} for W . Then any k-subset {ti1 , . . . , tik} ⊆ G
is a good generating set for some parabolic subgroup W ′ ! W of rank k.

Proposition 4.7 ([97, Thm. 4.1]). Assume that W is a complex reflection group and that 
K and H are reflection subgroups of W such that K = 〈H, t〉 for some reflection t ∈ W . 
If K is parabolic and its rank is greater than that of H, then H is also parabolic.

10 This argument is case-free in the context of duality groups, which are known (by a case-by-case argument 
[82, Thm. 5.5]) to coincide with well generated groups.
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We are now ready for two corollaries that characterize the existence of relative gen-
erating sets.

Corollary 4.8. For a well generated complex reflection group W , a reflection subgroup 
W ′ ! W has relative generating sets if and only if it is parabolic.

Proof. If W ′ ! W is a parabolic subgroup, then a relative generating set is furnished by 
Proposition 4.5.

Conversely, assume that rank(W ) = n, rank(W ′) = k, and that {t1, . . . , tn−k} is a 
relative generating set for W ′. Consider the chain of groups

Wi := 〈W ′, t1, . . . , ti〉 for i = 0, . . . , n− k.

Recall that the rank of a reflection group G is the codimension of its fixed space V G. 
Since Wi+1 is generated over Wi by a single reflection, we have rank(Wi+1) ! rank(Wi) +
1. Since further rank(W0) = rank(W ′) = k and rank(Wn−k) = rank(W ) = n, the 
equality rank(Wi) = k + i is forced for all i. Finally, since W = Wn−k itself is parabolic, 
Proposition 4.7 implies by induction that all Wi, including W0 = W ′, must be parabolic 
as well. !

Theorem 4.9 (First characterization of parabolic quasi-Coxeter elements). Let W be a 
well generated complex reflection group and g ∈ W . Then there exists a generating set 
for W relative to g if and only if g is a parabolic quasi-Coxeter element.

Proof. Let’s first fix the notation, writing n for the rank of W and k for the reflection 
length of g. For the forward direction, assume that {t1, . . . , tn} is a good generating 
set for W such that the tuple (t1, . . . , tk) is a reduced reflection factorization of g. By 
Proposition 4.6, the set of reflections {t1, . . . , tk} forms a good generating set for a 
parabolic subgroup W ′ ! W of rank k. This means, by definition, that g is parabolic 
quasi-Coxeter.

For the reverse direction, suppose g is parabolic quasi-Coxeter and choose a reduced 
reflection factorization g = t1 · · · tk. By Proposition 3.10, the reflections t1, . . . , tk gener-
ate the parabolic closure Wg of g, and by Proposition 3.3, we have rank(Wg) = k. Then 
Proposition 4.5 guarantees the existence of a relative generating set for Wg, which is also 
a relative generating set for g. !

Finally, we show that the two notions of relative generating sets can be used inter-
changeably.

Proposition 4.10. Let W be a well generated complex reflection group, g ∈ W a parabolic 
quasi-Coxeter element, and Wg the parabolic closure of g. Then we have a concordance 
of relative generating sets:
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RGS(W, g) = RGS(W,Wg).

Proof. This is immediate from the definition (Definition 3.2) of parabolic quasi-Coxeter 
elements and Proposition 3.10. !

4.2. Structure of relative generating sets for the combinatorial family

Next, we give a combinatorial description for relative generating sets when the group 
W belongs to the infinite family G(m, p, n). We begin with some necessary terminology.

Definition 4.11. Given a partition Π of the set K, we say that a graph Γ with vertex set 
K is a tree relative to Π if no edge of Γ connects two vertices in the same block of Π and, 
furthermore, contracting each block of Π to a single point leaves a tree. We say that Γ is 
a rooted tree relative to Π if Γ is the union of a tree with respect to Π and a single loop 
(at any vertex of K). Finally, we say that Γ is a unicycle relative to Π if Γ is the union 
of a tree with respect to Π and a single non-loop edge.

The following properties are straightforward; we omit the proofs.

Proposition 4.12. Suppose that Π is a partition of a set K, and Γ is a graph with vertex 
set K.

(i) If Γ is a tree relative to Π, then taking the union of Γ with a spanning tree on each 
block of Π gives a tree on K.

(ii) If Γ is a rooted tree relative to Π, then contracting each component of Π to a single 
vertex leaves a rooted tree. Moreover, in this case, the union of Γ with a spanning 
tree on each block of Π gives a rooted tree on K.

(iii) If Γ is a unicycle relative to Π, then contracting each component of Π to a single 
vertex leaves either a unicycle (if no edge in Γ connects two vertices in the same 
component of Π) or a rooted tree (otherwise). Moreover, in this case, the union of 
Γ with a spanning tree on each block of Π gives a unicycle on K.

Definition 4.13. Suppose that W = G(m, 1, n) or G(m, m, n) and that g ∈ W is parabolic 
quasi-Coxeter. Let Πg be the partition of {1, . . . , n} whose blocks are the support of the 
generalized cycles of g (as described in Corollary 3.16). We say that Πg is the partition 
induced by g.

We are now prepared to describe the relative generating sets of parabolic quasi-Coxeter 
elements in G(m, 1, n) and G(m, m, n).

Proposition 4.14. Suppose that W is either G(m, 1, n) or G(m, m, n) for m > 1 and 
that g is a parabolic quasi-Coxeter element for W . Let Πg be the partition of {1, . . . , n}
induced by g.
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(i) If either W = G(m, 1, n) and g is a quasi-Coxeter element for the subgroup 
G(m, 1, λ0) ×Sλ1 × · · ·×Sλk , or W = G(m, m, n) and g is a quasi-Coxeter element 
for the subgroup G(m, m, λ0) × Sλ1 × · · · × Sλk , then a set S of reflections is a 
relative generating set for g if and only if the graph associated to S is a tree relative 
to Πg.

(ii) If W = G(m, 1, n) and g is a quasi-Coxeter element for the subgroup Sλ1×· · ·×Sλk , 
then a set S of reflections is a relative generating set for g if and only if the graph 
associated to S is a rooted tree relative to Πg and the color of the unique diagonal 
reflection in S generates Z/mZ.

(iii) If W = G(m, m, n) and g is a quasi-Coxeter element for the subgroup Sλ1 × · · ·×
Sλk , then a set of reflections is a relative generating set for g if and only if the 
graph associated to S is a unicycle relative to Πg and a certain color c is a primitive 
generator for Z/mZ, where c is defined as follows: if contracting the cycles of g
leaves a rooted tree, then c is the color of the loop edge, whereas if contracting the 
cycles of g leaves a unicycle, then c is the value of the statistic δ on the cycle in 
the contracted graph.

Note that in case (iii), the color condition is not preserved under conjugacy; therefore, 
if one wishes to consider relative generating sets for parabolic subgroups of G(m, m, n)
conjugate in G(m, 1, n) to Sλ1 × · · ·× Sλk , it is necessary to take the conjugation into 
account when applying Proposition 4.14.

Proof. In all three cases, a simple calculation (using the facts rank(Si) = i − 1 and 
rank(G(m, 1, j)) = rank(G(m, m, j)) = j for m > 1) establishes that rank(Wg) = n −
k, and therefore that each relative generating set must have exactly k reflections. We 
consider the three parts in order.

In case (i), consider a set S of k reflections, and let Γ be the associated graph. Con-
tracting the generalized cycles of g to a single point leaves a graph on k+1 vertices with 
k edges. It is a standard result from graph theory (e.g., [16, Lem. 5.3]) that such a graph 
is either a tree or is disconnected. If the graph is disconnected, then both the group 
Wg and the reflections in S respect the partition of {1, . . . , n} into components. But the 
group W does not respect any nontrivial partition of {1, . . . , n}. Thus, it is necessary 
that S be a tree relative to Πg.

Conversely, suppose that S is a tree relative to Πg; we must show that it is a relative 
generating set. By Proposition 2.11, Lemma 2.5, and the fact that the good generating 
sets for the symmetric group correspond to trees, we have that any reduced factoriza-
tion of g corresponds to a forest whose components are the blocks of Πg, together with 
an additional edge in the first (λ0) component. Taking the union of such a graph with 
a tree relative to Πg produces a tree together with an additional edge. Moreover, the 
unique graph cycle in this graph (which is a loop if W = G(m, 1, n) and a cycle with at 
least two vertices if W = G(m, m, n)) belongs entirely to the reduced factorization. Be-
cause that component of the graph corresponds to a generating set for either G(m, 1, λ0)
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or G(m, m, λ0) (whichever is relevant), the graph cycle satisfies the color condition of 
Lemma 2.5. Thus, the union meets the hypotheses of Lemma 2.5 and so generates the 
full group W .

We omit the proof of (ii), which is similar to (but less technical than) case (iii).
In case (iii), consider a set S of k reflections, and let Γ be the associated graph and Γ

be the result of contracting Γ so that each of the cycles of g contracts to a single point. 
As in case (i), in order for S to be a relative generating set, it is necessary that Γ be 
connected. Assume that S meets this condition. The contracted graph Γ has k vertices 
and k edges, so it is either a rooted tree or a unicycle. Fix a reflection that corresponds 
to an edge in the unique graph cycle in Γ (the loop, if Γ is a rooted tree), and remove 
it. By definition, the remaining reflections in S correspond to a tree relative to the cycle 
partition Πg induced by g. Since in this case W = G(m, m, n), the removed reflection is 
transposition-like, so does not correspond to a loop in Γ. Therefore, by definition, Γ is a 
unicycle relative to Πg.

We now consider which relative unicycles Γ with respect to Πg are actually relative 
generating sets. Since Wg ⊆ Sn, we have by Proposition 2.11 that every reduced W -
factorization of g consists of a set T of true transpositions (i.e., reflections of the form 
(ij) = [(ij); 0]) whose associated graph is a forest with components Πg. Taking the 
union of this forest associated with T and a relative unicycle Γ produces a unicycle. By 
Lemma 2.5, the set S ∪ T of corresponding reflections is a good generating set for W if 
and only if δ(S ∪ T ) is a primitive generator for Z/mZ.

Next, observe that the contraction of Γ that produces Γ (collapsing each cycle of g to 
a single point) may be performed step-wise, starting with the larger graph associated to 
S ∪ T and successively contracting the edges that correspond to T (since these form a 
spanning forest with the correct components). Moreover, it follows immediately from the 
definition of δ that if a set S′ of reflections corresponds to a unicycle, then contracting 
a unicycle along an edge [(ij); 0] produces a new unicycle with the same δ-value, unless 
the unique graph cycle is a 2-cycle and containing the edge to be contracted. If the 
second case never arises while contracting away the edges that correspond to T , then we 
have that δ(S ∪ T ) is a primitive generator for Z/mZ (and so S is a relative generating 
set) if and only if the value of δ on the contracted unicycle is a primitive generator, as 
needed; if the second case does arise, then the cycle in the graph associated to S ∪ T

contains only a single edge [(ij); c] from S, whose image under contraction is a loop, so 
δ(S ∪ T ) = c, and so S is a relative generating set if and only if the color c of the loop 
in the contraction is a primitive generator, as needed. This completes the proof. !

5. Characterization via full reflection factorizations

In this section we give two more characterizations of parabolic quasi-Coxeter elements 
g. One of these (Theorem 5.7) is in terms of the absolute order !R. The other (Theo-
rem 5.8) is given in terms of the full reflection length of g, whose definition we recall now. 
As in the first part [40] of this series, we say that a reflection factorization t1 · · · tk = g
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of an element g ∈ W is full (relative to W ) if the factors generate the full group, i.e., if 
W = 〈t1, . . . , tk〉. The full reflection length #full

W (g) of g is the minimum length of a full 
reflection factorization:

#full
W (g) := min

{
k : ∃ t1, . . . , tk ∈ R such that t1 · · · tk = g and 〈t1, . . . , tk〉 = W

}
.

In Part I, we gave the following formula for the full reflection length of an arbitrary 
element g in the group G(m, p, n). Notice that the cycles here are the cycles of the 
underlying permutation of g and should not be confused with the generalized cycles of 
§3.4.

Proposition 5.1 ([40, Cor. 5.1]). Let W = G(m, p, n). For an element g ∈ W with k
cycles, of colors a1, . . . , ak, let d = gcd(a1, . . . , ak, p). If m = p, we have

#full
W (g) =

{
n + k − 2, if d = 1
n + k, if d 6= 1,

while if m 6= p, we have

#full
W (g) =






n + k − 1, if gcd(col(g),m) = p and d = 1
n + k, if gcd(col(g),m) 6= p and d = 1
n + k + 1, if gcd(col(g),m) = p and d 6= 1
n + k + 2, if gcd(col(g),m) 6= p and d 6= 1.

We also need the following formula for the full reflection length of the identity in any 
complex reflection group.

Lemma 5.2. In any complex reflection group W , the full reflection length #full
W (id) of the 

identity element is equal to twice the size of a minimum reflection generating set for W .

Proof. One inequality is straightforward: if {t1, . . . , tk} is a minimum reflection gener-
ating set for W then

id = t1 · t−1
1 · t2 · t−1

2 · · · tk · t−1
k (5.1)

is a reflection factorization of id that generates W . Therefore, it is left to show that there 
is no shorter reflection factorization of id that generates W .

Both full reflection length and the size of a minimum reflection generating set are 
obviously additive over direct products. Therefore, the claim is valid for all reflection 
groups if and only if it is valid for irreducible groups, so it suffices to consider irreducible 
W . We proceed in various cases.
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First, suppose that W is real. By Lemma 2.17, every reflection factorization of the 
identity is Hurwitz-equivalent to a factorization of the form (5.1). Such a factorization is 
full if and only if the set {t1, . . . , tk} is a generating set for W . Since the Hurwitz action 
preserves the group generated by the factors, we conclude that in real reflection groups, 
the full reflection length of the identity is at least twice the minimum size of a reflection 
generating set.

Second, suppose that W = G(m, m, n) for m > 1. Taking g = id in Proposition 5.1, 
we have k = n, a1 = . . . = an = 0, and d = m 6= 1, and therefore #full

W (id) = 2n in this 
case, as claimed.

Third, suppose that W = G(m, p, n) for some p < m. Taking g = id in Proposition 5.1, 
we have k = n, a1 = . . . = an = 0, d = p, and gcd(col(g), m) = m 6= p. Therefore, if 
p = 1, we have d = 1 and consequently #full

W (id) = 2n, as claimed. On the other hand, if 
p > 1 then d 6= 1 and so #full

W (id) = 2n + 2, as claimed.
Finally, for the non-real exceptional groups, the claim has been verified by com-

puter calculations following the representation-theoretic approach described in [40, 
Rem. 3.1]. !

Remark 5.3. For real reflection groups, the proof of Lemma 5.2 is case-free after Re-
mark 2.18.

We give now several statements that are of use at various points in the rest of the 
paper; they are all corollaries of Lemma 5.2 and previous discussions.

Corollary 5.4. If W is a complex reflection group and r denotes the minimum size of a 
reflection generating set for W , then for any element g ∈ W , we have

#redW (g) + #full
W (g) " 2r.

Proof. Consider two reflection factorizations of g: one that is reduced t1 · · · tk = g (with 
k = #redW (g)), and one that is full t′1 · · · t′l = g (with l = #full

W (g)). By combining them, we 
get a full factorization

id = t′1 · · · t′l · t−1
k · · · t−1

1

of the identity, having length l + k = #redW (g) + #full
W (g). It follows from Lemma 5.2 that 

l + k " 2r. !

Corollary 5.5. In a well generated complex reflection group W of rank n with a given 
good generating set {t1, . . . , tn}, the product of the generators ti in any order is a quasi-
Coxeter element.

Proof. Let g be the product of the reflections ti in some order. This factorization is 
clearly full, which implies that #redW (g) ! #full

W (g) ! n. Since W is well generated, we 
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have by Corollary 5.4 that #redW (g) + #full
W (g) " 2n. Combining the inequalities gives 

#redW (g) = #full
W (g) = n, and so the given factorization of g is reduced. Then it follows from 

Definition 3.2 that g is quasi-Coxeter. !

Remark 5.6. In the infinite family, Corollary 5.5 could be alternatively checked by com-
paring the descriptions of the good generating sets in Lemma 2.5 with the description 
of the quasi-Coxeter elements in Section 3.5, using the observation of Remark 2.6 in the 
case of G(m, m, n).

One characterization of parabolic Coxeter elements is that they are precisely those 
which are below some Coxeter element in the absolute order !R (for instance, see [11, 
Lem. 1.4.3] for the real case). The following statement generalizes this property to the 
quasi-Coxeter setting, extending [4, Cor. 6.11] (which covers the case of real W ).

Theorem 5.7 (Second characterization of parabolic quasi-Coxeter elements). Let W be 
a well generated complex reflection group and let g ∈ W . Then g is a parabolic quasi-
Coxeter element if and only if there exists a quasi-Coxeter element w ∈ W such that 
g !R w.

Proof. Let n = rank(W ). First, choose a parabolic quasi-Coxeter element g and a re-
duced reflection factorization g = t1 · · · tk (with k = #redW (g)). By Theorem 4.9, there 
exists a relative generating set {tk+1, . . . , tn} with respect to g, that is, one which satis-
fies 〈t1, . . . , tn〉 = W . By Corollary 5.5, the product w := t1 · · · tn must be a quasi-Coxeter 
element; in particular, #redW (w) = n. We have now by definition that g !R w, and the 
forward direction is proven.

For the reverse direction, suppose that w ∈ W is a quasi-Coxeter element for which 
g !R w. By definition of !R, there is a reduced reflection factorization w = t1 · · · tn
that starts with a reduced factorization of g, that is, such that g = t1 · · · tk for k =
#redW (g). Since w is quasi-Coxeter, the set {t1, . . . , tn} is a good generating set for W
(Proposition 3.10), and then, by Proposition 4.6, the set {t1, . . . , tk} must be a good 
generating set for some parabolic subgroup of W . By definition, this means that g is a 
parabolic quasi-Coxeter element. !

We now extend Lemma 5.2 to give another characterization of parabolic quasi-Coxeter 
elements in well generated groups W .

Theorem 5.8 (Third characterization of parabolic quasi-Coxeter elements). In a well 
generated complex reflection group W of rank n, an element g ∈ W is a parabolic quasi-
Coxeter element if and only if

#full
W (g) = 2n− #redW (g).
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Proof. Let us start with the forward implication and assume that g ∈ W is a parabolic 
quasi-Coxeter element. Consider a reduced reflection factorization t1 · · · tk = g (so 
k = #redW (g)). By Proposition 3.10, the ti generate the parabolic closure Wg of g
and rank(V g) = k. By Proposition 4.5, there are reflections tk+1, . . . , tn such that 
〈Wg, tk+1, . . . , tn〉 = W . Therefore

g = t1 · · · tk · tk+1 · t−1
k+1 · · · tn · t−1

n

is a full factorization of g in W , of length 2n − k, which in turn implies that #full
W (g) !

2n − #redW (g). By Corollary 5.4, actually #full
W (g) = 2n − #redW (g), as needed.

Conversely, suppose that W is a well generated complex reflection group and the 
element g in W satisfies #redW (g) + #full

W (g) = 2n. Since rank, reflection length, and full 
reflection length are all additive over direct products, using Corollary 5.4, we have that 
equality holds for each irreducible component of W . Since (by Corollary 3.5) the product 
of parabolic quasi-Coxeter elements from the irreducible factors is a parabolic quasi-
Coxeter element for the direct product, it suffices to consider irreducible W . We proceed 
in various cases.

First, suppose that W is real of rank n and let k = #redW (g). By hypothesis, #full
W (g) =

2n − k. Consider a minimum-length full reflection factorization t = (t1, . . . , t2n−k)
of g. By Lemma 2.17, t has in its Hurwitz orbit a factorization of the form t′ =
(t′1, t′1, . . . , t′n−k, t

′
n−k, t

′
n−k+1, . . . , t

′
n) such that (t′n−k+1, . . . , t

′
n) is a reduced reflection 

factorization of g. Since t is full, t′ is also full, and therefore {t′1, . . . , t′n−k} is a relative 
generating set for g. By Theorem 4.9, it follows that g is parabolic quasi-Coxeter.

Second, suppose that W = G(m, 1, n) for some m > 1 and that g has k cycles, 
of which j have nonzero color. By Theorem 2.9 (i), we have #redW (g) = n − k + j. By 
Proposition 5.1, we have #full

W (g) " n + k − 1, and consequently j ! 1. If j = 0 then all 
cycles of g have color 0, and therefore by Proposition 3.16 (i) g is parabolic quasi-Coxeter 
for a conjugate of a subgroup of type Sλ1 × · · · × Sλk for some partition λ of n. On 
the other hand, if j = 1 then #full

W (g) = n + k − 1. Therefore, by Proposition 5.1, we 
have that gcd(col(g), m) = 1, and so the color of g is primitive modulo m. Since g has 
only one cycle of nonzero color, the color of that cycle generates Z/mZ and we have by 
Proposition 3.16 (ii) that g is parabolic quasi-Coxeter for a conjugate of a subgroup of 
type G(m, 1, λ1) × Sλ2 × · · ·× Sλk for some partition λ of n.

Third, suppose that W = G(m, m, n) for some m > 1 and that g has k cycles. By 
Theorem 2.9, we have #redW (g) = n + k − 2vm(g), where vm(g) is the largest number of 
parts into which one can partition the cycles of g so that all parts have color 0. By 
Proposition 5.1, we have #full

W (g) " n + k− 2. Consequently, vm(g) " k− 1. If vm(g) = k

then the associated partition is the trivial partition, with every cycle in its own part, 
and so all cycles are of color 0. Therefore, by Proposition 3.16 (iii), g is parabolic quasi-
Coxeter a subgroup of type Sλ1 × · · · × Sλk for some partition λ of n. On the other 
hand, if vm(g) = k − 1, then the partition must have one part of size 2 (with two cycles 
of nonzero colors that sum to 0) and k− 2 parts containing a single cycle (necessarily of 
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color 0). Moreover, in this case we have #full
W (g) = n +k−2, so d = 1, and consequently the 

nontrivial cycle colors must be primitive modulo m. Therefore, by Proposition 3.16 (iv), 
g is parabolic quasi-Coxeter a subgroup of type G(m, m, λ1) × Sλ2 × · · · × Sλk−2 for 
some partition λ of n.

Finally, suppose that W is of non-real exceptional type. In these cases, the statement 
has been confirmed by computer calculations, as follows. On one hand, the property 
of being parabolic quasi-Coxeter can be verified most easily by the characterization of 
Theorem 4.9: for each conjugacy class representative g, we pair every (n −#redW (g))-element 
subset of R with the reflections in a fixed reduced factorization of g, and check whether 
the whole collection ever generates W . On the other hand, the full reflection length can 
be computed by representation-theoretic techniques, as in [40, Rem. 3.1]. !

Remark 5.9. For real reflection groups, the proof of Theorem 5.8 is case-free after Re-
mark 2.18.

The previous theorem is the final component of our main structural theorem an-
nounced in the introduction. Its proof is a direct combination of Theorems 4.9, 5.7, 
and 5.8.

Theorem 5.10 (Characterization of parabolic quasi-Coxeter elements). For a well gener-
ated group W of rank n and an element g ∈ W , the following are equivalent.

(i) The element g is a parabolic quasi-Coxeter element of W .
(ii) The collection RGS(W, g) of relative generating sets with respect to g is nonempty.
(iii) There exists a quasi-Coxeter element w ∈ W such that g !R w.
(iv) The full reflection length of g satisfies #full

W (g) = 2n − #redW (g).

6. Reduced reflection factorizations of parabolic quasi-Coxeter elements

In this section, we study the number F red
W (g) of reduced reflection factorizations of 

a quasi-Coxeter element g in a well generated complex reflection group W . It is well 
known [33,73,65] that, in the case of a long cycle c in the symmetric group Sn, the 
number of reduced reflection factorizations has a simple product formula: F red

Sn
(c) =

nn−2. As we see below, it is also the case for every quasi-Coxeter element c in every well 
generated group W that the number F red

W (c) factors as a product of small primes (of 
similar order of magnitude as the Coxeter number). Our discussion proceeds in several 
stages: first, in §6.1, we review the case of Coxeter elements, including the connection 
with the discriminant hypersurface of W and the Lyashko–Looijenga morphism. Second, 
in §6.2, we consider the case of a general quasi-Coxeter element g in a real reflection 
group W . We see in Table 4 that in all cases, F red

W (g) is a product of small primes. While 
we do not have a complete understanding this numerological phenomenon, we present a 
conjectural geometric explanation (see Conjecture 6.4) that generalizes the situation of 
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Table 4
The numbers F red

W (g) for quasi-Coxeter elements g of real reflection groups W .

g F red
W (g) g F red

W (g) g F red
W (g) g F red

W (g)
An (n + 1)n−1 E7(a3) 2 · 34 · 56 E8(a7) 213 · 36 · 5 · 7 H4(2) 34 · 52

Bn nn E7(a4) 24 · 38 · 5 · 7 E8(a8) 27 · 39 · 52 · 7 H4(3) 26 · 33

I2(m) m E8 2 · 35 · 57 F4 24 · 33 H4(4) 23 · 3 · 53

E6 29 · 34 E8(a1) 218 · 35 F4(a1) 23 · 34 H4(5) 2 · 32 · 53

E6(a1) 310 E8(a2) 210 · 57 H3 2 · 52 H4(6) 34 · 52

E6(a2) 26 · 35 · 5 E8(a3) 212 · 36 · 5 · 7 H3(1) 2 · 33 H4(7) 26 · 52

E7 2 · 312 E8(a4) 2 · 313 · 5 · 7 H3(2) 2 · 52 H4(8) 23 · 34 · 5
E7(a1) 2 · 77 E8(a5) 35 · 57 · 7 H4 2 · 33 · 52 H4(9) 2 · 33 · 52

E7(a2) 29 · 36 · 5 E8(a6) 23 · 32 · 58 · 7 H4(1) 26 · 52 H4(10) 23 · 3 · 53

F red
Dn

(Dn(a, b)) = 2 · (n − 1) ·
( n−2
a−1,b−1

)
· aa · bb with a + b = n

Coxeter elements discussed in §6.1. In §6.3, we give explicit formulas for F red
W (g) when 

g is a quasi-Coxeter element and W belongs to the infinite family of complex reflection 
groups (Corollary 6.11), and discuss the case of the exceptional groups (Remark 6.12). 
Finally, in §6.4, we show that F red

W (g) is a product of small primes whenever g is a 
parabolic quasi-Coxeter element, by reducing to the case of quasi-Coxeter elements.

Apart from being of substantial interest on its own, the study of the numbers F red
W (g)

of reduced reflection factorizations of parabolic quasi-Coxeter elements g will also play 
an important role for our main result in [41], which gives a formula for the numbers 
F full
W (g) of minimum-length full reflection factorizations of g. The connection is two-

fold: first, for a quasi-Coxeter element g ∈ W , we have that F full
W (g) = F red

W (g) (see 
Proposition 6.1 below; in the case of the symmetric group, this is a direct computation 
using the Hurwitz formula (1.1) that H0((n)) = nn−2). Second, we will show in [41] that 
the numbers F red

W (g) are always (i.e., for any parabolic quasi-Coxeter element g ∈ W ) 
factors in the formula for F full

W (g) (see also §1.3). We end this introductory discussion 
with the proof that F full

W (g) = F red
W (g) for quasi-Coxeter elements g.

Proposition 6.1. For a quasi-Coxeter element g of a well generated group W , the number 
of full reflection factorizations of g equals the number of reduced reflection factorizations 
of g.

Proof. Let g be a quasi-Coxeter element of W . By Definition 3.2, g has a reduced re-
flection factorization that is also full. Then Proposition 3.10 implies that all reduced 
factorizations of g must be full for the parabolic closure Wg, which is equal to W by 
Proposition 3.3. !

6.1. Reflection discriminants and reduced factorizations of Coxeter elements

We deal briefly in this section with the case of a Coxeter element c in an irreducible 
well generated group W . For such elements, the numbers F red

W (c) have a well known 
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product structure: if h is the Coxeter number of W and n is its rank, we have that

F red
W (c) = hn · n!

#W
. (6.1)

This formula has many proofs [26,31,80,23], each indicating connections to different areas 
and each explaining the product structure in a different way. In the next few paragraphs, 
we review a geometric approach, which we extend in the next section (§6.2) to the case 
of quasi-Coxeter elements. For any terminology that is not explained, or for proofs of 
statements that are only claimed here, consult the common references [66,75,19].

Recall first that, as in the proof of Proposition 4.5, for a complex reflection group 
W ! GL(V ) acting on some space V ∼= Cn, the Shephard–Todd–Chevalley theorem 
identifies the quotient space V/W with the complex affine space Cn whose coordinates 
are given by the fundamental invariants f := (fi)i=1...n of W . The fi are homogeneous 
polynomials and we order them according to their degrees di := deg fi, so that di ! di+1. 
The discriminant hypersurface H of W is defined as the quotient variety H := AW /W ⊂
V/W ∼= Cn of the reflection arrangement AW .

The highest-degree invariant fn plays a special role in this setting. The hypersurface 
H is the zero set of a polynomial ∆(W ; f) in C[f1, . . . , fn] that is monic and of degree n
in fn. In fact, there is always a suitable choice of fundamental invariants such that the 
discriminant polynomial can be written as

∆(W ;f) = fn
n + a2(f) · fn−2

n + · · · + an(f), (6.2)

where the ai are weighted-homogeneous polynomials in f1, . . . , fn−1 of weighted degrees 
wt(ai) = h · i (where the weight of fi is di). Moreover, the braid monodromy of the poly-
nomial ∆(W ; f) in the fn-direction encodes reduced factorizations of Coxeter elements, 
as we explain next.

The braid monodromy of an algebraic function such as ∆(W ; f) (viewed as a poly-
nomial in fn with coefficients ai) is a refinement of its usual monodromy group: it keeps 
track of how the function values move around each other when we vary the coefficients 
ai, as opposed to just recording their final permutation (see [1]). The braid monodromy 
of an algebraic function is encoded via its coefficient map (as in [60], [32, §2]), which in 
the case of the discriminant polynomial ∆(W ; f) is known also as the Lyashko–Looijenga 
morphism LL (see [73,12]):

Cn−1 3
(
f1, . . . , fn−1

) LL,−→
(
a2(f1, . . . , fn−1), . . . , an(f1, . . . , fn−1)

)
∈ Cn−1. (6.3)

The LL map is weighted-homogeneous and its degree (the size of the generic fiber) may 
be calculated by a version of Bezout’s theorem (for instance [77, Thm. 5.1.5]) in terms of 
the weights of the coordinates in its image (wt(ai) = h · i) and its domain (wt(fi) = di):

deg(LL) =
∏n

i=2 wt(ai)∏n−1
i=1 wt(fi)

= hn−1 · n!
d1 · · · dn−1

= hn · n!
#W

, (6.4)
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where the last equality is due to the facts that dn = h for well generated W and #W =
d1 · · · dn.

A natural geometric construction [12, §7], which goes back to Looijenga’s paper [73, 
§3] but is also part of the general theory of braid monodromies [28, §3], associates a 
reduced factorization of the Coxeter element to each point in a generic fiber of the 
LL map. Bessis was able to rely on certain properties of the LL map (essentially, that 
it is a finite morphism) and on the transitivity of the Hurwitz action on RedW (c) to 
prove the following lemma. His proof is conceptual and case-free (assuming the Hurwitz 
transitivity) and, in combination with Equation (6.4), it gives an a priori justification 
of the numerological properties of the numbers F red

W (c) (that they are products of small 
primes) discussed at the beginning of §6.

Lemma 6.2. For a well-generated complex reflection group W and a Coxeter element 
c ∈ W , there is for some k a k-to-1 correspondence between elements in a generic fiber 
of the LL map and the set RedW (c) of reduced reflection factorizations of c. In particular, 
we have

deg(LL) = k · F red
W (c)

for some positive integer k.

Remark 6.3. Comparing the formulas in (6.1) and (6.4), it is evident that k = 1 in the 
Lemma 6.2. Many of the constructions in Bessis’ work [12] rely on the numerological 
coincidence of the formulas (6.1) and (6.4); in particular, the proof of the dual braid 
presentation of the generalized braid group B(W ) (see the exposition in [23] for more). 
For those applications, the statement of Lemma 6.2 is not sufficient; one really needs to 
know that k = 1. A conceptual proof of this, relying on the geometry of the LL map, is 
highly desirable but currently seems out of reach. A very promising approach is in the 
work of Hertling and Roucairol, who do the case of the simply laced Weyl groups (see 
the proof of [62, Thm. 7.1]).

6.2. Frobenius manifolds and reduced factorizations of quasi-Coxeter elements

That the counts F red
W (g) are always products of small prime numbers when g is a 

quasi-Coxeter element (not just a Coxeter element) was first observed by Kluitmann and 
Voigt in the case of the simply laced Weyl groups [67]. It was rediscovered by Christian 
Stump, who further confirmed it in the broader set of real reflection groups W (personal 
communication) and asked for an explanation or even just a uniformly stated formula 
for the numbers F red

W (g).
We give in Table 4 the numbers F red

W (g) for every quasi-Coxeter element g and irre-
ducible real reflection group W . The conjugacy classes of quasi-Coxeter elements in Weyl 
groups are indexed according to Carter’s notation [22], apart from Dn where we write 
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Dn(a, b) for Carter’s Dn(ab−1) to have a compatible notation with the classification of 
Corollary 3.16 and with Corollary 6.11 (iii). The conjugacy classes of quasi-Coxeter ele-
ments of the groups H3 and H4 are indexed according to increasing Coxeter length (the 
smallest length of a factorization of a representative g of the class as a product of simple
reflections). The groups Sn+1 = An and Bn only have a single quasi-Coxeter class, while 
in the dihedral group I2(m) all ϕ(m)

2 of the quasi-Coxeter classes have the same number 
F red
I2(m)(g) = m of reduced reflection factorizations (recall that ϕ denotes Euler’s totient 

function).

6.2.1. A conjecture in terms of geometric invariants of Frobenius manifolds
We do not have a complete explanation for the numerological phenomenon illustrated 

in Table 4, but we present here a conjectural interpretation, generalizing the geometric 
approach for Coxeter elements in Section 6.1. This interpretation relies on the theory of 
Frobenius manifolds, pioneered by Dubrovin [50], for which we give below a (very) brief 
introduction.

Dubrovin’s original goal was to give a coordinate-free formulation of the Witten–
Dijkgraaf–Verlinde–Verlinde (WDVV) equations from 2D topological field theory (see 
[47]). He showed that solutions of the WDVV equations, which he called prepotentials or 
free energies [48, Lec. 1], are encoded by the structure coefficients of smoothly varying 
Frobenius algebra structures on the tangent planes TxM of a manifold M . Dubrovin 
called manifolds with such structures Frobenius manifolds.

In his study [51, Lect. 4] of massive Frobenius manifolds, Dubrovin encoded the local 
algebra structure in a Stokes matrix, or equivalently a tuple of Euclidean reflections 
t := (t1, · · · , tn), while he described its analytic continuation via the Hurwitz action 
(as in §2.6) of the braid group Bn on t (see also the detailed presentation in [42, §1.4]
for the rank-3 case). Under this interpretation, algebraic prepotentials correspond to 
tuples t with finite Hurwitz orbits, and Dubrovin asked for the construction of the 
corresponding Frobenius manifolds. By work of Michel [79], t has a finite Hurwitz orbit 
if and only if it generates a finite reflection group, so that the problem of algebraic 
Frobenius manifolds in some sense lives entirely in the world of finite Coxeter groups 
and their quasi-Coxeter elements. Indeed, a reduced tuple t always determines a quasi-
Coxeter element g :=

∏n
i=1 ti of the group W ′ := 〈t〉, so that we can index the possible 

corresponding Frobenius manifold by the conjugacy class of g and denote it Fg.
In the case of a Coxeter element c in a real reflection group W ! GL(V ), Dubrovin 

constructed the manifold Fc by adding a Frobenius algebra structure on the quotient 
variety V/W itself [49]. This algebra structure was defined via a special choice of funda-
mental invariants, known as Saito flat coordinates, that provide a Euclidean metric for 
the orbit space V/W . Dubrovin conjectured [51] and Hertling later proved [61, §5.4] that, 
in fact, these are the only examples of Frobenius manifolds with associated polynomial
prepotentials.

On the other hand, we saw in §6.1 that for a Coxeter element c ∈ W , one can relate 
the number F red

W (c) with the degree of the weighted-homogeneous Lyashko–Looijenga 
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map; in fact, they are equal. Many of the relevant geometric objects of this approach 
also exist in the world of Frobenius manifolds. In particular, there is an analogue of the 
LL map [61, §3.5], which relates two natural coordinate systems of Fg. It sends the flat 
coordinates, on which the prepotential is given, to (the elementary symmetric polynomi-
als of) the canonical coordinates, which are the eigenvalues in the algebra structure of the 
multiplication by the Euler field. The LL map is also weighted-homogeneous and one can 
easily calculate its degree, as in (6.4), from the prepotential associated to Fg. The degree 
calculations in already constructed algebraic Frobenius manifolds (see Example 6.5) and 
Dubrovin’s analysis of their local structures suggest the following conjecture.

Conjecture 6.4. Let g be a quasi-Coxeter element in an irreducible real reflection group 
W . Assuming the Frobenius manifold Fg exists, then the degree of the map LL(Fg) equals 
F red
W (g).

Because of the weighted-homogeneity of the LL map, Conjecture 6.4 may be seen 
as a justification of the nice numerological properties of the numbers F red

W (g) in Ta-
ble 4. Indeed, assuming the conjecture, Bezout’s theorem (as in (6.4)) would imply that 
deg

(
LL(Fg)

)
is a product of small primes (those involved in the weights and algebraicity 

degree of the prepotential).

Example 6.5 (The algebraic prepotential associated to g = H3(1)). We illustrate here the 
calculations described in the previous discussion for a special case in H3. Dubrovin and 
Mazocco [42] constructed Frobenius manifolds associated to all quasi-Coxeter elements 
of H3 and Kato–Mano–Sekiguchi [68, §7] gave the corresponding prepotentials. In terms 
of the flat coordinates t1, t2, t3, the prepotential for the element g = H3(1) (denoted in 
these references by (H3)′′) is

F (t1, t2, t3) = 4063
1701 t

7
1 + 1

2(t22t3 + t1t
2
3) + 19

135 t
5
1z

2 − 73
27 t

3
1z

4 + 11
9 t1z

6 − 16
35z

7, (6.5)

where z is given in terms of the ti via the algebraic equation

z2 − t21 + t2 = 0. (6.6)

It is easy to see that the algebraic function F (t1, t2, t3) is weighted-homogeneous with 
weights

wt(t1) = 1
3 , wt(t2) = 2

3 , wt(t3) = 1.

From this data, we calculate the degree of the corresponding LL map as in (6.4):

deg
(
LL(Fg)

)
= 3!

∏3
i=1 wt(ti)

· 2 = 6
2/9 · 2 = 54,
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where the “extra” factor of 2 is the algebraicity degree (i.e., the number of branches) of 
(6.6). This agrees with the value F red

H3
(g) in Table 4 and thus confirms Conjecture 6.4

for the case H3(1).

6.2.2. The case of regular quasi-Coxeter elements in Weyl groups
An obstacle to using the geometry of Frobenius manifolds to study the combinatorics 

of the sets RedW (g) for quasi-Coxeter elements g is that in most cases the corresponding 
manifolds Fg have not been constructed yet. In fact their very existence is generally 
conjectural (this is implicit in Dubrovin’s work, see for example the remark above 
Example 5.5 in [51, pp. 402–404]). However, for the subclass of regular (as in §2.3) 
quasi-Coxeter elements, the manifolds Fg are known to exist and enough data about 
their structure is available so that we can give an almost explicit formula for the counts 
F red
W (g) (in Proposition 6.6 and Remark 6.7 below).
The most important work towards constructing algebraic Frobenius manifolds has 

been carried out by Dinar [35–38]. He also seems to have been the first to explicitly state 
Dubrovin’s refined conjecture, namely, that there exists a Frobenius manifold for every 
conjugacy class of quasi-Coxeter elements and that this family constitutes the totality 
of Frobenius manifolds with algebraic prepotentials.

Dinar focused on Weyl groups, where quasi-Coxeter classes correspond in some sense 
to certain nilpotent orbits in the Lie algebra. In [36], he gave a construction of polynomial 
Frobenius manifolds associated to the Coxeter class (corresponding to the regular nilpo-
tent orbit) that was different from Dubrovin’s but that produced equivalent structures. 
In [38], he constructed Frobenius manifold structures on Slodowy-type slices associated 
to regular quasi-Coxeter classes. Dinar’s work not only produced new algebraic Frobe-
nius manifolds (even a single new example is considered valuable in the area), but his 
approach is a conceptual one and his proofs are case-free.

For the case of regular quasi-Coxeter elements g in a Weyl group W , Dinar gave an 
explicit description of the weights of the flat coordinates of Fg. The exponents {ej(g)}nj=1
of an element g are the integers in the interval 

[
0, |g| − 1

]
such that the eigenvalues of g

(counted with multiplicity) are 
{
e2πiej(g)/|g|

}n

j=1. Dinar showed11 [38, Thm. 1.1] that the 
weights of Fg are given by the numbers (ej(g) +1)/|g| (see also the prior work of Pavlyk 
[84]). Then, analogously to (6.4), the weighted-homogeneity of the LL map would give 
its degree as

deg
(
LL(Fg)

)
=




n∏

j=1

|g| · j
ej(g) + 1



 · dg = |g|n · n!∏n
j=1(ej(g) + 1) · dg, (6.7)

11 When comparing [38, Table 1] with Table 4, the reader should be aware that Dinar uses the Bala–Carter 
notation for nilpotent orbits in the Lie algebra, not the Carter notation for the corresponding classes in the 
Weyl group; see also Remark 3.1.
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Table 5
The numbers δg for regular quasi-Coxeter elements g of Weyl groups W , 
using Carter’s notation as in Table 4.

g ∈ W D2n(n, n) F4(a1) E6(a1) E6(a2) E7(a1) E7(a4)
δg n 3 2 5 2 2 · 32

g ∈ W E8(a1) E8(a2) E8(a3) E8(a5) E8(a6) E8(a8)
δg 2 3 23 7 22 · 5 33 · 5

where dg is the algebraicity degree of the Frobenius prepotential (i.e., the number of 
branches it has as an algebraic function on the flat coordinates).

Dinar’s work is not sufficient to prove Conjecture 6.4, even for regular elements, 
because it does not allow for a direct computation of the numbers dg. However, when 
taken with the next result (a natural generalization of the Arnold–Bessis–Chapoton 
formula (6.1)), it should be viewed as significant evidence in favor of the conjecture.

Proposition 6.6. For a regular quasi-Coxeter element g in an irreducible Weyl group W , 
we have

F red
W (g) = |g|n · n!∏n

j=1(ej(g) + 1) · δg, (6.8)

where the numbers ej(g) are the exponents of g and δg is a small integer. When g is a 
Coxeter element, δg is equal to 1, while the rest of the cases are given in Table 5.

Proof. In the case that g is a Coxeter element, since #W =
∏n

j=1(ej(g) + 1) [63, 
Thm. 3.19], we have |g|n ·n!/ 

∏n
j=1(ej(g) +1) = hn ·n!/#W and the result is immediate 

by (6.1).
In types An, Bn, and G2, all quasi-Coxeter elements are Coxeter elements, so there 

is nothing more to check. It is easy (e.g., by using the classification in Corollary 3.16
and explicitly computing the eigenspaces) to check that in type D2n+1, the only regular 
quasi-Coxeter elements are the Coxeter elements, and that in type D2n, there is a second 
class of regular quasi-Coxeter elements; in terms of the notation in Table 4, these are 
the elements in conjugacy class D2n(n, n). Treating D2n as a subgroup of B2n, these 
elements are Coxeter elements for the subgroup Bn×Bn and so they have order |g| = 2n
and exponents {1, 1, 3, 3, . . . , 2n − 1, 2n − 1}. Therefore, using Table 4, we can calculate 
the number δg for these elements as

δg =
2 · (2n− 1) ·

(2n−2
n−1

)
· nn · nn

(2n)2n · (2n)!/(2 · 4 · · · 2n)2 = n.

Finally, for the remaining types F4, E6, E7, and E8, it is a straightforward computer 
calculation to test regularity, compute exponents, and compare the results with the data 
in Table 4. !
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Remark 6.7 (Interpretation of the numbers δg). In all the cases that the prepotentials 
of the Frobenius manifolds Fg have been explicitly given (D4(2, 2) in [37, §6]; F4(a1) in 
[35, Ex. 5.4]; E8(a1) in [46]; and E6(a1), E7(a1) in [89, §7]), Conjecture 6.4 is confirmed 
(i.e., δg = dg). This includes the case of Coxeter elements c, when the prepotential is 
polynomial and hence dc = 1. Applied in the opposite direction, this enumerative data 
can be exploited to guess solutions to the WDVV equations; see §8.5 for more.

Remark 6.8. Proposition 6.6 does not extend verbatim to non-Weyl groups. For example, 
in H3, all quasi-Coxeter elements g ∈ H3 are regular, but the numbers F red

H3
(g) are not 

all integer multiples of the expression

|g|n · n!∏n
j=1(ej(g) + 1) . (6.9)

See Remark 6.13 and §8.5 for more about this.

Remark 6.9. In this Section 6.2 we have only discussed real reflection groups, although, 
as we will see in Section 6.3, the property that the numbers F red

W (g) are products of small 
primes remains true in the complex setting as well. The theory of Frobenius manifolds 
does have extensions in the setting of well generated groups. We mention especially the 
work [69], where the authors describe an extension of the WDVV equations and con-
struct solutions for it, one associated to each well generated complex reflection group. 
The solutions are certain potential vector fields with polynomial entries (but they do not 
always integrate to a prepotential, as is the case in real types). Moreover, the analytic 
behavior of these differential-geometric structures is encoded by tuples of unitary reflec-
tions [69, Rem. 2.1], generalizing the case of Euclidean reflections in Frobenius manifolds. 
The potential vector fields constructed in [69] seem to be related to Coxeter elements, 
but there are also algebraic solutions of these extended WDVV equations, and the cor-
responding tuples of reflections determine quasi-Coxeter elements; see for example [15, 
§8] for the group G27. We hope that the development of these theories will allow in the 
future a uniform geometric interpretation for the structure and enumeration of reduced 
factorizations of quasi-Coxeter elements in every well generated group, along the lines of 
Conjecture 6.4.

6.3. The non-real types

In this section we discuss the case of non-real reflection groups, and in particular give 
formulas for the number of reduced reflection factorizations of quasi-Coxeter elements in 
the infinite families G(1, 1, n), G(m, 1, n) and G(m, m, n). Our main tool for the latter 
is a special case of a result in the first part of this series [40] that gives a formula for 
the number of minimum-length full factorizations of an arbitrary element in G(m, p, n). 
In this special case, the answer is a multiple of the number of full factorizations of the 
underlying permutation, which are counted by the classical Hurwitz formula (1.1).
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Theorem 6.10 ([40, Thm. 5.2 for d = 1]). Fix an element g ∈ G(m, p, n) with k cycles of 
colors a1, . . . , ak such that gcd(a1, . . . , ak, p) = 1, and let a = gcd(col(g), m)/p. If m = p, 
we have

F full
m,m,n(g) = mk−1 ·H0(λ),

while if m 6= p, we have

F full
m,p,n(g) =






n(n + k − 1) ·mk−1 ·H0(λ), if a = 1

n2(n + k)(n + k − 1)mk

2 · ϕ(a)
pa

·H0(λ), if a 6= 1,

where λ is the cycle type of the underlying permutation of g and ϕ is Euler’s totient 
function.

The cases in the next result use the characterization of quasi-Coxeter elements in the 
infinite families (see §3.5).

Corollary 6.11. Let g be a quasi-Coxeter element in the complex reflection group W .

(i) For W = Sn = G(1, 1, n), we have that

F red
W (g) = F full

W (g) = nn−2.

(ii) For W = G(m, 1, n) with m > 1, we have that

F red
W (g) = F full

W (g) = nn.

(iii) For W = G(m, m, n) with m > 1, if g consists of two cycles of lengths a and b with 
colors that generate Z/mZ, then we have that

F red
W (g) = F full

W (g) = m(n− 1) ·
(

n− 2
a− 1, b− 1

)
· aa · bb.

Proof. By Proposition 6.1, for a quasi-Coxeter element g, F red
W (g) = F full

W (g). We now 
compute the latter for each of the cases.

We start with the case (i) for W = G(1, 1, n) = Sn. The element g is a long cycle and 
the statement is precisely Dénes’ result [33] F full

1,1,n(g) = H0(n) = nn−2.
For W = G(m, 1, n), the underlying permutation of g is an n-cycle and its color 

generates Z/mZ. By Theorem 6.10 (case a = gcd(col(g), m)/1 = 1) we have that 
F full
m,1,n(g) = n2 · H0(λ), where λ = (n). The result then follows by Dénes’ result 

H0(n) = nn−2.
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For W = G(m, m, n), the colors c, −c of the cycles of g generate Z/mZ (i.e., 
gcd(c, −c, m) = 1). Therefore, by Theorem 6.10 (case p = m) we have that F full

m,m,n(g) =
m ·H0(λ) where λ = (a, b). The result follows by applying the formula in (1.1) for this 
λ. !

Remark 6.12 (Exceptional complex reflection groups). Using SageMath [87] and CHEVIE 
[54], we have computed the numbers F red

W (g) for every quasi-Coxeter element g in ev-
ery non-real well generated exceptional complex reflection group, using Proposition 3.10
to identify the quasi-Coxeter elements and applying the representation-theoretic tech-
niques described in [40, §3]. The resulting output is attached to the arXiv version of 
this submission as an auxiliary file. The numbers F red

W (g) all factor as products of small 
primes. For example, in the group G34 (the largest of the exceptional non-real complex 
reflection groups), there are 16 conjugacy classes of quasi-Coxeter elements. Of these 
classes, two consist of Coxeter elements, with multiplicative order h = 42 and 2 · 3 · 75

reduced reflection factorizations; two consist of the squares c2 of Coxeter elements c, with 
3 · 5 · 75 factorizations; one consists of the cubes c3 of Coxeter elements, with 22 · 5 · 75

factorizations; the remaining classes consist of non-regular elements, of orders

• 30, with 22 · 3 · 56 factorizations (two classes);
• 24, with 216 · 3 factorizations (two classes);
• 18, with 22 · 39 · 5 factorizations (two classes);
• 18, with 2 · 39 · 5 factorizations (one class);
• 12, with 213 · 32 · 5 factorizations (two classes);
• 12, with 210 · 34 · 5 factorizations (one class); and
• 6, with 25 · 38 · 5 factorizations (one class).

Remark 6.13 (Regular quasi-Coxeter elements in complex types). As we mentioned in 
Remark 6.8, the formula of Proposition 6.6 does not directly extend to non-Weyl groups. 
However, there is a variation of it that does extend.

Let W be a well generated complex reflection group of rank n, let g ∈ W be a regular
quasi-Coxeter element of order |g|. Then, if we denote by (ei)ni=1 the exponents of W (in 
the terminology of Proposition 6.6, these are the exponents of the inverse c−1 of some 
Coxeter element c ∈ W ; equivalently [75, Def. 10.24 and Thm. 11.56(iii)], they are given 
by ei = di − 1 where the di’s are the fundamental degrees [75, Ch. 3, §5] of W ), we 
always have that

F red
W (g) = |g|n · n!

∏n
i=1

((
ei mod |g|

)
+ 1

) · δg, (6.10)

where δg is a small integer. (For the exceptional non-Weyl groups, the numbers δg are 
listed in an auxiliary file attached to the arXiv version of this paper.) The proof of 
this formula is completely analogous to the proof of Proposition 6.6, but the underlying 
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geometric theory (as in Remark 6.9) is not sufficiently built-up to support a geometric 
interpretation for them (see §8.5 for more).

On the other hand, it is easy to see that (6.10) is a direct generalization of Proposi-
tion 6.6. Indeed for any regular quasi-Coxeter element g in a Weyl group W , the multiset 
of exponents {ei(g)}ni=1 agrees precisely with the multiset {ei mod |g|}ni=1 (this is essen-
tially [75, Thm. 11.56(iii)]).

6.4. Reduction to the parabolic quasi-Coxeter case

The enumerative results in the preceding subsections concern quasi-Coxeter elements. 
The following result extends this to the enumeration of reduced reflection factorizations 
of all parabolic quasi-Coxeter elements. In particular, it implies that for any parabolic 
quasi-Coxeter element g ∈ W , the number F red

W (g) is always a product of small prime 
numbers.

Corollary 6.14. Let W be a well generated complex reflection group, g ∈ W a parabolic 
quasi-Coxeter element, and g = g1 · · · gs the generalized cycle decomposition of g in the 
sense of Proposition 3.13. Then the number F red

W (g) of reduced reflection factorizations 
of g is given by

F red
W (g) =

(
#redW (g)

#redW (g1), . . . , #redW (gs)

)
·

s∏

i=1
F red
W (gi). (6.11)

Proof. By Proposition 2.11, all reduced reflection factorizations of g in W consist of 
reflections that belong to Wg. Let Wg decompose into irreducibles as Wg = W1 × · · ·Ws, 
where for i = 1, . . . , s we have (possibly after a reordering) that gi is quasi-Coxeter for 
Wi by Proposition 3.13. Since reflections in different Wi commute, all such factorizations 
are shuffles of (necessarily reduced) reflection factorizations of the gi in the components 
Wi. By Proposition 2.11, the number of reduced Wi-factorizations of gi is F red

W (gi). Since, 
by Corollary 2.12, the length of the reduced Wi-factorization of gi is #redW (gi), the number 
of ways to shuffle the factorizations of the gi is 

( #redW (g)
#redW (g1),...,#redW (gs)

)
, and the result follows 

immediately. !

Remark 6.15. Since #redW (gi) = #redWi
(gi) and F red

W (gi) = F red
Wi

(gi) for all i, one could 
rewrite (6.11) using the “local” lengths and factorization counts (i.e., with respect to 
the parabolic subgroup Wi) rather than their “global” counterparts in W .

Remark 6.16. In the case that c is a parabolic Coxeter element in a well generated group 
W , with WX the parabolic subgroup of W in which c is a Coxeter element and WX =
W1 × · · ·×Ws the decomposition of WX into irreducibles, we have by Proposition 6.14
and (6.1) that
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F red
W (c) =

(
n

n1, . . . , ns

)
·

s∏

i=1

hni
i · ni!
#Wi

= n!
#WX

·
s∏

i=1
hni
i

where n and ni are respectively the ranks of W and Wi and where hi is the Coxeter 
number of Wi.

7. Counting relative generating sets

In the previous section, we showed that the number F red
W (g) of reduced reflection fac-

torizations of a parabolic quasi-Coxeter element g in a well generated complex reflection 
group W are well behaved (they are always products of small primes) and are often given 
by nice formulas (as in Proposition 6.6 and Corollaries 6.11, 6.14). In this section, we 
show that there are also nice formulas for the numbers of (relative) generating sets in 
the combinatorial subfamily of well generated complex reflection groups. In particular, 
we see in §7.2 that the relative generating sets preserve the tree-like enumeration from 
the case of the symmetric group (§7.1). Leaving the combinatorial family, in §7.3 we 
see that the number of (relative) generating sets does not seem to have nice uniform 
formulas, except for a special case in Weyl groups via the W -Laplacian of [24]. Lastly, 
in §7.4, we relate the relative generating sets in the symmetric group and certain cacti 
used by Duchi–Poulalhon–Schaeffer [45] to compute Hurwitz numbers bijectively.

7.1. Counting relative generating sets in the symmetric group

In the case of the symmetric group, the relative generating sets have a tree-like struc-
ture. Thus, it is unsurprising that their enumeration will be aided by the following 
weighted version of Cayley’s theorem.

Theorem 7.1 (Weighted Cayley theorem [16, Thm. 5.13]). We have

∑

T a tree on vertex
set {0,1,...,k}

k∏

i=0
xdegT (i)
i = x0x1 · · ·xk(x0 + x1 + · · · + xk)k−1.

Proposition 7.2. Let g in W = G(1, 1, n) = Sn have cycle type λ = (λ1, . . . , λk). Then

# RGS(W, g) = nk−2 ·
k∏

i=1
λi. (7.1)

Proof. By Proposition 4.14 (i), the elements in the relative generating set of g correspond 
to a tree relative to the partition Πg of {1, . . . , n} into the k cycles of g. In such a tree, 
there are λi ·λj choices of an edge joining cycle i to cycle j for i, j in {1, . . . , k}, and thus
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# RGS(G(1, 1, n), g) =
∑

T a tree
on {1,...,k}

k∏

i=1
λdeg(i)
i

(
Thm.
7.1

)

= (λ1 + . . . + λk)k−2 ·
k∏

i=1
λi

= nk−2 ·
k∏

i=1
λi. !

7.2. Counting relative generating sets in the combinatorial family

In the combinatorial family, the relative generating sets retain the tree-like structure 
apparent in the case of symmetric groups. The cases in the following theorem correspond 
to those of Proposition 4.14.

Theorem 7.3. Suppose that W is either G(m, 1, n) or G(m, m, n) for m > 1 and that g
is a parabolic quasi-Coxeter element for W .

(i) If either W = G(m, 1, n) and g is a quasi-Coxeter element for the subgroup 
G(m, 1, λ0) ×Sλ1 × · · ·×Sλk , or W = G(m, m, n) and g is a quasi-Coxeter element 
for the subgroup G(m, m, λ0) × Sλ1 × · · ·× Sλk , then

# RGS(W, g) = mk · nk−1 ·
k∏

i=0
λi. (7.2)

(ii) If W = G(m, 1, n) and g is a quasi-Coxeter element for the subgroup Sλ1×· · ·×Sλk , 
then

# RGS(W, g) = ϕ(m) ·mk−1 · nk−1 ·
k∏

i=1
λi, (7.3)

where ϕ denotes Euler’s totient function.
(iii) If W = G(m, m, n) and g is a quasi-Coxeter element for the subgroup Sλ1 × · · ·×

Sλk , then

# RGS(W, g) = ϕ(m) ·mk−1

2 ·
(
nk−nk−1−

k∑

j=2
(j−2)! ·nk−jej(λ)

)
·

k∏

i=1
λi, (7.4)

where ei(λ) denotes the ith elementary symmetric function in the variables λ =
(λ1, . . . , λk).

Proof. In case (i), we have by Proposition 4.14 (i) that the elements in the relative 
generating set correspond to a tree relative to the partition Πg of {1, . . . , n} into the 
k+1 generalized cycles of g. In such a tree, there are m ·λi ·λj choices of an edge joining 
cycle i to cycle j (for i, j in {0, 1, . . . , k}), and thus
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# RGS(W, g) = mk
∑

T a tree on
{0,1,...,k}

k∏

i=0
λdeg(i)
i .

By the weighted Cayley theorem (Theorem 7.1), this simplifies to

# RGS(G(m, 1, n), g) = mk · (λ0 + . . . + λk)k−1 ·
k∏

i=0
λi = mk · nk−1 ·

k∏

i=0
λi,

as claimed.
In case (ii), we have by Proposition 4.14 (ii) that the elements in the relative generating 

set correspond to a rooted tree relative to the partition Πg of {1, . . . , n} into the k
(generalized) cycles of g. There are ϕ(m) · n choices for the diagonal reflection, as its 
nontrivial eigenvalue may be any of ϕ(m) primitive roots of unity and may be located in 
any of n diagonal positions. The remaining elements form a tree relative to Πg, so may 
be chosen in mk−1 · nk−2 ·

∏k
i=1 λi ways (as in case (i)). Multiplying these independent 

choices together gives the result.
Finally, in case (iii), we have by Proposition 4.14 (iii) that the elements in the relative 

generating set correspond to a unicycle relative to the partition Πg of {1, . . . , n} into 
the k (generalized) cycles of g. Therefore, by Proposition 4.12 (iii), given any relative 
generating set of reflections for g, taking the associated graph Γ and contracting the 
cycles of g to single points leaves either a rooted tree or a unicycle.

Suppose first that the contraction is a rooted tree; we compute the number of relative 
generating sets that map to this particular graph, as follows: if (after contraction) the 
loop is on the ith cycle, its endpoints (before contraction) may be chosen in 

(λi

2
)

ways, and 
its color may be chosen in ϕ(m) ways (to make δ a primitive generator). The remaining 
k−1 edges form a tree relative to the cycle partition Πg, so (as in cases (i) and (ii)) may 
be chosen in mk−1 · nk−2 ·

∏k
i=1 λi ways. Thus the total contribution to # RGS(W, g) in 

this case is

ϕ(m) ·mk−1nk−2
k∏

i=1
λi ·

k∑

i=1

(
λi

2

)
= 1

2ϕ(m) ·mk−1nk−2

(
−n +

k∑

i=1
λ2
i

)
k∏

i=1
λi.

Now suppose instead that the contraction of Γ is a unicycle. In this case, the length j
of the contracted graph cycle is at least 2. Let the vertices in the cycle be indexed by 
S = {s1, . . . , sj} ∈

([k]
j

)
. Performing a second contraction on this set leaves a tree on 

k − j + 1 vertices, with weights {λi : i /∈ S} ∪ {λs1 + . . . + λsj}. We now consider how 
many relative generating sets contract to such trees. By the weighted Cayley theorem 
(Theorem 7.1), the number of ways to choose the reflections corresponding to the edges 
of the tree is

mk−j ·(λs1 +. . .+λsj )·
∏

i/∈S

λi ·(λ1+. . .+λk)k−j−1 = mk−j ·nk−j−1 ·(λs1 +. . .+λsj )·
∏

i/∈S

λi,
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where the factor mk−j corresponds to the choice of colors. Independently, the number 
of ways to choose the reflections that correspond to the graph cycle is

ϕ(m) ·mj−1(j − 1)!
2 · (λs1 · · ·λsj )2,

where the first factor accounts for the number of different ways of inserting a cycle 
(including colors) while reversing the second contraction, and the second factor account 
for the number of ways to reverse the first contraction (since the contracted vertices have 
weights λs1 , . . . , λsj and a graph cycle is 2-regular). Combining all the different values 
of j (including the j = 1 loop case), we conclude that

# RGS(W, g)
ϕ(m)

= mk−1

2

k∏

i=1
λi ·

(
− nk−1 +

k∑

j=1
(j − 1)! · nk−j−1

∑

S∈([k]
j )

(λs1 + . . . + λsj )λs1 · · ·λsj

)

= mk−1

2

k∏

i=1
λi ·

(
− nk−1 +

k∑

j=1
(j − 1)! · nk−j−1m(2,1j−1)(λ)

)
, (7.5)

where mµ(λ) is the monomial symmetric polynomial in the variables λ = (λ1, . . . , λk). 
We may rewrite this symmetric polynomial when µ = (2, 1j−1) in terms of the elementary 
symmetric polynomials as m(2,1j−1) = ej,1 − (j + 1)ej+1. Since e1(λ) = n, (7.5) becomes

# RGS(W, g)
ϕ(m)

= mk−1

2

k∏

i=1
λi ·

(
− nk−1 +

k∑

j=1
(j − 1)! · nk−jej(λ) −

k∑

j=1
(j − 1)! · (j + 1)nk−j−1ej+1(λ)

)
.

The first term of the first sum on the right side is nk−1e1(λ) = nk. Separating this term 
and combining the remaining terms with the second sum gives

# RGS(W, g)
ϕ(m) = mk−1

2

k∏

i=1
λi ·

(
nk − nk−1 −

k∑

j=2
(j − 2)! · nk−jej(λ)

)
,

as claimed. !

Remark 7.4. The right side of case (iii) of Theorem 7.3 is related to the formula for 
genus-1 Hurwitz numbers in the symmetric group (see [57,98]). This will play a role in 
[41].
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Remark 7.5. It will be important in the sequel [41] that the factor ϕ(m) in cases (ii) 
and (iii) of Theorem 7.3 corresponds to an equidistribution: in case (ii), each primitive 
mth root of unity occurs equally often as an eigenvalue for the diagonal reflection in 
the elements of RGS(W, g), while in case (iii), each primitive mth root of unity occurs 
equally often as the value of δ(F ∪ S) where F is the set of factors in a fixed reflection 
factorization of g and S varies over RGS(W, g).

7.3. Counting good generating sets via the W -Laplacian

Outside the combinatorial family, the collections RGS(W ) and RGS(W, g) of (relative) 
generating sets do not seem to have good numerological properties. There is however a 
closed formula, at least when W is a Weyl group and g = id. If W is an irreducible Weyl 
group of rank n and h is its Coxeter number, it was shown in [24, proof of Thm. 8.11]
that

hn =
∑

W ′!W

# RGS(W ′) · I(W ′),

where the sum is over all rank-n reflection subgroups W ′ of W . Möbius inversion in the 
poset of reflection subgroups (ordered by reverse inclusion), as in [94, §3.7], gives

# RGS(W ) = 1
I(W ) ·

∑

W ′!W

µ(W,W ′)
n∏

i=1
hi(W ′), (7.6)

where again the sum is over all rank-n reflection subgroups of W , and where {hi(W ′)}
denotes the multiset of Coxeter numbers of W ′. This is defined as the multiset where each 
irreducible component Wi of W ′ contributes rank(Wi)-many times its Coxeter number 
h(Wi) (as in Remark 6.16); in particular, for an irreducible W we have {hi(W )} =
{h, h, . . . , h︸ ︷︷ ︸

n times

}.

Example 7.6. The case of E6 is a particularly nice example where the calculation above 
can be rendered by hand (see also [24, Ex. 8.13]). In [44], the authors have compiled 
tables with the reflection subgroups of finite Coxeter groups. In particular, for E6, the 
poset of maximum rank reflection subgroups contains a minimal element (E6 itself) and 
only atoms: 36 groups of type A1×A5 and 40 groups of type A2×A2×A2. The multisets 
of Coxeter numbers of the groups E6, A1A5, and A3

2 are respectively {126}, {2, 65}, and 
{36} (where exponents denote multiplicities). Then Equation (7.6) for the cardinality of 
the family RGS(E6) evaluates to

# RGS(E6) = 1
3 ·

(
1 · 126 − 1 · 36 · (2 · 65) − 1 · 40 · (36)

)
= 798984.



T. Douvropoulos et al. / Journal of Algebra 641 (2024) 648–715 705

Table 6
Number of good generating sets of reflections 
for the exceptional Weyl groups.
W # RGS(W )
G2 6 = 2 · 3
F4 2160 = 24 · 33 · 5
E6 798984 = 23 · 36 · 137
E7 196800768 = 28 · 32 · 229 · 373
E8 273643237440 = 26 · 33 · 5 · 31671671

The results of performing the same calculation for the other exceptional Weyl groups 
are given in Table 6.

7.4. Comparison with the cacti of Duchi–Poulalhon–Schaeffer

The relative trees appearing in the proof of Proposition 7.2 are similar to certain ob-
jects called Cayley cacti that were introduced by Duchi–Poulalhon–Schaeffer [45, §3]. The 
latter were part of a construction to bijectively compute Hurwitz numbers in the sym-
metric group (a special case of a more general construction for double Hurwitz numbers). 
This is arguably the only bijective proof of the formula for genus-0 Hurwitz numbers, 
although there are other combinatorial proofs [96,56,20].

Cayley cacti are defined as follows. Given positive integers k ! n and a weak com-
position m = (m1, . . . , mn) of k with 

∑
i i · mi = n, a Cayley cactus of type m

is a tree consisting of mi oriented i-polygons connected by k − 1 labeled edges. Let 
DPS(m1, . . . , mn) be the number of Cayley cacti of type m. The authors in [45] gave 
the following formula for this number:

DPS(m1, . . . ,mn) = 1
k

(
k

m1, . . . ,mn

)
· nk−2. (7.7)

Comparing this formula with the formula (7.1) for the number RT (λ) of relative trees, 
we see that

(
k

m1, . . . ,mn

)
·RT (λ) = k ·

∏

i

λi ·DPS(m1, . . . ,mn), (7.8)

where λ = (1m1 , 2m2 , . . . , nmn). This relation can be explained as follows. From the proof 
of Proposition 4.14 (i), underlying each relative tree there is a tree T with labeled vertices 
{1, . . . , k}, and so (as in the proof of Theorem 7.3 (i)) we have

RT (λ) =
∑

T a tree on vertex
set {1,...,k}

k∏

i=1
λdeg(i)
i . (7.9)
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Fig. 1. The relative tree representing the relative generating set {(1, 11), (2, 6), (2, 4), (2, 12)} of σ =
(1 5 8)(2)(3 12 9)(4 7 10)(6 11) and its underlying vertex-labeled tree (left) and the edge-labeled cactus 
appearing in the work Duchi–Poulhalhon–Schaeffer and its underlying edge-labeled tree (right). The un-
derlying labeled trees are in correspondence by selecting a vertex in the edge-labeled tree (illustrated with 
a larger vertex) to be labeled 1 and pushing away the label i of an edge to a vertex label i + 1.

Similarly, underlying each Cayley cactus there is a tree T ′ with labeled edges {1, . . . , k−
1}; see Fig. 1. Thus

DPS(m1, . . . ,mn) =
∑

Π

∑

T ′ a tree with
edges {1,...,k−1}

k∏

i=1
λdeg(i)−1
i , (7.10)

where Π is a multiset in 
( [k]
m1,...,mn

)
encoding the distribution of oriented i-polygons, and 

the power λdeg(i)−1
i is due the polygons in the cacti being oriented. Next, there is a 

standard k-to-1 map from trees with edges labeled {1, . . . , k − 1} to trees with vertices 
labeled {1, . . . , k}: choose a vertex of the tree to be labeled 1 and push the label i of an 
edge to a vertex label i + 1 away from the chosen vertex; see Fig. 1. Using this k-to-1
map on (7.9) gives

(
k

m1, . . . ,mn

)
·RT (λ) =

∑

Π

∑

T a tree on vertex
set {1,...,k}

k∏

i=1
λdeg(i)
i

= k
∑

Π

∑

T ′ a tree with
edges {1,...,k−1}

k∏

i=1
λdeg(i)
i .

Lastly, by (7.10), this is just k ·
∏

i λi ·DPS(m1, . . . , mn), verifying (7.7).

8. Further remarks

We end with a number of remarks and open questions.
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8.1. Elements that do not belong to proper reflection subgroups

As discussed in §3.1, the quasi-Coxeter elements in a real reflection group W are 
precisely the elements that do not belong to any proper reflection subgroup of W . In 
the complex case, this is not a characterization; for example, the element [id; (1, 1, 1)] ∈
W = G(3, 3, 3) does not belong to any proper reflection subgroup of W but is not quasi-
Coxeter (e.g., because it has reflection length 4, while W has rank 3). It is not even clear 
whether all quasi-Coxeter elements have this property: it seems possible in principle that 
a quasi-Coxeter element g ∈ W could belong to a reflection subgroup W ′ < W for which 
#redW ′(g) > #redW (g) (so that its reduced W -factorizations all generate W , but some longer 
factorization generates only the subgroup W ′). This raises several questions.

Question 8.1. Is there an alternate characterization of the elements in a complex reflection 
group that do not belong to any proper reflection subgroup? What about those for which 
#redW (g) = codim(V g)?

Question 8.2. Is it true for every well generated complex reflection group W that every 
quasi-Coxeter element in W does not belong to any proper reflection subgroup of W?

Question 8.3. Is it true for every well generated complex reflection group W that among 
the elements g ∈ W that satisfy #redW (g) = codim(V g), the property of not belonging to 
any proper reflection subgroup W ′ < W is equivalent to being a quasi-Coxeter element?

Remark 8.4. In the exceptional groups, Questions 8.2 and 8.3 should be approachable 
by an exhaustive computer search using SageMath [87] and CHEVIE [54].

8.2. Heredity of reflection factorizations to parabolic subgroups

Proposition 2.11 (2) establishes a sort of heredity property for reflection factoriza-
tions and parabolic subgroups, under the hypothesis #redW (g) = codim(V g). Remarks 2.13
and 2.14 show that the condition that the subgroup is parabolic is essential. We do not 
know if the other hypothesis can be relaxed.

Question 8.5. Is it true for every parabolic subgroup WX of a complex reflection group 
W and every g ∈ WX that RedWX (g) = RedW (g), even if #redW (g) > codim(V g)?

In the other direction, Proposition 3.3 has as a hypothesis that a reduced factorization 
of g is a good generating set for a parabolic subgroup WX ; attempting to weaken the 
hypothesis leads to the next question.

Question 8.6. Does there exist an element g in a complex reflection group W such that 
the factors of a reduced reflection factorization of g generate a parabolic subgroup WX

different from Wg? (Necessarily #redW (g) > codim(V g) in this case.)
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8.3. Properties that do not extend from the real to the complex setting

In §§8.1–8.2 we have asked about various properties that hold in real reflection groups 
but fail in general in the complex setting, whether they are still true in the collection of 
elements that satisfy #redW (g) = codim(W g). However, not everything extends even if we 
restrict to this subfamily, as the examples in this section illustrate.

Proposition 3.8 (from [58, Cor. 3.11]) shows that for any element in a real reflec-
tion group, the number of Hurwitz orbits on the reduced factorizations of g equals the 
number of minimal reflection subgroups containing g. This is not true for complex re-
flection groups: a counter-example is furnished by the element g := [id; (1, 1, 1)] ∈ W :=
G(3, 1, 3). This is a central element with reflection length #redW (g) = codim(W g) = 3
and with a single Hurwitz orbit for its reduced reflection factorizations ([id; (1, 0, 0)] ·
[id; (0, 1, 0)] · [id; (0, 0, 1)] and the permutations of these three factors). The group gen-
erated by such a factorization is the normal subgroup G := C3 × C3 × C3 " W and G
is a minimal reflection subgroup containing g. As we saw in §8.1, the group G(3, 3, 3) is 
also a minimal reflection subgroup containing g but it does not correspond to any new 
Hurwitz orbit.

As another example, Carter [22, Lem. 2] showed that for elements g in finite real 
reflection groups W , the two intervals [1, g]!codim and [1, g]!R coincide (an easy conse-
quence of the fact that #redW (g) = codim(V g) for all elements g in real reflection groups). 
These intervals also coincide for Coxeter elements in well generated complex reflection 
groups [72, Cor. 6.6], but for g = [id; (1, 2, 3, 4, 5, 6)] in G(7, 7, 6) – which does indeed 
satisfy codim(V g) = #redW (g) = 6 – we have [1, g]!codim 6= [1, g]!R [72, §8.6].

Question 8.7. Is there a natural way to extend either Proposition 3.8 or Carter’s result 
to complex reflection groups, notwithstanding the examples above?

8.4. Root and coroot lattices for complex reflection groups

One of the most important properties of good generating sets for Weyl groups W is 
their relation to bases of the root and coroot lattices of W , as given in Proposition 2.2
(from [21, Cor. 1.2]). In particular, we rely on this statement for our characterization of 
parabolic quasi-Coxeter elements g ∈ W in Theorem 3.4. Recently Broué–Corran–Michel 
[8] defined (co)root systems and (co)root lattices (in fact, also a connection index) for 
complex reflection groups. In the case of a well generated group G, they gave a complete 
generalization of Proposition 2.2: they proved [8, Prop. 3.44 + Thm. 6.6] that G always 
has a special (distinguished, principal) root system R for which any set of rank(G)-many 
reflections of G will generate the full group G if and only if their corresponding roots 
and coroots form bases of the root and coroot lattices associated to R. Moreover, as 
we discussed in §§3–5, a big part of the arguments needed in the complete proof of 
Theorem 5.10 can be made uniform in the subfamily of Weyl groups, largely relying on 
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the characterization of parabolic quasi-Coxeter elements given in Theorem 3.4. We may 
ask then:

Question 8.8. Is there a way to apply the constructions in [8] to give a more conceptual 
explanation for the equivalences in Theorem 5.10?

8.5. Algebraic solutions for the WDVV equations

In Remark 6.13, we gave a variation of Proposition 6.6 that holds for regular elements 
in non-Weyl groups. It is then reasonable to ask whether there is an interpretation of 
the numbers δg appearing in (6.10) analogous to the one in Remark 6.7. We pursue this 
question here in some detail for the group W = H4.

In the case of Weyl groups, Dinar’s constructions of Frobenius manifolds described in 
§6.2.2 make use of the geometry of the associated Lie algebra in a highly non-trivial way; 
there is a priori no reason to expect that for the non-Weyl groups H3, H4, the exponents 
of a regular element g might be related to the weights of the corresponding Frobenius 
manifold Fg (assuming that Fg exists!). Nevertheless, for all quasi-Coxeter classes in H3, 
the Frobenius manifolds Fg have been constructed and there is a connection between 
their weights and the exponents of g; we describe this relationship next.

In a complex reflection group W , any number that is the order of a regular element 
g ∈ W is called a regular number for W . For a regular number γ, there always exists 
a regular element g0 ∈ W that has γ − 1 as an exponent, and by [75, Thm. 11.56(iii)], 
all the exponents of this element are given by ei(g0) = (di − 1) mod γ. Moreover, any
regular element g of order γ must be W -conjugate to gm0 for some power m relatively 
prime to γ (compare with [85, Thm. 1.3(ii)]); there may be many options for m but 
we always choose the smallest positive one. It is easy to see from [69, §6.1] that for all 
regular quasi-Coxeter elements g ∈ H3, the weights of the corresponding manifolds Fg

are precisely the numbers
(
ei(g) + m

)
mod |g|

|g| , (8.1)

where the ei(g) are the exponents of g. If we assume that this procedure also produces 
the weights associated to Frobenius manifolds Fg for regular elements g ∈ H4, then, 
after comparing Conjecture 6.4 with Table 4, we can compute the algebraicity degrees 
dg of the corresponding prepotentials of Fg; this data is displayed in Table 7.

Any algebraic Frobenius manifold associated to a quasi-Coxeter element of H4 would 
be 4-dimensional, and the data in Table 7 is often sufficient to allow for a computer-
assisted construction of the corresponding prepotential. Sekiguchi [88,89] was successful 
in doing this for the cases H4(2), H4(3), H4(7), H4(9). We then ask:

Question 8.9. Is there a conceptual construction of algebraic Frobenius manifolds asso-
ciated to the regular quasi-Coxeter elements of H4 that explains the data of Table 7?
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Table 7
Conjectural weights and algebraicity degrees dg for Frobenius manifolds 
Fg associated with regular quasi-Coxeter elements g ∈ H4. Weights are 
given over the common denominator |g|.
g weights dg g weights dg

H4

( 2
30

,
12
30

,
20
30

,
30
30

)
1 H4(9)

(14
30

,
20
30

,
24
30

,
30
30

)
14

H4(1)
( 2

20
,
10
20

,
12
20

,
20
20

)
2 H4(7)

( 6
20

,
10
20

,
16
20

,
20
20

)
8

H4(2)
( 2

15
,

5
15

,
12
15

,
15
15

)
3 H4(6)

( 4
15

,
9
15

,
10
15

,
15
15

)
9

H4(3)
( 2

12
,

6
12

,
8
12

,
12
12

)
4 H4(8)

(2
6
,
2
6
,
6
6
,
6
6

)
15

H4(4)
( 2

10
,

2
10

,
10
10

,
10
10

)
5 H4(10)

( 6
10

,
6
10

,
10
10

,
10
10

)
45

The complex case is more problematic. Boalche’s icosahedral solution 37 (see [69, 
§6.3]) corresponds to a regular element in G27 but its weights are incompatible with the 
formula (8.1).

8.6. Dual braid presentations and quasi-Coxeter elements

As mentioned in the second proof of Proposition 4.5, the generalized braid group 
B(W ) of a well generated complex reflection group W is defined to be the fundamental 
group π1(V reg/W ) of the space of free orbits of W , or equivalently of the complement 
V/W − H of the discriminant hypersurface H of W . One of the most important con-
tributions of Bessis’ work in [11] and [12] was a new presentation for B(W ). This dual 
braid presentation is given as follows, in terms of the set RedW (c) of reduced reflection 
factorizations of a Coxeter element c ∈ W . For each reflection ti ∈ W , i = 1, . . . , N
consider a formal generator ti. Then, after [11, Thm. 2.2.5] and [12, Rem. 8.9] we have 
that

B(W ) = 〈t1, . . . , tN | ti1 · · · tin = ti′1 · · · ti′n = . . .
︸ ︷︷ ︸

hnn!/#W -many words

〉, (8.2)

where each word tj1 · · · tjn that appears in the relations corresponds to a reduced reflec-
tion factorization tj1 · · · tjn = c in RedW (c).

Starting with any element g ∈ W , one may consider groups presented analogously to 
(8.2) but with the relations coming instead from the set RedW (g) of reduced reflection 
factorizations of g. Such constructions were called generated groups by Michel (see [11, 
Thm. 0.5.2]) and interval groups by McCammond (see [78, Def. 2.4]). In the case that g is 
a quasi-Coxeter element, Baumeister et al. made an extensive study of the corresponding 
interval groups and they asked [5, §4: Ques. (f)] for a geometric interpretation for them. 
The main ingredient in Bessis’ proof was that the LL map encoded both the set RedW (c)
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and the braid monodromy of H (see the exposition in [23, §6]). These objects exist also 
for the Frobenius manifolds Fg and they remain related in the same way, see §6.2. In 
particular, the discriminant hypersurface DFg is defined as the subset of points in Fg

where the Frobenius algebra on their tangent planes is not semi-simple, see [61, Def. 3.18]. 
It is therefore natural to ask:

Question 8.10. Let W be a real reflection group and g a quasi-Coxeter element in W , 
and assume that the corresponding Frobenius manifold Fg exists. Is it true that the 
interval group associated to the set of reflection factorizations RedW (g) is isomorphic to 
the fundamental group π1(Cn −DFg) of the complement of the discriminant of Fg?
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