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1. Introduction

In the symmetric group &,,, a factorization of a permutation w as a product w =
ty---t, of transpositions is said to be transitive if the group generated by the factors
t1,...,t, acts transitively on the set {1,...,n}. In the late 19th century, Hurwitz [64] used
such combinatorial structures in his study of branched Riemann surfaces. In particular,
he showed that these factorizations correspond to classes of n-sheeted covers of the
sphere with r + 1 branch points [77, Ch. 1], and to count these classes he gave the
following formula for the number Hy(\) of transitive factorizations of minimum length
(the Hurwitz number of w)," where A = (\1,...,\x) is the cycle type of w:

AN

Ho(\) =n*3(n+k —2)! m (1.1)

k
i=

1

Special cases of this formula have meaningful analogues in (finite) complex reflection
groups, replacing the set of transpositions by the set of reflections [31,80,72,23]. This
raises the question whether a full generalization may be possible. This paper is the
second in a series of three (preceded by [40] and followed by [41]) that will culminate in
such a generalization.

One of the first difficulties in defining Hurwitz numbers for other reflection groups W
is to find an analogue of the notion of transitivity of factorizations: there is no natural
generalization of the set {1,...,n} in &, for arbitrary W. In the first part of the series
[40], we addressed this by defining full reflection factorizations as those factorizations
g = t1---tx where the reflections {t1,...,¢;} generate the full group W. In the third
part [41], we will give uniform formulas for the number of minimum-length full reflec-
tion factorizations of a wide class of elements (the parabolic quasi-Coxzeter elements)

! The index 0 of the notation Ho(\) here refers to the genus of the related Riemann surface and corre-
sponds to the factorization being of minimum length. We do not deal with higher genus factorizations here,
but the interested reader may consult [40].
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in well generated complex reflection groups. It turns out that all elements in the sym-
metric group &,, are parabolic quasi-Coxeter, so that the formulas in [41] will be strict
generalizations of (1.1) to reflection groups.

In the rest of the introduction, we present the main contributions of this paper.
They are broadly divided in two parts, presented in §1.1 and §1.2. First, we define
our main combinatorial objects (the parabolic quasi-Coxeter elements and the relative
generating sets) and discuss the structural results we prove for them, including multiple
characterizations. Then, we give our main enumerative results: formulas that count the
number of reduced factorizations and the number of relative generating sets for various
families of parabolic quasi-Coxeter elements. Apart from their independent interest, the
majority of these findings will be necessary in [41] to prove the uniform formula counting
full reflection factorizations. In §1.3, we briefly present (without proof) the main theorem
of [41] for Weyl groups to motivate this connection. In §1.4, we give a summary of the
structure of the paper.

1.1. Structural results

In a well generated complex reflection group W of rank n, an element g € W is
a quasi-Cozeter element if there exists a length-n reflection factorization t1---¢, = g
whose factors t; generate W. A quasi-Coxeter element of a parabolic subgroup of W is a
parabolic quasi-Cozeter element of W. We introduce this definition in §3, extending the
work of [4] on real groups.

These (parabolic) quasi-Coxeter elements generalize the (parabolic) Coxeter elements
and share many of their properties. They are important in various mathematical areas
ranging from singularity theory to combinatorics, particularly in the case that W is
a Weyl group; see §3.1. The reduced (i.e., minimum-length) reflection factorizations of
parabolic quasi-Coxeter elements have rigid geometric properties. Particularly in the case
of Weyl groups, this allows us to give a characterization for them in terms of natural
invariants of the group. Note that the part (i) < (i) of this characterization was done
in earlier work of Baumeister—Wegener [21]. (See §2 for definitions of technical terms.)

Theorem 3.4. Let W < GL(V) be a Weyl group of rank n, g an element of W, and W,
the parabolic closure of g. Then the following statements are equivalent.

(i) g is a quasi-Cozeter element (respectively, parabolic quasi-Cozeter element).

(ii) There exists a reduced reflection factorization g =ty - - -ty for which the associated
roots py, and coroots py, form Z-bases of the root and coroot lattices of W (resp.,
of Wy).

(iii) g satisfies |det(g — Iv)| = I(W), where Iy is the identity on V. and I(W) the
connection index of W (resp., |pdet(g — Iyv)| = I(W,) where pdet denotes the
pseudo-determinant).

(tv) g does not belong to any proper reflection subgroup of W (resp., of Wy ).
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Moving back to the context of parabolic quasi-Coxeter elements in an arbitrary well
generated group, we discuss in §3.3 their interaction with the Hurwitz action, and we
prove an analogue of the unique cycle decomposition for them in Proposition 3.13.

The second combinatorial object we introduce in this paper is the collection RGS(w)
of good generating sets for a complex reflection group W; these are the sets of rank(W)-
many reflections that generate the full group W. Only well generated groups possess
good generating sets. We also consider a generalization of this notion. Let Kﬁ/?,d( g) denote
the minimum length of a reflection factorization of g. We say that a set of (rank(W) -
ed (g))—many reflections that generate the full group W when combined with a reduced
reflection factorization of g is a relative generating set for the element g € W, and we
denote by RGS(W, g) the collection of relative generating sets for g.

Remarkably, the existence of relative generating sets is tied to the parabolic quasi-
Coxeter property. Our main structural theorem gives three uniform characterizations of
parabolic quasi-Coxeter elements in well generated groups, in terms of relative generating
sets, in terms of their full reflection length (the minimum length of a full factorization),
and in terms of the smaller collection of quasi-Coxeter elements.

Theorem 5.10 (Characterization of parabolic quasi-Cozeter elements). For a well gener-
ated group W of rank n and an element g € W, the following are equivalent.

(i) The element g is a parabolic quasi-Cozeter element of W.

(ii) The collection RGS(W, g) of relative generating sets with respect to g is nonempty.
(ii) There exists a quasi-Cozeter element w € W such that g <r w.
(iv) The full reflection length of g satisfies (54 (g) = 2n — £54(g).

The relationship between relative generating sets and parabolic quasi-Coxeter ele-
ments is reflected in the uniform formulas of [41] (see §1.3 below).

In the infinite families W = G(m,1,n) and W = G(m, m,n) of “combinatorial”
well generated groups, the relative generating sets RGS(W, g) correspond to tree-like
structures where the vertices are the (generalized) cycles of the corresponding element
g € W. This is developed in detail in §4.2.

1.2. Enumerative results

The second family of results in this paper involves enumerative questions around
parabolic quasi-Coxeter elements and their reduced factorizations and relative generating
sets. It is a striking phenomenon, for which we do not have a complete explanation, that
for all parabolic quasi-Coxeter elements g in a well generated group W, the number
Fred(g) of reduced reflection factorizations of g is always a product of small primes. In
Section 6, we develop a (partially conjectural) framework to explain this phenomenon.
We also give explicit formulas for the numbers Fi¢d(g) in many cases; in particular, in



652 T. Douvropoulos et al. / Journal of Algebra 641 (2024) 648-715

§§6.3-6.4 we compute the numbers Fi2d(g) for all (parabolic) quasi-Coxeter elements in
the infinite families of the well generated groups G(m, 1,n) and G(m, m,n).

When ¢ € W is a Coxeter element, the number Fi2d(c) is well understood and given
by an explicit formula: when W is irreducible of rank n and with Coxeter number h, the
Arnold-Bessis—Chapoton formula states that

_ h"-nl

Fred(e) = i (1.2)

There are many proofs of this formula; in §6.1 we review a geometric approach that relates
the count (1.2) with the degree of the Lyashko—Looijenga (LL) morphism associated to
the braid monodromy of the discriminant hypersurface H of W. In §6.2 we explain how
most of this theory has analogues for arbitrary quasi-Coxeter elements, at least for real
reflection groups, and we conjecture that the number Fﬁﬁd(g) always agrees with the
degree of an associated quasi-homogeneous LL map (Conjecture 6.4). This conjecture
would explain the phenomenon that these counts are products of small primes.

The context of Conjecture 6.4 is the geometry of algebraic Frobenius manifolds, whose
differential and analytic structure can be encoded via the reduced factorizations of quasi-
Coxeter elements. Even though we do not prove the conjecture, we verify it for many
cases (see Remark 6.7 and §8.5). Moreover, it motivates an almost explicit, uniform
generalization of (1.2) for the class of regular quasi-Coxeter elements in Weyl groups. The
following proposition is proved case-by-case; the non-explicit part is the interpretation
of the numbers , (see Remark 6.7). The exponents of an element g € W < GL(V) are
certain positive integers e;(g) that encode the eigenvalues of g in V (see §6.2.2).

Proposition 6.6. For a reqular quasi-Coxeter element g in an irreducible Weyl group W,
we have

lg|" - n!

B9 = [ (@ + 1

4,, (6.8)

where the numbers e;(g) are the exponents of g and o, is a small integer. When g is a
Cozeter element, 64 is equal to 1, while the rest of the cases are given in Table 5.

The other major enumerative question we ask in this work is for the number of relative
generating sets associated to a given parabolic quasi-Coxeter element g € W. We show in
Proposition 4.10 that the set RGS(W, g) only depends on the parabolic closure Wy of g (in
which g is a quasi-Coxeter element). In the case of the infinite families W = G(m, 1,n)
and W = G(m,m,n), the enumeration reduces to counting certain weighted trees or
unicycles whose vertices are the (generalized) cycles of g. In §7 we prove the following
result by making repeated use of the weighted Cayley theorem (Theorem 7.1).

Theorem 7.3. Suppose that W is either G(m,1,n) or G(m,m,n) for m > 1 and that g
is a parabolic quasi-Cozeter element for W.
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(i) If either W = G(m,1,n) and g is a quasi-Cozxeter element for the subgroup
G(m, 1, M) XSGy, X ---x By, or W = G(m,m,n) and g is a quasi-Coxeter element
for the subgroup G(m,m,\g) X Gy, X -+ x &y, , then

k
#RGS(W,g) =m" -~ T . (7.2)

=0

(ii) If W = G(m,1,n) and g is a quasi-Coxeter element for the subgroup Gy, x--- xSy, ,
then

k
#RGS(W, g) = (m) -mF=1.nk-1. H i, (7.3)
i=1

where ¢ denotes Fuler’s totient function.
(i5) If W = G(m, m,n) and g is a quasi-Cozeter element for the subgroup Gy, x --- X
Gy, , then

k k
#RGS(W, g) = % : (nk kY (-2)! -nk_jej()\)> TIn (4

j=2 i=1

where e;(\) denotes the ith elementary symmetric function in the variables X =
()‘17"'7)\16)'

The case of the symmetric group W = &,, is discussed in further detail in §7.4, where
we relate the enumeration of our sets RGS(W, g) with that of Cayley cacti, which were
used by Duchi-Poulalhon—Shaeffer [45] to give a bijective proof of the Hurwitz formula

(1.1).
1.3. Towards counting full factorizations of parabolic quasi-Cozeter elements

Apart from their own individual interest, the results of this paper are crucial com-
ponents of the proofs for the uniform formulas in the third part [41] of this series. To
motivate them further, we give here without proof the main theorem of [41] for Weyl
groups.

Theorem. For any Weyl group W and any parabolic quasi-Coxeter element g € W with
generalized cycle decomposition g = g1-ga -+ * gm, the number Fi(qg) of minimum-length
full reflection factorizations of g is given by the formula

Fiill(g) = 631(g)! - #RGS(W, g) - L00e). ﬁ (1.3)
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where (81 (g) is the full reflection length of g, W, is the parabolic closure of g, and I(W)
is the connection index of W.

The enumerative results of this paper, presented in §1.2, will be used in [41] to calculate
the right-hand side of (1.3) for the infinite families A,,, B,, D,, (and their generalization
in the complex types), while the left-hand side has been calculated in [40]. The structural
results presented in §1.1 will be used in an inductive argument that helps prove (1.3) for
the exceptional Weyl groups E7; and Eg, where the calculation of the numbers F‘f{}”(g)
with the techniques of [40] is not computationally feasible. Moreover, we hope that the
structural results presented in §1.1 support our case — reinforced by (1.3) — that the
collection RGS(W, g) of relative generating sets is a natural combinatorial object in the
study of reflection factorizations.

1.4. Summary

The structure of the present paper is as follows. In Section 2, we give background,
introduce the supporting objects of our study, and include some preliminary properties.
In Section 3, we introduce the main objects we study in this paper: the family of elements
called parabolic quasi-Coxeter elements. In the next Section 4, we characterize such
elements in terms of certain sets of reflections that we call relative reflection generating
sets, which will be fundamental in the uniform formulas for W-Hurwitz numbers in the
sequel [41]. In Section 5, we give two other characterizations of parabolic quasi-Coxeter
elements, in terms of absolute order and in terms of full reflection length. After this, in
Section 6, we study the number of reduced reflection factorizations of parabolic quasi-
Coxeter elements in well generated complex reflection groups. In Section 7, we give nice
formulas for the numbers of (relative) generating sets in the combinatorial subfamily of
well generated complex reflection groups. We wrap up this paper in Section 8 with some
final remarks and open questions.

2. Reflection groups, good generating sets, and parabolic subgroups

In this section, we introduce the main supporting objects of our study and develop
some preliminary properties. Standard background material for real reflections groups
may be found in [66,63], and for complex reflection groups in [66,75,19]. In the literature,
some authors considered infinite reflection groups (such as general Coxeter groups), but
in the present paper all reflection groups considered are assumed finite.

2.1. Real reflection groups
Given a finite-dimensional real inner product space V', a reflection t is an orthogonal

map whose fized space V' := {v € V: t(v) = v} is a hyperplane, that is, codim(V?*) = 1.
Equivalently, an orthogonal map is a reflection if it is diagonalizable, with one eigenvalue
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equal to —1 and all others equal to 1. A finite subgroup W < GL(V) is called a (finite)
real reflection group if it is generated by reflections.

The real reflection groups are precisely the finite Cozeter groups, those generated by
aset S = {s1,...,8,} of reflections subject to relations s? = 1 and (s;s;)™¥ = 1 for
some integers m;; > 1. The generating set S is called a set of simple reflections for W,
and the pair (W, S) of a Coxeter group together with such a set of simple reflections is
called a simple system. The size n of the set S is called the rank of W.

We say that a real reflection group W is irreducible if there is no nontrivial subspace
of V stabilized by its action. It is easy to see that if Wj acts on V;, with reflections R,
and W5 acts on Vs, with reflections Ro, then W = Wy x W5 acts on V = V| & V5, with
reflections R = (R x {ida}) U ({id1} X Ra). In this case, W fails to be irreducible (it
stabilizes the subspace V; of V). Coxeter [29] classified real reflection groups, as follows:
every real reflection group is a product of irreducibles, and the irreducibles belong to four
infinite families A, (the symmetric groups), B, (the hyperoctahedral groups of signed
permutations), D,, (index-2 subgroups of the hyperoctahedral groups), and I(m) (the
dihedral groups), and six exceptional types Hsz, Hy, Fy, Eg, E7, and Eg, where in all
cases the indices correspond to ranks.

A real reflection group W is completely determined by its set R of reflections. Al-
ternatively, it is determined by the associated reflection arrangement Ay, namely, the
arrangement of fixed hyperplanes of the reflections in R. The reflection arrangement of
W is often encoded as part of a structure known as a root system, which we define now.
For any reflection ¢ € R, we may choose two vectors p; and g;, both orthogonal to the
fixed hyperplane V', that satisfy (p,p;) = 2. They are known as the root and coroot
associated to the reflection ¢, which they determine via the relation

t(v) = v = (v, ) - pr (2.1)

for all v in V. The collection ® := {£p;: t € R} of roots and their negatives is the root
system of W; we choose the lengths of the roots p; so that ® is W-invariant. The simple
(co)roots a; := ps; and &; := ps, are the (co)roots associated to the simple reflections s;.

2.1.1. Weyl groups

Although root systems may be defined for all finite real reflection groups, they behave
particularly well for a subclass known as crystallographic or Weyl groups. Those are
characterized by the existence of an essential, W-invariant root lattice O, the integer
span of the root system ®. When this exists, the coroots also span a lattice, the coroot
lattice é The simple roots and coroots form a lattice basis for @ and Q respectively.

Weyl groups again decompose as products of irreducibles; the irreducible Weyl groups
are the infinite families A,,, By, and D,,, and the five exceptional types Fg, Fr, FEg, Fy,
and G2 = I3(6). In terms of the Coxeter presentation, these are exactly the finite Coxeter
groups for which m;; € {2,3,4,6} for all ¢ and j.
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Table 1

The connection indices for irreducible Weyl groups.
w 6n+1 = An Bn DT,, EG E7 Eg F4 12(6) = Gz
IW) | n+1 2 4 3 2 1 11

For any Weyl group, there is a natural inclusion of the root lattice Q inside the dual
lattice P of the coroot lattice Q. (The lattice P, which will not play a major role in this
paper, is called the weight lattice.) The connection index I(W) := [P : Q] is an important
invariant of W. It is equal to the determinant of the Cartan matriz K := ({a;, &j>)?,j:1
of the Weyl group (where «; and &; are the simple roots and coroots; see [66, §9-4]).
We give in Table 1 the values I(W) for the irreducible Weyl types; for a reducible group

W =W x -+ x W,, we have that I(W) = [[._, I(W;).

2.1.2. Parabolic Coxeter elements

In a (finite) real reflection group W, the product of the simple generators s; € S of
W, in any order, is called a Coxeter element. They were introduced in [30], where it was
shown that all such elements are conjugate to one another. We call any element ¢ € W
that belongs to this conjugacy class a Cozeter element; their common order h := |c| is
the Cozeter number of W. There are many choices of sets S’ of reflections that turn
(W, 87) into a simple system. When W is not crystallographic, different choices of S may
lead to different conjugacy classes of Coxeter elements.” Following [85], the elements of
W that are Coxeter elements for some choice of simple system are called generalized
Cozxeter elements; they have the same order h as the Coxeter elements.

For any subset I C S of simple reflections, the subgroup W; := (I) of W generated by
I is called a standard parabolic subgroup, and any subgroup conjugate to one of the Wy
is called a parabolic subgroup. Each parabolic subgroup inherits a natural simple system
from W. The Coxeter elements in any parabolic subgroup are the parabolic Coxeter
elements of W.

In the following sections we introduce analogues of all the concepts we discussed here
in the setting of complex reflection groups.

2.2. Complex reflection groups

Let V be a finite-dimensional complex vector space with a fixed Hermitian inner
product. A (unitary) reflection t on V is a unitary map whose fixed space V! is a
hyperplane, that is, codim(V?) = 1. A finite subgroup W < GL(V) is called a complex
reflection group if it is generated by reflections. As in the real case, we denote the subset
of reflections by R and the associated reflection arrangement (that consists of all the
fixed hyperplanes of reflections ¢t € R) by Aw, and we say that W is irreducible if there

2 For example, in the dihedral group 12(5), any pair of reflections determines a simple system for the group;
but the product of a pair whose hyperplanes make an angle of 36° (a rotation by 72°) is not conjugate to
the product of a pair whose hyperplanes make an angle of 72° (a rotation by 144°).
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is no nontrivial subspace of V stabilized by its action. Shephard and Todd [93] classified
the complex reflection groups, as follows: every complex reflection group is a product of
irreducibles, and every irreducible either belongs to an infinite three-parameter family
G(m,p,n), described below, or is one of 34 exceptional cases, numbered G4 to Gsr.

By extending scalars, every real reflection group may be viewed as a complex reflec-
tion group. This operation preserves irreducibility, with all four infinite families of real
reflection groups subsumed into to the infinite family of complex reflection groups.

2.2.1. The combinatorial family

Let m, p, and n be positive integers such that p divides m. Such a triple indexes
a member G(m,p,n) of the infinite family of complex reflection groups, which may be
concretely described as

n X n monomial matrices whose nonzero entries are
mth roots of unity with product an %th root of unity [

G(m,p,n) = {

It is natural to represent such groups combinatorially. We may encode each element
w of G(m, 1,n) by a pair [u; a] with uw € &, and a = (a1, ...,a,) € (Z/mZ)"™, as follows:
for k=1,...,n, the nonzero entry in column & of w is in row u(k), and the value of the
entry is exp(2miax/m). With this encoding, it’s easy to check that

[u;a] - [v;b] = [uv;v(a) +b], where v(a) = (@y),---, Qo)) -

This shows that the group G(m,1,n) is isomorphic to the wreath product Z/mZ1&,, of
a cyclic group with the symmetric group &,,.

The reflections in G(m,p,n) come in two families: for 1 <i < j <nand k € Z/mZ
there is the transposition-like reflection

[(%); k] := [(¢)); ke; — ke;] = [(45); (0,...,0,k,0,...,0,—k,0,...,0)],

which fixes the hyperplane z; = exp(2mik/m)z;, and if p < m then for i =1,...,n and
k=1,..., % — 1 there is the diagonal reflection

which fixes the hyperplane x; = 0. Observe that with this notation, [(i7); k] = [(ji); —&].

Given an element w = [u;a] € G(m,p,n) and a subset S C {1,...,n}, we say that
> kes ak is the color of S; this notion will come up particularly when the elements of S
form a cycle in u. When S = {1,...,n}, we call a1 + ... + a, the color of the element
w, and we denote it col(w). In this terminology, G(m, p,n) is the subgroup of G(m, 1,n)
containing exactly those elements whose color is a multiple of p, and col is a surjective
group homomorphism from G(m,p,n) to pZ/mZ = G(m,p,1) = Z/(m/p)Z. Meanwhile
the map [u;a] — u that sends an element of G(m, p,n) to its underlying permutation is
a surjective group homomorphism onto &,,.
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2.83. Well generated groups and good generating sets

If W is a complex reflection group acting on V, the rank of W is the codimension
codim(VW) of the fixed space VW := [, oy V* of W (or, equivalently, the dimension
of the orthogonal complement (V")+). For all groups G(m,p,n) of the combinatorial
family, the rank equals n, apart from the case of &,, = G(1,1,n) that has rank n — 1.
Every irreducible complex reflection group of rank n can be generated by either n or
n + 1 reflections. The groups in the first category are called well generated; they are
better understood and share many properties with the subclass of real reflection groups.

Definition 2.1 (Good generating sets). For a complex reflection group W and a subset
S = {t1,...,tn} of reflections in W, we say that S is a good generating set for W if
(t;)?_ 1 = W and the cardinality n of S equals the rank of W. In particular, it is precisely
the well generated groups that have good generating sets.

When W is a real reflection group, any set S of simple generators is a good generating
set for W, but there are many more good generating sets than simple systems. For Weyl
groups, good generating sets have a particularly nice characterization in terms of the
root and coroot lattices.

Proposition 2.2 (/21, Cor. 1.2]). For a Weyl group W of rank n, a set {t;}7, of reflec-
tions generates W if and only if the roots py, and coroots py, form Z-bases of the root
and coroot lattices Q and Q of W, respectively.

Next, we rephrase the criterion of Proposition 2.2 in terms of the connection index
I(W) of the Weyl group; this gives a computationally fast way to check whether a set of
reflections is a good generating set or not. To begin, suppose that we have a set {t;}7,
of n reflections in a Weyl group W, with associated roots p;, and coroots p,. Let {a;}i,
be a set of simple roots for W, with associated coroots &;. If we denote by U the matrix
that expresses the p;, as Z-linear combinations of the a; and similarly we write U for
the matrix that expresses the j;, in terms of the d;, then it follows easily that

det ((pe,, pr,)) = det(U) - det ({ci, pr,)) = det(U) - det ((as, &;)) - det (UT)
= det(U) - I(W) - det (UT) (2.2)

(where the last equality uses the fact that ((c;, d;)) is the Cartan matrix of W). More-
over, since each coroot g, is a positive multiple of the corresponding root p;,, and likewise

~

for the «;, the two determinants det(U) and det(U) have the same sign.

Corollary 2.3. In a Weyl group W of rank n, a set of reflections {t;}7_, is a good gener-
ating set for W if and only if

det (({pr: 7)),y ) = 1),
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where p; and py are the root and coroot associated to t and I(W') is the connection index
of W.

Proof. Since the roots {p:,} (respectively, coroots {p,}) belong to the lattice Q (resp.,
Q) with Z-basis {o;} (resp., {&;}), the matrix U (resp., U) is an integer matrix, with
integer determinant. Moreover, {py,} (resp., {71, }) forms a Z-basis for Q (resp., Q) if
and only if U (resp., U ) is invertible, i.e., if and only if it has determinant +1. By
Proposition 2.2, it follows that {¢;}, is a good generating set if and only if det(U)

~

and det(U) are both £1. Then the result follows by (2.2), after noting that det(U) and

~

det(U) have the same sign. O

By the same methods, we can prove the following result (which we believe must be
known, but for which we were not able to find a direct reference in the literature).

Corollary 2.4. If W is a Weyl group and W' < W is a proper reflection subgroup of the
same rank, then I(W') > I(W).

Proof. Let n be the common rank of W and W’ and {¢;}?; be a (good) generating set
of reflections for W', and let p;, and p;, denote the associated roots and coroots. By
Corollary 2.3 and (2.2), we have that

I(W') = det ((pr,, ir,)) = | det(U)] - I(W) - | det (TTT)).

Since the t; do not generate all of W, we have by Proposition 2.2 that at least one of U,
U will have (integer) determinant different from £1. This completes the proof. O

Unlike the case of simple systems, the product of the elements of a good generating
set need not be a (generalized) Coxeter element. For example, in W := Dy = G(2,2,4),
the reflections s; = [(12);0], s2 = [(23);0], s3 = [(34);0] and t = [(13);1] form a good
generating set for W (since if 57 = [(12);1] is the fourth simple generator, we have
satss = §1). However, they have product sisq2sst = [(14)(23);(1,0,1,0)], which is not
a (generalized) Coxeter element (all generalized Coxeter elements in Dy are of order 6
and have as underlying permutation a 3-cycle). We meet the products of arbitrary good
generating sets again in §3, where they are called quasi-Cozeter elements; they are the
main objects of study in this work.

2.8.1. The combinatorial family

In the infinite family, the groups G(m,1,n) and G(m, m,n) are well generated, but
the intermediate groups G(m,p,n) for 1 < p < m are not [75, §2.7]. We now describe
the good generating sets in G(m,1,n) and G(m,m,n).

It is natural to represent collections of reflections in G(m, p, n) as graphs on the vertex
set {1,...,n}: a transposition-like reflection whose underlying permutation is (ij) can
be represented by an edge joining i to j, while a diagonal reflection whose matrix entry
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of nonzero color occurs at position (¢,7) can be represented by a loop at vertex i. We
say that a collection of reflections in G(m,p,n) is connected if the associated graph is
connected. It is a basic fact of graph theory that any connected graph contains a spanning
tree; consequently, any connected set of reflections in G(m,p,n) contains a connected
subset of n — 1 transposition-like reflections. Such a subset always generates a subgroup
of G(m, p,n) isomorphic to the symmetric group &,, [90, Lem. 2.7]. In particular, when
m=p=1 (so G(m,p,n) = G(1,1,n) = &,,), the good generating sets correspond to
the trees on {1,...,n}. In order to characterize good generating sets when m > 1, we
introduce some additional terminology.

Every connected graph on n vertices with n edges contains a unique cycle. In the
case that the cycle is a loop, we say that the graph is a rooted tree. Otherwise, the cycle
contains at least two vertices, and in this case we call a graph a unicycle. Given a set .S
of n reflections whose associated graph is a unicycle, define a quantity §(S), as follows:
if the unique (graph) cycle has vertices ig,i1,...,ix—1,ix = o in order,? so that the
associated reflections are [(i; i;41); a;] for some ao,...,ax—1 € Z/mZ, we set

(5(5) =ag+ ...+ ak_1.

Shi showed that good generating sets in the combinatorial family can be characterized
in terms of the objects just defined.

Lemma 2.5 ([90, Lem. 2.1, Thm. 2.8, and Thm. 2.19]).

(i) A set of n reflections in G(m,1,n) generates the full group if and only if its graph
is rooted tree and the color of the diagonal factor is a generator of Z/mZ.

(ii) A set S of n reflections in G(m,m,n) generates the full group if and only if its graph
is a unicycle and 6(S) is a generator of Z/mZ.

Remark 2.6. It is not difficult to see (for example, by following the argument in [76,
Prop. 3.30], conjugating by a diagonal element of G(m,1,n) to send all but one of
the elements of S to true transpositions) that if S is a unicycle then multiplying the
factors of S together in any order produces an element of G(m,m,n) with exactly two
(permutation) cycles, one of color §(.5) and the other of color —§(S). This is compatible
with the arbitrary choice in the definition of §: choosing the other cyclic order would
replace § with —4.

2.3.2. Cozxeter elements
One of the most important characteristics of well generated groups is that they are
precisely the reflection groups that have analogues of Coxeter elements. For an arbitrary

3 There are two possible cyclic orders; for each (graph) cycle, we fix an arbitrary choice of the order in
which to read its vertices.
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complex reflection group W of rank n, Gordon and Griffeth [55] defined the Cozeter
number h as

_ #R+ #Aw

n

h:

Following Springer [92], we say that a vector v € V is a regular vector if it does not
belong to any reflection hyperplane H € Ay, and that an element g € W is a (-reqular
element if it has a regular (-eigenvector. If we do not need to emphasize the value of ¢
we may simply call g € W a regular element. For a given ¢ € C*, all (-regular elements
are conjugate [75, Cor. 11.25] and their order equals the multiplicative order of ¢ [75,
Thm. 11.56]. A Coxeter element is defined as an e?™/"-regular element of W and a
generalized Cozeter element as any regular element of order h [85]. In the case of real
reflection groups, this definition agrees with the one we gave in §2.1 (see the discussion
above [24, Def. 3.1]). It is an easy consequence of [10, Prop. 4.2] and standard properties
of regular numbers that Coxeter elements exist solely for well generated groups.

2.4. Reflection factorizations and reflection length

Starting with an arbitrary group G and some generating set S C G, the Cayley graph
of G with respect to S determines a natural length function on the elements of the
group: we may define the length of an element g € G as the size of the shortest path
in the Cayley graph from the identity element to g. In the case of a complex reflection
group W, we pick as the distinguished generating set the set R of reflections. Then the
reflection length 339(g) of an element g € W is the smallest number k such that there

exist reflections tq,...,t; whose product ¢ - - - t; is equal to g.
Definition 2.7. For an arbitrary number N, if ¢1,...,fx are reflections such that
ty---ty = g, we say that the tuple (t1,...,tn) is a reflection factorization of g of

length N. If moreover N = £¢4(g), we say that the factorization is reduced. We denote
the set of reduced reflection factorizations of g € W by Redw (g), i.e.,

red

Redw(g) = {(tl, e ’tfﬁ‘/d(g)) S RZW (9) : tl . 'tf%d(g) = g} y
and we denote by Fi34(g) their number (i.e., the cardinality of the set Redyw (g)).

The reflection length is subadditive over products: for any a,b one has f{,‘f,d(ab) <
ed(a) + £24(b). Thus, it determines a partial order < (the absolute order) on the
elements of W via

u <R v — e () + 653 (u M) = 59 (v).

Equivalently, ©v <% v if and only if every reduced reflection factorization of u can be
extended to give a reduced reflection factorization of v.
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If W is either a real reflection group or the wreath product G(m, 1, n), there is a simple
geometric formula for reflection length: one has in these cases that £i$9(w) = codim (V)
for all w in W [22, Lem. 2], [91, Rem. 2.3]. For the other complex reflection groups, the
situation is more complicated: it is always the case that ££9(w) > codim(V*), but there
exist elements where equality is not achieved [53].

The subgroups W/ < W that are generated by the reflections in a reduced reflection
factorization of some element g € W are of special interest. For a Weyl group W and a
fixed g € W, all such subgroups W’ share an important invariant: they have the same
connection index.* This follows from the next proposition, which appears in Wegener’s
thesis as part of the proof of [100, Thm. 4.2.15]. Recall that the pseudo-determinant
pdet(A) of a linear transformation A is defined as the product of the non-zero eigenvalues
of A.

Proposition 2.8 (See proof of Thm. 4.2.15 in [100]). Let W C GL(V') be a Weyl group of

rankn, g € W an element, and (t1,...,tx) € Redw(g) a reduced reflection factorization
of g. If W' is the reflection subgroup of W generated by the factors t;, then

I(W') = | pdet(g — Iv)|,
where Iy is the identity on V and I(W') denotes the connection index of W'.
2.4.1. The combinatorial family

In the infinite families W = G(m,1,n) and W = G(m, m,n), one may also give
combinatorial formulas for reflection length.
Theorem 2.9 (91, Thm. 4.4]).
(i) Given an element w in G(m,1,n), its reflection length is
G (w) = n — co(w),

where co(w) is the number of cycles in w of color 0.
(ii) Given an element w in G(m,m,n), its reflection length is

e (w) = n + c(w) — 2v, (w),
where c(w) is the number of cycles in w and v,,(w) is the largest number of parts

into which it is possible to partition the cycles of w such that all parts have total
color 0.

4 There is a notion of connection index for general complex reflection groups (see §8.4), but this statement
is no longer valid in that generality and it is unclear how to extend it.
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In the case that m = 1, so that W = &,,, both formulas reduce to the usual formula
£:¢d(w) = n—c(w) for reflection length in the symmetric group, where c(w) is the number
of cycles of the permutation w.

2.5. Parabolic subgroups

As in the real case, the reflection arrangement Ay, of a complex reflection group W
determines much of its combinatorics and group theory. Its flats (arbitrary intersections
of its hyperplanes) are linear subspaces; ordered by reverse-inclusion, they form the
intersection lattice of W.

The pointwise stabilizer Wy of any set U C V' will be called a parabolic subgroup of W.
(For real reflection groups, this definition is a priori different than the one we gave in §2.1,
but it is a standard theorem that they agree, see [66, §5-2].) It is an easy observation,
but so far based on the classification, that parabolic subgroups of well generated groups
are themselves well generated. This means that (as discussed in §2.3) they will have
their own Coxeter elements; we call such elements parabolic Coxeter elements. Arbitrary
(i-e., not necessarily well generated) reflection groups may have well generated parabolic
subgroups, but in this paper we only discuss parabolic Coxeter elements in well generated
groups. The following theorem of Steinberg characterizes parabolic subgroups.

Theorem 2.10 (Steinberg’s theorem [95, Thm. 1.5]). Let W be a complex reflection group
acting on'V and U CV a subset. Then the pointwise stabilizer of U is a reflection group,
generated by those reflections in W whose reflection hyperplanes contain U.

It follows from Steinberg’s theorem that, for any U C V', Wy, is the pointwise stabilizer
of the (unique) minimal flat X that contains U. Thus, we index parabolic subgroups by
their corresponding flat X. For a flat X, the parabolic subgroup Wx acts naturally as
a complex reflection group on the orthogonal complement X, with rank equal to the
codimension of X.

As a particular example, consider the case that W; and W5 are irreducible complex
reflection groups acting on V4 and Vs, respectively, where then the product W := Wy x Wy
acts on V := V] @ V5. In this case the two factor subgroups Wy = Wy x {idw, } = Wy,
and W = {idw, } x Wy = Wy, are parabolic subgroups of W. Consequently, if W
is any complex reflection group that decomposes into irreducibles as W7 x -+ x Wy,
then each of the W; is a parabolic for W in a natural way. Furthermore, if Wx < W
is some parabolic subgroup, then its decomposition into irreducibles will be given as
Wx = Wx, x --- x Wy, , where the Wx, are parabolic subgroups of W and satisfy
codim(X) = Zle codim(Xj).

It follows from Steinberg’s theorem that the collection of parabolic subgroups is closed
under intersection. For any element g € W we define the parabolic closure Wy of g to be
the intersection of all parabolic subgroups that contain g. In this case the flat X indexing
W, is the fixed space X = V9, and in particular we have rank(W,) = codim(V9). The
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orthogonal complement X+ = (V9)* is then known as the mowve space of g and is equal
to Mov(g) := Im(g — id).

In the real case, Bessis proved [11, above Lem. 1.4.2] that if some element g € W
belongs to a parabolic subgroup Wx < W, then all its reduced reflection factorizations
are realizable in Wx (that is, all the reflections in these factorizations belong to Wy as
well). We extend this statement to complex groups W, but only for the family of elements
g € W that satisfy £559(g) = codim(V¥) (for a discussion of the general case, see §3).
This case is precisely what we will need later on (for instance for Proposition 3.13).

Proposition 2.11. Let W be a complex reflection group and g € W an element for which
24(g) = codim(V9). The following hold:

(1) Every reflection t that satisfies t <r g belongs to the parabolic closure Wy of g.
(2) For any parabolic subgroup Wx < W that contains g, we have the following equality
of sets:

Redw (g9) = Redw (9)-

Proof. Assume that k = ££9(g) and that t1 - - - t;, = g is a reduced reflection factorization
of g in W. If we write Y := "), V' for the common intersection of the fixed hyperplanes
Vti it is clear that g fixes it pointwise; that is, V9 D Y. On the other hand, since Y
is the intersection of k hyperplanes, we have that codim(Y) < k = codim(V¥9). Thus
Y =V,

Since V9 = ), V', we have V% D VY for all factors ¢;. By Steinberg’s theorem
(Theorem 2.10) we must then have that ¢, € W,. This means that all factors in every
reduced reflection factorization of g must belong to Wy, and this completes the proof of
part (1). Since all parabolic subgroups W that contain g must, by definition, contain
Wy as well, the second part is also proven. O

Proposition 2.11 allows us to give a finer description of the reduced reflection factor-
izations of such elements in terms of their parabolic closures.

Corollary 2.12. Let W be a complex reflection group and g € W an element for which
¢d(g) = codim(V9). Let W, = Wy x --- x W be the decomposition of the parabolic
closure Wy into irreducibles and let g = g1 ---gs be the corresponding expression for g
with gi € W;. Then W; = Wy, and G5 (g:) = 63%(9s) = codim(V¥") = rank(W;) for
t1=1,...,s.

Proof. For each i, W; is a parabolic subgroup of W that contains g;. If there were a
smaller parabolic subgroup W/ of W that contained g;, then Wy x « -+ x W/ x « -+ x Wi
would be a parabolic subgroup of W containing g that is smaller than Wy, a con-
tradiction. Consequently, W; = Wy, and so also codim(V¥9) = rank(W;). Combining
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Proposition 2.11 (2) with the fact that reflection length is additive over direct product
decompositions gives

G (g) = 65 (9) = G g0), (2.3)
and therefore
Gi(g) = Z%?/(j (9:) = med Z codim(V9?) Z rank (W,
i=1 i=1 i=1

= rank(W,) = 67(g),

where the first inequality is direct from the definition of reflection length, the second
inequality is discussed in §2.4, rank-additivity comes from the discussion preceding
Proposition 2.11, and the last equality is the hypothesis on g. This completes the
proof. O

Remark 2.13. Proposition 2.11 (2) is no longer true if we replace Wx with an arbitrary
reflection subgroup W’ (i.e., not necessarily parabolic), even in the real case. For ex-
ample, inside G(2,1,2) = By, consider the element g = [id; (1,1)] in G(2,1,2) and the
subgroup W’ of diagonal matrices, generated by the reflections [id; (1, 0)] and [id; (0, 1)].
Then Redw(g) fails to contain the factors in the reduced W-reflection factorization

g =1[(12); (0,0)] - [(12); (1, 1)].

Remark 2.14. Another implication of Proposition 2.11 (2) is that the reflection length of
g with respect to a parabolic subgroup W is the same as with respect to W. In general,
if we replace Wx by an arbitrary reflection subgroup W', this is no longer true. Unlike the
situation of the Remark 2.13, however, this is solely a phenomenon of the complex types,
since in the real case we always have £224(g) = codim (V7). For example, by Theorem 2.9,
the element [id; (1,1, 1)] has reflection length 3 as an element of G(3, 1, 3) (it is a product
of three diagonal reflections), but it cannot be written as a product of fewer than four
reflections in the non-parabolic subgroup G(3, 3, 3).

2.5.1. Parabolic subgroups of the combinatorial family
The parabolic subgroups of the group G(m,p,n) are easy to describe.

Theorem 2.15 (Essentially [97, Thm. 3.11]). Every parabolic subgroup of G(m,p,n) is
either conjugate to a subgroup of the form

G(m,p,)\o) X 6)\1 X X 6)%
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for some partition® (Mo,...,\x) of n or conjugate by an element of G(m,1,n) to a
subgroup of the form

6)\1 X oo X 6>\k
for some partition (A1, ..., \;) of n.
2.6. The Hurwitz action

For any group G, there is a natural action of the k-strand braid group

Bk = <0’1,...,0'k1

on the set of k-tuples of elements of G. The generator o; acts via

0i0; = 0;0; if |i—j|>1

0;0;410; = 0410041 for i = 1, RPN k—2 >

O—i(glv"' y  Giy Gi41, 7gk) = (glv"' ) Gi+1, gi_«}llgigi-‘rlv 7gk)7

swapping two adjacent elements and conjugating one by the other, preserving the product
of the tuple. We call this the Hurwitz action of By, on G*.

In addition to the product g;---gx, the Hurwitz action respects the subgroup
(g1,--.,9k) that is generated by the elements g; and the multiset of conjugacy classes
they determine. This means that for a reflection group W, there is a well defined Hurwitz
action on the set of length-k reflection factorizations of an element g € W.

The orbit structure of the Hurwitz action has interesting connections with other areas
of mathematics. In the symmetric group &,,, for example, orbits often correspond to
path-connected components of spaces of polynomials or holomorphic maps [71,77, §5.4].
In well generated complex reflection groups, the transitivity of the Hurwitz action in
the following theorem was an important ingredient in Bessis’ proof [12] of the K (m,1)
conjecture.

Theorem 2.16 (Case-free for real W [11, Prop. 1.6.1], case-by-case in general [12,
Prop. 7.6]). For a well generated group W and a parabolic Cozeter element g € W
of length €:23(g) = k, the Hurwitz action of By, on Redyw (g) is transitive.

The following result shows that every Hurwitz orbit of reflection factorizations in a
real reflection group contains factorizations in a particularly simple form; it will be very
useful in §5 below.

Lemma 2.17 ([7/, Cor. 1.4]). Let W be a real reflection group and g € W an element
of reflection length (:¢3(w) = k. Then any factorization of g into N reflections (with
N > k) lies in the Hurwitz orbit of some tuple (t1,...,tn) such that

5 Note that Ao could be out of order in .
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tl :t27 t3:t47 ceey thkrfl :thka
and (tN—g+1,---,tN) is a reduced factorization of g.

Remark 2.18. The proof of Lemma 2.17 given in [74] relies on case-by-case calculations.
Recently, Wegener and Yahiatene followed a different approach [101] that furnishes a
case-free proof for Lemma 2.17. This make the proofs of some of our statements below
also case-free; see Remarks 5.3 and 5.9.

3. Parabolic quasi-Coxeter elements

In this section we introduce a family of elements in (well generated) complex re-
flection groups that we call parabolic quasi-Cozeter elements, and that are the main
objects of study in this paper. In real reflection groups, these elements have appeared in
multiple guises in the literature, with various definitions and names — see Remark 3.1,
Theorem 3.4, and Corollary 3.7. We begin this section with a historical review of these
various appearances, which we hope will convince the reader that we are discussing nat-
ural objects that are of interest in a variety of mathematical areas. After the overview, in
§3.2, we give the formal definition that we use in the rest of the paper, and establish its
equivalence with the earlier definitions in the real case. We then establish a number of
structural properties of parabolic quasi-Coxeter elements, including an analogue of the
cycle decomposition of permutations (§3.4) and the transitivity of the Hurwitz action on
their reduced factorizations (§3.3). We rely on the results we prove here as we present
various characterizations for the parabolic quasi-Coxeter elements in the following §§4
and 5.

3.1. Origins of (parabolic) quasi-Cozeter elements

In a real reflection group W, the easiest way to describe the family of quasi-Cozeter
elements is as the elements that do not belong to any proper reflection subgroup of W.
One could then define parabolic quasi-Coxeter elements as the quasi-Coxeter elements
of parabolic subgroups of W. This is the context underlying the earliest appearance of
quasi-Coxeter elements, in Carter’s classification of the conjugacy classes of Weyl groups.

3.1.1. Conjugacy classes of Weyl groups

At the time of Carter’s work [22], the conjugacy classes of Weyl groups had been
already described for all cases, but there was no case-free construction for them. The
Borel-de Siebenthal algorithm ([9], see also [66, §12.1]) gave a case-free way to build
up all reflection subgroups of W, and Carter used it to reduce the description of all
conjugacy classes of W to the description of those that are not contained in any proper
reflection subgroup. He didn’t give a name for these latter classes, but he showed that
they always contain the class of Coxeter elements and he described the rest via certain
Dynkin-like graphs that he called admissible diagrams.
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Table 2
Carter’s notation for conjugacy classes of Weyl groups W that do not live in proper reflection subgroups
of W [22]. Some classes have two distinct associated diagrams, indexed a; and b;.

Weyl group list of quasi-Coxeter conjugacy classes

Sni1 = A, | An

B, B,

Dn Dy, Du(a1), Dn(az), ..., Dulan-ay/2)); Dulajn-2)/2)) = Du(b|(n-2)/2))

G2 G2

Fy Fy, Fy(a1)

Es Eg, E¢(a1), Eg(az2)

E~ E7, E7(a1), E7(az) = E7(b2), Er(as), E7(as)

Eg Eg, Eg(a1), Eg(az), Es(az) = Es(b3), Es(as), Es(as) = Eg(bs), Es(as), Es(ar), Es(as)

Carter’s admissible diagrams can be constructed for any element g in a Weyl group
W. They encode the commutativity relations among reflections that form certain special
reduced factorizations of g. Carter showed that such diagrams are sufficient to distinguish
the quasi-Coxeter conjugacy classes and gave a complete list of them (see Table 2).

3.1.2. Distinguished bases in singularity theory

In the 1970s, Arnold [2] and his school developed a very rich mathematical area which
studies the geometry and topology of hypersurface singularities. The second (chronolog-
ically) appearance of quasi-Coxeter elements took place in this singularity theory. An
important object in this setting is the Milnor lattice of the singularity; it is defined via
the Milnor fibration and deformation theory, and encodes many invariants associated to
the singularity. There is a natural geometric construction for certain bases of the Milnor
lattice: vaguely stated, the Picard-Lefschetz transformations associated to a collection
of paths around the critical values of a deformation of the singularity always determine a
basis. In general, such bases are called weakly distinguished, while if one further requires
that the paths are non self-intersecting, the resulting bases are called distinguished.’
There is significant interest in the enumeration and study of structural properties of
these bases [59,52,18].

Part of the theory developed by Arnold and his school describes an infinite hierarchy
of singularities that starts with the so-called simple singularities, which are in natural
correspondence with the simply laced Weyl groups A,,, D,,, Fg, E7, Es. In particular, the
Milnor lattice of a singularity is precisely the root lattice of the corresponding Weyl
group W, and its distinguished bases correspond to the ordered sets of roots appearing
in reduced reflection factorizations of some Coxeter element of W (see [18]).

In his thesis [99], Voigt extends the previous correspondence to weakly distinguished
bases. He defines quasi- Cozeter elements as those whose reduced reflection factorizations
determine a basis of the root lattice and he shows that all such bases are weakly distin-

6 Unfortunately, many authors have used different, conflicting names for this pair of properties (distin-
guished, weakly distinguished). Two common variants are (geometric, distinguished), used by Voigt [99],
and (strongly distinguished, weakly distinguished).
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guished. A major ingredient in Voigt’s proof is that the Hurwitz action is transitive on
the reduced factorizations of quasi-Coxeter elements.

3.1.3. Dual Cozeter systems

A third, more recent, appearance of quasi-Coxeter elements is in the context of the
dual approach to Coxeter systems. Initiated in the seminal work of Bessis [11], the dual
approach to a reflection group W and its generalized braid group B(W) involves con-
sidering the whole set of reflections R as a generating set of W, instead of just the
simple reflections, and studying the (more symmetric) presentations that arise in this
way. Bessis proved that the Artin and dual presentations of B(W) are equivalent [11,12];
an important component of his proofs is that the Hurwitz action is transitive on the set
of reduced reflection factorizations of a Coxeter element (see also the exposition in [23,
56).

Bessis’ work sparked considerable interest in the Hurwitz action on reflection factor-
izations (for instance in [79] and [3]). In [4], Baumeister et al. set out to describe its
orbit structure in real reflection groups W. They found that the elements g € W for
which the Hurwitz action is transitive on their set of reduced reflection factorizations
are precisely the elements whose reduced factorizations form good generating sets for
parabolic subgroups of W. They called such elements parabolic quasi-Cozxeter elements.

It is this last definition of the quasi-Coxeter property that is most relevant in our work.
In the following section, we extend it to the case of well generated complex reflection
groups. Although the result of [4] (involving Hurwitz orbits) does not extend to this
setting (see §3.3 below), it turns out that it is precisely their definition that allows us to
relate the quasi-Coxeter property with full reflection factorizations, as we do §§4 and 5
below.

Remark 3.1 (Tower of Babel). We hope that the preceding discussion makes clear that
the class of quasi-Coxeter elements is natural, and in fact prominent, when viewing the
theory of reflection groups from several different perspectives. However, because of the
distance separating the various relevant research areas, this same class of elements often
appears with different names in the literature, and, worse, sometimes the same name has
been used to refer to distinct properties.

Carter [22] did not give a name to the conjugacy classes of Table 2 but he called their
associated diagrams admissible diagrams. In a later paper [25], Carter and Elkington
gave an explicit definition for a class of elements that they called semi-Coxeter elements.
Taken literally, their definition accidentally allows more classes’ than those of Table 2,
but subsequent authors (e.g., [4,81]) have used “semi-Coxeter” to mean exactly the classes
of the table.

7 For example, the Coxeter element of D,, < B, understood as an element of B,,, satisfies the definition
of semi-Coxeter class in B,, as stated in [25], but it is not a quasi-Coxeter element in B,,.
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As discussed in §3.1.2, Voigt [99] used the term quasi-Cozeter elements for the ele-
ments with a reduced reflection factorization whose corresponding roots form a basis of
the root lattice. In the simply laced Weyl groups (types A,, D,, E,), this definition
agrees with the definition given by Baumeister et al. [4] (discussed above in §3.1.3; and
see Theorem 3.4 below for the proof). However, in other (non-simply laced) types, the
two definitions are not equivalent. Both versions have appeared in the literature: Hertling
and Balnojan [13] used Voigt’s definition unchanged for (non-simply laced) Weyl groups,
while Proposition 2.2 (of Baumeister and Wegener [21]) suggests that it is better to add
to the definition the condition that the corresponding coroots form a basis of the coroot
lattice as well.

In many sources (e.g., [17,70,34]), the conjugacy classes of quasi-Coxeter elements in
a Weyl group W < GL(V) are called primitive classes. They are usually defined as the
conjugacy classes of elements g € W such that the determinant of g — Iy equals the
determinant of the Cartan matrix of W up to sign (where Iy is the identity on V). In
these references, it is often observed that primitive classes are precisely those that do not
live in any proper reflection subgroup of W (again, see Theorem 3.4 for the equivalence
of these definitions).

A different source of potential confusion comes from the labels used to denote the
quasi-Coxeter conjugacy classes of a Weyl group W (as in Table 2). Carter’s notation
is similar to the later Bala—Carter notation [6,7], which encodes conjugacy classes of
nilpotent elements of the Lie algebra associated to W. This is not an accident; Carter
had already observed in [22, §10] that admissible diagrams may form good combinatorial
models also for such Lie algebra classes.

3.2. Explicit definition of (parabolic) quasi-Cozxeter elements

We are finally ready to define parabolic quasi-Coxeter elements for well generated
complex reflection groups, extending the definition of [4].

Definition 3.2 (Parabolic quasi-Cozeter elements). Let W be a well generated complex
reflection group. We say that an element g € W is a parabolic quasi-Cozeter element
if it has a reduced reflection factorization g = 1 - - tpea(,) Whose factors {t;} form a
good generating set (as in Definition 2.1) for some parabolic subgroup of W. We say it
is quasi-Cozeter if the factors {¢;} form a good generating set for W.

Definition 3.2 does not specify which parabolic subgroup should be generated by
the factors t;. In the next proposition we see that, in fact, the subgroup is completely
determined by the parabolic quasi-Coxeter element.

Proposition 3.3. Let W be a complex reflection group and g € W an arbitrary element. If
the factors of a reduced reflection factorization of g form a good generating set for some
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parabolic subgroup Wx, then X = V9 and Wx is the parabolic closure of g. Moreover,
in this case (39 (g) = codim(V9).

Proof. Assume that t;---t, = ¢ is a reduced reflection factorization of g as in the
statement and that Wx = <ti)f:1. Since the t; form a good generating set for Wy,
we have that rank(Wx) = k, or equivalently that k& = codim(X). Consider now the
parabolic closure W of g, which is indexed by the flat Y = V9. Since g € Wx, we have
Y D X, and therefore codim(Y’) > k. On the other hand, g can be written as a product
of k reflections and hence has to fix the intersection of their fixed spaces; this forces
codim(Y') < k. Putting the two inequalities together, we have that codim(Y) = k and
thus Y = X and Wy =Wy =Wx. O

With this preliminary result in hand, we are ready now to prove that the various
definitions considered in §3.1 are equivalent for Weyl groups. The following arguments
are case-free and constitute a combination of results from §2 that are mostly due to [4]
and [100].

Theorem 3.4. Let W < GL(V) be a Weyl group of rank n, g an element of W, and W,
the parabolic closure of g. Then the following statements are equivalent.

(i) g is a quasi-Cozeter element (respectively, parabolic quasi-Cozeter element).

(i) There exists a reduced reflection factorization g =ty - -ti for which the associated
roots py, and coroots py, form Z-bases of the root and coroot lattices of W (resp.,
of Wy).

(iii) g satisfies |det(g — Iv)| = I(W), where Iy is the identity on V and I(W) the
connection index of W (resp., |pdet(g — Iv)| = I(W,) where pdet denotes the
pseudo-determinant).

(iv) g does not belong to any proper reflection subgroup of W (resp., of Wy ).

Proof. It is sufficient to prove the case of parabolic quasi-Coxeter elements. The following
relations prove the equivalence of all given statements.

(1) = (i7): For g parabolic quasi-Coxeter, we have by definition that there is a reduced
factorization g = t1 - - - t;, whose factors form a good generating set for some parabolic
subgroup Wx. By Proposition 3.3 this subgroup is Wy, and the conclusion follows
by Proposition 2.2.

(#4) = (4): Take a reduced reflection factorization g = ¢; ---t; as in (4i). Since W is a
real reflection group, we have k = codim(V9), and since codim(V?9) = rank(W,),
Proposition 2.2 implies that the factors t; generate W,. Since W, is a parabolic
subgroup of W, this means that () holds.
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(i) = (4i1): Pick a reduced reflection factorization t¢;---t; = ¢ for which the factors
t; generate W, as in the step [(i) = (4¢)]. The required property (iii) follows by
Proposition 2.8.

(#43) = (iv): Choose a reflection group W’ such that g € W’ < W, and consider a W’'-
reduced reflection factorization ¢; - - - ¢, = g and the rank-k group W” = (t;,)F_, < W’
generated by its factors. Since W is a real reflection group, this factorization is also
W-reduced and we have that k = £:¢4(g) = codim(V9) = rank(W,); in other words,
the group W is a mazimal rank reflection subgroup of Wy. By Proposition 2.8, we
must have that | pdet(g— Iy)| = I(W"), which forces by the assumption in (¢i¢) that
I(W") = I(Wy). Since W" is a maximal rank reflection subgroup of Wy, it follows
from Corollary 2.4 that W” = Wy, and therefore that W’ = W,. Thus g satisfies
(iv).

(iv) = (i): Take an arbitrary reduced reflection factorization ¢y ---¢; = g and consider
the group W’ = (t;)%¥_, generated by its factors. Since W is a real reflection group,
Proposition 2.11 implies that all reflections ¢; belong to the parabolic closure Wj.
Thus W’ < W,. Since clearly g belongs to W', the assumption of (iv) implies that
W' = W,. This proves (7). O

We end this section with one further preliminary result about the complex case. The
collection of reduced reflection factorizations of an element g depends on the ambient
group W > g. This suggests that whether g is parabolic quasi-Coxeter should depend
on W. In the next statement we prove that, to the contrary, the property is hereditary
inside the family of parabolic subgroups of W.

Corollary 3.5. Let W be a well generated group and Wx < W a parabolic subgroup.
Then an element g € Wx s parabolic quasi-Cozxeter in Wx if and only if it is parabolic
quasi-Coxeter in W.

Proof. First, suppose ¢ € Wx < W is parabolic quasi-Coxeter in Wx. By Proposi-
tion 3.3, we have that 6{}?}; (9) = codim(V9). Since Wx < W, we have ££%4(g) < 6{/“3};{ (9)-
On the other hand, as mentioned in §2.4, we have for all w € W that £t (w) >
codim(V"), and thus 5(g) = 65 (9). Therefore, any reduced W-reflection factor-
ization g = tq - - -t is also reduced as a W-reflection factorization. Since g is parabolic
quasi-Coxeter in Wy, the subgroup W’ generated by the ¢; is parabolic in Wx. It is easy
an easy consequence of Steinberg’s theorem (Theorem 2.10) that a parabolic subgroup
of a parabolic subgroup is parabolic in the parent group, and therefore g has a reduced
W -factorization that generates a parabolic subgroup of W, as claimed.

Conversely, assume that g is parabolic quasi-Coxeter in W and g = t1---t; is a
reduced W-reflection factorization of g. We have by Proposition 3.3 that E’{,?,d(g) =
codim(V9). Therefore, by Proposition 2.11 (2), g = t1---t is also a reduced Wx-
reflection factorization of g. Again by Proposition 3.3, the group (t;)%_, is the parabolic
closure in W of g, which (by Steinberg’s theorem) is also a parabolic subgroup of Wx.
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Thus g has a reduced Wix-reflection factorization whose factors are a good generating
set for a parabolic subgroup of W, as needed. 0O

3.8. Interaction with the Hurwitz action

In the real case, parabolic quasi-Coxeter elements may be characterized in terms of
the Hurwitz action on their reduced reflection factorizations.

Proposition 3.6 (//, Thm. 1.1]). Let W be a real reflection group and g € W an element
that has reflection length (3%%(g) = k. Then the Hurwitz action of the braid group By on
the set of reduced reflection factorizations of g is transitive if and only if g is a parabolic
quasi-Coxeter element.

This allows us to extend the equivalence (i) < (iv) of Theorem 3.4 to the set of all
real reflection groups.

Corollary 3.7. Let W be a real reflection group and g an element of W. Then the following
statements are equivalent.

(i) g is a quasi-Cozeter element (respectively, parabolic quasi-Cozxeter element).
(it) g does not belong to any proper reflection subgroup of W (resp., of Wy ).

Proof. Again, it is sufficient to prove the parabolic case. The direction (i7) = (4) is proven
exactly as in Theorem 3.4. For the other direction, pick a reduced reflection factorization
g = t1 - - - t;, whose factors generate a parabolic subgroup Wx. Since W is a real reflection
group, we have k = codim(V¥¢). Then Proposition 3.3 implies Wx = W,. Since the
group generated by the factors is invariant under the Hurwitz action, Proposition 3.6
implies that for every reduced reflection factorization of g, the factors generate W,.
Now suppose that W’ is a reflection subgroup such that g € W’ < W,. Since W is a
real reflection group, a reduced factorization in W’ must also be W-reduced (because
£¢d(g) = codim(V9) = £5%4(g)), and therefore must generate W, (because every reduced
factorization of g does). Thus W’ = W, and so g does not belong to any proper reflection
subgroup of W,. O

In a real reflection group W, for every reduced reflection factorization g = ¢ - - - ty, the
element ¢ is a quasi-Coxeter element of the reflection subgroup W’ = (¢;)%_, generated
by the factors. This observation, together with Corollary 3.7, leads to a finer understand-
ing of the whole collection of Hurwitz orbits on the set Redw (g) of reduced reflection
factorizations of g. The following is a slight rephrasing of [58, Cor. 3.11].

Proposition 3.8. Let W be a real reflection group and g € W an arbitrary element of W.
There is a one-to-one correspondence between the Hurwitz orbits on Redw (g) and the
minimal (under inclusion) reflection subgroups W' < W that contain g.
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Proof. Gobet showed [58, Cor. 3.11] that the Hurwitz orbits on Redw (g) are in bijection
with the reflection subgroups W’ of W that contain g as a quasi-Coxeter element. The
statement now follows from the previous Corollary 3.7. O

Proposition 3.6 is not valid for all complex reflection groups — for example, [76, Ex. 4.3]
shows that it fails in the exceptional group G14. However, some weaker forms of the result
hold; we will need two of these in what follows.

Proposition 3.9 (/76, Cor. 5.4]). Let W = G(m,p,n) and g € W an element of reflection
length (554 (g) = k with a reduced factorization that generates W. Then the Hurwitz action
of the braid group By, on the set of reduced reflection factorizations of g is transitive.

Proposition 3.10. Let W be a complex reflection group and g € W a parabolic quasi-
Cozxeter element, and let g =ty -- -t be any reduced reflection factorization of g. Then
the set {t1,...,tx} of factors is a good generating set for the parabolic closure Wy of g.

(For arbitrary Cozeter groups, the analogous statement has been conjectured by Go-
bet [58, Conj. 2.4].)

Proof. In [76, Thm. 5.6], it is proved that if G is any finite complex reflection group
and h € G satisfies £54(h) = rank(G) and has a reduced reflection factorization that
generates G, then every reduced reflection factorization of h generates G. Since the
given element ¢ is parabolic quasi-Coxeter, by definition, g has a reduced reflection
factorization that generates a parabolic subgroup of W; by Proposition 3.3, this subgroup
is its parabolic closure W, and ¢ has reflection length rank(W,). Applying the former
result in the case G = W, completes the proof. O

Remark 3.11. The cited result [76, Thm. 5.6] was proved by combining Proposition 3.9
and an exhaustive computer check for exceptional groups W that compared all Hurwitz
orbits in Redyy (g) for all conjugacy classes of elements g € W. For Weyl groups, however,
Proposition 3.10 has an elegant case-free proof in [100, Thm. 4.3.1].

Remark 3.12. Proposition 3.8 also fails in the case of complex reflection groups, but here
it is difficult even to conjecture an appropriate geometric object that indexes the Hurwitz
orbits. For the combinatorial family, see [76, Thm. 3.2 and §6.1].

3.4. Unique cycle decomposition

In [58, Thm. 1.3], Gobet describes an extension of the cycle decomposition of per-
mutations in &,, to the collection of parabolic quasi-Coxeter elements in real reflection
groups. Much of his work extends essentially verbatim to complex reflection groups, al-
though the proofs of some supporting statements (our Propositions 2.11 and 3.3) need
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to be rewritten for the complex case. We sketch his argument below, with the necessary
adjustments.

Proposition 3.13 (Generalized cycle decomposition). Let W be a well generated complex
reflection group and g € W a parabolic quasi-Coxeter element. Then there exists a unique
(up to reordering the factors) decomposition g = g1---g, with g; € W non-identity
elements such that

(1) gig; = gj9: for alli and j,

(2) Gi(9) = G (91) + - + 65 (gr), and

(3) no g; can be further decomposed; that is, there do not exist elements a,b € W such
that g; = ab and the factorization g; = ab satisfies (1) and (2).

Moreover, if Wy = Wy x --- x Wy is the decomposition of the parabolic closure W,
into irreducibles, then r = s and (after an appropriate reordering) each factor g; is a
quasi- Coxeter element of W;.

Proof sketch. Let us start with the decomposition W, = Wy x --- x W, of W, into
irreducible parabolic subgroups, as in §2.5, and consider the resulting factorization

g=g1-"9s (3.1)

with g; € W; for each i. Part (1) follows from the fact that the decomposition of Wy is a
direct product, while part (2) follows from (2.3) in the proof of Corollary 2.12. We now
consider part (3).

Any reduced reflection factorization of g determines for each i a W;-factorization of
gi, and therefore each g; is a quasi-Coxeter element of W; according to Definition 3.2.
Thus, it is sufficient to deal with the case that g is quasi-Coxeter in an irreducible group
W. We assume that the factorization g = ab satisfies parts (1) and (2) and show that
this contradicts the irreducibility of W. By condition (2), there is a reduced factorization
g =1t1---t, and an index k such that a =t;---t; and b =ty 41 -- - t,. Consider the two
reflection subgroups Wy := (t1,...,t;) and Wa := (tg41,...,ts). Then

codim(Vab) PR pred gy @ pred ) 4 pred ) >

codim(V?) + codim(V?) > codim(V* N V?) > codim (V).

This forces the inequalities to be equalities, which implies that the move spaces (defined
in §2.5) of a and b intersect trivially. Pick an arbitrary vector u € Mov(b), say u =
b(v) — v. Since ab = ba we have a(u) = b(a(v)) — a(v) € Mov(b). Hence a(u) — u €
Mov(a) N Mov(b) = {0}. This means that v € V* and thus that Mov(b) C V. By
Proposition 2.11 (1), for every reflection ¢t < a we have Mov(b) C V¢ C V*. Taking
orthogonal complements, Mov(t) C V. Repeating the argument with the roles of a and
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b reversed, we have for any ¢’ <x b that Mov(¢t') C V. This implies that all reflections
ty,...,tr commute with all reflections tx1,...,t,, and therefore that W = Wy x Wa,
which contradicts the irreducibility of W.

The only remaining point is to show that (3.1) is the unique factorization satisfying the
three conditions. For any decomposition g = ¢} - - - ¢.. as in the statement, any reflection
t <z g; must belong to Wy (by Proposition 2.11), and so we have g; € W,. Each g} must
belong to a single irreducible component of W, since otherwise, the decomposition would
fail (3). Finally, if there is a component — without loss of generality W7 — that contains
more than one of the factors g., then g; from (3.1) must equal their product; but this
contradicts part (3) for the factorization (3.1). This concludes the argument. O

Remark 3.14. The concept of a “generalized cycle” in Proposition 3.13 is best captured
by a pair (g,G) of an irreducible (well generated) reflection group G and a quasi-Coxeter
element g of G. A priori, this suggests that the cycle decomposition should depend on the
choice of ambient group. For similar decompositions of non-quasi-Coxeter elements, this
is indeed the case; for example, consider the element p := [(12)(34);(0,1,0,1)], which
belongs to both W = G(2,2,4) & Dy and W’ = G(2,1,2) X G(2,1,2) = By X By. In W,
the decomposition of p coming from the parabolic closure is just p = p (the closure W,
is the whole group), while in W’ the natural decomposition is

p= [(12)7 <07 17070)] : [(34)7 (07 0,0, 1)]

However, the decompositions described in Proposition 3.13 are hereditary in some
settings. For example, if we have real reflection groups® W/ < W with w € W' a
parabolic quasi-Coxeter element of W, then w is parabolic quasi-Coxeter also in W/,
and its two generalized cycle decompositions (in W and W) are identical. (This comes
down to the transitivity of the Hurwitz action and the fact that reduced factorizations
in W’ are also reduced in W.)

Remark 3.15. We will not make use of the strong uniqueness properties of the generalized
cycle decomposition in this paper or the conclusion [41]. For us, the most important
consequence of Proposition 3.13 is its last statement: that for parabolic quasi-Coxeter
elements g € W, the factors in this natural decomposition are all quasi-Coxeter elements
of the irreducible components of Wj.

3.5. Parabolic quasi-Cozeter elements in the infinite family

In [76, Cor. 5.7], the following characterization was given for the quasi-Coxeter el-
ements in the well generated groups in the infinite family”: in G(m,1,n), an element

8 1t is unclear to what extent this holds in the complex case; see §8 for more on this question.
® When comparing the present work with [76], one should be aware of an important difference in terminol-
ogy: in [76, Def. 5.1], quasi-Coxeter elements are not required to have reflection length equal to the rank of
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w is quasi-Coxeter if and only if its underlying permutation is an n-cycle and its color
generates Z/mZ, while in G(m,m,n), an element is quasi-Coxeter if and only if its
underlying permutation has exactly two cycles and their colors (which necessarily sum
to 0) generate Z/mZ. Combining this result with Theorem 2.15 and Proposition 3.13
immediately yields the following characterization of parabolic quasi-Coxeter elements in
G(m,1,n) and G(m,m,n).

Corollary 3.16. Suppose that g is an element of G(m,1,n). Then

(i) g is parabolic quasi-Coxeter for a subgroup of type Sx, x --- x &y, if and only if g
has cycles of lengths A1, ..., Ak, all of color 0, and

(i) g is parabolic quasi-Coxeter for a subgroup of type G(m, 1, Xg) X &y, X --- X &y, if
and only if g has one cycle of length Ao whose color generates Z/mZ and k cycles
of lengths A1, ..., A\ and color 0.

Suppose instead that g is an element of G(m,m,n). Then

(iii) g is parabolic quasi-Cozeter for a subgroup of type Sy, X --- x &y, if and only if g
has cycles of lengths A1, ..., Ak, all of color 0, and

(iv) g is parabolic quasi-Cozxeter for a subgroup of type G(m,m, o) X Sy, X - x &y, if
and only if g has two cycles whose colors generate Z/mZ and sum to 0 and whose
lengths add to Ao, and has cycles of lengths A1, ..., A\ of color 0.

In all cases except the last, the generalized cycles of g are the cycles of g; in the case
that Wy = G(m,m, Ag) X Sy, X -+ X A, the two cycles of nonzero color in g together
form a generalized cycle.

Remark 3.17. Parabolic quasi-Coxeter classes make up a small percentage of all conju-
gacy classes in the combinatorial family. In the exceptional types, by contrast, there are
often more classes that are parabolic quasi-Coxeter than the other way around. In Table 3
we give the relevant numbers for the real case. (These are easy to count by a computer,
but for Weyl groups all necessary information is also available in the literature: the quasi-

Table 3

Comparison of types of conjugacy classes in exceptional real reflection groups.
w Hs Hy F, Es E7 Es
number of parabolic Coxeter classes 6 10 12 17 32 41
number of parabolic quasi-Coxeter classes 9 24 13 21 44 67
number of all conjugacy classes 10 34 25 25 60 112

W (unlike our Definition 3.2), but may also have larger reflection lengths. The statement of Corollary 3.16
has been adjusted to our more restrictive definition.



678 T. Douvropoulos et al. / Journal of Algebra 641 (2024) 648-715

Coxeter classes are listed in Carter’s work [22], the parabolic subgroups up to conjugacy
are given in [83, Appendix C], and these may be combined using Proposition 3.13.)

4. Characterization via relative reflection generating sets

In this section, we give a characterization of parabolic quasi-Coxeter elements in terms
of the existence of certain sets of reflections that we call relative reflection generating
sets. These new objects are combinatorially appealing on their own (see §7) but they will
also become a fundamental ingredient of the uniformly-stated formulas for W-Hurwitz
numbers in the third instalment [41] of this series of papers. Our definitions are analogous
to the notion of good generation in Definition 2.1, but relative to a given element or
subgroup.

Definition 4.1 (Relative generating sets for reflection subgroups). Let W be a well gen-
erated complex reflection group of rank n and let W’ be a reflection subgroup of W of
rank k. We say that a set {t1,...,t,—r} of n — k reflections is a generating set for W
relative to W' (or relative generating set for short) if W = (W’ ¢q,...,t,_r). We denote
by RGS(W, W’) the set of all generating sets for W relative to W’.

Example 4.2. For any W, one has that RGS(W, {id}) is the set of good generating sets
for W, while RGS(W, W) = {&}.

Definition 4.3 (Relative generating sets for elements). Let W be a well generated complex
reflection group of rank n and let g be an element of W of reflection length £¢4(g) = k.
We say that a set {t1,...,t,_} of n—k reflections is a generating set for W relative to g
(or relative generating set for short) if there exists a reduced reflection factorization g =
tn—k+1- -ty such that {t1,...,¢,} is a generating set for W. We denote by RGS(W, g)
the set of all generating sets for W relative to g.

Example 4.4. For any W, one has that RGS(W,id) is equal to the set of good generating
sets for W. If g is a quasi-Coxeter element for W, then RGS(W, g) = {@}.

4.1. Compatibility with parabolic subgroups and parabolic quasi-Coxeter elements

Not every element or reflection subgroup of a reflection group has relative gener-
ating sets. Indeed, the next several results (culminating with Corollary 4.8 and Theo-
rem 4.9) show that relative generating sets exist precisely for parabolic subgroups and
for parabolic quasi-Coxeter elements.

Proposition 4.5. Let W be a well generated complex reflection group of rank n and Wx <
W a parabolic subgroup of rank k. Then there exist reflections {t1,...,tn_r} in W such
that <Wx,t1, . atn—k> =W.
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We give two proofs of this result. The first is computational.

First proof. In the real case, any parabolic subgroup is conjugate (by some element g)
to a standard parabolic, generated by a subset T' of the simple reflections S. Then the
conjugates (by g~!) of the simple reflections in S\ T are the required ¢;. In the complex
case, the result can be derived on a case-by-case basis using a similar argument, relying on
the tables of [19, App. A] for generators and on [14, Fact 1.7] for the relationship between
arbitrary and “standard” parabolic subgroups with respect to these generators. O

Since Proposition 4.5 is a very natural statement, we also briefly sketch a case-free'”
topological argument.

Second proof. In [10], Bessis constructed geometric generators for every complex reflec-
tion group W, as follows. The Shephard-Todd—Chevalley theorem [93,27] identifies the
space of orbits V/W with a complex affine space C™. When W is well generated, there
is a line Ly through the origin that is the image in V/W 22 C™ of the e2™*/"-cigenspace
of every Coxeter element. A generic affine line L, parallel to Ly, intersects the discrim-
inant hypersurface H of W at n points. Loops around these points define generators
of the generalized braid group B(W) := m(C™ — H) that, under a canonical surjection
B(W) — W, map to a set of reflections that generates W.

If we choose the line L to be close to the stratum X/W of the discriminant, the
intersection L N'H will consist of rank(Wy ) = k points near X/W and n — k more away
from it. This is because the multiplicity of X/W as a stratum of H is equal to rank(Wx)
[12, Lem. 5.4] and because the direction of L is always transversal to H [43, Prop. 37].
These n points define a generating set of reflections for W; moreover, the first k£ of them
generate Wx because there is a local embedding of braid groups B(Wx) < B(W). The
remaining n — k reflections are exactly what is asked for in the statement. O

The next two propositions provide complementary information to Proposition 4.5.
Their original proofs by Taylor [97] rely on case-by-case arguments, but Proposition 4.6
does have a case-free proof (easily deducible from [100, Thm. 4.3.9]) for Weyl groups.

Proposition 4.6 ([97, Thm. 4.2]). Fiz a well generated complex reflection group W of rank
n and a good generating set G := {t1,...,tn} for W. Then any k-subset {t;,,...,t;,} CG
is a good generating set for some parabolic subgroup W' < W of rank k.

Proposition 4.7 (/97, Thm. 4.1]). Assume that W is a complex reflection group and that
K and H are reflection subgroups of W such that K = (H,t) for some reflectiont € W.
If K is parabolic and its rank is greater than that of H, then H is also parabolic.

10 This argument is case-free in the context of duality groups, which are known (by a case-by-case argument
[82, Thm. 5.5]) to coincide with well generated groups.
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We are now ready for two corollaries that characterize the existence of relative gen-
erating sets.

Corollary 4.8. For a well generated complex reflection group W, a reflection subgroup
W' < W has relative generating sets if and only if it is parabolic.

Proof. If W’ < W is a parabolic subgroup, then a relative generating set is furnished by
Proposition 4.5.

Conversely, assume that rank(W) = n, rank(W’) = k, and that {t1,...,¢,_} is a
relative generating set for W’. Consider the chain of groups

W= (W' ty,...,t;) fori=0,...,n—k.

Recall that the rank of a reflection group G is the codimension of its fixed space V.
Since W1 is generated over W; by a single reflection, we have rank(W; 1) < rank(W;)+
1. Since further rank(Wy) = rank(W’) = k and rank(W,,_x) = rank(W) = n, the
equality rank(W;) = k + 14 is forced for all 7. Finally, since W = W,,_y, itself is parabolic,
Proposition 4.7 implies by induction that all W;, including Wy = W', must be parabolic
as well. O

Theorem 4.9 (First characterization of parabolic quasi-Cozeter elements). Let W be a
well generated complex reflection group and g € W. Then there exists a generating set
for W relative to g if and only if g is a parabolic quasi-Cozeter element.

Proof. Let’s first fix the notation, writing n for the rank of W and k for the reflection
length of g. For the forward direction, assume that {t1,...,t,} is a good generating
set for W such that the tuple (¢1,...,tx) is a reduced reflection factorization of g. By
Proposition 4.6, the set of reflections {¢1,...,tx} forms a good generating set for a
parabolic subgroup W’ < W of rank k. This means, by definition, that g is parabolic
quasi-Coxeter.

For the reverse direction, suppose g is parabolic quasi-Coxeter and choose a reduced
reflection factorization g = t; - - - tx. By Proposition 3.10, the reflections t1, ..., t; gener-
ate the parabolic closure W, of g, and by Proposition 3.3, we have rank(Wy) = k. Then
Proposition 4.5 guarantees the existence of a relative generating set for Wy, which is also
a relative generating set for g. O

Finally, we show that the two notions of relative generating sets can be used inter-
changeably.

Proposition 4.10. Let W be a well generated complex reflection group, g € W a parabolic
quasi-Cozeter element, and W, the parabolic closure of g. Then we have a concordance
of relative generating sets:
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RGS(W, g) = RGS(W, ).

Proof. This is immediate from the definition (Definition 3.2) of parabolic quasi-Coxeter
elements and Proposition 3.10. O

4.2. Structure of relative generating sets for the combinatorial family

Next, we give a combinatorial description for relative generating sets when the group
W belongs to the infinite family G(m,p,n). We begin with some necessary terminology.

Definition 4.11. Given a partition II of the set K, we say that a graph I" with vertex set
K is a tree relative to II if no edge of I' connects two vertices in the same block of IT and,
furthermore, contracting each block of II to a single point leaves a tree. We say that T is
a rooted tree relative to I if T" is the union of a tree with respect to Il and a single loop
(at any vertex of K). Finally, we say that T' is a unicycle relative to I if T' is the union
of a tree with respect to II and a single non-loop edge.

The following properties are straightforward; we omit the proofs.

Proposition 4.12. Suppose that 11 is a partition of a set K, and I is a graph with vertex
set K.

(i) If T is a tree relative to II, then taking the union of T' with a spanning tree on each
block of 11 gives a tree on K.

(ii) If T is a rooted tree relative to II, then contracting each component of II to a single
vertex leaves a rooted tree. Moreover, in this case, the union of I' with a spanning
tree on each block of 11 gives a rooted tree on K.

(@ii) If T is a unicycle relative to II, then contracting each component of Il to a single
vertez leaves either a unicycle (if no edge in T’ connects two vertices in the same
component of I1) or a rooted tree (otherwise). Moreover, in this case, the union of
T" with a spanning tree on each block of II gives a unicycle on K.

Definition 4.13. Suppose that W = G(m, 1,n) or G(m,m,n) and that g € W is parabolic
quasi-Coxeter. Let II, be the partition of {1,...,n} whose blocks are the support of the
generalized cycles of g (as described in Corollary 3.16). We say that II, is the partition
induced by g.

We are now prepared to describe the relative generating sets of parabolic quasi-Coxeter
elements in G(m,1,n) and G(m,m,n).

Proposition 4.14. Suppose that W is either G(m,1,n) or G(m,m,n) for m > 1 and
that g is a parabolic quasi-Coxeter element for W. Let I, be the partition of {1,...,n}
induced by g.
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(i) If either W = G(m,1,n) and g is a quasi-Cozeter element for the subgroup
G(m,1, M) X Gy, X+ --x By, or W = G(m,m,n) and g is a quasi-Coxeter element
for the subgroup G(m,m,\g) X &y, X --- X By, , then a set S of reflections is a
relative generating set for g if and only if the graph associated to S is a tree relative
to I1,.

(i) If W = G(m,1,n) and g is a quasi-Coxeter element for the subgroup Gy, x--- xSy, ,
then a set S of reflections is a relative generating set for g if and only if the graph
associated to S is a rooted tree relative to Il and the color of the unique diagonal
reflection in S generates Z/m.

(iii) If W = G(m, m,n) and g is a quasi-Coxeter element for the subgroup Gy, x --- X
G, then a set of reflections is a relative generating set for g if and only if the
graph associated to S is a unicycle relative to I, and a certain color c is a primitive
generator for Z/mZ, where c is defined as follows: if contracting the cycles of g
leaves a rooted tree, then c is the color of the loop edge, whereas if contracting the
cycles of g leaves a unicycle, then c is the value of the statistic § on the cycle in
the contracted graph.

Note that in case (iii), the color condition is not preserved under conjugacy; therefore,
if one wishes to consider relative generating sets for parabolic subgroups of G(m,m,n)
conjugate in G(m,1,n) to &y, x -+ x G, it is necessary to take the conjugation into
account when applying Proposition 4.14.

Proof. In all three cases, a simple calculation (using the facts rank(&;) = ¢ — 1 and
rank(G(m, 1,7)) = rank(G(m,m, j)) = j for m > 1) establishes that rank(W,) = n —
k, and therefore that each relative generating set must have exactly k reflections. We
consider the three parts in order.

In case (i), consider a set S of k reflections, and let I" be the associated graph. Con-
tracting the generalized cycles of g to a single point leaves a graph on k+ 1 vertices with
k edges. Tt is a standard result from graph theory (e.g., [16, Lem. 5.3]) that such a graph
is either a tree or is disconnected. If the graph is disconnected, then both the group
W, and the reflections in S respect the partition of {1,...,n} into components. But the
group W does not respect any nontrivial partition of {1,...,n}. Thus, it is necessary
that S be a tree relative to II,.

Conversely, suppose that S is a tree relative to Il,; we must show that it is a relative
generating set. By Proposition 2.11, Lemma 2.5, and the fact that the good generating
sets for the symmetric group correspond to trees, we have that any reduced factoriza-
tion of g corresponds to a forest whose components are the blocks of II,, together with
an additional edge in the first (A\g) component. Taking the union of such a graph with
a tree relative to II; produces a tree together with an additional edge. Moreover, the
unique graph cycle in this graph (which is a loop if W = G(m, 1,n) and a cycle with at
least two vertices if W = G(m, m,n)) belongs entirely to the reduced factorization. Be-
cause that component of the graph corresponds to a generating set for either G(m, 1, Ag)
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or G(m,m, ) (whichever is relevant), the graph cycle satisfies the color condition of
Lemma 2.5. Thus, the union meets the hypotheses of Lemma 2.5 and so generates the
full group W.

We omit the proof of (ii), which is similar to (but less technical than) case (iii).

In case (iii), consider a set S of k reflections, and let I" be the associated graph and T
be the result of contracting I' so that each of the cycles of g contracts to a single point.
As in case (i), in order for S to be a relative generating set, it is necessary that T' be
connected. Assume that S meets this condition. The contracted graph T has k vertices
and k edges, so it is either a rooted tree or a unicycle. Fix a reflection that corresponds
to an edge in the unique graph cycle in T (the loop, if T is a rooted tree), and remove
it. By definition, the remaining reflections in S correspond to a tree relative to the cycle
partition II, induced by g. Since in this case W = G(m, m,n), the removed reflection is
transposition-like, so does not correspond to a loop in I'. Therefore, by definition, I' is a
unicycle relative to 1I,.

We now consider which relative unicycles I'" with respect to II, are actually relative
generating sets. Since W, C &,,, we have by Proposition 2.11 that every reduced W-
factorization of g consists of a set T of true transpositions (i.e., reflections of the form
(ij) = [(¢4);0]) whose associated graph is a forest with components II,. Taking the
union of this forest associated with T" and a relative unicycle I' produces a unicycle. By
Lemma 2.5, the set S UT of corresponding reflections is a good generating set for W if
and only if §(SUT) is a primitive generator for Z/mZ.

Next, observe that the contraction of I' that produces I' (collapsing each cycle of g to
a single point) may be performed step-wise, starting with the larger graph associated to
S UT and successively contracting the edges that correspond to 7' (since these form a
spanning forest with the correct components). Moreover, it follows immediately from the
definition of § that if a set S’ of reflections corresponds to a unicycle, then contracting
a unicycle along an edge [(i7); 0] produces a new unicycle with the same §-value, unless
the unique graph cycle is a 2-cycle and containing the edge to be contracted. If the
second case never arises while contracting away the edges that correspond to T', then we
have that §(S UT) is a primitive generator for Z/mZ (and so S is a relative generating
set) if and only if the value of § on the contracted unicycle is a primitive generator, as
needed; if the second case does arise, then the cycle in the graph associated to S UT
contains only a single edge [(ij); ¢] from S, whose image under contraction is a loop, so
0(SUT) = ¢, and so S is a relative generating set if and only if the color ¢ of the loop
in the contraction is a primitive generator, as needed. This completes the proof. O

5. Characterization via full reflection factorizations

In this section we give two more characterizations of parabolic quasi-Coxeter elements
g. One of these (Theorem 5.7) is in terms of the absolute order <. The other (Theo-
rem 5.8) is given in terms of the full reflection length of g, whose definition we recall now.
As in the first part [40] of this series, we say that a reflection factorization ¢y -+t = g
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of an element g € W is full (relative to W) if the factors generate the full group, i.e., if
W = (t1,...,t). The full reflection length £'3'(g) of g is the minimum length of a full
reflection factorization:

E%{,H(g) = min{k‘ :3t1,...,t, € R such that ¢ty ---tp = g and (t1,...,t%) = W}

In Part I, we gave the following formula for the full reflection length of an arbitrary
element ¢ in the group G(m,p,n). Notice that the cycles here are the cycles of the
underlying permutation of g and should not be confused with the generalized cycles of

§3.4.

Proposition 5.1 ([0, Cor. 5.1]). Let W = G(m,p,n). For an element g € W with k

cycles, of colors aq,...,ax, let d = ged(ay, ..., ak,p). If m = p, we have
(g — n+k—-2 ifd=1
n+k, ifd+# 1,

while if m # p, we have

n+k—1, if ged(col(g),m)=p andd=1
() = n+k, if ged(col(g),m) #p andd =1
n+k+1, if ged(col(g),m)=p andd#1
n+k+2, if ged(col(g),m) #p and d # 1.

We also need the following formula for the full reflection length of the identity in any
complex reflection group.

Lemma 5.2. In any complex reflection group W, the full reflection length (1(id) of the
identity element is equal to twice the size of a minimum reflection generating set for W.

Proof. One inequality is straightforward: if {¢;,...,¢;} is a minimum reflection gener-
ating set for W then

id=tyt; !t to-ty ety -t (5.1)

is a reflection factorization of id that generates W. Therefore, it is left to show that there
is no shorter reflection factorization of id that generates W.

Both full reflection length and the size of a minimum reflection generating set are
obviously additive over direct products. Therefore, the claim is valid for all reflection
groups if and only if it is valid for irreducible groups, so it suffices to consider irreducible
W. We proceed in various cases.
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First, suppose that W is real. By Lemma 2.17, every reflection factorization of the
identity is Hurwitz-equivalent to a factorization of the form (5.1). Such a factorization is
full if and only if the set {t1,...,tx} is a generating set for W. Since the Hurwitz action
preserves the group generated by the factors, we conclude that in real reflection groups,
the full reflection length of the identity is at least twice the minimum size of a reflection
generating set.

Second, suppose that W = G(m, m,n) for m > 1. Taking g = id in Proposition 5.1,
we have k = n, a; = ... = a, = 0, and d = m # 1, and therefore £{i11(id) = 2n in this
case, as claimed.

Third, suppose that W = G(m, p, n) for some p < m. Taking g = id in Proposition 5.1,
we have k = n, a1 = ... = a, = 0, d = p, and ged(col(g),m) = m # p. Therefore, if
p =1, we have d = 1 and consequently €{}f,”(id) = 2n, as claimed. On the other hand, if
p > 1then d # 1 and so £Ai1(id) = 2n + 2, as claimed.

Finally, for the non-real exceptional groups, the claim has been verified by com-
puter calculations following the representation-theoretic approach described in [40,
Rem. 3.1]. O

Remark 5.3. For real reflection groups, the proof of Lemma 5.2 is case-free after Re-
mark 2.18.

We give now several statements that are of use at various points in the rest of the
paper; they are all corollaries of Lemma 5.2 and previous discussions.

Corollary 5.4. If W is a complex reflection group and r denotes the minimum size of a
reflection generating set for W, then for any element g € W, we have

Gt (9) + O (9) = 2r.

Proof. Counsider two reflection factorizations of g: one that is reduced ¢ - - -ty = g (with
k = £¢4(g)), and one that is full ¢} - - -] = g (with [ = £W'(g)). By combining them, we
get a full factorization

. -1 —1
1d=t3~~~t;-tk s t]

of the identity, having length | + k = £i4(g) + £131'(g). It follows from Lemma 5.2 that
l+k>2r. O

Corollary 5.5. In a well generated complex reflection group W of rank n with a given
good generating set {t1,...,t,}, the product of the generators t; in any order is a quasi-
Cozxeter element.

Proof. Let g be the product of the reflections ¢; in some order. This factorization is
clearly full, which implies that £¢4(g) < £(g) < n. Since W is well generated, we
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have by Corollary 5.4 that fl{,?,d(g) + E{,‘{,“(g) > 2n. Combining the inequalities gives
554 (g) = 681 (g) = n, and so the given factorization of g is reduced. Then it follows from
Definition 3.2 that g is quasi-Coxeter. 0O

Remark 5.6. In the infinite family, Corollary 5.5 could be alternatively checked by com-
paring the descriptions of the good generating sets in Lemma 2.5 with the description
of the quasi-Coxeter elements in Section 3.5, using the observation of Remark 2.6 in the
case of G(m,m,n).

One characterization of parabolic Cozxeter elements is that they are precisely those
which are below some Coxeter element in the absolute order <z (for instance, see [11,
Lem. 1.4.3] for the real case). The following statement generalizes this property to the
quasi-Cozeter setting, extending [4, Cor. 6.11] (which covers the case of real W).

Theorem 5.7 (Second characterization of parabolic quasi-Cozeter elements). Let W be
a well generated complex reflection group and let g € W. Then g is a parabolic quasi-
Coxeter element if and only if there exists a quasi-Cozeter element w € W such that
g SR w.

Proof. Let n = rank(W). First, choose a parabolic quasi-Coxeter element g and a re-
duced reflection factorization g = t1---#;, (with k = £¢4(g)). By Theorem 4.9, there
exists a relative generating set {txt1,...,t,} with respect to g, that is, one which satis-
fies (t1,...,t,) = W. By Corollary 5.5, the product w := t; - - - t,, must be a quasi-Coxeter
element; in particular, %‘f,d(w) = n. We have now by definition that ¢ < w, and the
forward direction is proven.

For the reverse direction, suppose that w € W is a quasi-Coxeter element for which
g <r w. By definition of <%, there is a reduced reflection factorization w = t;---t,
that starts with a reduced factorization of g, that is, such that g = ¢1---t; for k =
5%4(g). Since w is quasi-Coxeter, the set {t1,...,t,} is a good generating set for W
(Proposition 3.10), and then, by Proposition 4.6, the set {¢,...,t;} must be a good
generating set for some parabolic subgroup of W. By definition, this means that g is a
parabolic quasi-Coxeter element. O

We now extend Lemma 5.2 to give another characterization of parabolic quasi-Coxeter
elements in well generated groups W.

Theorem 5.8 (Third characterization of parabolic quasi-Cozeter elements). In a well

generated complex reflection group W of rank n, an element g € W is a parabolic quasi-
Cozeter element if and only if

G (9) = 2n — G (9)-
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Proof. Let us start with the forward implication and assume that g € W is a parabolic
quasi-Coxeter element. Consider a reduced reflection factorization t1---t = g (so
k = £54(g)). By Proposition 3.10, the t; generate the parabolic closure W, of g
and rank(V?) = k. By Proposition 4.5, there are reflections txi1,...,t, such that
(Wy,tk+1, ..., tn) = W. Therefore
g=1t1-tpthi ‘t;:il"'tn'tﬁl

is a full factorization of g in W, of length 2n — k, which in turn implies that ¢i4!(g) <
2n — £:¢4(g). By Corollary 5.4, actually £i(g) = 2n — ££¢4(g), as needed.

Conversely, suppose that W is a well generated complex reflection group and the
element g in W satisfies £2¢3(g) + £41(g) = 2n. Since rank, reflection length, and full
reflection length are all additive over direct products, using Corollary 5.4, we have that
equality holds for each irreducible component of . Since (by Corollary 3.5) the product
of parabolic quasi-Coxeter elements from the irreducible factors is a parabolic quasi-
Coxeter element for the direct product, it suffices to consider irreducible W. We proceed
in various cases.

First, suppose that W is real of rank n and let k = £:29(g). By hypothesis, /i3!!(g)
2n — k. Consider a minimum-length full reflection factorization t = (¢1,...,ton—k

~—

of g. By Lemma 2.17, t has in its Hurwitz orbit a factorization of the form t’
(Bt ety gt st g1+ - -5 1) such that (¢, _, . ;,...,t,) is a reduced reflection
factorization of g. Since t is full, t’ is also full, and therefore {¢},...,¢, .} is a relative
generating set for g. By Theorem 4.9, it follows that g is parabolic quasi-Coxeter.

Second, suppose that W = G(m,1,n) for some m > 1 and that g has k cycles,
of which j have nonzero color. By Theorem 2.9 (i), we have £1%d(g) = n — k + j. By
Proposition 5.1, we have é@{,“(g) >n+ k — 1, and consequently j < 1. If 5 = 0 then all
cycles of g have color 0, and therefore by Proposition 3.16 (i) g is parabolic quasi-Coxeter
for a conjugate of a subgroup of type &y, x -+ x &), for some partition A of n. On
the other hand, if j = 1 then #W(g) = n + k — 1. Therefore, by Proposition 5.1, we
have that ged(col(g),m) = 1, and so the color of g is primitive modulo m. Since g has
only one cycle of nonzero color, the color of that cycle generates Z/mZ and we have by
Proposition 3.16 (ii) that g is parabolic quasi-Coxeter for a conjugate of a subgroup of
type G(m, 1, 1) X Gy, x -+ x &, for some partition A of n.

Third, suppose that W = G(m,m,n) for some m > 1 and that g has k cycles. By
Theorem 2.9, we have ££9(g) = n + k — 2v,,(g), where v,,,(g) is the largest number of
parts into which one can partition the cycles of g so that all parts have color 0. By
Proposition 5.1, we have £iill(g) > n + k — 2. Consequently, v, (g) = k — 1. If v, (9) = k
then the associated partition is the trivial partition, with every cycle in its own part,
and so all cycles are of color 0. Therefore, by Proposition 3.16 (iii), ¢ is parabolic quasi-
Coxeter a subgroup of type Gy, x --- x &), for some partition A of n. On the other
hand, if v,,,(g) = k — 1, then the partition must have one part of size 2 (with two cycles
of nonzero colors that sum to 0) and k — 2 parts containing a single cycle (necessarily of
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color 0). Moreover, in this case we have /f¥!!(g) = n+k—2, so d = 1, and consequently the
nontrivial cycle colors must be primitive modulo m. Therefore, by Proposition 3.16 (iv),
g is parabolic quasi-Coxeter a subgroup of type G(m,m, A1) X &y, X -+ x &), _, for
some partition A of n.

Finally, suppose that W is of non-real exceptional type. In these cases, the statement
has been confirmed by computer calculations, as follows. On one hand, the property
of being parabolic quasi-Coxeter can be verified most easily by the characterization of
Theorem 4.9: for each conjugacy class representative g, we pair every (n—£<d(g))-element
subset of R with the reflections in a fixed reduced factorization of g, and check whether
the whole collection ever generates W. On the other hand, the full reflection length can
be computed by representation-theoretic techniques, as in [40, Rem. 3.1]. O

Remark 5.9. For real reflection groups, the proof of Theorem 5.8 is case-free after Re-
mark 2.18.

The previous theorem is the final component of our main structural theorem an-
nounced in the introduction. Its proof is a direct combination of Theorems 4.9, 5.7,
and 5.8.

Theorem 5.10 (Characterization of parabolic quasi-Coxeter elements). For a well gener-
ated group W of rank n and an element g € W, the following are equivalent.

(i) The element g is a parabolic quasi-Cozeter element of W.

(it) The collection RGS(W, g) of relative generating sets with respect to g is nonempty.
(iii) There exists a quasi-Coxeter element w € W such that g <r w.
(iv) The full reflection length of g satisfies (34 (g) = 2n — £554(g).
6. Reduced reflection factorizations of parabolic quasi-Coxeter elements

In this section, we study the number F{E{id(g) of reduced reflection factorizations of
a quasi-Coxeter element g in a well generated complex reflection group W. It is well
known [33,73,65] that, in the case of a long cycle ¢ in the symmetric group &,,, the
number of reduced reflection factorizations has a simple product formula: Fgﬁ?(c) =
n"~2. As we see below, it is also the case for every quasi-Coxeter element c in every well
generated group W that the number F{E{id(c) factors as a product of small primes (of
similar order of magnitude as the Coxeter number). Our discussion proceeds in several
stages: first, in §6.1, we review the case of Coxeter elements, including the connection
with the discriminant hypersurface of W and the Lyashko—Looijenga morphism. Second,
in §6.2, we consider the case of a general quasi-Coxeter element ¢ in a real reflection
group W. We see in Table 4 that in all cases, F; ;{}d (g) is a product of small primes. While
we do not have a complete understanding this numerological phenomenon, we present a
conjectural geometric explanation (see Conjecture 6.4) that generalizes the situation of
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?ﬂ:erﬁlmbers F‘f‘?d(g) for quasi-Coxeter elements g of real reflection groups W.
g Fig(9) g Fid(g) g Fiyd(9) g i (g)
A, (n+1)""' | Er(az) 2-3*.5° Eg(a7) 2'3.35.5.7 | H4(2) 34 .52
B, n" Er(ay) 2*-3%.5.7 Eg(ag) 27-3%.5%2.7 | H4(3) 26.33
I5(m) m Es 2.3%.57 Fy 24 . 33 Hy(4) 23.3.5°%
Es 29 .34 Eg(a;) 2'8.3° Fy(a) 2%-3% Hy(5) 2.32.53
Eg(ay) 3% Eg(az) 2'°.57 Hjs 2.52 H,(6) 34 .52
Eg(az) 2°-3°.5 Es(asz) 2'2.3%.5.7 | Hs(1) 2.33 Hy(7) 26 .52
E; 2. 312 Eg(as) 2-3¥.5.7 H3(2) 2. 5% H4(8) 23.3%.5
Es(ay) 2-77 Es(as) 3°-57.7 H, 2.3%.52 H4(9) 2.33%.52
E7(a2) 2°-3%.5 Es(ag) 2%-3%2.5%.7 | Hy(1) 26 .52 H4(10) 2%.3.5%
F4(Dp(a,b)) =2-(n—1)- (, 2 ,)-a® b witha+b=mn

Coxeter elements discussed in §6.1. In §6.3, we give explicit formulas for F§§d(g) when
g is a quasi-Coxeter element and W belongs to the infinite family of complex reflection
groups (Corollary 6.11), and discuss the case of the exceptional groups (Remark 6.12).
Finally, in §6.4, we show that Fﬁ{}d(g) is a product of small primes whenever g is a
parabolic quasi-Coxeter element, by reducing to the case of quasi-Coxeter elements.
Apart from being of substantial interest on its own, the study of the numbers F{{}d(g)
of reduced reflection factorizations of parabolic quasi-Coxeter elements g will also play
an important role for our main result in [41], which gives a formula for the numbers
F&‘}“(g) of minimum-length full reflection factorizations of g. The connection is two-
fold: first, for a quasi-Coxeter element g € W, we have that Fiill(g) = Figd(g) (see
Proposition 6.1 below; in the case of the symmetric group, this is a direct computation
using the Hurwitz formula (1.1) that Ho((n)) = n"~2). Second, we will show in [41] that
the numbers Figd(g) are always (i.e., for any parabolic quasi-Coxeter element g € W)
factors in the formula for F{!!(g) (see also §1.3). We end this introductory discussion

with the proof that Ff#ll(g) = Figd(g) for quasi-Coxeter elements g.

Proposition 6.1. For a quasi-Cozeter element g of a well generated group W, the number
of full reflection factorizations of g equals the number of reduced reflection factorizations

of g.

Proof. Let g be a quasi-Coxeter element of W. By Definition 3.2, g has a reduced re-
flection factorization that is also full. Then Proposition 3.10 implies that all reduced
factorizations of g must be full for the parabolic closure W, which is equal to W by
Proposition 3.3. O

6.1. Reflection discriminants and reduced factorizations of Coxeter elements

We deal briefly in this section with the case of a Coxeter element ¢ in an irreducible
well generated group W. For such elements, the numbers Figd(c) have a well known
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product structure: if A is the Coxeter number of W and n is its rank, we have that

h" - nl
Fis(c) = #V;‘ . (6.1)

This formula has many proofs [26,31,80,23], each indicating connections to different areas
and each explaining the product structure in a different way. In the next few paragraphs,
we review a geometric approach, which we extend in the next section (§6.2) to the case
of quasi-Coxeter elements. For any terminology that is not explained, or for proofs of
statements that are only claimed here, consult the common references [66,75,19].

Recall first that, as in the proof of Proposition 4.5, for a complex reflection group
W < GL(V) acting on some space V = C™, the Shephard-Todd—Chevalley theorem
identifies the quotient space V/W with the complex affine space C™ whose coordinates
are given by the fundamental invariants f := (f;)i=1..n of W. The f; are homogeneous
polynomials and we order them according to their degrees d; := deg f;, so that d; < d;41.
The discriminant hypersurface H of W is defined as the quotient variety H := Ay /W C
V/W = C™ of the reflection arrangement Ayy .

The highest-degree invariant f, plays a special role in this setting. The hypersurface
H is the zero set of a polynomial A(W; f) in C[fy, ..., f»] that is monic and of degree n
in f,,. In fact, there is always a suitable choice of fundamental invariants such that the
discriminant polynomial can be written as

AW f) = fi+ao(F) - f172 4 +an(f), (6.2)

where the a; are weighted-homogeneous polynomials in f1,..., f,_1 of weighted degrees
wt(a;) = h-i (where the weight of f; is d;). Moreover, the braid monodromy of the poly-
nomial A(W; f) in the f,-direction encodes reduced factorizations of Coxeter elements,
as we explain next.

The braid monodromy of an algebraic function such as A(W; f) (viewed as a poly-
nomial in f,, with coefficients a;) is a refinement of its usual monodromy group: it keeps
track of how the function values move around each other when we vary the coefficients
a;, as opposed to just recording their final permutation (see [1]). The braid monodromy
of an algebraic function is encoded via its coefficient map (as in [60], [32, §2]), which in
the case of the discriminant polynomial A(W; f) is known also as the Lyashko—Looijenga
morphism LL (see [73,12]):

C" 5 (froees o) ©5 (a2(frs oy fam)s oy an(fr oo fuo1)) €CPTL 0 (6.3)

The LL map is weighted-homogeneous and its degree (the size of the generic fiber) may
be calculated by a version of Bezout’s theorem (for instance [77, Thm. 5.1.5]) in terms of
the weights of the coordinates in its image (wt(a;) = h-4) and its domain (wt(f;) = d;):

[T, wt(a:) hr=t.nl h™.nl

deg(LL) = H?;ll Wt(fz) = d1 s dn—l #W ’

(6.4)
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where the last equality is due to the facts that d,, = h for well generated W and #W =
dy---d,.

A natural geometric construction [12, §7], which goes back to Looijenga’s paper [73,
§3] but is also part of the general theory of braid monodromies [28, §3], associates a
reduced factorization of the Coxeter element to each point in a generic fiber of the
LL map. Bessis was able to rely on certain properties of the LL map (essentially, that
it is a finite morphism) and on the transitivity of the Hurwitz action on Redw (c) to
prove the following lemma. His proof is conceptual and case-free (assuming the Hurwitz
transitivity) and, in combination with Equation (6.4), it gives an a priori justification
of the numerological properties of the numbers Fi34(c) (that they are products of small
primes) discussed at the beginning of §6.

Lemma 6.2. For a well-generated complex reflection group W and a Cozxeter element
c € W, there is for some k a k-to-1 correspondence between elements in a generic fiber
of the LL map and the set Redw (¢) of reduced reflection factorizations of c. In particular,
we have

deg(LL) = k - Fig4(c)
for some positive integer k.

Remark 6.3. Comparing the formulas in (6.1) and (6.4), it is evident that &k = 1 in the
Lemma 6.2. Many of the constructions in Bessis’ work [12] rely on the numerological
coincidence of the formulas (6.1) and (6.4); in particular, the proof of the dual braid
presentation of the generalized braid group B(W) (see the exposition in [23] for more).
For those applications, the statement of Lemma 6.2 is not sufficient; one really needs to
know that £ = 1. A conceptual proof of this, relying on the geometry of the LL map, is
highly desirable but currently seems out of reach. A very promising approach is in the
work of Hertling and Roucairol, who do the case of the simply laced Weyl groups (see
the proof of [62, Thm. 7.1]).

6.2. Frobenius manifolds and reduced factorizations of quasi-Cozeter elements

That the counts F‘Sﬁd(g) are always products of small prime numbers when ¢ is a
quasi-Coxeter element (not just a Coxeter element) was first observed by Kluitmann and
Voigt in the case of the simply laced Weyl groups [67]. It was rediscovered by Christian
Stump, who further confirmed it in the broader set of real reflection groups W (personal
communication) and asked for an explanation or even just a uniformly stated formula
for the numbers Figd(g).

We give in Table 4 the numbers F‘Bﬁd (g) for every quasi-Coxeter element g and irre-
ducible real reflection group W. The conjugacy classes of quasi-Coxeter elements in Weyl
groups are indexed according to Carter’s notation [22], apart from D,, where we write
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D, (a,b) for Carter’s D, (ay—1) to have a compatible notation with the classification of
Corollary 3.16 and with Corollary 6.11 (iii). The conjugacy classes of quasi-Coxeter ele-
ments of the groups H3 and Hy are indexed according to increasing Coxeter length (the
smallest length of a factorization of a representative g of the class as a product of simple
reflections). The groups &,,41 = 4,, and B,, only have a single quasi-Coxeter class, while
in the dihedral group Iy(m) all @ of the quasi-Coxeter classes have the same number
Flr:?m)(g) = m of reduced reflection factorizations (recall that ¢ denotes Euler’s totient

function).

6.2.1. A conjecture in terms of geometric invariants of Frobenius manifolds

We do not have a complete explanation for the numerological phenomenon illustrated
in Table 4, but we present here a conjectural interpretation, generalizing the geometric
approach for Coxeter elements in Section 6.1. This interpretation relies on the theory of
Frobenius manifolds, pioneered by Dubrovin [50], for which we give below a (very) brief
introduction.

Dubrovin’s original goal was to give a coordinate-free formulation of the Witten—
Dijkgraaf—Verlinde—Verlinde (WDVV) equations from 2D topological field theory (see
[47]). He showed that solutions of the WDVV equations, which he called prepotentials or
free energies [48, Lec. 1], are encoded by the structure coefficients of smoothly varying
Frobenius algebra structures on the tangent planes T,M of a manifold M. Dubrovin
called manifolds with such structures Frobenius manifolds.

In his study [51, Lect. 4] of massive Frobenius manifolds, Dubrovin encoded the local
algebra structure in a Stokes matrix, or equivalently a tuple of Euclidean reflections
t := (t1,--- ,t,), while he described its analytic continuation via the Hurwitz action
(as in §2.6) of the braid group B, on t (see also the detailed presentation in [42, §1.4]
for the rank-3 case). Under this interpretation, algebraic prepotentials correspond to
tuples t with finite Hurwitz orbits, and Dubrovin asked for the construction of the
corresponding Frobenius manifolds. By work of Michel [79], ¢ has a finite Hurwitz orbit
if and only if it generates a finite reflection group, so that the problem of algebraic
Frobenius manifolds in some sense lives entirely in the world of finite Coxeter groups
and their quasi-Coxeter elements. Indeed, a reduced tuple t always determines a quasi-
Coxeter element g := [, t; of the group W’ := (t), so that we can index the possible
corresponding Frobenius manifold by the conjugacy class of g and denote it F.

In the case of a Cozeter element ¢ in a real reflection group W < GL(V'), Dubrovin
constructed the manifold F, by adding a Frobenius algebra structure on the quotient
variety V/W itself [49]. This algebra structure was defined via a special choice of funda-
mental invariants, known as Saito flat coordinates, that provide a Euclidean metric for
the orbit space V/W. Dubrovin conjectured [51] and Hertling later proved [61, §5.4] that,
in fact, these are the only examples of Frobenius manifolds with associated polynomial
prepotentials.

On the other hand, we saw in §6.1 that for a Coxeter element ¢ € W, one can relate
the number Fi2d(c) with the degree of the weighted-homogeneous Lyashko-Looijenga
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map; in fact, they are equal. Many of the relevant geometric objects of this approach
also exist in the world of Frobenius manifolds. In particular, there is an analogue of the
LL map [61, §3.5], which relates two natural coordinate systems of Fg. It sends the flat
coordinates, on which the prepotential is given, to (the elementary symmetric polynomi-
als of) the canonical coordinates, which are the eigenvalues in the algebra structure of the
multiplication by the Euler field. The LL map is also weighted-homogeneous and one can
easily calculate its degree, as in (6.4), from the prepotential associated to F,. The degree
calculations in already constructed algebraic Frobenius manifolds (see Example 6.5) and
Dubrovin’s analysis of their local structures suggest the following conjecture.

Conjecture 6.4. Let g be a quasi-Coxeter element in an irreducible real reflection group
W. Assuming the Frobenius manifold F, exists, then the degree of the map LL(Fg) equals
Fi(g)-

Because of the weighted-homogeneity of the LL map, Conjecture 6.4 may be seen
as a justification of the nice numerological properties of the numbers F{f{id(g) in Ta-
ble 4. Indeed, assuming the conjecture, Bezout’s theorem (as in (6.4)) would imply that
deg (LL(Fy)) is a product of small primes (those involved in the weights and algebraicity
degree of the prepotential).

Example 6.5 (The algebraic prepotential associated to g = Hz(1)). We illustrate here the
calculations described in the previous discussion for a special case in H3. Dubrovin and
Mazocco [42] constructed Frobenius manifolds associated to all quasi-Coxeter elements
of Hz and Kato-Mano—Sekiguchi [68, §7] gave the corresponding prepotentials. In terms
of the flat coordinates t1, to,t3, the prepotential for the element g = H3(1) (denoted in
these references by (Hs)") is

4063 1 19 73 11 16
F(ty,t,t —t7 3ty + t113) + ——t32% — —t32t + —t —2" (6.5
(2, ta) = gyt + 5 (B +085) + 157 a2 gt — gt (69)
where z is given in terms of the ¢; via the algebraic equation
22—t 4ty =0. (6.6)

It is easy to see that the algebraic function F'(t1,ts,t3) is weighted-homogeneous with
weights

1 2
Wt(tl) = =, Wt(tg) = -, Wt(tg,) =1.
3 3
From this data, we calculate the degree of the corresponding LL map as in (6.4):

3! 6
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where the “extra” factor of 2 is the algebraicity degree (i.e., the number of branches) of
(6.6). This agrees with the value F}fsd (g9) in Table 4 and thus confirms Conjecture 6.4
for the case Hs(1).

6.2.2. The case of reqular quasi-Coxeter elements in Weyl groups

An obstacle to using the geometry of Frobenius manifolds to study the combinatorics
of the sets Redy (g) for quasi-Coxeter elements g is that in most cases the corresponding
manifolds F, have not been constructed yet. In fact their very existence is generally
conjectural (this is implicit in Dubrovin’s work, see for example the remark above
Example 5.5 in [51, pp. 402-404]). However, for the subclass of regular (as in §2.3)
quasi-Coxeter elements, the manifolds F, are known to exist and enough data about
their structure is available so that we can give an almost explicit formula for the counts
Fred(g) (in Proposition 6.6 and Remark 6.7 below).

The most important work towards constructing algebraic Frobenius manifolds has
been carried out by Dinar [35-38]. He also seems to have been the first to explicitly state
Dubrovin’s refined conjecture, namely, that there exists a Frobenius manifold for every
conjugacy class of quasi-Coxeter elements and that this family constitutes the totality
of Frobenius manifolds with algebraic prepotentials.

Dinar focused on Weyl groups, where quasi-Coxeter classes correspond in some sense
to certain nilpotent orbits in the Lie algebra. In [36], he gave a construction of polynomial
Frobenius manifolds associated to the Coxeter class (corresponding to the regular nilpo-
tent orbit) that was different from Dubrovin’s but that produced equivalent structures.
In [38], he constructed Frobenius manifold structures on Slodowy-type slices associated
to regular quasi-Coxeter classes. Dinar’s work not only produced new algebraic Frobe-
nius manifolds (even a single new example is considered valuable in the area), but his
approach is a conceptual one and his proofs are case-free.

For the case of regular quasi-Coxeter elements g in a Weyl group W, Dinar gave an
explicit description of the weights of the flat coordinates of F,. The exponents {e;(g)}}—,
of an element g are the integers in the interval [0, lg| — 1] such that the eigenvalues of g
(counted with multiplicity) are {e7¢i(9)/19l }?:1. Dinar showed'! [38, Thm. 1.1] that the
weights of F, are given by the numbers (e;(g) +1)/|g| (see also the prior work of Pavlyk
[84]). Then, analogously to (6.4), the weighted-homogeneity of the LL map would give
its degree as

n

deg (LL(]:!J)) = 1:[ €]|(gg|ﬁ dg = n|g|n— - dyg, (6.7)

1 When comparing [38, Table 1] with Table 4, the reader should be aware that Dinar uses the Bala—Carter
notation for nilpotent orbits in the Lie algebra, not the Carter notation for the corresponding classes in the
Weyl group; see also Remark 3.1.
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Table 5
The numbers §, for regular quasi-Coxeter elements g of Weyl groups W,
using Carter’s notation as in Table 4.

g €W | Dan(n,n) Fi(a1) FEe(a1) Ee(a2) E7(a1) Er(aq)
5 n 3 2 5 2 2. 32

g e w Eg(al) ES(CLQ) Eg(ag) Eg(a5) Eg(ag) Eg(ag)
3y 2 3 23 7 22.5 3.5

where d, is the algebraicity degree of the Frobenius prepotential (i.e., the number of
branches it has as an algebraic function on the flat coordinates).

Dinar’s work is not sufficient to prove Conjecture 6.4, even for regular elements,
because it does not allow for a direct computation of the numbers d,. However, when
taken with the next result (a natural generalization of the Arnold-Bessis—-Chapoton
formula (6.1)), it should be viewed as significant evidence in favor of the conjecture.

Proposition 6.6. For a reqular quasi-Coxeter element g in an irreducible Weyl group W,
we have

re |g|nn[
B ) = [ e 7 (68)

where the numbers e;(g) are the exponents of g and §, is a small integer. When g is a
Cozeter element, 64 is equal to 1, while the rest of the cases are given in Table 5.

Proof. In the case that g is a Coxeter element, since #W = H?Zl(ej(g) + 1) [63,
Thm. 3.19], we have [g|" -n!/TTj_, (e;(9) +1) = h"™ - n!/#W and the result is immediate
by (6.1).

In types A,, By, and Ga, all quasi-Coxeter elements are Coxeter elements, so there
is nothing more to check. It is easy (e.g., by using the classification in Corollary 3.16
and explicitly computing the eigenspaces) to check that in type Da,11, the only regular
quasi-Coxeter elements are the Coxeter elements, and that in type Ds,, there is a second
class of regular quasi-Coxeter elements; in terms of the notation in Table 4, these are
the elements in conjugacy class Dy, (n,n). Treating Ds, as a subgroup of Ba,, these
elements are Coxeter elements for the subgroup B,, x B,, and so they have order |g| = 2n
and exponents {1,1,3,3,...,2n — 1,2n — 1}. Therefore, using Table 4, we can calculate
the number J, for these elements as

2-(2n—1)- (> 2) n" - n”

_ n—1 .
g = =n.

(2n)%" - (2n)!/(2-4---2n)?

Finally, for the remaining types Fy, Eg, E7, and FEg, it is a straightforward computer

calculation to test regularity, compute exponents, and compare the results with the data
in Table 4. O
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Remark 6.7 (Interpretation of the numbers d4). In all the cases that the prepotentials
of the Frobenius manifolds F, have been explicitly given (D4(2,2) in [37, §6]; Fu(a1) in
[35, Ex. 5.4]; Eg(ay) in [46]; and Eg(a1), E7(a1) in [89, §7]), Conjecture 6.4 is confirmed
(i.e., 0y = dgy). This includes the case of Coxeter elements ¢, when the prepotential is
polynomial and hence d. = 1. Applied in the opposite direction, this enumerative data
can be exploited to guess solutions to the WDVV equations; see §8.5 for more.

Remark 6.8. Proposition 6.6 does not extend verbatim to non-Weyl groups. For example,
in Hs, all quasi-Coxeter elements g € Hj are regular, but the numbers F;ff(g) are not

all integer multiples of the expression

lg|" - n!

[Tizi(es(g) +1)

See Remark 6.13 and §8.5 for more about this.

(6.9)

Remark 6.9. In this Section 6.2 we have only discussed real reflection groups, although,
as we will see in Section 6.3, the property that the numbers Fi54(g) are products of small
primes remains true in the complex setting as well. The theory of Frobenius manifolds
does have extensions in the setting of well generated groups. We mention especially the
work [69], where the authors describe an extension of the WDVV equations and con-
struct solutions for it, one associated to each well generated complex reflection group.
The solutions are certain potential vector fields with polynomial entries (but they do not
always integrate to a prepotential, as is the case in real types). Moreover, the analytic
behavior of these differential-geometric structures is encoded by tuples of unitary reflec-
tions [69, Rem. 2.1], generalizing the case of Euclidean reflections in Frobenius manifolds.
The potential vector fields constructed in [69] seem to be related to Coxeter elements,
but there are also algebraic solutions of these extended WDVV equations, and the cor-
responding tuples of reflections determine quasi-Cozeter elements; see for example [15,
§8] for the group Ga7. We hope that the development of these theories will allow in the
future a uniform geometric interpretation for the structure and enumeration of reduced
factorizations of quasi-Coxeter elements in every well generated group, along the lines of
Conjecture 6.4.

6.3. The non-real types

In this section we discuss the case of non-real reflection groups, and in particular give
formulas for the number of reduced reflection factorizations of quasi-Coxeter elements in
the infinite families G(1,1,n), G(m,1,n) and G(m,m,n). Our main tool for the latter
is a special case of a result in the first part of this series [40] that gives a formula for
the number of minimum-length full factorizations of an arbitrary element in G(m,p,n).
In this special case, the answer is a multiple of the number of full factorizations of the
underlying permutation, which are counted by the classical Hurwitz formula (1.1).
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Theorem 6.10 ([0, Thm. 5.2 for d = 1]). Fiz an element g € G(m,p,n) with k cycles of
colors ay, . ..,ar such that ged(ay, ..., ak,p) = 1, and let a = ged(col(g), m)/p. If m = p,
we have

Fil L (g) = m*t Ho(),

m,m,n

while if m # p, we have

n(n+k—1)-mF1. Hy(N), ifa=1
Ffull (g) _

mpn Rt Rtk Omt pla) ooy e o

2 pa

where X is the cycle type of the underlying permutation of g and ¢ is Euler’s totient
function.

The cases in the next result use the characterization of quasi-Coxeter elements in the

infinite families (see §3.5).
Corollary 6.11. Let g be a quasi-Cozeter element in the complex reflection group W.
(i) For W =&, = G(1,1,n), we have that

Fig(g) = F''(g) = n" 2.

(ii) For W = G(m,1,n) with m > 1, we have that

F(g) = Fyy'(g) = ™

(iii) For W = G(m,m,n) with m > 1, if g consists of two cycles of lengths a and b with
colors that generate Z/mZ, then we have that

re u n_2 a
Fito) = Fio) = min =)+ (, "7 ) e

Proof. By Proposition 6.1, for a quasi-Coxeter element g, Figd(g) = F{i(g). We now
compute the latter for each of the cases.

We start with the case (i) for W = G(1,1,n) = &,,. The element g is a long cycle and
the statement is precisely Dénes’ result [33] F{%, (9) = Ho(n) = n""2.

For W = G(m,1,n), the underlying permutation of g is an n-cycle and its color
generates Z/mZ. By Theorem 6.10 (case a = ged(col(g),m)/1 = 1) we have that
Ful (9) = n? - Ho(\), where A = (n). The result then follows by Dénes’ result
Hy(n) =n""2

3
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For W = G(m,m,n), the colors ¢,—c of the cycles of g generate Z/mZ (i.e.,
ged(c, —¢,m) = 1). Therefore, by Theorem 6.10 (case p = m) we have that F/UL  (g) =

m - Ho(A) where A = (a,b). The result follows by applying the formula in (1.1) for this
A O

Remark 6.12 (Ezceptional complez reflection groups). Using SageMath [87] and CHEVIE
[54], we have computed the numbers Fﬁf}d (g) for every quasi-Coxeter element g in ev-
ery non-real well generated exceptional complex reflection group, using Proposition 3.10
to identify the quasi-Coxeter elements and applying the representation-theoretic tech-
niques described in [40, §3]. The resulting output is attached to the arXiv version of
this submission as an auxiliary file. The numbers Fid(g) all factor as products of small
primes. For example, in the group Gs4 (the largest of the exceptional non-real complex
reflection groups), there are 16 conjugacy classes of quasi-Coxeter elements. Of these
classes, two consist of Coxeter elements, with multiplicative order h = 42 and 2-3 - 7°
reduced reflection factorizations; two consist of the squares c? of Coxeter elements ¢, with
3-5-7° factorizations; one consists of the cubes ¢ of Coxeter elements, with 22 -5 - 7°
factorizations; the remaining classes consist of non-regular elements, of orders

30, with 22 - 3 - 5% factorizations (two classes);

o 24, with 216 . 3 factorizations (two classes);

o 18, with 22 - 3% . 5 factorizations (two classes);

o 18, with 2- 3% - 5 factorizations (one class);

o 12, with 213 .32 . 5 factorizations (two classes);

o 12, with 210.3%. 5 factorizations (one class); and
o 6, with 2° - 3% - 5 factorizations (one class).

Remark 6.13 (Regular quasi-Coxeter elements in complex types). As we mentioned in
Remark 6.8, the formula of Proposition 6.6 does not directly extend to non-Weyl groups.
However, there is a variation of it that does extend.

Let W be a well generated complex reflection group of rank n, let g € W be a regular
quasi-Coxeter element of order |g|. Then, if we denote by (e;)I_; the ezponents of W (in
the terminology of Proposition 6.6, these are the exponents of the inverse ¢~! of some
Coxeter element ¢ € W; equivalently [75, Def. 10.24 and Thm. 11.56(iii)], they are given
by e; = d; — 1 where the d;’s are the fundamental degrees [75, Ch. 3, §5] of W), we
always have that

lg|™ - n!

red =
Fred(g) . ((ei mod |g]) +1)

-y, (6.10)

where J, is a small integer. (For the exceptional non-Weyl groups, the numbers ¢, are
listed in an auxiliary file attached to the arXiv version of this paper.) The proof of
this formula is completely analogous to the proof of Proposition 6.6, but the underlying
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geometric theory (as in Remark 6.9) is not sufficiently built-up to support a geometric
interpretation for them (see §8.5 for more).

On the other hand, it is easy to see that (6.10) is a direct generalization of Proposi-
tion 6.6. Indeed for any regular quasi-Coxeter element g in a Weyl group W, the multiset
of exponents {e;(g)}7_, agrees precisely with the multiset {e; mod |g|}}'_; (this is essen-
tially [75, Thm. 11.56(iii)]).

6.4. Reduction to the parabolic quasi-Coxeter case

The enumerative results in the preceding subsections concern quasi-Coxeter elements.
The following result extends this to the enumeration of reduced reflection factorizations
of all parabolic quasi-Coxeter elements. In particular, it implies that for any parabolic
quasi-Coxeter element g € W, the number F§§d (g) is always a product of small prime
numbers.

Corollary 6.14. Let W be a well generated complex reflection group, g € W a parabolic
quasi- Coxeter element, and g = g1 -+ gs the generalized cycle decomposition of g in the
sense of Proposition 3.13. Then the number F‘Sﬁd(g) of reduced reflection factorizations
of g is given by

red Ered() red
Fiy'(a) = (éa%d(gn e )HF (.11

=1

Proof. By Proposition 2.11, all reduced reflection factorizations of g in W consist of
reflections that belong to Wy. Let W, decompose into irreducibles as W, = Wy x - -- W,
where for ¢ = 1,...,s we have (possibly after a reordering) that g; is quasi-Coxeter for
W; by Proposition 3.13. Since reflections in different W; commute, all such factorizations
are shuffles of (necessarily reduced) reflection factorizations of the g; in the components
W;. By Proposition 2.11, the number of reduced W;-factorizations of g; is F;{}d (gi)- Since,

by Corollary 2.12, the length of the reduced W;-factorization of g; is £3¢4(g;), the number
& (9)

of ways to shuffle the factorizations of the g; is (ered (91)e 759 (g3
w sty s

), and the result follows
immediately. O

Remark 6.15. Since 35%(g;) = 5(g;) and Fjgd(g:) = Fygt(g:) for all 4, one could
rewrite (6.11) using the “local” lengths and factorization counts (i.e., with respect to
the parabolic subgroup W;) rather than their “global” counterparts in W.

Remark 6.16. In the case that c is a parabolic Cozeter element in a well generated group
W, with Wx the parabolic subgroup of W in which c is a Coxeter element and Wx =
Wi x -+ x W the decomposition of W into irreducibles, we have by Proposition 6.14
and (6.1) that
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S

Sy | n!
Fred — n . i g — . Qi
W) <n1n> 11 T 1L

=1

where n and n; are respectively the ranks of W and W; and where h; is the Coxeter
number of W;.

7. Counting relative generating sets

In the previous section, we showed that the number Figd(g) of reduced reflection fac-
torizations of a parabolic quasi-Coxeter element g in a well generated complex reflection
group W are well behaved (they are always products of small primes) and are often given
by nice formulas (as in Proposition 6.6 and Corollaries 6.11, 6.14). In this section, we
show that there are also nice formulas for the numbers of (relative) generating sets in
the combinatorial subfamily of well generated complex reflection groups. In particular,
we see in §7.2 that the relative generating sets preserve the tree-like enumeration from
the case of the symmetric group (§7.1). Leaving the combinatorial family, in §7.3 we
see that the number of (relative) generating sets does not seem to have nice uniform
formulas, except for a special case in Weyl groups via the W-Laplacian of [24]. Lastly,
in §7.4, we relate the relative generating sets in the symmetric group and certain cacti
used by Duchi-Poulalhon—Schaeffer [45] to compute Hurwitz numbers bijectively.

7.1. Counting relative generating sets in the symmetric group
In the case of the symmetric group, the relative generating sets have a tree-like struc-

ture. Thus, it is unsurprising that their enumeration will be aided by the following
weighted version of Cayley’s theorem.

Theorem 7.1 (Weighted Cayley theorem [16, Thm. 5.13]). We have

k
degp (¢ k—1
E sz gT():x0x1~~~xk(a¢0+m1+~o+xk) .
T a tree on vertexr =0
set {0,1,...,k}

Proposition 7.2. Let g in W = G(1,1,n) = &,, have cycle type A = (A1,..., ). Then

k
#RGS(W,g) =n"2 - T M- (7.1)

i=1

Proof. By Proposition 4.14 (i), the elements in the relative generating set of g correspond
to a tree relative to the partition II, of {1,...,n} into the k cycles of g. In such a tree,
there are A; - A; choices of an edge joining cycle i to cycle j for 4, j in {1,..., k}, and thus
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k Thm. k
#RGS(G(1,1,n),9)= > Jr*" ( 8, ) M+ [
i=1

T a tree i=1
on {1,...,

7.2. Counting relative generating sets in the combinatorial family

In the combinatorial family, the relative generating sets retain the tree-like structure
apparent in the case of symmetric groups. The cases in the following theorem correspond
to those of Proposition 4.14.

Theorem 7.3. Suppose that W is either G(m,1,n) or G(m,m,n) for m > 1 and that g
s a parabolic quasi-Cozeter element for W.

(i) If either W = G(m,1,n) and g is a quasi-Cozxeter element for the subgroup
G(m, 1, M) XSy, X+ x &y, or W = G(m,m,n) and g is a quasi-Coxeter element
for the subgroup G(m,m,X\g) X &y, X --- x &y, then

k
#RGS(W, g) =m* -n*~ 1 TT N (7.2)
=0

(i) If W = G(m,1,n) and g is a quasi-Coxeter element for the subgroup Gy, x--- xSy, ,
then

k
#RGS(W, g) = @(m) -mF=1 . nk-1. H i, (7.3)
i=1

where ¢ denotes Euler’s totient function.
(iii) If W = G(m,m,n) and g is a quasi-Cozeter element for the subgroup &y, X «-- X
G, , then

k k
£RGS(W, g) = % : (nk k1N (- 2)! -nk_jej()\)) JIx (14
=92 =1

J

where e;(\) denotes the ith elementary symmetric function in the variables A =

ey M)

Proof. In case (i), we have by Proposition 4.14 (i) that the elements in the relative
generating set correspond to a tree relative to the partition II, of {1,...,n} into the
k+1 generalized cycles of g. In such a tree, there are m - A; - A; choices of an edge joining
cycle i to cycle j (for 4,7 in {0,1,...,k}), and thus
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k
#ROS(W,g) =m* 3 J[AF

T a tree on i=0

Lo,
By the weighted Cayley theorem (Theorem 7.1), this simplifies to

k k
#RGS(G(m, 1,n),9) =mF - (Ao +...+ X)) J[ i =mF -1 T N

i=0 =0

as claimed.

In case (ii), we have by Proposition 4.14 (ii) that the elements in the relative generating
set correspond to a rooted tree relative to the partition II; of {1,...,n} into the k
(generalized) cycles of g. There are ¢(m) - n choices for the diagonal reflection, as its
nontrivial eigenvalue may be any of ¢(m) primitive roots of unity and may be located in
any of n diagonal positions. The remaining elements form a tree relative to Il,, so may
be chosen in m*~1.nk=2. Hle A; ways (as in case (i)). Multiplying these independent
choices together gives the result.

Finally, in case (iii), we have by Proposition 4.14 (iii) that the elements in the relative
generating set correspond to a unicycle relative to the partition II; of {1,...,n} into
the k (generalized) cycles of g. Therefore, by Proposition 4.12 (iii), given any relative
generating set of reflections for g, taking the associated graph I' and contracting the
cycles of g to single points leaves either a rooted tree or a unicycle.

Suppose first that the contraction is a rooted tree; we compute the number of relative
generating sets that map to this particular graph, as follows: if (after contraction) the
loop is on the ith cycle, its endpoints (before contraction) may be chosen in (z) ways, and
its color may be chosen in ¢(m) ways (to make ¢ a primitive generator). The remaining
k—1 edges form a tree relative to the cycle partition IIy, so (as in cases (i) and (ii)) may
be chosen in mF=1.nk=2. Hle A; ways. Thus the total contribution to # RGS(W, g) in
this case is

k

k k k
i 1 1 ke
o(m) - mF~Tnk=2 H)\i , § <;> — ?p(m) k1 k—2 (—n + E /\12> H/\i~
=1 1 i=1 i=1

i=

Now suppose instead that the contraction of I' is a unicycle. In this case, the length j
of the contracted graph cycle is at least 2. Let the vertices in the cycle be indexed by
S = {s1,...,8;} € ([’;]). Performing a second contraction on this set leaves a tree on
k — j + 1 vertices, with weights {\;: i ¢ S} U{As; + ...+ As;}. We now consider how
many relative generating sets contract to such trees. By the weighted Cayley theorem
(Theorem 7.1), the number of ways to choose the reflections corresponding to the edges
of the tree is

mFT g A [ e AT =P nE T O ) [
i¢s igs
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where the factor m*F=7 corresponds to the choice of colors. Independently, the number
of ways to choose the reflections that correspond to the graph cycle is

p(m) -m/~1(j —1)!
2

(s, ...)\Sj)27

where the first factor accounts for the number of different ways of inserting a cycle
(including colors) while reversing the second contraction, and the second factor account
for the number of ways to reverse the first contraction (since the contracted vertices have
weights Ag,,...,As; and a graph cycle is 2-regular). Combining all the different values
of j (including the j = 1 loop case), we conclude that

#RGS(W, g)
e(m)
mk—1 k k
- H)\Z ( k1+23—1l pk—i-1 Z()\sHF + Xs;) sy )\S])
i=1 j=1 Se([k])
mk—1F k
k-1
. HAZ ( +;]71' I im0 1)(/\)) (7.5)
where m,,(\) is the monomial symmetric polynomial in the variables A = (A,..., Ag).

We may rewrite this symmetric polynomial when y = (2,1771) in terms of the elementary
symmetric polynomials as m 15-1) = €j,1 — (j + 1)e;41. Since e1(\) = n, (7.5) becomes

#RGS(W, g)
p(m)
b1k k k .
i 10 ( WS - Db e () = S - 1)t g+1)’”—lej+1(x)).
i=1 j=1 j=1

The first term of the first sum on the right side is n*~te; (\) = n*. Separating this term
and combining the remaining terms with the second sum gives

k—1 _F k
N T )
i=1 j=2

as claimed. O
Remark 7.4. The right side of case (iii) of Theorem 7.3 is related to the formula for

genus-1 Hurwitz numbers in the symmetric group (see [57,98]). This will play a role in
[41].
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Remark 7.5. It will be important in the sequel [41] that the factor ¢(m) in cases (ii)
and (iii) of Theorem 7.3 corresponds to an equidistribution: in case (ii), each primitive
mth root of unity occurs equally often as an eigenvalue for the diagonal reflection in
the elements of RGS(W, g), while in case (iii), each primitive mth root of unity occurs
equally often as the value of §(F U S) where F is the set of factors in a fixed reflection
factorization of g and S varies over RGS(W, g).

7.8. Counting good generating sets via the W -Laplacian

Outside the combinatorial family, the collections RGS(W') and RGS(W, g) of (relative)
generating sets do not seem to have good numerological properties. There is however a
closed formula, at least when W is a Weyl group and g = id. If W is an irreducible Weyl
group of rank n and h is its Coxeter number, it was shown in [24, proof of Thm. 8.11]
that

K= )" #RGS(W') - I(W'),

WKW

where the sum is over all rank-n reflection subgroups W’ of W. Mobius inversion in the
poset of reflection subgroups (ordered by reverse inclusion), as in [94, §3.7], gives

#ROSOV) = s S uWw) [T v, (76)
W' <W

=1

where again the sum is over all rank-n reflection subgroups of W, and where {h;(W')}
denotes the multiset of Coxeter numbers of W’. This is defined as the multiset where each
irreducible component W; of W’ contributes rank(W;)-many times its Coxeter number
h(W;) (as in Remark 6.16); in particular, for an irreducible W we have {h;(W)} =
{hyh,...,h}.

——

n times

Example 7.6. The case of Ej is a particularly nice example where the calculation above
can be rendered by hand (see also [24, Ex. 8.13]). In [44], the authors have compiled
tables with the reflection subgroups of finite Coxeter groups. In particular, for Fg, the
poset of mazimum rank reflection subgroups contains a minimal element (FEjg itself) and
only atoms: 36 groups of type A; x A5 and 40 groups of type As X As X As. The multisets
of Coxeter numbers of the groups Eg, A1 As, and A3 are respectively {12°}, {2,6°}, and
{35} (where exponents denote multiplicities). Then Equation (7.6) for the cardinality of
the family RGS(Eg) evaluates to

#RGS(Eg) = = - (1-12°—1-36-(2-6°) —1-40- (3°)) = 798984.

Wl



T. Douvropoulos et al. / Journal of Algebra 641 (2024) 648-715 705

Table 6
Number of good generating sets of reflections
for the exceptional Weyl groups.

W | #RGS(W)

G, | 6=2-3

Fy, | 2160 =2%.3%.5

Egs | 798984 = 23 .3%.137

E; | 196800768 = 28 . 32 .229 - 373

Es | 273643237440 = 2°.3% . 5. 31671671

The results of performing the same calculation for the other exceptional Weyl groups
are given in Table 6.

7.4. Comparison with the cacti of Duchi—Poulalhon—Schaeffer

The relative trees appearing in the proof of Proposition 7.2 are similar to certain ob-
jects called Cayley cacti that were introduced by Duchi—Poulalhon—Schaeffer [45, §3]. The
latter were part of a construction to bijectively compute Hurwitz numbers in the sym-
metric group (a special case of a more general construction for double Hurwitz numbers).
This is arguably the only bijective proof of the formula for genus-0 Hurwitz numbers,
although there are other combinatorial proofs [96,56,20].

Cayley cacti are defined as follows. Given positive integers k < n and a weak com-
position m

= (my,...,my) of k with > ,i-m; = n, a Cayley cactus of type m
is a tree consisting of m; oriented i-polygons connected by k£ — 1 labeled edges. Let
DPS(my,...,my) be the number of Cayley cacti of type m. The authors in [45] gave

the following formula for this number:

1
DPS(ml,...,mn):E<m K . ) -nhT2, (7.7)
1yeeey n

Comparing this formula with the formula (7.1) for the number RT(\) of relative trees,
we see that

<m1 k mn) BT = b T[N DPS (s, 1), (7.8)

where A = (1™1,2™2 ... n/™n). This relation can be explained as follows. From the proof
of Proposition 4.14 (i), underlying each relative tree there is a tree T with labeled vertices
{1,...,k}, and so (as in the proof of Theorem 7.3 (i)) we have

k
RT()\) = > T xie=®. (7.9)

T a tree on vertex i=1
set {1,....k
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5-to-1

Fig. 1. The relative tree representing the relative generating set {(1,11),(2,6),(2,4),(2,12)} of ¢ =
(158)(2)(3129)(4710)(611) and its underlying vertex-labeled tree (left) and the edge-labeled cactus
appearing in the work Duchi-Poulhalhon—Schaeffer and its underlying edge-labeled tree (right). The un-
derlying labeled trees are in correspondence by selecting a vertex in the edge-labeled tree (illustrated with
a larger vertex) to be labeled 1 and pushing away the label i of an edge to a vertex label ¢ + 1.

Similarly, underlying each Cayley cactus there is a tree 77 with labeled edges {1,...,k—
1}; see Fig. 1. Thus

k

DPS(ma,....ma) =Y > Jr=O (7.10)

II 7" atree with _ =1
edges {1,....k—1}

where IT is a multiset in (,, (k] m, ) encoding the distribution of oriented i-polygons, and
deg(i)—1

the power A, is due the polygons in the cacti being oriented. Next, there is a
standard k-to-1 map from trees with edges labeled {1,...,k — 1} to trees with vertices
labeled {1,...,k}: choose a vertex of the tree to be labeled 1 and push the label i of an
edge to a vertex label i + 1 away from the chosen vertex; see Fig. 1. Using this k-to-1

map on (7.9) gives

R RLCE SRS [ st

II T a tree on vertex i=1
set {1,...,

k

=Ky > xfes®,
II 1

T’ a tree with =
edges {1,...,k—1}
Lastly, by (7.10), this is just k- [[, A\; - DPS(mu,...,m,), verifying (7.7).

8. Further remarks

We end with a number of remarks and open questions.



T. Douvropoulos et al. / Journal of Algebra 641 (2024) 648-715 707

8.1. FElements that do not belong to proper reflection subgroups

As discussed in §3.1, the quasi-Coxeter elements in a real reflection group W are
precisely the elements that do not belong to any proper reflection subgroup of W. In
the complex case, this is not a characterization; for example, the element [id; (1,1,1)] €
W = (G(3,3,3) does not belong to any proper reflection subgroup of W but is not quasi-
Coxeter (e.g., because it has reflection length 4, while W has rank 3). It is not even clear
whether all quasi-Coxeter elements have this property: it seems possible in principle that
a quasi-Coxeter element g € W could belong to a reflection subgroup W’ < W for which
24 (g) > ££24(g) (so that its reduced W-factorizations all generate W, but some longer
factorization generates only the subgroup W’). This raises several questions.

Question 8.1. Is there an alternate characterization of the elements in a complex reflection
group that do not belong to any proper reflection subgroup? What about those for which
24(g) = codim(V9)?

Question 8.2. Is it true for every well generated complex reflection group W that every
quasi-Coxeter element in W does not belong to any proper reflection subgroup of W7

Question 8.3. Is it true for every well generated complex reflection group W that among
the elements g € W that satisfy £3s3(g) = codim(V9), the property of not belonging to
any proper reflection subgroup W’ < W is equivalent to being a quasi-Coxeter element?

Remark 8.4. In the exceptional groups, Questions 8.2 and 8.3 should be approachable
by an exhaustive computer search using SageMath [87] and CHEVIE [54].

8.2. Heredity of reflection factorizations to parabolic subgroups

Proposition 2.11 (2) establishes a sort of heredity property for reflection factoriza-
tions and parabolic subgroups, under the hypothesis ££¢4(g) = codim(V¥). Remarks 2.13
and 2.14 show that the condition that the subgroup is parabolic is essential. We do not
know if the other hypothesis can be relaxed.

Question 8.5. Is it true for every parabolic subgroup Wx of a complex reflection group
W and every g € Wy that Redy (g) = Redw (g), even if ££¢4(g) > codim(V9)?

In the other direction, Proposition 3.3 has as a hypothesis that a reduced factorization
of g is a good generating set for a parabolic subgroup Wx; attempting to weaken the
hypothesis leads to the next question.

Question 8.6. Does there exist an element g in a complex reflection group W such that
the factors of a reduced reflection factorization of g generate a parabolic subgroup Wx
different from W,? (Necessarily ¢:¢4(g) > codim(V¥) in this case.)
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8.3. Properties that do not extend from the real to the complex setting

In §§8.1-8.2 we have asked about various properties that hold in real reflection groups
but fail in general in the complex setting, whether they are still true in the collection of
elements that satisfy ££59(g) = codim(W?9). However, not everything extends even if we
restrict to this subfamily, as the examples in this section illustrate.

Proposition 3.8 (from [58, Cor. 3.11]) shows that for any element in a real reflec-
tion group, the number of Hurwitz orbits on the reduced factorizations of g equals the
number of minimal reflection subgroups containing g. This is not true for complex re-
flection groups: a counter-example is furnished by the element g := [id; (1,1,1)] € W :=
G(3,1,3). This is a central element with reflection length £¢4(g) = codim(W?9) = 3
and with a single Hurwitz orbit for its reduced reflection factorizations ([id;(1,0,0)] -
[id; (0,1,0)] - [id; (0,0, 1)] and the permutations of these three factors). The group gen-
erated by such a factorization is the normal subgroup G := C3 x C3 x C3 <W and G
is a minimal reflection subgroup containing g. As we saw in §8.1, the group G(3,3,3) is
also a minimal reflection subgroup containing g but it does not correspond to any new
Hurwitz orbit.

As another example, Carter [22, Lem. 2] showed that for elements ¢ in finite real

reflection groups W, the two intervals [1, ¢] and [1, g]<, coincide (an easy conse-

<codim
quence of the fact that £:¢4(g) = codim(V9) for all elements g in real reflection groups).
These intervals also coincide for Coxeter elements in well generated complex reflection
groups [72, Cor. 6.6], but for g = [id; (1,2, 3,4,5,6)] in G(7,7,6) — which does indeed

satisfy codim(V9) = £i4(g) = 6 — we have [1, gl<,. ... 7 [1,9]<r [72, §8.6].

Question 8.7. Is there a natural way to extend either Proposition 3.8 or Carter’s result
to complex reflection groups, notwithstanding the examples above?

8.4. Root and coroot lattices for complex reflection groups

One of the most important properties of good generating sets for Weyl groups W is
their relation to bases of the root and coroot lattices of W, as given in Proposition 2.2
(from [21, Cor. 1.2]). In particular, we rely on this statement for our characterization of
parabolic quasi-Coxeter elements g € W in Theorem 3.4. Recently Broué—Corran—Michel
[8] defined (co)root systems and (co)root lattices (in fact, also a connection index) for
complex reflection groups. In the case of a well generated group G, they gave a complete
generalization of Proposition 2.2: they proved [8, Prop. 3.44 + Thm. 6.6] that G always
has a special (distinguished, principal) root system R for which any set of rank(G)-many
reflections of G will generate the full group G if and only if their corresponding roots
and coroots form bases of the root and coroot lattices associated to SR. Moreover, as
we discussed in §§3-5, a big part of the arguments needed in the complete proof of
Theorem 5.10 can be made uniform in the subfamily of Weyl groups, largely relying on
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the characterization of parabolic quasi-Coxeter elements given in Theorem 3.4. We may
ask then:

Question 8.8. Is there a way to apply the constructions in [8] to give a more conceptual
explanation for the equivalences in Theorem 5.107

8.5. Algebraic solutions for the WDV'V equations

In Remark 6.13, we gave a variation of Proposition 6.6 that holds for regular elements
in non-Weyl groups. It is then reasonable to ask whether there is an interpretation of
the numbers ¢, appearing in (6.10) analogous to the one in Remark 6.7. We pursue this
question here in some detail for the group W = Hy.

In the case of Weyl groups, Dinar’s constructions of Frobenius manifolds described in
§6.2.2 make use of the geometry of the associated Lie algebra in a highly non-trivial way;
there is a priori no reason to expect that for the non-Weyl groups Hs, Hy, the exponents
of a regular element g might be related to the weights of the corresponding Frobenius
manifold F, (assuming that F, exists!). Nevertheless, for all quasi-Coxeter classes in Hs,
the Frobenius manifolds F,; have been constructed and there is a connection between
their weights and the exponents of g; we describe this relationship next.

In a complex reflection group W, any number that is the order of a regular element
g € W is called a regular number for W. For a regular number +, there always exists
a regular element gy € W that has v — 1 as an exponent, and by [75, Thm. 11.56(iii)],
all the exponents of this element are given by e;(go) = (d; — 1) mod 7. Moreover, any
regular element g of order v must be W-conjugate to gi* for some power m relatively
prime to 7 (compare with [85, Thm. 1.3(ii)]); there may be many options for m but
we always choose the smallest positive one. It is easy to see from [69, §6.1] that for all
regular quasi-Coxeter elements g € Hs, the weights of the corresponding manifolds F
are precisely the numbers

(ei(g) +m) mod |g]|
|9

: (8.1)

where the e;(g) are the exponents of g. If we assume that this procedure also produces
the weights associated to Frobenius manifolds F, for regular elements g € Hy, then,
after comparing Conjecture 6.4 with Table 4, we can compute the algebraicity degrees
dg of the corresponding prepotentials of Fg; this data is displayed in Table 7.

Any algebraic Frobenius manifold associated to a quasi-Coxeter element of Hy would
be 4-dimensional, and the data in Table 7 is often sufficient to allow for a computer-
assisted construction of the corresponding prepotential. Sekiguchi [88,89] was successful
in doing this for the cases Hy(2), Hy(3), Hy(7), H4(9). We then ask:

Question 8.9. Is there a conceptual construction of algebraic Frobenius manifolds asso-
ciated to the regular quasi-Coxeter elements of H, that explains the data of Table 77
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Table 7

Conjectural weights and algebraicity degrees d, for Frobenius manifolds
Fg4 associated with regular quasi-Coxeter elements g € Hy. Weights are
given over the common denominator |g|.

g weights g weights dg
o ( 12 20 30) Ha(9) (14 20 24 3o> ”
4 30°30° 30 30 4 30730730 30
Ha(1) ( 10 12 20) Ha() 6 10 16 20>
4 20720 20 20 4 20°20° 20’ 20
H2) (2 12 15 s | mas) 4 9 10 15
4 15°15° 15’ 15 4 15°15° 15" 15
Ha(3) 2 6 Ha(8) 2266 15
4 12'12°12° 12 4 6666
Ha(4) 2 2 10 10 Ho(10) 6 6 10 10 s
4 10°10°10° 10 4 10°10°10° 10

The complex case is more problematic. Boalche’s icosahedral solution 37 (see [69,
§6.3]) corresponds to a regular element in Ga7 but its weights are incompatible with the
formula (8.1).

8.6. Dual braid presentations and quasi-Cozeter elements

As mentioned in the second proof of Proposition 4.5, the generalized braid group
B(W) of a well generated complex reflection group W is defined to be the fundamental
group 71 (V™8 /W) of the space of free orbits of W, or equivalently of the complement
V/W — H of the discriminant hypersurface H of W. One of the most important con-
tributions of Bessis’ work in [11] and [12] was a new presentation for B(W). This dual
braid presentation is given as follows, in terms of the set Redy (¢) of reduced reflection
factorizations of a Coxeter element ¢ € W. For each reflection t;, € W, i =1,....N
consider a formal generator ¢;. Then, after [11, Thm. 2.2.5] and [12, Rem. 8.9] we have
that

BW) = (t1,...,tx| s, - t;, =ty -

n

hnn!/#W-many words

where each word t;, ---t; that appears in the relations corresponds to a reduced reflec-
tion factorization t;, - --t;, = c in Redw (c).

Starting with any element g € W, one may consider groups presented analogously to
(8.2) but with the relations coming instead from the set Redy (g) of reduced reflection
factorizations of g. Such constructions were called generated groups by Michel (see [11,
Thm. 0.5.2]) and interval groups by McCammond (see [78, Def. 2.4]). In the case that g is
a quasi-Coxeter element, Baumeister et al. made an extensive study of the corresponding
interval groups and they asked [5, §4: Ques. (f)] for a geometric interpretation for them.
The main ingredient in Bessis’ proof was that the LL map encoded both the set Redy ()
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and the braid monodromy of H (see the exposition in [23, §6]). These objects exist also
for the Frobenius manifolds F; and they remain related in the same way, see §6.2. In
particular, the discriminant hypersurface Dz, is defined as the subset of points in F,
where the Frobenius algebra on their tangent planes is not semi-simple, see [61, Def. 3.18].
It is therefore natural to ask:

Question 8.10. Let W be a real reflection group and g a quasi-Coxeter element in W,
and assume that the corresponding Frobenius manifold F, exists. Is it true that the
interval group associated to the set of reflection factorizations Redw (g) is isomorphic to
the fundamental group 71(C" — Dx,) of the complement of the discriminant of F,?
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