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ABSTRACT
Vector autoregression model is ubiquitous in classical time series data analysis. With the rapid advance
of social network sites, time series data over latent graph is becoming increasingly popular. In this article,
we develop a novel Bayesian grouped network autoregression model, which can simultaneously estimate
group information (number of groups and group configurations) and group-wise parameters. Specifically,
a graphically assisted Chinese restaurant process is incorporated under the framework of the network
autoregression model to improve the statistical inference performance. An efficient Markov chain Monte
Carlo sampling algorithm is used to sample from the posterior distribution. Extensive studies are conducted
to evaluate the finite sample performance of our proposed methodology. Additionally, we analyze two real
datasets as illustrations of the effectiveness of our approach.
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1. Introduction

The network data is becoming increasingly popular, which has
many important applications in various disciplines, including
sociology (Simmel 1950; Wasserman and Faust 1994; Hanne-
man and Riddle 2005), genomics (Wu, Feng, and Stein 2010;
Horvath 2011), psychology (Borgatti et al. 2009; Cramer et al.
2010; Borsboom and Cramer 2013), finance and economics
(Zou et al. 2017; Leung et al. 2017; Zhu et al. 2019). In the
field of sociology, the network data is always used to study
the structure of relationships by linking social units and mod-
eling interdependencies in behaviors related to configurations
of social relations (O’Malley and Marsden 2008). In biological
and genetic areas, the presence of an interaction between two
genes or proteins indicates a biologically functional relationship
(Von Mering et al. 2002), which makes the network data widely
used in cancer and other disease data analysis with promising
results (Chuang et al. 2007; Guda, Chittur, and Guda 2009). A
continuous response observed on each node at equally spaced
time points is very common in various applications such as
biological studies, economics, and finance. As a result, building
a network based model to recover the dynamics of the responses
is necessary.

We consider a network with N nodes, which are indexed as
i = 1, . . . , N. To represent the network relationship among the
network nodes, we employ an adjacency matrix A = (aij) ∈
RN×N , where aij = 1 indicates the ith node follows the jth node,
otherwise aij = 0. Following the convention we let aii = 0 for
1 ≤ i ≤ N. Denote Yit as the continuous response collected
from the node i during 1 ≤ t ≤ T. Correspondingly, we collect
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a number of nodal covariates (e.g., user’s age, gender, etc.), which
is denoted by Vi ∈ Rp. To model the dynamics of the response
Yit , Zhu et al. (2017) proposed a network vector autoregression
(NAR) model, which can be expressed as follows,

Yit = β0 + β1n−1
i

∑

j
aijYj(t−1) + β2Yi(t−1) + V⊤

i γ + εit ,

(1.1)

where ni = ∑
j aij is the out-degree of node i, (β0, β1, β2, γ ⊤)

are the parameters to be estimated, and εit is the random noise
term. The NAR model embeds the observed adjacency matrix A
into the modeling framework, and similar modeling techniques
are applied in a broad range of fields, including spatial data
modeling (Lee and Yu 2009; Shi and Lee 2017), social studies
(Sojourner 2013; Liu, Patacchini, and Rainone 2017; Zhu and
Pan 2020), financial risk management (Härdle, Wang, and Yu
2016; Zou et al. 2017), and many others.

Despite the usefulness of the NAR model, it still lacks flex-
ibility in its model formulation and suffers from model mis-
specification. Specifically, it specifies a homogeneous network
autoregression coefficient (i.e., β1) for all network nodes, which
is highly restrictive in practice. To enhance the model’s flexi-
bility, a popular way is to consider a group structure of model
coefficients in panel data modeling (Ke, Fan, and Wu 2015; Su,
Shi, and Phillips 2016; Ando and Bai 2016; Guðmundsson and
Brownlees 2021). Specifically, to control the potential hetero-
geneity, the group panel data models consider group-wise slope
coefficients in regression. The latent group structure can be esti-
mated by the data information. For example, Su, Shi, and Phillips
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(2016) propose a Classifier Lasso (C-Lasso) penalized proce-
dure to shrink individual coefficients to the unknown group-
specific coefficients, which simultaneously identifies groups and
estimates parameters of panel data models. Bonhomme and
Manresa (2015) and Bester and Hansen (2016) considered the
group panel models with time-varying coefficients and inter-
active fixed effects, respectively. Liu et al. (2020) proposed a
unified group parameter estimation framework under the con-
dition that the number of groups is possibly over-specified. For
the empirical studies, Gao, Xia, and Zhu (2020) studied the
determinants of health care expenditure in OECD countries,
where significant coefficients difference of five social economic
variables are observed. Guðmundsson and Brownlees (2021)
discovered the spillover group structure of the institutions in
the financial system of the United States. See Gao, Xia, and
Zhu (2020) and Li, Cui, and Lu (2020) for other group panel
data extensions. With respect to the network data, Zhu and Pan
(2020) considered a grouped network autoregression (GNAR)
model, which introduces group heterogeneity to the NAR model
(1.1). To be more specific, the nodes are clustered into several
groups, and the nodes within the same group share a set of
common parameters. As a consequence, the group labels of
the nodes are totally determined by the nodal coefficients. In
this model, both the group memberships and group-specific
regression coefficients are to be estimated. Despite the useful-
ness of this type of approach, it does not incorporate the graphi-
cal information for estimating the group structure. To further
motivate our study, we consider a real data example of stock
return analysis, where the data details are given in Appendix
E.2.1. We take the stock return as our response and construct a
common shareholder network among the stocks. After applying
the estimation procedure of the GNAR model, we obtain six
groups. The within-group network density is given by din =
0.0980, which is larger than the between-group density dbtw =
0.0932. The calculation details are presented in Appendix E.2.2.
This suggests the graphical information can be employed to
model group structure among the nodes.

This is closely related to another line of research, which
explores the group structure of the network data using the
graphical information (i.e., A) of the network nodes. In this
regard, the group is typically referred to as community and
the group labels are estimated by the community detection
methods (Rohe, Chatterjee, and Yu 2011; Zhao, Levina, and
Zhu 2012; Lei and Rinaldo 2015; Hu et al. 2020; Ma, Su, and
Zhang 2021). A popular model for describing the community
structure is the stochastic block model (SBM). In a SBM, the
nodes within the same community are assumed to connect with
higher probabilities, while nodes from different communities
are less likely to connect. In Bayesian analysis, a similar popular
choice to take advantage of the graphical information is to
use nonparametric Bayesian methods for clustering nodes
(Sewell and Chen 2017; van der Pas and van der Vaart 2018;
Geng, Bhattacharya, and Pati 2019; Geng and Hu 2022). From
the modeling aspects, both approaches assume that nodes
should share denser connections within the same community.
Particularly, we note that Geng and Hu (2022) directly embeds
the adjacency matrix A in the prior information, which is
more closely related to our modeling objective. However,
although the community detection related methods have shown

great usefulness in practical network data analysis, the related
methods totally ignore the dynamics of {Yit}.

To model the group heterogeneity pattern of {Yit} for net-
work nodes, one needs to face the following three unsolved
challenges. First, as we discussed before, the GNAR model
does not incorporate the graphical information of the network
nodes, while the community detection methods fail to consider
the dynamics of {Yit}. Consequently, the first challenge is to
incorporate the graphical information into the estimation pro-
cedure of the GNAR model. It is noteworthy that the graphical
information (i.e., a connectivity pattern among different nodes)
will partially determine the group configurations. Particularly,
we use a nonparametric Bayesian mixture model framework
(Geng and Hu 2022) for exploiting the graphical information,
under which nearby nodes are allowed to be grouped together
with higher probability. Second, proposing a simultaneous infer-
ence procedure on both group configurations and group-wised
parameters is another important challenge for the GNAR model.
The uncertainty of parameter estimation is often neglected in
existing literature, and it is difficult to get the probabilistic
interpretations from existing frequentist approaches. Lastly, it
is an important problem in grouping methods to determine the
number of groups. Most existing methods (Bester and Hansen
2016; Zhu and Pan 2020; Liu et al. 2020) require specification
of the number of groups first and then estimate group config-
urations. The number of groups is determined by information
criteria (Ando and Bai 2016; Liu et al. 2020; Guðmundsson
and Brownlees 2021) or some ad hoc procedures. As a conse-
quence, the estimation may be sensitive to the tuning parameter
specification. These procedures ignore the uncertainty of the
estimation of the group number in the first stage and lack
uncertainty quantification of them, which is also an important
issue for GNAR model.

Our methodology development is directly motivated by
solving the aforementioned challenges to fill the gap between
nonparametric Bayesian methods and network autoregression
model. In this article, we propose a novel graphical assistant
grouped network autoregression (GAGNAR) model, consid-
ering both the heterogeneous network effects across nodes
and the graph information in the grouping procedure under
a novel nonparametric Bayesian mixture model framework.
Specifically, a graphically assistant Chinese Restaurant Process
(gaCRP) borrowed from Geng and Hu (2022) is introduced to
the GNAR model framework, which incorporates the graphical
information and uses the sampling procedure from the Chinese
Restaurant Process (CRP) (Pitman 1995). The proposed prior
will provide simultaneous inference on the number of groups
and group configurations. Moreover, the gaCRP has a Pólya urn
scheme similar to the traditional CRP. Due to this merit, we
can develop a Gibbs sampler that enables efficient full Bayesian
inference on the number of groups, mixture probabilities as
well as group-specific parameters. We demonstrate its excellent
numerical performance through simulations and analysis of two
real datasets, compared with several benchmark methods.

Our proposed method is unique in the following aspects.
First, the proposed method provides a useful model-based solu-
tion for the GNAR model that is able to leverage graphical
information. In addition, a unified procedure is provided to
simultaneously estimate the model parameters and determine
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the group number. We show that the procedure is not sen-
sitive to tuning parameter specification. Second, by adopting
a full Bayesian framework, the grouping results yield useful
probabilistic interpretation. Particularly, in the Bayesian estima-
tion framework, our proposed method is able to quantify the
uncertainty of the group estimation (including model parameter
and group number estimation) with the posterior probabilities.
Third, the developed posterior sampling scheme also renders
efficient computation and convenient inference since our pro-
posed collapsed Gibbs sampling algorithm by marginalizing
over the number of groups could avoid complicated reversible
jump Markov chain Monte Carlo (MCMC) algorithm (Green
1995) or allocation samplers.

The rest of this article is organized as follows. In Section 2, we
briefly review the NAR and GNAR models, followed by a review
of Bayesian mixture model and Dirichlet process. In addition,
we describe the graphical assistant prior model and introduce
our proposed GAGNAR model and its theoretical properties.
The Bayesian inferences including the MCMC sampling algo-
rithm, the post-MCMC estimation and the model selection
criterion for tuning parameter are presented in Section 3. In Sec-
tion 4, we study the finite sample performance of our proposed
method via extensive simulation studies. A real data analysis
of China fiscal revenue is illustrated by our proposed method
in Section 5. Section 6 concludes and raises some in-depth
discussions. All technique proofs, additional numerical results
as well as another empirical application on stock return analysis
are given in the supplementary materials.

2. Methodology

2.1. Grouped Network Autoregression Model

Consider a network with N nodes with the corresponding adja-
cency matrix denoted by A. Assume the nodes are clustered
into K latent groups. For each node i, suppose it carries a latent
group membership zi ∈ {1, . . . , K}, where zi = k implies that
the node i belongs to the kth group. Denote Ft as the σ -field
generated by {Yit : 1 ≤ i ≤ N, 1 ≤ t ≤ T}. Given Ft−1,
the observations at time point t are assumed to be independent
and follow a Gaussian mixture distribution with K components.
Given the number of groups K and the adjacency matrix A, the
GNAR model can be expressed as a mixture model, that is,

p(Yit|θ , σ 2) =
∑

k
πkN (µit , σ 2

k ),

N (µit , σ 2
k ) = 1√

2πσk
exp

{
− (Yit − µit)2

2σ 2
k

}
,

µit = β0zi + β1zi n−1
i

∑

j
aijYj(t−1) + β2zi Yi(t−1) + V⊤

i γzi ,

(2.1)

where N (µit , σ 2
k ) is the density function of normal distribu-

tion with mean µit and variance σ 2
k in the kth group, and

πk is the mixing weight satisfying
∑

k πk = 1. Here θk =
(β0k, β1k, β2k, γ ⊤

k )⊤ collects the unknown parameters.
The GNAR model (2.1) characterizes the conditional mean

of the response Yit by a combination of four components. The
first one is the group baseline effect β0k, which is a constant but

varying among different groups. The second one is the network
component (β1kn−1

i
∑

j aijYj(t−1)), which reflects the average
impact of following nodes at the previous time point. Therefore,
we refer to β1k as the group network effect. The third one is the
momentum component (β2kYi(t−1)). It characterizes how the
focal node is influenced by its historical behaviors. The corre-
sponding parameter β2k is then referred to as group momentum
effect, quantifying the node’s self-dependence. The last one is
the nodal covariate component (V⊤

i γk), which includes the
node specific characteristics and it is invariant over time. As
implied by the GNAR model (2.1), the nodes within the same
group share the same set of coefficients, therefore, they exhibit
similar dynamic patterns. Compared to the NAR model (Zhu
et al. 2017), the GNAR model is able to capture the nodes’
heterogeneous pattern in the group level. To estimate the model
parameters simultaneously with the group memberships, an EM
algorithm is designed (Zhu and Pan 2020).

Despite the usefulness, the model has three main limitations.
First, the estimation can be unreliable when the observed time
length is short. That decreases the model’s stability and robust-
ness in practice. Second, the network structure information
is not fully exploited for estimating the group memberships.
Third, the number of groups K cannot be automatically esti-
mated but needs to be specified in advance for the GNAR model.
Although in existing panel data models the group number can
be selected with some designed information criterion (Ando
and Bai 2016; Liu et al. 2020; Guðmundsson and Brownlees
2021), the procedure is still sensitive to tuning parameter spec-
ification. That increases the possibility that the model is mis-
specified. As a consequence, we are motivated to consider the
problem in a Bayesian framework and introduce a graph assisted
prior, where the network structure information is employed
when forming the groups. The details are presented in the
following section.

2.2. Bayesian Graph Assisted Prior

Given {zi} and {θk, σ 2
k : 1 ≤ k ≤ K}, we have a Gaussian

mixture model (Marin, Mengersen, and Robert 2005) as follows,

(Yit|zi, θ zi , σ 2
zi) ∼ N (µit , σ 2

zi), i = 1, . . . , N, t = 1, . . . , T,

where µit = β0zi + β1zi n−1
i

∑
j aijYj(t−1) + β2zi Yi(t−1) + V⊤

i γzi .
Now we introduce a prior for modeling {zi} by embedding the
graph information.

Under the Bayesian hierarchical model, the priors for the
unknown group memberships are given as

zi ∼ Cat(π1, . . . , πK), i = 1, . . . , N,
π1, . . . , πK ∼ DirichletK(α, . . . , α),
θ j ∼ ψ(θ), j = 1, . . . , K,

(2.2)

where zi follows a categorical distribution with parameters π =
{π1, . . . πK}, π follows a Dirichlet distribution with parameter α,
and ψ(θ) is the joint prior for all group-wise parameters. When
K goes to infinity, the model in (2.2) becomes the Dirichlet pro-
cess mixture model (DPMM; Ishwaran and Zarepour 2002b).
The DPMM is very flexible and efficient for density estimation.
However, it suffers from several problems in estimating the
group structure. First, the partitions sampled from the DPMM
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posterior tend to have multiple small transient groups, which
decreases the interpretability of the model. Second, the DPMM
is inconsistent on the estimation of the number of groups (Miller
and Harrison 2018). Third, the DPMM does not take advantage
of the network structure information: the connected nodes do
not have higher probability being in the same group.

In order to address the above problems, we introduce a
Bayesian graph assisted prior. Specifically, we assume that the
group membership zi ∈ {1, . . . , K} is generated from the
weighted Dirichlet process. Define group membership vector
Z = (z1, . . . , zN)⊤ ∈ RN , and further denote Z(−i) = {zj :
j ̸= i}. By incorporating the graph information, the conditional
distribution of zi|Z(−i) is expressed as

P(zi = k|Z(−i)) ∝
{

pk(W), 1 ≤ k ≤ K ′

α, k = K ′ + 1 (2.3)

where pk(W) = ∑
j ̸=i wijI(zj = k) and W = (wij) is a weighting

matrix calculated based on A. The wij in the weight matrix
denotes the connection strength between node i and j. We use
K ′ to denote the current group number, and the parameter α

controls the probability for introducing a new group. As a result,
(2.3) implies that a node is more likely to fit in the same group
with its connected friends.

One should note that the generation process guarantees the
exchangeability of {zi} since the specification of pk(W) is not
related to the ordering of nodes. As one can see, the graph
information is directly embedded in the model of the condi-
tional probability P(zi = k|Z(−i)). When the graph is fully
connected (i.e., wij = 1 for all i ̸= j), the model reduces
to the DPMM considered by Ishwaran and Zarepour (2002a).
Similar approaches have been considered in recent literature.
For instance, Lu, Li, and Dunson (2018) implemented powered
CRP to penalize over-clustering in traditional CRP. However,
the powered CRP neglected the graph information when con-
ducting the clustering task. For network data analysis, Blei and
Frazier (2011) proposed distance dependent CRP similar to
(2.3) and model the networked documents. Chen et al. (2016)
introduced node attributes and Bayesian priors to the Newman’s
mixture model (Newman and Leicht 2007), and they explore
structural regularities in networks with node attributes. Simi-
larly, Geng and Hu (2022) considered the gaCRP for group dis-
covery of graph vertices. Although the above research considers
the graph information for nodes clustering problem, they ignore
the dynamics of the valuable response information.

Remark 1. Simultaneous estimation of the group number and
configurations is typically achieved by complicated searching
algorithms (e.g., the reversible jump MCMC (Green 1995))
under the probabilistic Bayesian framework. However, it suffers
from high computational complexity. In our framework, the
specification of (2.3) allows the nodes’ memberships to be gen-
erated without setting the group number in advance. According
to (2.3), a new group will formulate once zi is assigned with a
new group label K ′ + 1. Once we generate all the group mem-
berships {zi}, we know immediately the number of groups K.

Let G0 be a continuous probability measure on Rp ×
R+. We define the full conditional distribution of θ i given
(θ1, . . . , θ i−1, θ i+1, . . . , θN) as

f (θ i|θ1, . . . , θ i−1, θ i+1, . . . , θN)

∝
K∗∑

r=1

∑

j ̸=i
wijI(θ i = θ∗

r )fθ∗
r (θ i) + αG0(θ i), (2.4)

where f (·) is the density function, K∗ denotes the number of
groups excluding the ith observation, θ∗

1, . . . , θ∗
K∗ are K∗ dis-

tinguished values of {θ1, . . . , θ i−1, θ i+1, . . . , θN} and I(·) is the
identity function. In practice we set the base distribution G0 to
be the normal inverse gamma distribution.

Inspired by the graph assisted Chinese restaurant process
(gaCRP) (Geng and Hu 2022) for survival model, we define the
graph distance dij between node i and j as the shortest path
length between node i and j. If node i and j cannot be connected
with a finite length of path, then dij = ∞. The weight is then
defined as

wij =
{

1, if dij ≤ 1
exp(−dij × h), if dij > 1 . (2.5)

Therefore, the weight wij characterizes the closeness of the node
i and j in the network. The parameter h denotes the smoothing
scale of the weighting matrix. A larger value of h indicates the
weight is more concentrating on the local scale. For simplicity,
we refer to gaCRP introduced above as gaCRP(α, h). Although
the idea of using a weighted version of CRP has been explored
in Geng and Hu (2022), their model is based on Cox regression
for survival data analysis, which significantly differs from our
model, since it lacks discussion on dynamic process of Yit .

Remark 2. Implied by (2.5), if h = 0, then the gaCRP is the
same as the traditional CRP and may tend to over cluster the
nodes. If h → ∞, the probability for a new node to choose the
existing groups tends to be small, which may also lead to the
over-clustering problem. Hence, an appropriate selection of h is
critical for the model performance. We discuss in details about
the selection of h in Section 3.3.

In summary, we express the proposed model hierarchically
as

Data model : Yit|zi, θ zi , σ 2
zi ∼ N (µit , σ 2

zi),
Prior model : p(zi|Z(−i)) ∼ gaCRP(α, h),
Parameter model : (θ zi , σ 2

zi) ∼ NIG(τ 0, (0, a0, b0),
(2.6)

where τ 0, (0, a0, and b0 are hyperparameters for the base
distribution of (θk, σ 2

k ). As one can see in (2.6), the true group
for generating Yit is still defined by the GNAR model. It means
that the nodes from the same group should share a common
set of parameters. We additionally add the graph information
in the prior for modeling {zi} considering that nodes in the
same group may share denser connections. This prior will help
the estimation if the true group structure embeds certain graph
information that nodes within the same group have denser
connections. Hence, the group in our context is different from
the definition of community in the SBM (and many other com-
munity detection methods), since their communities are totally
determined by the graph information. Specifically, the com-
munities are defined by a set of nodes with denser within-
community connections and sparser between-community con-
nections. However, in our setting, the groups are defined by the
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model coefficients as in the GNAR model, while we embed the
graph information in the prior.

Here the prior distribution of (θ zi , σ 2
zi) is set to be nor-

mal inverse gamma (NIG) distribution with parameters
(τ 0, (0, a0, b0). Without loss of generality, we choose τ 0 = 0,
(0 = 100I, a0 = 0.01, b0 = 0.01 in our simulation study
and real data applications. We refer to the model (2.6) as graph
assisted group network autoregression (GAGNAR) model. The
proposed process in (2.6) is a modification of the DPMM, which
is a nonparametric mechanism to model the data distribution.
It replaces the finite dimensional model (i.e., finite K) with an
infinite dimensional model (i.e., diverging K) (Ishwaran and
Zarepour 2002a). Our proposed model also starts with a finite
parametric model with NIG distribution and taking the limit as
the number of groups possibly goes to infinity. Our proposed
model can automatically infer an adequate number of groups
from the data, without resorting to Bayesian model comparison,
which is an important characteristic of Bayesian nonparametric
methods.

3. Bayesian Estimation

In this section, we discuss the model estimation for the GAG-
NAR model. To estimate the model parameters simultaneously
with the latent group memberships, we employ the Markov
chain Monte Carlo (MCMC) algorithm.

3.1. MCMC Algorithm

To conduct Bayesian estimation, we first derive the posterior
distribution of the unknown parameters and group member-
ships. Define θ = (θ1, . . . , θK) and σ 2 = (σ 2

1 , . . . , σ 2
K).

In addition, denote V = (V1, . . . , VN)⊤ ∈ RN×p, Yt =
(Y1t , . . . , YNt)⊤ ∈ RN , and Y = (Y1, . . . , YT) ∈ RN×T .
Given the data {Y, V}, the joint posterior distribution of latent
membership Z and unknown parameters {θ , σ 2} is

ψ(Z, θ , σ 2|Y, V) ∝ ψ(Z)ψ(θ)ψ(σ 2)f (Y|Z, V, θ , σ 2), (3.1)

where ∝ denotes “proportional to”, and ψ(Z), ψ(θ), ψ(σ 2)
stand for the prior distributions for Z, θ , and σ 2, respectively.
For convenience, let Xt

def= (X1t , . . . , XNt)⊤ = (1N , WYt−1, Yt−1,
1NV⊤

i ) ∈ RN×(p+3), then given θk, σ 2
k we have

(Yt|θk, σ 2
k ) ∼ N (µk, σ 2

k I), where µk = Xtθk.

The prior distribution for Z is specified as gaCRP(α, h) as stated
in Section 2.2. In addition, we specify the prior distribution for
θk as multivariate normal distribution N (τ 0, σ 2

k (0) and we set
the prior for σ 2

k as the commonly used scaled inverse gamma
distribution IG(a0, b0), where τ 0, (0, a0l and b0 are the hyper-
parameters.

Given the joint posterior distribution of {Z, θ , σ 2} in (3.1),
we can obtain the conditional posterior distribution for each
latent group membership and model parameters, respectively.
This enables us to conduct the MCMC algorithm for model
estimation. We first give the conditional posterior distribution
for zi (i = 1, . . . , N) as follows. For convenience we denote
p̃(zi = k) = p(zi = k|Z(−i), Y, V, θ , σ 2). Further define Y(i) =

(Yi1, . . . , YiT)⊤ ∈ RT and X(i) = (Xi1, . . . , XiT)⊤ ∈ RT×(p+3).
Then we have

p̃(zi = k) ∝ f (Z, θ , σ 2|Y, V)

∝ f (Y(i)|zi = k, V, θ , σ 2)p(zi = k|Z(−i)).

The analytical form of p̃(zi = k) is given in Proposition 1.

Proposition 1. Suppose currently the nodes are formed into K ′

groups. Then according to (2.6) we have

p̃(zi = k) ∝
{
κkf (Y(i); X(i), θk, σ 2

k ), for 1 ≤ k ≤ K ′

αg(Y(i); τ 0, τ , (0, (, a0, b0), for k = K ′ + 1 ,

where κk = ∑
j ̸=i wijI(zj = k) and

f (Y(i); X(i), θk, σ 2
k )

= (2πσ 2
k )−(T−1)/2 exp

{
− 1

2σ 2
k
∥Y(i) − X(i)θk∥2

}
,

g(Y(i); τ 0, τ , (0, (, a0, b0)

= ϕ((0, (, a0, b0)
{

b0 + 1
2
(τ⊤

0 (−1
0 τ 0 + Y⊤

(i)Y(i) − τ⊤(−1τ )
}−(a0+ T−1

2 ),

ϕ((0, (, a0, b0) = ba0
0 +(a0 + T−1

2 )|(|1/2

(2π)(T−1)/2+(a0)|(0|1/2 ,

( = ((−1
0 + X⊤

(i)X(i))
−1, τ = (((−1

0 τ 0 + X⊤
(i)Y(i)).

By the formulation of p̃(zi = k), we can observe that the
probability zi belonging to an existing group k (1 ≤ k ≤ K ′)
is closely related to the network weighting matrix W. Partic-
ularly, κk denotes a weighted average ratio of its connected
friends belonging to the group k, which characterizes a stickiness
to the group k of ith node’s neighbourhood. If the stickiness
level is higher, then the conditional probability of {zi = k}
will be higher. That is how the network topology informa-
tion is involved in the sampling procedure. Next, the node is
allowed to fit into a new group with probability proportional to
g(Y(i); τ 0, τ , (0, (, a0, b0), which relates to both the prior and
the data information.

Next, we investigate the full conditional distribution for
model parameters {θ , σ 2}. Denote the posterior distribution
of (θk, σ 2

k ) as f̃ (θk, σ 2
k ) = f (θk, σ 2

k |Z, Y, V), then we derive
f̃ (θk, σ 2

k ) in the following Proposition 2.

Proposition 2. The full conditional distribution f̃ (θk, σ 2
k ) (k =

1, 2, . . . , K) is given as

f̃ (θk, σ 2
k ) ∝ ψ(θk, σ 2

k ; τ 0, (0, a0, b0)
∏

zi=k
f (Y(i); X(i), θk, σ 2

k )

∝ f (θk, σ 2
k ; τ ∗, (∗, a∗, b∗),

where

f (θk, σ 2
k ; τ 0, (0, a0, b0)

= ba0
0

(2π)d/2|(0|1/2+(a0)

( 1
σ 2

k

)a0+ d
2 +1

exp
[
− 1

σ 2
k

{
b0 + 1

2
(θk − τ 0)

⊤(−1
0 (θk − τ 0)

}]
,
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τ ∗ = ((−1
0 +

∑

zi=k
X⊤

(i)X(i))
−1((−1

0 τ 0 +
∑

zi=k
X⊤

(i)Y(i)),

(∗ = ((−1
0 +

∑

zi=k
X⊤

(i)X(i))
−1,

a∗ = a0 + (T − 1)Nk/2,

b∗ = b0 + 1
2

(
τ⊤

0 (−1
0 τ 0 +

∑

zi=k
Y⊤

(i)Y(i) − τ ∗⊤(∗−1τ ∗
)

,

and Nk =
∑

i
I(zi = k).

The proofs of the two propositions are given in supple-
mentary materials. As shown in Proposition 2, the conditional
distribution of {θk, σ 2

k } follows normal inverse gamma distri-
bution (NIG) with density function f (τ ∗, (∗, a∗, b∗). With the
expressions of (τ ∗, (∗, a∗, b∗), we see that it unifies the prior
information {τ 0, (0, a0, b0} and the data information from the
kth group, that is, {X(i), Y(i) : zi = k}. Then, based on
Propositions 1 and 2, we could efficiently cycle through the full
conditional distribution p̃(zi = k) for i = 1, 2, . . . , N and
f̃ (θk, σ 2

k ) for k = 1, 2, . . . , K to conduct the Gibbs sampling
procedure. One should note that in the process of node mem-
berships generation, K is marginalized over, which could avoid
complicated reversible jump MCMC algorithms or allocation
samplers. We summarize the collapsed Gibbs sampling proce-
dure for the GAGNAR model in Algorithm 1.

Algorithm 1 Collapsed Gibbs sampler for GAGNAR
1: Initialize the number of groups K, the group assignment zi

and the parameters (θ zi , σ 2
zi) for each Y(i)

2: for iter from 1 to M do
3: for i from 1 to N do
4: Update zi conditional on θ , σ 2 for each node i ∈

(1, . . . , N) by the conditional distribution p̃(zi = k) in
Proposition 1.

5: If updated zi belongs to existing groups, then K does
not change; otherwise, if updated zi forms a new group, then
K := K + 1.

6: end for
7: for c from 1 to K do
8: Update (θ c, σ 2

c ) for each c ∈ (1, . . . , K) conditional
on (Z, Y, V) by the density function in Proposition 2 as

f̃ (θ c, σ 2
c ) ∼ NIG(τ ∗, (∗, a∗, b∗)

9: end for
10: end for

3.2. Post MCMC Estimation

Let θ
(m)
k and σ

2(m)
k with 1 ≤ k ≤ K(m) be the mth estimation

after the number of burn-in iterations of the MCMC algorithm.
Correspondingly denote Z(m) = (z(m)

i : 1 ≤ i ≤ N)⊤ as the
estimated memberships of the network nodes. Particularly we
note that the estimated number of groups K(m) can be different
for 1 ≤ m ≤ M. As a result, the direct posterior estimation

of the parameters would be difficult since the number of esti-
mated parameters are not the same across different iterations. To
address this issue, we adopt Dahl’s method (Dahl 2006) to select
the best post burn-in iteration with the least squares criterion.
The estimate output by the best post burn-in iteration is then
taken as the final post MCMC estimator.

Specifically, we take advantage of the co-membership matrix
to help us select the best post burn-in iteration. Define the co-
membership matrix as B = (bij) ∈ RN×N , where bij = I(zi =
zj). Therefore, the (i, j)th element of B denotes whether the ith
node is in the same group with the jth node. We can see that
B is well defined for different K(m)s and it does not suffer from
the label switching issue. We then choose the best post burn-in
iteration as

mb = argmin1≤m≤M
∥∥B(m) − B

∥∥2
F ,

where B(m) is the estimated co-membership matrix in the mth
post burn-in iteration and B = M−1 ∑M

m=1 B(m). As a conse-
quence, the best post burn-in iteration is selected by the clos-
est B(m) to the mean grouping co-membership matrix B. The
number of groups is then determined as K(mb). Accordingly, the
post MCMC estimations of the parameters and memberships
are given by (θ

(mb)
k , σ 2(mb)

k ) with 1 ≤ k ≤ K(mb) and Z(mb),
respectively.

3.3. Selection of Smoothing Parameter h

The selection of smoothing parameter h is redesigned as a
model selection problem. Specifically, we use the logarithm of
the pseudo marginal likelihood (LPML) (Ibrahim et al. 2001)
based on conditional predictive ordinate (CPO) (Gelfand, Dey,
and Chang 1992) to select h.

The LPML given a specified h is defined as

LPML(h) =
N∑

i=1
log{CPOi(h)}, (3.2)

where CPOi(h) is the CPO for the node i. The CPO is defined
as CPOi(h) = p(Y(i)|Y(−i)) (Pettit 1990), where Y(−i) = {Y(j) :
j ̸= i}. As one can see, LPML is a pseudo log-likelihood function
and we prefer a smoothing parameter h to maximize LPML.
Borrowing the idea of Chen, Shao, and Ibrahim (2012), we
obtain the Monte Carlo estimate of CPO within the Bayesian
framework as

ĈPOi(h) =
{ 1

M

M∑

m=1

1
L(θ

(m)
zi , σ 2(m)

zi ; h)

}−1
,

where M is the total number of Monte Carlo iterations, and

L(θ (m)
zi , σ 2(m)

zi ; h) =
T∏

t=2
p(Yit|θ (m)

zi , σ 2(m)
zi ; h)

is the likelihood function for the node i with the specified
smoothing parameter h. Correspondingly we have L̂PML(h) =
∑N

i=1 log{ĈPOi(h)} and we choose the optimal h by hb =
arg maxh L̂PML(h).
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4. Simulation

4.1. Simulation Models

To demonstrate the finite sample performance of our proposed
method, we conduct a number of numerical studies in this
section. Specifically, we use three types of graphs and assign two
parameter settings to each of them.

For each simulation setting, we generate the random noise εit
from a standard normal distribution. In addition, node covari-
ates Vi ∈ Rp are independently sampled from a multivariate
normal distribution N (0, Ip). For each graph, two different
scenarios of parameters (β0k, β1k, β2k, γk, σ 2

k ) are considered,
which are listed in Table 1. Given the initial value Y0 = 0, the
time series Yt is generated according to the grouped network
vector autoregression model in (2.1). In each scenario, 100
replicated datasets are generated, and in each replicate we set
the time length T = 20. In addition, for the prior distribution
gaCRP(α, h), we set α = 1 and select the smoothing parameters
h ∈ {0, 0.2, 0.4, . . . , 5.0} by LPML (3.2). A total of 1500 MCMC
iterations are run for each replicate, with the first 500 itera-
tions treated as the burn-in stage. Besides, the hyperparameters
set for the base distribution in (2.6) are (a0, b0, τ 0, (0) =
(0.01, 0.01, 0, 100I), which are noninformative priors.

Example 1 (Stochastic Block Model). We first consider the
stochastic block model (SBM) (Wang and Wong 1987; Nowicki
and Snijders 2001; Zhao, Levina, and Zhu 2012). The SBM
assumes that nodes in the same group (block) are more likely
to be connected, when compared with nodes from different
groups. The model is widely used to discover community
structures for network data. We follow Nowicki and Snijders
(2001) to randomly assign each node a group label k = 1, . . . , K
with equal probability 1/K and we set K = 3. Next, let
P(aij = 1) = 20N−1 if node i and node j are in the same
group, and P(aij = 1) = 2N−1 otherwise. The network size is
set as N = 100. As a result, the generating mechanism of this

example ensures that the nodes within the group should share
denser connections than between groups.

Example 2 (Chinese Cities Graph). In this example we construct
the graph of Chinese cities by using the geographical informa-
tion. We collect 151 cities of mainland China and treat each city
as a network node in the graph. The edge between two cities is
defined as whether they share the common boarder (Cao, Liang,
and Niu 2017; Zhang et al. 2018). Specifically, aij = 1 illustrates
that two cities are connected, otherwise aij = 0. Lastly, we let
K = 5 be the total number of groups and assign the group labels
using k-means clustering on the distance matrix.

Example 3 (Common Shareholder Network). We lastly construct
the stock graph from Chinese A stock market, which con-
tains N = 180 actively traded stocks in the Shanghai and the
Shenzhen Stock Exchange. The stocks used in this simulation
example are the subset of our empirical study for computational
convenience. Specifically, aij = 1 indicates that two stocks share
at least two of the top 10 shareholders, otherwise aij = 0. The
graph structure is shown in the bottom right panel of Figure
1. We set the number of groups K = 6 and assign the group
memberships by implementing the spectral clustering algorithm
to the adjacency matrix.

The three network structures with the true group labels are
visualized in Figure 1.

4.2. Performance Measurements and Simulation Results

Let (β̂
(r)
0k , β̂(r)

1k , β̂(r)
2k , γ̂ (r)

k , σ̂ 2(r)
k ) be the estimated parameters of

the kth group in the rth replicate (1 ≤ r ≤ R). For each node i,
we obtain its group label as ẑ(r)

i (i = 1, . . . , N) by Dalh’s method.
Subsequently, the estimated parameters for each node i is given
as

(
β̂

(r)
0̂z(r)

i
, β̂(r)

1̂z(r)
i

, β̂(r)
2̂z(r)

i
, γ̂ (r)

ẑ(r)
i

, σ̂ 2(r)
ẑi

)
. We consider the following

measurements to evaluate the finite sample performance. First,

Table 1. Simulation parameters setting for three examples.

σ 2
k β0k β1k β2k γk σ 2

k β0k β1k β2k γk

Example 1

Scenario 1 Scenario 2

Group 1 2.0 5.0 0.2 0.1 (0.5, 0.7, 1.0)⊤ 2.0 0.0 0.1 0.3 (0.5, 0.7, 1.0)⊤
Group 2 1.0 −5.0 −0.4 0.2 (0.1, 0.9, 0.4)⊤ 4.0 0.2 −0.3 0.2 (0.1, 0.9, 0.4)⊤
Group 3 3.0 0.0 0.2 0.4 (0.2, −1.0, 2.0)⊤ 3.0 0.5 0.2 0.7 (0.2, −0.2, 1.4)⊤

Example 2
Scenario 1 Scenario 2

Group 1 2.0 5.0 0.2 0.1 (0.5, 0.7, 1.0)⊤ 2.0 0.0 0.1 0.3 (0.5, 0.7, 1.0)⊤
Group 2 1.0 −5.0 −0.4 0.2 (0.1, 0.9, 0.4)⊤ 1.0 0.2 −0.3 0.2 (0.1, 0.9, 0.4)⊤
Group 3 3.0 0.0 0.2 0.4 (0.2, −1.0, 2.0)⊤ 3.0 0.5 0.2 0.7 (0.2, −0.2, 1.4)⊤
Group 4 4.0 −0.1 0.1 0.2 (1.0, −1.0, 1.5)⊤ 4.0 −0.1 0.1 0.2 (1.0, −1.0, 1.5)⊤
Group 5 2.0 3.0 0.5 0.2 (0.8, 0.5, −2.0)⊤ 2.0 0.8 0.5 0.2 (0.8, 0.5, −1.0)⊤

Example 3
Scenario 1 Scenario 2

Group 1 2.0 5.0 0.2 0.1 (0.5, 0.7, 1.0)⊤ 2.0 0.0 0.1 0.3 (0.5, 0.7, 1.0)⊤
Group 2 1.0 −5.0 −0.4 0.2 (0.1, 0.9, 0.4)⊤ 1.0 3.0 −0.3 0.2 (0.1, 0.9, 0.4)⊤
Group 3 3.0 0.0 0.2 0.4 (0.2, −1.0, 2.0)⊤ 3.0 −3.0 0.2 0.7 (0.2, −0.2, 1.4)⊤
Group 4 4.0 3.0 0.1 0.2 (1.0, −1.0, 1.5)⊤ 1.5 4.5 0.1 0.2 (1.0, −1.0, 1.5)⊤
Group 5 2.0 −3.0 0.5 0.2 (0.8, 0.5, −2.0)⊤ 2.5 −2.0 0.5 0.2 (0.8, 0.5, −1.0)⊤
Group 6 3.0 2.0 −0.6 −0.2 (−0.8, 0.5, 2.0)⊤ 1.0 2.0 −0.6 −0.2 (−0.8, 0.5, 2.0)⊤
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Figure 1. Three graphs with true group labels, each color representing a group. Left: graph generated from SBM with K = 3. Middle: geographical graph of N = 151
Chinese cities with K = 5. Right: common shareholder graph of N = 180 stocks with K = 6.

we employ the root mean square error (RMSE) to evaluate the
estimation accuracy. For βsk (0 ≤ s ≤ 2, 1 ≤ k ≤ K), the RMSE
is defined as

RMSEβs =
{
(RN)−1

R∑

r=1

N∑

i=1

(
β̂

(r)
ŝz(r)

i
− βszi

)2
}1/2

,

and the RMSE for γ is calculated as

RMSEγ =
{
(RN)−1

R∑

r=1

N∑

i=1

∥∥γ̂
(r)
ẑ(r)

i
− γzi

∥∥2
}1/2

.

To measure the similarity between the estimated group mem-
berships and the true group memberships, we use the Adjusted
Rand Index (ARI) (Rand 1971; Hubert and Arabie 1985). Define
{zi : 1 ≤ i ≤ N} as the set of the true group memberships. Then
ARI is defined as

ARI(r) = RI(r) − E
(
RI(r))

max
(
RI(r)) − E

(
RI(r)) , RI(r) = a(r) + b(r)

C2
N

,

where a(r) = ∑
i,j I(zi = zj, ẑ(r)

i = ẑ(r)
j ), b(r) = ∑

i,j I(zi ̸=
zj, ẑ(r)

i ̸= ẑ(r)
j ), and C2

N = N(N − 1)/2 is the total number
of possible node pairs formed by the N nodes. Hence, ARI
measures the alignment level of two grouping results. A higher
ARI value implies the estimated group memberships are more
consistent with the true memberships. The ARI can be calcu-
lated using the R-package mclust. We compare the parameter
estimation of proposed model with that of EM algorithm and
two-step estimation for the GNAR model (Zhu and Pan 2020).
One should note that, since the number of groups could not be
inferred in the other two baseline methods, we apply the true
value of K as the input of EM and two-step methods.

Table 2 summarizes the average RMSE of estimated param-
eters under the optimal h selected by LPML. For all three sim-
ulation examples, we see that the overall RMSEs of estimated
parameters by the GAGNAR model are much lower than those
of the EM and two-step methods. This is consistent with the
weakness we mentioned that the GNAR model does not use the
network structure information. In addition, we see that graphs
in example 2 and 3 are more complicated than that generated
from SBM, due to the larger number of groups and the group
patterns which are not easily captured (see Figure 1). In both

Table 2. RMSEs of parameter estimation.

β0 β1 β2 γ σ 2

Example 1
LPML 0.626 0.471 0.179 0.377 0.057 0.108 0.264 0.532 0.330 0.624
EM 1.706 0.233 0.164 0.167 0.132 0.123 0.514 0.279 1.450 1.466
2-step 3.774 0.226 0.318 0.242 0.496 0.258 0.717 0.380 1.128 1.474

Example 2
LPML 0.722 0.265 0.088 0.176 0.085 0.135 0.404 0.429 0.450 0.596
EM 2.452 0.317 0.329 0.186 0.157 0.149 0.963 0.482 1.245 1.241
2-step 3.191 0.370 0.329 0.282 0.508 0.371 0.956 0.726 1.188 1.309

Example 3
LPML 0.920 0.644 0.158 0.180 0.093 0.089 0.460 0.318 0.443 0.246
EM 1.942 1.416 0.300 0.288 0.110 0.120 0.748 0.573 1.183 0.576
2-step 2.880 1.890 0.356 0.315 0.568 0.480 0.878 0.723 0.948 0.576

NOTE: For each parameter, the left column comes from scenario 1, and the right
column is from scenario 2.

examples, the estimation accuracy of our model is shown to
be much higher than that of the EM and two-step estimators.
This further confirms the usefulness of the proposed GAGNAR
model in the intricate reality.

Figure 2 shows the estimated number of groups in the left
panels, together with ARIs in the right panels. When h = 0, the
gaCRP method reduces to the traditional CRP method, which
always tends to over-cluster and shows smaller ARI than results
by LPML selection. From histograms in Figure 2 we see that,
when h increases, the estimated number of groups first decreases
and then increases. The reason is that as h → ∞, the graphical
weight wij for disconnected nodes becomes particularly small,
which means only connected nodes can be classified into the
same group, therefore, leading to the over-cluster problem, as we
discussed in Remark 2. The group concordance under optimal
h selected by LPML generally performs better than those of
EM method, with the proportion of selecting true number of
groups always greater than 80%. In addition, we also compare
the group number estimation with the group panel data models
(Liu et al. 2020), whose performance could be sensitive to the
tuning parameter specification. We present the detailed analysis
in Appendix C.2.

5. Empirical Case Study

In this section, we study the local government economic com-
petition by using city-level fiscal revenue (FR) data. We first
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Figure 2. Grouping results of three examples, with results of scenario 1 in the first line and scenario 2 in the second line. Left panel: histogram of estimates of K under
different h. Right panel: boxplots of ARI under EM method, h = 0 and optimal h. The red texts show the average accuracy of group memberships. The optimal hs selected
by LPML are listed at the top of each example.

conduct a descriptive analysis of the real dataset. We calculate
the average ratio of fiscal revenue to GDP across all cities and the
yearly average ratio from 2005 to 2016. As shown in Figure 3, the

average FR/GDP ratio is 0.067, and the ratio increases steadily
with a little fluctuation. As the histogram shows, a slightly
right skewed distribution pattern can be observed. The data
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Figure 3. Histogram and line plot of N = 151 cities’ yearly average fiscal FR/GDP.

cleaning procedure is included in the Appendix D. In addition,
We also conduct another empirical application on stock return
rate analysis. The details can be found in Appendix E.2.

5.1. Background and Data Description

In the study for the economic growth of China, regional gov-
ernment’s economic strategies are shown to be closely related
to the whole economic growth (Xu 2011; Yu, Zhou, and Zhu
2016). Consequently, it is important to study the regional gov-
ernment competitions within different time periods. In spatial
economics, evidence has shown that the fiscal competition exists
widely among the local government with its spatial adjacent
neighbors (Cassette, Di Porto, and Foremny 2012; Janeba and
Osterloh 2013; Parchet 2014; Agrawal 2015). We investigate how
the city fiscal revenue relates to its spatial adjacent cities and its
historical information. The model with space-time lags has been
widely used on economic panel data research, including analysis
about equation systems with time dynamics and spatial spillover
effects in regional science (De Graaff, Van Oort, and Florax
2012; Gebremariam, Gebremedhin, and Schaeffer 2011), fiscal
policy with government competition (Hauptmeier, Mittermaier,
and Rincke 2012; Allers and Elhorst 2011), and many other
related fields (Korniotis 2010; Brown and Laschever 2012). In
addition, the latent group structure has been considered in
recent macro-economic researches. For instance, Bonhomme
and Manresa (2015) proposed the time-varying grouped pat-
terns of heterogeneity in linear panel data models, and model
the relationship between the degree of democracy and GDP.
They found the group patterns exist across countries. A simple
and fast approach was proposed by Liu et al. (2020) to identify
and estimate the unknown group structure in panel data models,
which is used to analyze the aggregate production function.
They discovered both individual-level and group-level hetero-
geneity for women’s labor force participation.

We collect N = 151 cities’ public financial statements from
Fiscal Statistics of Cities and Counties in China during the period
2005–2016. The yearbook is published by China Financial and
Economic Publishing House, a state-owned press under the

supervision of the Ministry of Finance of the People’s Repub-
lic of China. It collects detailed information on city-level fis-
cal statistics, such as fiscal revenues and expenditures, fiscal
accounting balances, transfer payments, and the fiscally sup-
ported population (Yu, Zhou, and Zhu 2016). In this empirical
study, the response Yit is the fiscal revenue divided by the local
GDP. Following Zhang and Zou (1998), Devereux, Lockwood,
and Redoano (2007), and Lv, Liu, and Li (2020), we consider
four covariates, which are POP (population at the end of year),
GDP1st (the proportion of primary industry to GDP), SAV
(year-end savings of urban and rural residents), and FOR (actual
foreign investment).

5.2. Model Estimation

We next implement the GAGNAR model (2.6) to the China
fiscal revenue data. First, we conduct parameter estimation by
using the data from 2005 to 2016. The smoothing parameter h is
chosen from {0, 0.2, 0.4, . . . , 2.0, 3.0, 4.0, 5.0} and we set α = 1.
For each h, we run 1500 MCMC iterations and drop the first 500
as burn-in. The best h selected by LPML is 2, and the estimated
number of groups is K = 4. The city group pattern under h = 2
is displayed in the top left panel of Figure 5. Cities in the first
group are mainly from Guangdong, Jiangxi and Zhejiang, which
are located in the south China, as well as Anhui province in the
central south of China. The second group contains mainly the
cities in Shandong province (east China) and Henan province
(central east China), with the average FR/GDP at the lowest
level as the top right panel of Figure 5 shows. Most cities in
Liaoning, Jilin, Heilongjiang province and others constitute the
third group, which are mostly in the Northeast China. Some
cities in Jiangsu are in the fourth group, with the highest average
FR/GDP values. According to the top right panel of Figure 5,
cities in four groups exhibit different economic features, as the
average FR/GDPs among four groups show different levels.

Table 3 reports the estimated parameters for each group
under the optimal LPML criterion. As one could see, the net-
work effect and momentum effect are different among four
groups. Specifically, the cities in the second and the third group
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Table 3. Parameters estimated by China Fiscal Revenue dataset with optimal h = 2.

Group 1 Group 2 Group 3 Group 4
Nk 83 38 25 5

β̂0k 0.003 (0.001, 0.007) 0.037 (0.027, 0.049) 0.038 (0.023, 0.067) 0.047 (0.025, 0.163)
β̂1k Network effect −0.011 (−0.026, 0.056) 0.101 (−0.004, 0.202) 0.212 (0.008, 0.421) −0.179 (−0.757, 0.416)
β̂2k Momentum effect 0.996 (0.925, 1.001) 0.229 (0.101, 0.473) 0.345 (0.210, 0.547) 0.178 (−0.064, 0.502)
γ̂k POP −0.001 (−0.004, 0.004) −0.025 (−0.037, −0.012) 0.022 (−0.035, 0.019) 0.113 (−0.156, 0.054)

GDP1st −0.001 (−0.005, 0.012) 0.175 (0.048, 0.258) −0.128 (−0.234, 0.211) 0.186 (−0.270, 0.420)
SAV 0.008 (−0.020, 0.034) −0.066 (−0.122, −0.013) 0.001 (−0.174, 0.070) −0.074 (−0.798, 0.274)
FOR 0.008 (−0.001, 0.013) 0.070 (−0.093, 0.149) 0.078 (−0.089, 0.243) −0.383 (−0.337, 0.243)

σ̂ 2
k 0.0001 0.0003 0.0006 0.0078

NOTE: The 95% HPDs of parameters estimated upon four specific cities from different groups are reported in the parentheses.

Figure 4. Adjacency matrices among N = 151 cities, where the colored grids mean that ith city is connected with jth city. In each subgraph, cities are ordered by the
membership from highest to lowest within-group density, with darkred, blue, pink, and yellow representing for four groups. The gray grids correspond to between-group
connections.

have positive network effects, which means there might exist
imitation economic strategies for those cities with their spatial
neighbors. On the contrary, cities in the first and the last group
are negatively related to their neighbors. This implies that they
tend to take opposite macroeconomic decisions to their adjacent
cities. All of the four groups have positive momentum effects,
which shows that the responses are positively related to their his-
torical performances. Furthermore, the covariates tend to have
different effects on the response. For example, the population
has negative effect on the fiscal revenue for cities in the first and
the second group while its influence is positive for other cities.
The foreign investment, which represents the openness of a city,
negatively affects the fiscal revenue for cities in the fourth group,
while it is positive for other cities.

To summarize the posterior distribution of each parameter,
the Highest Posterior Density (HPD) (Chen and Shao 1999;
Kruschke 2014) interval that spans the majority of the posterior
distribution is specified. We calculate the 95% HPD intervals
of parameters of four typical cities (Beijing, Linyi, Fushun and
Taizhou) from four groups using the R package HDInterval. The
results are visualized in the middle left panel of Figure 5. Besides,
we report the 95% HPD intervals for the corresponding four
cities in the parentheses following each estimation in Table 3.
To better understand the differences of parameter estimates
among the groups, for each parameter (e.g., network effect) we
collect the estimates of each city for the 1000 iterations after the
burn-in stage. Then we pool the estimates of cities within the
same group together, which leads to the boxplots in the bottom
panel of Figure 5. Particularly here we show the boxplots of
network effects and momentum effects for illustration. First, we
can observe that the momentum effects are positive for most
cities. In addition, we find that the network effects are highest

for the Group 3 and lowest for Group 4. This implies a positive
spillover effect of cities in Group 3 and a negative spillover effect
for Group 4.

Subsequently, we compare the estimation results with other
grouping methods, which are CRP (Pitman 1995), GNAR (Zhu
and Pan 2020), and the SBM (Wang and Wong 1987) methods.
Each method can output the estimated group memberships.
For convenience, we visualize the adjacency matrix with each
within-group connections marked in different colors. This leads
to Figure 4, where the cities are reordered according to their
memberships. We can observe that the estimated groups of
SBM have the densest within-group connections, while the
groups estimated by GNAR model do not exhibit such a clear
pattern. This is mainly because that the SBM only uses the
adjacency matrix for membership estimation while the GNAR
model totally ignores the graph information but only using {Yit}
for nodes clustering. The GAGNAR model and CRP model
exhibit similar results and strike a balance between the SBM
and GNAR model. To further confirm the idea, we calculate
the within- and between-group densities for each model. The
detailed result is presented in Appendix E.1.2. It shows that
the GAGNAR model has slightly higher within-group density
and lower between-group density than the CRP model. Fur-
thermore, We present the boxplot of average responses of the
cities clustered by SBM in Figure S6 of Appendix E.1.3. One can
observe that the responses of group 2–4 are close to each other,
which indicates the lack of ability of the SBM to distinguish the
responses from different groups. We also include parameters
estimated by the CRP and GNAR in Appendix E.1.4.

Lastly, we compare the prediction accuracy of our model
with CRP, GNAR, NAR, and traditional time series models,
namely AR and ARMA. Denote Ttrain and Ttest as the time
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Figure 5. The top left panel shows the group pattern of cities estimated by GAGNAR under h = 2. The nodes in group 1–4 are marked in yellow, dark blue, green and
pink. The top right panel shows the average FR/GDP of cities corresponding to four estimated groups. Middle left panel shows the 95% HPD intervals of four cities from
different groups. The ReMSPE by rolling window scheme from different starting time points are displayed in the middle right panel. The bottom panel shows boxplots of
the network effects and momentum effects, respectively, for four groups by pooling all estimates of cities in each group.

length of training set and testing set, respectively. To evaluate the
prediction accuracy, we calculate the mean square prediction
error MSPE = (NTtest)−1 ∑ttest,0+Ttest

t=ttest,0

∑
i(Ŷit − Yit)2 where Ŷit

is the predicted response for node i at time point t and ttest,0
is the starting time point of the testing set. Define MSPE0 =
(NTtest)−1 ∑ttest,0+Ttest

t=ttest,0

∑
i(Yit − µ̂i,train)2 as the baseline MSPE,
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Table 4. Predicting ReMSE of GAGNAR, CRP, GNAR, NAR, AR, ARMA under the rolling
window setting.

Method Start time point of testing set

2006 2007 2008 2009 2010

GAGNAR 0.0990 0.0973 0.1375 0.2468 0.2662
CRP 0.0952 0.0968 0.1435 0.2511 0.3238
GNAR 0.7249 0.6936 2.3679 5.0960 226.818
NAR 0.6045 0.5652 0.8372 1.1248 1.5153
AR 10.5640 10.3679 13.1174 5.9287 8.4905
ARMA 11.2059 9.4445 11.4805 4.8626 7.8136

where µ̂i,train = T−1
train

∑ttest,0−1
t=ttest,0−Ttrain

Yit as the mean response
of the ith node in the training set. The relative prediction error
is defined as

ReMSPE = MSPE/MSPE0, (5.1)
which is used to evaluate the model performance. To illustrate
the superior prediction performance of GAGNAR, a rolling
window approach is adopted. First, we set the training data with
Ttrain = 7 years. Then, the following Ttest = 7 years are used
for prediction evaluation. Subsequently, we make the prediction
for every 1 year in a rolling window approach, which yields the
middle right panel in Figure 5. As one could observe, the GAG-
NAR model (orange line) is able to achieve obviously higher
prediction accuracy than the NAR, AR, and ARMA models.
Although the performances of the GAGNAR model and CRP
model are comparable, the GAGNAR model is generally better
and stable in prediction. For instance, for prediction starting
from the year 2008, the ReMSPE of GAGNAR model is 0.1375,
which is lower than the second best model (i.e., the CRP model)
with ReMSPE= 0.1435, and much better than others. Since the
ReRMSE of GNAR is very large of the year 2010, we eliminate
GNAR model in Figure 5. The detailed prediction results could
be found in Table 4. This indicates that the node group mem-
berships could be informative for the prediction work.

6. Discussion

In this article, we propose a novel Bayesian nonparametric
grouping approach for learning the heterogeneity of dynamic
response for network data. The proposed method could conduct
group-specific parameter estimation, estimate the number of
groups, and infer group configurations simultaneously. Building
upon the gaCRP framework, we develop a collapsed Gibbs sam-
pler for an efficient Bayesian inference. Specifically, we adopt the
Dahl’s method for post MCMC inference and introduce LPML
for smoothing parameter selection. Numerical results have con-
firmed that the proposed method is able to simultaneously infer
the number of groups and the group-wise parameters with high
accuracy. Comparing to the traditional techniques such as EM
algorithm and two-step approach in Zhu and Pan (2020), the
proposed method is able to improve the grouping performance,
especially when grouping configurations contain certain graph-
ical information. Lastly, we illustrate the usefulness of the pro-
posed method by studying two real data examples, including the
China fiscal revenue analysis and the stock return prediction.
The results indicate that incorporating graphical information
on grouping process for dynamic observations will improve the
interpretability and prediction power of the methodology.

A few topics are worth further investigation. A natural exten-
sion is designing an efficient algorithm for large scale net-
works with lower computational complexity. Two promising
solutions for tackling this challenge are discovering low rank
structure and imposing sparsity. Second, the proposed method
is restricted to continuous responses and thus can be extended
to binary or counted data. Finally, incorporating the GNAR
model with the stochastic block model (SBM) will be another
interesting topic for future study.

Supplementary Materials

All technique proofs, additional numerical results as well as another empir-
ical application are given in the supplementary material.
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