
Computers & Geosciences 184 (2024) 105518

Available online 13 January 2024
0098-3004/© 2024 Elsevier Ltd. All rights reserved.

Hybrid CPU-GPU solution to regularized divergence-free curl-curl
equations for electromagnetic inversion problems

Hao Dong a,*, Kai Sun b, Gary Egbert c, Anna Kelbert d, Naser Meqbel e,f

a China University of Geosciences, Beijing, China
b NVIDIA Corporation, Beijing, China
c Oregon State University, Corvallis, OR, USA
d United States Geological Survey, Golden, CO, USA
e 3D Consulting-GEO GmbH, Berlin, Germany
f Observatório Nacional, RJ, Brazil

A R T I C L E I N F O

Keywords:
Curl-curl equations
EM geophysics
GPU
Divergence-free
Inversions

A B S T R A C T

The Curl-Curl equation is the foundation of time-harmonic electromagnetic (EM) problems in geophysics. The
efficiency of its solution is key to EM simulations, accounting for over 95% of the computation cost in
geophysical inversions for magnetotelluric or controlled-source EM problems. However, most published EM
inversion codes are still central processing unit (CPU)-based and cannot utilize recent computational de-
velopments on the graphic processing units (GPUs). Based on a previously proposed divergence-free algorithm
developed on CPUs, this study demonstrates the current limits of the CPU-based inversion procedure. To exploit
the high throughput capability of GPUs, we propose a hybrid CPU-GPU framework to solve forward and adjoint
problems required for EM inversions. The large sparse linear systems arising from the staggered-grid finite
difference approximation of the Curl-Curl equation are solved with a mixed-precision Krylov subspace solver
implemented on a GPU. The algorithm is then tested in EM forward and adjoint calculations, with real-world
three-dimensional numerical examples. Test results show promising 30× kernel-level speed-ups over the con-
ventional CPU algorithm. This approach may further take the complex frequency domain EM inversions onto the
next, practical stage on small affordable GPU platforms.

1. Introduction

The Curl-Curl equations define the core underlying physics of most
frequency-domain electromagnetic (EM) geophysical problems,
including magnetotellurics (MT) and controlled source electromagnetics
(CSEM). Accurate and rapid solution of these equations is therefore the
key to practical EM simulations and inversions, especially in complex
three-dimensional (3D) cases. The Curl-Curl equations are commonly
discretized with finite element or finite difference approximations
leading to large sparse linear systems, which need to be solved effi-
ciently in forward and adjoint calculations.

It is well known that most basic operations required for solving large
sparse linear systems, like matrix-vector multiplication or scaled vector
addition, are memory bandwidth-bound (e.g., Boland and Con-
stantinides, 2011). In other words, the efficiency of those computations
in EM forward/inversion problems is not limited by the number of

floating-point operations per second (FLOPS) of the computer central
processing unit (CPU), but by the speed of data throughput of the
computer memory. Previous studies have indicated that a few CPU cores
in the computation may be enough to saturate the memory bandwidth,
so using more physical CPU cores may only achieve marginal speed-up
(Rogers et al., 2009). While modern computation nodes may contain 48
to 128 physical CPU cores, the memory bus between the shared memory
and the CPU are normally limited to 4–16 channels, which restricts the
total memory throughput of the machine. This is sometimes referred as
the “bandwidth wall” or “memory wall” (Rogers et al., 2009). Upon
reaching this wall, concurrent accesses from multiple CPU cores must
compete for the limited memory bandwidth, resulting in the deteriora-
tion of per-core performance when running bandwidth-bound tasks.

As such, the performance of the overall memory throughput for CPU
platforms can only be effectively extended by adding more inter-
connected shared-memory machines. Modern supercomputers and

* Corresponding author.
E-mail address: donghao@cugb.edu.cn (H. Dong).

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

https://doi.org/10.1016/j.cageo.2024.105518
Received 19 September 2023; Received in revised form 7 December 2023; Accepted 3 January 2024

mailto:donghao@cugb.edu.cn
www.sciencedirect.com/science/journal/00983004
https://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2024.105518
https://doi.org/10.1016/j.cageo.2024.105518
https://doi.org/10.1016/j.cageo.2024.105518

Computers and Geosciences 184 (2024) 105518

2

clusters may consist of tens to hundreds of computational nodes, which
is costly in both financial and ecological terms. Alternatively, graphic
processing units (GPUs) have become an inexpensive solution to offer
high memory throughput (Owens et al., 2007) for partial differential
equation (PDE) problems. Modern professional GPUs can provide
memory bandwidth up to a few terabytes per second, which is compa-
rable to that of several conventional high performance CPU nodes.
Machines equipped with GPUs may therefore become potential plat-
forms for large-scale scientific computation problems, including 3D EM
modeling.

Indeed, numerical computations using GPUs have become increas-
ingly important in scientific high-performance computation and ma-
chine learning studies (Mudigere et al., 2022; Wang et al., 2021).
Specifically, GPU accelerations have long played an essential role in
large-scale geophysical computations, such as the seismic reverse time
migration (e.g., Foltinek et al., 2009), full wave inversion (Yang et al.,
2015) and 3D gravity inversion (Shangbin Liu et al., 2022). In EM
geophysics, Xiao and Liu (2015) proposed a GPU-based Gaussian elim-
ination method to solve the forward and sensitivity problems in
two-dimensional (2D) MT Occam inversion. GPUs are also successfully
utilized to accelerate the direct solution in 3D transient EM simulations
(Sheng Liu et al., 2022) and magnetotellurics (Varılsüha, 2020). How-
ever, the acceleration of GPUs in real-world 3D electromagnetic in-
versions has not been extensively discussed, probably due to the scale of
the problem and the representation of frequency domain EM governing
equations in complex form.

In this article, we introduce a hybrid CPU-GPU approach for the EM
forward/adjoint problem, based upon the divergence-free formulation
of the Curl-Curl equations (Dong and Egbert, 2019). We use the
Compute Unified Device Architecture (CUDA) to implement a
GPU-based mixed-precision algorithm to efficiently solve the regular-
ized Curl-Curl equations arising from the magnetotellurics and
controlled-source problems. To overcome the effects of the CPU over-
heads, we also design a non-preemptive scheduling scheme to reduce the
GPU wait phase, which helps to speed up the parallel calculation. To
manage the computational resources with multiple CPUs and GPUs, we
implement a hybrid approach with a two-layered Message Passing
Interface (MPI, Gropp and Lusk, 1994) parallel inversion framework.
Finally, through 3D numerical examples from real-world cases, we
demonstrate the substantial efficiency enhancement that our new
approach may add to complex EM problems on small-scale GPU
platforms.

2. Divergence-free curl-curl equations

For most frequency-domain EM problems like MT and CSEM, the
time-harmonic Maxwell’s equations can be expressed as:

∇× E = −iωμH
∇× H = iωεE + J + Jext (1)

where E and H are the electric and magnetic fields, ω is angular fre-
quency, ε is the electric permittivity of the model domain, μ is the
permeability. J = σE denotes the electric conduction currents in the
domain, where σ is the electrical conductivity. And Jext stands for the
external current forcing. Equation (1) in the quasi-static approximation
(displacement currents are negligible) can be reduced to a second-order
Curl-Curl problem based on electric fields:

∇×∇× E + iωμσE = Jext. (2)

However, when the angular frequency ω in the second term of Eq. (2)
is small (i.e., at longer periods) or σ vanishes (in the air), any field from
any electrical potential φ (Ep = ∇φ, which is annihilated by the Curl-
Curl operator) can be added to the actual solution. These spurious
modes (Jiang et al., 1996) can result in inaccurate solutions and slow
convergence of iterative solvers. To suppress the spurious modes,

divergence-free conditions have been commonly used in EM geophysical
modelling and inversion codes to improve the efficiency and accuracy of
numerical solutions, with the “divergence correction” method (Mackie
et al., 1994; Smith, 1996) or with augmented unknowns like magnet-
ic/electrical potentials (Schwarzbach, 2009; Weiss, 2013) most com-
mon. An alternative approach is to impose the divergence condition on
current density

∇ ⋅ J = 0, (3)

by essentially adding this constraint to the Curl-Curl equation. First
introduced by Weiland (1985), a gradient-divergence (Grad-Div) term
can be applied by taking the gradient of Eq. (3) and adding it to Eq. (2)
(with appropriate scaling). This yields an equation which simulta-
neously enforces the Curl-Curl equations and the divergence condition
(hereby referred to as CCGD formulation, i.e., Curl–Curl equations
modified by Grad-Div operator). Dong and Egbert (2019) showed that
the specific form

∇×∇× E −∇σ−1(∇ ⋅ σE) + iωμσE = Jext (4)

can efficiently deflate the null-space of the curl operator, ensure a
unique solution, and accelerate convergence of iterative solvers (also
refer to Mackie and Watts, 2012; Weaver et al., 1999).

In MT, the source is commonly provided on the boundaries of the
computational domain, e.g., obtained through a series of 2D forward
problems (as in Siripunvaraporn and Egbert, 2009). For the CSEM
problem in the frequency domain, sources are internal to the domain
and are usually treated with a secondary field formulation (e.g., Wait,
1982; Zhdanov and Keller, 1994). In all cases the modified forward
modeling problem in Eq. (4) can be discretized with a staggered grid
finite difference formulation as:

Ax= b, (5)

and solved numerically (Sadiku, 2000). Here A is the sparse matrix, x
is the solution vector, while b is the right-hand side vector (RHS).
Similarly, the sensitivity information required in the inversion can be
obtained with “adjoint” solutions, using essentially the same set of
equations, but with an appropriately modified right-hand side. Refer to
section 3 in Dong and Egbert (2019) for details.

The linear system (Eq. (5)) arising from the Curl-Curl problem is
often solved using a Krylov Subspace (KSP) or direct solver (DS; lower
and upper triangular (LU) decomposition and Gaussian elimination)
method. The solution can then be used to calculate the transfer functions
to be used in the evaluation of inversion objective functions. The full LU
factorization required by the direct solvers mostly utilizes the super-
nodal strategy (Rothberg and Gupta, 1990), which ends up requiring
(potentially large) direct factorizations of dense matrices at the end of
the computation. As such, the efficiency of the direct solvers is not
memory bandwidth-bound and may utilize more CPUs than iterative
methods (Kordy et al., 2016; Yang et al., 2017).

However, the time and computational resource costs of the DS
approach can be orders of magnitudes higher than the iterative KSP
methods, requiring specialized large scale computational infrastructure.
As such, the KSP method is often preferred in large scale 3D computa-
tional geophysics problems (Mackie et al., 2001; Newman, 2014). The
conventional divergence correction method periodically restarts the
main iteration, which resets the Krylov subspaces and lowers the effi-
ciency of the KSP iterations (Dong and Egbert, 2019). On the other hand,
the divergence-free regularization formulation (Eq. (4)) does not require
the interruption of the Curl-Curl iterations, leading to a better conver-
gence rate. In the following sections, we will discuss implementation of a
solver for the CCGD problem formulation on GPUs in detail.

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

3

3. Hybrid CPU-GPU implementations

3.1. Workflow for hybrid forward/adjoint calculations

The hybrid CPU-GPU algorithm to solve the Curl-Curl equations is
based upon the conventional CPU version of the CCGD formulation, as in
the sparse matrix branch of ModEM (Dong and Egbert, 2019). The
program is coded in the Fortran 95 language, which expands the
modular framework of the original ModEM software (Kelbert et al.,
2014). As with the CPU implementations, the forward/adjoint calcula-
tions for time-harmonic problems involve several essential operations or
steps (Fig. 1), namely.

1) Assembly/update of the system matrix,
2) Source/boundary conditions to define the right-hand side,
3) Setup of the preconditioning matrices,
4) Solution of the linear system,
5) Calculation of the transfer functions (TFs) from electric field

solutions.

With conventional CPU-based algorithms, the solution of the sparse
linear system arising from the discrete Curl-Curl equations (step 4) is by
far the most computationally intensive component, typically repre-
senting more than 95% of the total run time. Accelerating this part of the
calculations is thus critical to improving efficiency. As the rest of the
operations take up less than 5% of the total time consumption, they are
referred as solver “overheads” in the rest of the paper.

The assembly of the CCGD matrix (step 1) requires the building of the
basic curl, divergence, and gradient operators to form the Curl-Curl and
Grad-Div components in Eq. (4). Additionally, the diagonal matrix term
iωμσE also need to be formed to construct the final system matrix. For
each given system of equations (different for each frequency), the pre-
conditioning matrices also needs to be formed, through the incomplete
LU (ILU) decomposition (step 3).

The preparation of the RHS (step 2) involves the calculations of the
sources (either external for controlled source problems, or reciprocal for
adjoint calculations) and boundary values. After the solution of the
system equations, the curl operator is applied to the discrete electric
fields to compute the magnetic fields. The computed E and H fields are
then used to calculate the transfer functions (step 5), which are required

for the evaluation of the misfit and computing the gradient of the
objective function in an inversion.

Steps 1 and 3 only need to be performed once in a given forward/
adjoint problem. The system and decomposed ILU matrices can be stored
in the memory for the entire solution procedure. They are only partially
updated when the model resistivity and response period changes in an
inversion. The calculations for the RHS and TFs also need to be calcu-
lated just once for each forward solution. Considering the time con-
sumption of these “overhead” operations compared with the iterative
solution of the system, we find that only marginal gains in efficiency
could be achieved by implementing these steps with GPUs. Furthermore,
all of these other steps involve a great deal of complex computer code, so
that conversion would represent a major programming effort. Thus,
steps 1, 2, 3, and 5 are kept on the CPU side. As we will demonstrate in
the numerical experiments section, keeping these operations on (mul-
tiple) CPUs can also help distribute the effects of the time consumption
of overheads onto multiple processes.

To summarize, in our hybrid CPU-GPU approach, only the solution of
the linear system will be conducted on GPUs, whereas all other opera-
tions are performed by CPUs. Therefore, before the GPU phase, the
system and preconditioning matrices, as well as the RHS vectors need to
be copied to the GPUs; after the solution is obtained, the calculated fields
are copied back to the CPU side for the following calculation of TFs.
Later in this section we will primarily focus on the details of the
implementation for the GPU phase.

3.2. Solution of the linear system

Among the KSP methods, the Quasi-Minimal Residual (QMR)
method is widely used in the forward and adjoint calculations in EM
inversions (e.g., Kelbert et al., 2014; Siripunvaraporn and Egbert, 2009).
However, as QMR is based on the non-symmetric Lanczos process (Chan
et al., 1998), it requires two matrix-vector products per iteration (Ax and
ATx). The CCGD formulation of the system (Eq. (5)) is no longer sym-
metric (Dong and Egbert, 2019), leading to extra storage/computation
costs associated with the transpose of A in ATx operation. As such, KSP
variants that do not require the ATx operation in the iterations (e.g.,
Transpose-Free QMR or Bi-Conjugate Gradient, BiCG) are preferred in
this case (Freund, 1993). In this study, we use a preconditioned version

Fig. 1. Flowchart for the major operations in the Hybrid CPU-GPU algorithm for Curl-Curl equations. The red box indicates the GPU phase, whereas the other
calculations are done on CPUs. CPU: central processing unit; GPU: graphical processing unit; ILU: incomplete uower and upper triangular matrix; RHS: right-hand
side; CCGD: Curl–Curl equations modified by Grad-Div operator; BiCG: bi-conjugate gradient; TFQMR: transpose-free quasi minimal residual; 1D: one-dimensional;
2D: two-dimensional.

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

4

of the BiCG (van der Vorst, 1993) for the GPU implementation. The
pseudo code (for both CPU and GPU) is shown as follows:

Algorithm 3.1. Preconditioned Bi-Conjugate Gradient Method

As shown in the above algorithm, the initial phase (a) of BiCG in-
volves one sparse matrix-vector multiplication of Ax (referred here as
sparse matrix-vector multiply (SpMV)) and one reduction operation of
norm(r). However, as a typical BiCG solution normally takes tens to a
few hundreds of iterations, the time consumption of the initial phase can
normally be ignored. The second phase (b) involves two SpMVs and five
parallel reduction operations (dot product and two-norm) in a single

BiCG iteration. It should also be noted that the ILU preconditioning
scheme results in two triangular sparse matrices (L/U). In that case, the
first preconditioning procedure in b-3 becomes:

Algorithm 3.2. two-step preconditioning with L/U matrices

which involves two sparse matrix triangular solution (SpSV) opera-
tions per preconditioning operation. Likewise, the second pre-
conditioning also turns into two SpSVs. As such, the most computation-
intensive operations in a single BiCG iteration reside in the four SpSVs,
two SpMVs and five reduction operations. We thus focus on the GPU
implementation of these basic operations to improve the efficiency of

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

5

the solution.

3.3. Implementation of the GPU solver

As in our CPU algorithm, the GPU implementation utilizes the
Compressed Sparse Row (CSR) format to efficiently store sparse matrices
like A and L/U in GPU memory. In this study, the solution of the system
of equations is carried out through a CUDA implementation of the BiCG
solver. The CUDA platform was originally developed by NVIDIA Cor-
poration to support general computation tasks on its line of graphics
cards. After years of developments, it has gradually become one of the
most important GPU programming frameworks that allow the use of
GPUs for highly parallel scientific computational tasks (e.g., Pandey
et al., 2022). The native CUDA instructions are an extension of the
C/C++ computer language (CUDA-C), where the basic parallel func-
tions (e.g. the scaled vector addition operation, commonly referred as
axpy) need to be written as individual “kernels” to work on heteroge-
neous GPU infrastructures.

Writing efficient GPU kernels is a non-trivial task. Consider the
matrix-vector multiplication operation SpMV as an example. In the
kernel function, parallel threads should be organized into multiple
blocks, where each block is in charge of the multiplication of a number
of rows. Each row is then assigned to a group of threads for paralleli-
zation (McCourt et al., 2015). Because the sparse matrix arising from the
finite difference discretization of Curl-Curl equations contains no more
than 13 non-zero elements in each row, it is relatively easy to balance
the workload among the threads. However, for maximum efficiency, the
kernel should make sure the memory is aligned with threads assigned on
different rows for “coalescing” (i.e., to ensure that the address for the
memory accessed by different threads is continuous; refer to e.g., Bell
and Garland, 2009 for details).

The CUDA libraries, like the cuBLAS and cuSPARSE, provide most
basic building blocks for GPU kernels for linear algebra and sparse
matrix operations, reducing the need for user written kernel functions.
For example, the sparse matrix-vector multiply can be performed by
calling the cusparseSpMV function, while the complex axpy operation
can be realized by the cublasZaxpy function. However, the CUDA li-
braries still lack some basic kernels for the efficient implementation of
the BiCG solver. In this study, we exploit the Fortran-C interoperability
to develop a handful of custom CUDA-C kernels for operations like the
conversions of precision (double to single precision, and vice versa), the
Hadamard product (◦) for vectors, or the quaternary scaled vector
addition (axpby).

As each GPU card has its own memory, which is not directly
addressable by the CPU, the computation on GPUs would naturally
involve the communications between the two. The CPU and its attached
memory are commonly referred as the Host, while the GPU side is

referred as the Device. As the communication speed from or to the Device
through the PCIe bus (64 GB/s for PCIe 4.0) can be magnitudes slower
than the Device memory access (~1000 GB/s for GDDR6x GPU memory),
it is preferable to minimize the host-device communication and let the
GPU handle most memory manipulations. As such, we only use the
communication to copy necessary matrices and vectors to the Device,
and then to copy the calculated solution back to the Host after KSP it-
erations are completed. This communication uses the cudaMemCpy
function in both directions.

To validate the efficiency of our new GPU BiCG solver, a forward
modeling comparison was performed with a GPU workstation featuring
a single hex-core Intel® Xeon W2133 CPU with four channels of DDR4
2400 memory (76.8 GB/s bandwidth). The GPU is a consumer-grade
NVIDIA® RTX 3080Ti graphic card, which features 80 stream multi-
processors and 912 GB/s memory bandwidth. The source codes are
compiled with the gfortran compiler from the gcc 9.1 package, with the
CUDA 11.4 platform.

We use the 3D inverse model of the Cascadia region, USA (Patro and
Egbert, 2008) to conduct the forward modeling experiments. Note that
this model and related transfer function files can be found as part of the
test dataset included with the publicly available ModEM software
package (Kelbert et al., 2014). The entire model domain has the
dimension of 1460 × 1590 × 550 km, with 78 × 80 × 44 discrete mesh
cells. The discretized linear equations have about 0.8 million unknowns
(DoFs). The forward calculations are performed at 10 periods from
11.64 to 18724.6 s. For both the CPU and GPU algorithms, the tests are
conducted with a single CPU core, with the terminating criterion of the
BiCG iterations set to 10−10 for the relative residual. The calculations for
both the CPU and GPU were performed in double precision to ensure the
accuracy of the solution.

Fig. 2 shows the comparison of the time consumption for the Cas-
cadia forward calculation with our new GPU algorithm, relative to the
CPU algorithm described in Dong and Egbert (2019). The wall-time is
calculated using results averaged from three runs for two polarizations
(XY/YX). Both the GPU and CPU results show a general trend of the
increasing wall-time as the data periods become longer, which is due to
weakening of the divergence constraint as the angular frequency ω
vanishes. On the other hand, it is apparent that the computation time of
the GPU solver is substantially reduced from about tens of seconds to
~1.4 s, when compared with the CPU counterpart. This translates into a
speed-up of about 20× (Fig. 2). On the other hand, the time consump-
tion of the overheads (e.g., the assembly of the system matrix, calcula-
tion of boundary conditions) remains similar for the two. This is
reasonable as the overhead operations are conducted on CPUs only for
both approaches. As the time consumption of an EM inversion is
commonly dominated by the forward/adjoint calculations, our new
hybrid CPU-GPU implementation has the potential to accelerate the

Fig. 2. Comparison on the Cascadia forward test performance for CPU and GPU solvers at different periods. CPU: central processing unit; GPU: graphical pro-
cessing unit.

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

6

inversions.
Although the performance of the new GPU solver is encouraging, it

can be observed that the GPU solution may not have identical results to
the CPU counterpart. This is due to the nature of fine-grain parallel
mechanisms in GPUs. Taking the GPU matrix-vector multiplication as an
example, the dot product between a matrix row and the vector may be
calculated in parallel. In this case, the point-by-point products of the
corresponding elements are performed on different threads before those
products are accumulated to form an element of the resulting vector.
However, the order of this accumulation is likely to be different for each
run due to the asynchronous execution of the threads in parallel. As
such, different sequences of the summation may lead to non-
deterministic results because the floating-point arithmetic may not
follow the law of associativity (e.g., Bell and Garland, 2009).

In light of this, we compare the solutions from our GPU and CPU
solvers to demonstrate the possible divergence. As shown in Fig. 3c, the
calculated Cascadia surface electric field differences from the CPU and
GPU solvers are merely within a fraction of nanovolt per meter, which
translates into a tiny relative difference of order 5× 10−9. Hence, we
believe that the forward results from our new hybrid CPU-GPU approach
are effectively identical to that from the traditional CPU-only ones.

4. Mixed precision considerations

With the promising results shown in the previous section, we
consider improvements of the basic GPU algorithms to further accelerate
EM forward modelling. One popular idea to accelerate the numerical
PDE computations is the so-called mixed precision method (Higham and
Mary, 2022). The method involves replacing double-precision (FP64)
operations with single-precision (FP32) ones or even lower precision

counterparts (e.g., FP16) in some stages of the calculation (Carson and
Higham, 2018). It may lead to higher performance due to the reduction
of total memory manipulations in the calculations.

Moreover, while professional GPUs fully support double-precision
calculations, in consumer-grade GPUs most processing units are
single-precision. This directly leads to a higher peak performance for
single precision operations than double precision ones, which also

Fig. 3. A comparison on the surface electrical solutions (Ex) in the central part of the Cascadia model with XY polarization at a period of 102.4 s from (a) the CPU
solver (Dong and Egbert, 2019) and (b) the GPU solver (this study). Panel (c) shows the solution difference of a–b. CPU: central processing unit; GPU: graphical
processing unit; DIFF: differences.

Fig. 4. Comparison of mixed and double precision GPU solver performance for
an averaged single BiCG iteration with XY polarization at the period of 18724.6
s in the Cascadia forward calculation. DP: double precision; MIXED: mixed
precision; GPU: graphical processing unit; BiCG: bi-conjugate gradient; SpMV:
sparse matrix-vector multiply; SpSV: sparse matrix triangular solution.

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

7

favors mixed-precision methods for consumer-grade GPUs.
However, replacing the FP64 calculations with FP32/16 counter-

parts may naturally lead to loss of solution precision due to increased
truncation error. This may result in slow or no convergence in iterative
solvers. On the other hand, in preconditioned KSP methods, as the
preconditioning matrix P only needs to approximate the system equa-
tion operator A, this can be stored and applied in reduced precision
without sacrificing too much on the convergence rate. Following the
idea of mixed-precision preconditioning proposed by Carson et al.
(2022), we only perform the four SpSV operations in single precision but
keep all other calculations in double precision. This involves the con-
version of the L/U matrices to single precision on the Device. Also, the
relevant vectors stored on the Device need to be converted to single
precision before the preconditioning step (and back to double after the
step). Taking the first preconditioning step as an example, the step b-3)
in Algorithm 3.2 now becomes:

Algorithm 4.1. Mixed precision modification for preconditioning

where the subscript of “32” denotes the vectors with reduced pre-
cision (FP32). The second preconditioning step needs to be modified in a
similar manner. To better demonstrate the performance of mixed pre-
cision approach, we first evaluate the average time consumption of the
various basic operations in a single iteration of BiCG. We adopt the same
forward modelling test from Cascadia as in the previous session, using
the same GPU platform and parameters. The tolerances for forward
calculations are again set as 10−10 for the test.

Fig. 4 shows the average time comparison of the different operations
in a single iteration of BiCG at the period of 18724.6 s (XY polarization).
As can be expected, the time for basic SpMV and “other” operations
(mostly parallel reductions) remains mostly unchanged for the double
and mixed precision method. However, the time consumption of the four
SpSV operations with mixed precision solver is reduced to roughly half
of the double precision counterpart. As the SpSVs can take about 50% of
the total computation time in double precision cases, the introduction of

Fig. 5. Comparison on the Cascadia forward test (a) iterations and (b) speed-up times for double precision and mixed precision GPU solvers. DP: double precision;
MIXED: mixed precision; GPU: graphical processing unit.

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

8

mixed precision preconditioning can lead to an overall speed-up to
1.30–1.45×, which is quite favorable, considering the relatively simple
implementation of the method.

To fully assess the effect of the mixed precision approach on effi-
ciency, we must also consider possible effects of reduced precision on
convergence rate of the KSP solver. As shown in Fig. 5a, the mixed
precision solver generally does require a slightly larger number of iter-
ations (<10%) to converge, compared with the fully double precision
GPU solver. However, the mixed precision approach still maintains an
overall 20–30% speed-up advantage over the double precision GPU
solver. We conclude that the mixed precision BiCG implementation on
GPU is even more efficient than the double precision approach described
in the previous session, achieving roughly 30× speed-ups in EM forward
computations when compared with conventional CPU-only algorithms
(Fig. 5b).

On the other hand, there are concerns that the precision truncation in

the mixed precision approach may affect the accuracy of the EM solution
computed (Lindquist et al., 2022). We therefore also collate the field
solutions from our mixed precision and double precision GPU solvers
(Fig. 6). Similar to the results in the previous section, we show that the
deviations from the full precision results are also negligible (<0.5 nV per
meter).

It is nonetheless worth noting that, with the high efficiency and ac-
curacy of the mixed precision GPU algorithm, the time consumption of
the solver phase can be close to, or even less than that of the CPU
overheads. The speed-up of the entire forward calculation for the hybrid
CPU-GPU approach is only about 15× if the overheads are included.
Apparently, the effect of the CPU overhead on the overall efficiency may
depend on the performance difference between the CPU and GPU in a
certain machine setup. However, it is not yet clear whether the time
consumption of the overhead would remain a constant level or grow
with the scale of the problem.

As such, we perform a series of forward tests to evaluate the effect of
the overhead and the scaling performance of our mixed precision
approach. To generate systems with different degree of freedoms (DoFs),
we take the Cascadia forward model described above and refine the
mesh, while keeping the geometry of the original resistivity structure. As
shown in Table 1, in addition to the original forward model (Cascad 1),
four forward setups are tested with increased mesh size and DoFs
(Cascad 2–16). With the mesh size increasing from 80 × 78 × 44 to 200
× 195 × 94, the DoF of the system equations also grows by almost a
factor of 15 (0.8 million to 11.8 million). The performance of our new
hybrid algorithm scales well even for a relatively large system size (200
× 195 × 94), taking only 50.68 s for the GPU solution. It is also notable
that the GPU memory consumption for the largest mesh size is less than
8 GB, which is easily manageable, even for consumer-grade graphic

Fig. 6. A comparison on the surface electrical solutions (Ex) in the central part of the Cascadia model with XY polarization at a period of 102.4 s from (a) the double
precision approach and (b) the mixed precision approach. Panel (c) shows the solution difference of a–b. DP: double precision; MIXED: mixed precision; DIFF:
differences.

Table 1
Scaling test for the Cascadia forward problem with the mixed precision CPU-
GPU algorithm. CPU: central processing unit; GPU: graphical processing unit;
DoFs: degrees of freedom.

Test Case Mesh Size DoFs Average
GPU
Solution
Time (s)

Average
CPU
Overhead
Time (s)

GPU Memory
Consumption
(MB)

Cascad 1 80x78x44 797498 0.906 1.406 966
Cascad 2 99x97x54 1515562 2.115 2.960 1405
Cascad 4 125x122x65 2911452 5.586 7.019 2363
Cascad 8 158x154x87 6248099 16.335 20.831 4409
Cascad 16 200x195x94 11750749 50.683 63.903 7746

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

9

cards. On the other hand, the average time for CPU overhead remains a
similar ratio (~1.3 - 1.5×), over that of the GPU solution for the Cas-
cadia test cases. Indeed, the effect of the overhead on the hybrid algo-
rithm persists as the system scale grows. This needs to be carefully dealt
with, as discussed in the next section.

5. Hybrid CPU-GPU parallel inversion framework

As shown by the numerical examples in the previous section, our new
hybrid CPU-GPU approach can substantially reduce the solution time
compared with conventional CPU solvers. However, according to
Amdahl’s law (Gustafson, 1988), the real-world speed-up of a parallel
program will be limited by the portion of sequential computational
tasks. In a similar sense, with the efficiency of the GPU solver increasing,
the overall speed-up of our new algorithm will ultimately be determined
by the time consumption of the CPU overheads (Fig. 2). The overall
speed-up cannot exceed the threshold of:
(
Tsol cpu + Toverheads

) /
Toverheads, (5)

where the Tsol_cpu is the solver time in the CPU approach and the Toverheads
is the time used in the CPU overhead operations described in Section 3.

In other words, even if the linear system can be solved by the GPU solver
in an instant (zero time), it is impossible to further increase the speed-
up, unless Toverheads can be reduced. Although improvement on the ef-
ficiency of the overhead phases on the CPU is beyond the scope of the
current study, some general discussion is appropriate.

First, let us focus on the scheduling scheme of the CPU and GPU
phases in the hybrid approach. As introduced in Section 3.1, the five
steps of the forward/adjoint calculations are strictly sequential. Specif-
ically, the next step or operation cannot proceed until the previous one is
finished. In the case of a computation platform that consists of one GPU
and one CPU (or CPU core), the GPU phase has to wait until the CPU
finishes steps 1–3, and then the CPU waits while the system of equations
is solved by the GPU in step 4 (Fig. 7a). In this scheme, the independent
forward/adjoint tasks (from different periods or transmitters) are car-
ried out in sequence. Note that in the previous section we have shown
that the actual GPU solve time may be comparable, or even less than the
CPU phase (overheads). This may lead to an awkward situation, with the
GPU device idly waiting for the CPU for a large fraction of the total time
in the computation (Fig. 7a).

Apparently, the efficiency of the hybrid algorithm can be improved if
the “waiting” phase of GPUs in Fig. 7 can be minimized. To this end, we

Fig. 7. Schematic diagram for scheduling methods to suppress the effect of overheads for the hybrid CPU-GPU computation algorithm, with (a) 1 CPU core + 1 GPU
and (b) 3 CPU cores + 1 GPU. Note the length of the colored time slots displayed here is purely demonstrational. CPU: central processing unit; GPU: graphical
processing unit.

Fig. 8. Two-layered parallelization framework for the hybrid CPU-GPU computation for electromagnetic inversions. CPU: central processing unit; GPU: graphical
processing unit.

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

10

develop a non-preemptive scheduling scheme to leverage the resource of
multiple CPUs to perform the overhead calculations for a single GPU.
Fig. 7b illustrates an example with 3 CPUs and 1 GPU – in this case, 3
CPUs (or CPU cores) work in parallel to calculate the overheads for 3
independent forward tasks. The assembled matrices and RHS vectors for
different tasks are then fed to the GPU in turn, which keeps the GPU from
waiting for CPU overheads. As a typical EM inversion commonly in-
volves tens to hundreds of independent tasks (i.e., forward and adjoint
calculations), this scheduling scheme can efficiently mitigate the effect
of the overheads by conducting those tasks in parallel. Because modern
GPU platforms normally have only a few independent GPU cards but
many times more CPU cores, it is also plausible to deploy the scheme by
dividing the computational resources into several “groups”, with each
group consisting of several CPU cores and a single GPU.

To implement the aforementioned parallel scheduling scheme, we
use a novel two-layered parallel structure to manage the heterogenous
computational resource (Fig. 8). We first divide the computer resources
into a few “worker groups,” with one GPU and multiple CPU threads in a
certain group. For the first layer of parallelization, the communications
are realized with the MPI to send task batches to each group “Leader”
and collect computed results for the Master.

For the second layer, we exploit the MPI 2.0 feature of MPI groups to
let multiple CPUs (or CPU cores) calculate the overheads for individual
tasks before feeding the assembled matrices/vectors to the GPU in the
group. Those processes (or “workers”) can share a memory pool,
allowing some common data structures (e.g., grid/mesh data, basic grad
or curl operators) to be efficiently stored and shared among the pro-
cessors in a certain group, which reduces the overall memory con-
sumption. The leader then collects and packs the task result upon
completion of the calculation and initializes the collective communica-
tion for the harvest of results.

In this case, the conventional single-layer ModEM parallel structure
can be best re-used without making fundamental changes to the tested
utility routines for the distribution of model/data, the initialization/
termination of tasks, or the management of job queues. The modular
methods involved with the inversion operations, like the gradient
evaluation and line search procedures, can also be maintained as in
Egbert and Kelbert (2012), for ease of implementation. In the following
section we will demonstrate the real-world performance of our new
hybrid CPU-GPU inversion framework using MT test cases.

6. Real-world EM inversion experiments

In this part we perform the tests on the hybrid CPU-GPU parallel

inversion framework using the 3D MT data from the central part of the
Tibetan Plateau (Dong et al., 2020). The inversion dataset consists of
231 MT stations. MT and geomagnetic transfer functions at 26 periods
from 0.1 to 10,000 s were inverted in the experiments. The inversion
model mesh comprises 90 × 85 × 80 discrete cells (including padding
and air layers), with ~1.8 million DoFs in the formulated system of
equations. In order to directly compare the performance of the
CPU/GPU solvers, the inversion algorithm for all the tests is set to
Nonlinear Conjugate Gradient (NLCG) as described in Kelbert et al.
(2014). The relative residual tolerance of the BiCG iterations is set to
10−8 for both the forward and the adjoint systems.

For the GPU inversion tests, we use the same workstation platform as
for the forward test in the previous sections. For the comparison of
conventional algorithm in a CPU-only setup, we use a four-node cluster
“FST”, with dual 14-core Intel® Xeon E5-2680v4 CPUs with eight
channels of DDR4 2400 memory (153.6 GB/s bandwidth) in each
computation node. We use only 13 cores from each node to avoid
memory bandwidth saturation, which results in 52 cores and 614.4 GB/s
memory bandwidth when all four computational nodes are used. The
CPU-only codes are compiled with gfortran from the gcc 9.1 package, as
with the GPU counterpart. We use the openMPI 4.1.4 library for the
parallel communication implementation for both the CPU and hybrid
versions.

We start the experiments by setting up the baseline performance of
the inversion using 13 physical CPU cores from one computation node.
We initialize the inversion from a starting model of a 100-Ωm homo-
geneous half space and use a termination condition of 100 iterations to
avoid prolonged calculations. As each NLCG (Nonlinear Conjugate
Gradient) inversion requires two forward and one adjoint calculation,
this translates into 200 forward and 100 adjoint calculations in total,
which take 4788.82 min (~80 h) to finish (Fig. 9). The wall-time of the
inversion reduces to 2790.21 and 1650.3 min when using 26 and 52 CPU
cores, from two and four computation nodes in parallel, respectively,
showing a good strong-scaling effect. Of note, the ModEM parallel
structure needs an extra “master” process to do basic input/output (I/O)
and message passing tasks, which means 14, 27 and 53 physical cores
are actually used in the above setups.

For the hybrid CPU-GPU framework, we first test the basic perfor-
mance without the non-preemptive scheduling scheme. In other words,
only one CPU core is used to prepare the system matrices and vectors for
one single GPU, as illustrated in Fig. 7a. The test inversion takes
3102.79 min (~52 h) to reach 100 iterations (Fig. 9). This already
achieves an 1.54× speed-up over the CPU-only setup with 13 physical
cores. However, we need to consider the influence of the CPU overheads

Fig. 9. Comparison of computation time with various parallel CPU and GPU set-ups. Note the result from the one-node CPU-only setup (13 cores) is set as the
baseline (1×). CPU: central processing unit; GPU: graphical processing unit.

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

11

on the final performance. As pointed out in the previous section, larger
CPU overhead is directly related to longer “wait” or idle phase of the
GPU, which in turn leads to lower computational efficiency.

We therefore compare the overall activity of the GPU in one single
NLCG iteration to demonstrate the real-world effect of the CPU over-
heads (Fig. 10). However, in the ~1520 s wall-time of one NLCG iter-
ation, the GPU is only active (when solving the system) for 407 s, which
means the GPU is idly waiting for the CPU overheads for about 3/4 of the
total computation time! This also explains why the GPU inversion test
without the scheduling algorithm results in a far from the optimal speed-
up. We further test our CPU-GPU scheduling scheme to utilize two, three
and four CPU cores to feed the independent computational tasks to the
GPU in parallel. It is observed that the total GPU wait or “idle” time is
greatly reduced from about 1112 s (1 GPU + 1 CPU core) to only ~185 s
(1 GPU + 4 CPU cores), while the GPU active working time remains at a
similar level (about 405s) for different scheduling setups (Fig. 10).

Indeed, because the total amount of forward/adjoint calculation is
the same for all the inversion tests, the active GPU time should be similar
as all the computations are eventually done sequentially on the same
GPU. We show that our scheduling scheme (Fig. 7) successfully mitigates
the overhead tasks onto multiple CPU cores, which reduces the GPU wait
time by a factor of four. As a result, the test inversion for the hybrid CPU-
GPU scheme with the “1 GPU +4 CPU cores” setup only takes 1126.52
min to reach 100 iterations, gaining a 4.25× speed-up over the 13-core
CPU-only setup (Fig. 9). Our new approach utilizing a single GPU can
even outperforms the four-node, 52-core CPU-only setup with a speed-
up of 1.45×, which demonstrates that our new hybrid method has the
potential to greatly improve the efficiency of real-world EM inversions.

7. Discussion and conclusions

In this study we present a mixed-precision GPU accelerated method
for solving the divergence-free Curl-Curl equations, based on the pre-
viously proposed algorithm on CPUs. The new method is implemented
with a hybrid CPU-GPU EM inversion framework in the ModEM package
and tested in a series of real-world forward and inversion experiments.
The efficacy of the new hybrid approach is demonstrated by accurately
solving the divergence-free Curl-Curl equations of the EM forward
modelling problem. A ~30 times speed-up is achieved in the solve phase
of the linear systems from the forward problem when compared with
conventional CPU-only implementations. We also develop a parallel
scheduling algorithm to effectively mitigate the effect of CPU overheads

in the hybrid GPU computation framework. Furthermore, parallel
inversion tests with MT data indicates that efficiency of the new hybrid
CPU-GPU method on a workstation attached with a single consumer-
grade GPU card can already outperform a cluster of four inter-
connected CPU-only nodes.

Despite the fact that our hybrid approach is built on the divergence-
free regularization formulation of the Curl-Curl equations, other ap-
proaches, like the conventional divergence correction method, or
methods with augmented unknown parameters, could also benefit from
the GPU accelerations (e.g., Mackie et al., 1994; Schwarzbach, 2009;
Weiss, 2013). However, this may introduce complexities related to the
implementation of those approaches. For example, the divergence
correction method involves a Poisson-type equation to calculate the
correction of the fields after a certain number of Curl-Curl iterations. The
Poisson solver will have to be nested within the GPU Curl-Curl outer
loops to avoid extra communications between the Host and the Device.

On the other hand, although our hybrid approach can utilize multi-
ple GPUs to conduct a batch of forward/adjoint tasks in parallel, we did
not have the chance to test the performance of multiple GPUs in this
study due to the lack of available devices. The introduction of multi-GPU
computation could help further in extending the strong scalability of the
algorithm. We also have not considered the implementation that in-
volves the use of multiple GPUs on a single, individual computational
task, which can be useful when the modelling problem is so large that
the memory requirements exceed that of a single GPU. Furthermore, we
have not considered more heterogeneous cases and computation plat-
forms (i.e., some computation nodes have GPUs while the others do not).
As the number of elements for the system matrix does not exceed 13 in
each line, the use of formats like ELL or packet (Bell and Garland, 2009)
may be beneficial as memory is easier to coalesce across the GPU threads
for these formats. These issues can be explored in future experiments.

It is also worth mentioning that all the experiments we performed in
the study are done with a consumer-grade GPU (NVIDIA® RTX 3080Ti).
Professional GPUs, which have much greater double-precision capabil-
ities and memory throughputs, would be advantageous for large scale
EM geophysical inversions. On the other hand, new computational ar-
chitectures, like the new many-core processors or fused CPU-GPU sys-
tems can also provide the high memory bandwidth (Jackson et al., 2020;
Mittal and Vetter, 2015), which is potentially beneficial for highly
efficient EM inversions. Further experiments could be performed to
evaluate the efficiency of those platforms.

Fig. 10. Comparison of GPU activity during a NLCG iteration with and without the CPU-GPU scheduling scheme. NLCG: non-linear conjugate gradient; CPU: central
processing unit; GPU: graphical processing unit.

H. Dong et al.

Computers and Geosciences 184 (2024) 105518

12

Code availability section

Modular Electromagnetic Inversion Software (ModEM)
Contact: Gary Egbert, gary.egbert@oregonstate.edu; Tel:541-737-

2947
Hardware requirements: Memory: depends on the problem; CPU: at

least two physical cores; GPU: CUDA compute capability 6.1 or above
Program Language: Fortran, C, makefile
Software required: MPI, LAPACK
Program size: 1.8 MB (binary executive)
The ModEM software and source code are freely available to non-

commercial and academic usage. The new hybrid CPU-GPU ModEM
version can be accessed anonymously at publicly available GitHub
repository:

https://github.com/dong-hao/ModEM-GPU
An overview for the basic routines and modules of ModEM can be

found in Kelbert et al. (2014).

CRediT authorship contribution statement

Hao Dong: Conception of the research, Development of the source
code (Mixed-precision algorithm, GPU kernels), Conduction of the ex-
periments, Writing of the manuscript; Kai Sun: Development of the
source code (GPU kernels), Conduction of the experiments; Gary Egbert:
Development of the source code (Model and Data Operators), Writing of
the manuscript; Anna Kelbert: Development of the source code (Inver-
sion algorithms), Critical feedbacks; Naser Meqbel: Development of the
source code (Parallel infrastructure)

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The datasets used for the forward and inversion tests are freely
available to the public; The forward test data (Cascadia) used in this
study are included as a supplemental example in the ModEM package.
The inverse test data (middle Tibet) can be downloaded from:
https://data.mendeley.com/datasets/svwdw67tfv/2

Acknowledgements

The authors thank Dr. Barry Smith for constructive discussions. The
authors also appreciate the helpful and very detailed comments from
Benjamin Murphy, Brian Shiro, Janet Carter and an anonymous
reviewer. Partial support for H.D. was provided by NSFC grants
4227040447 and 4212100033. Partal support for G.E. was provided by
NSF grant EAR-1948874. Any use of trade, firm, or product names is for
descriptive purposes only and does not imply endorsement by the U.S.
Government.

References

Carson, E., Higham, N.J., 2018. Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput. 40 (2), A817–A847. https://doi.
org/10.1137/17M1140819.

Bell, N., Garland, M., 2009. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis - SC ’09. ACM Press, New
York, New York, USA, p. 1. https://doi.org/10.1145/1654059.1654078.

Boland, D., Constantinides, G.A., 2011. Optimizing memory bandwidth use and
performance for matrix-vector multiplication in iterative methods. ACM Trans.
Reconfigurable Technol. Syst. (TRETS) 4 (3), 22. https://doi.org/10.1145/
2000832.2000834.

Carson, E., Gergelits, T., Yamazaki, I., 2022. Mixed precision s-step Lanczos and
conjugate gradient algorithms. Numer. Lin. Algebra Appl. 29 (3), e2425 https://doi.
org/10.1002/nla.2425.

Chan, T.F., de Pillis, L., van der Vorst, H., 1998. Transpose-free formulations of Lanczos-
type methods for nonsymmetric linear systems. Numeric. Algorithms 17, 51–66.
https://doi.org/10.1023/A:1011637511962.

Dong, H., Egbert, G.D., 2019. Divergence-free solutions to electromagnetic forward and
adjoint problems: a regularization approach. Geophys. J. Int. 216 (2), 906–918.
https://doi.org/10.1093/gji/ggy462.

Dong, H., Wei, W., Jin, S., Ye, G., Jones, A.G., Zhang, L., et al., 2020. Shaping the surface
deformation of central and south Tibetan Plateau: insights from magnetotelluric
array data. J. Geophys. Res. Solid Earth 125 (9). https://doi.org/10.1029/
2019JB019206 e2019JB019206.

Egbert, G.D., Kelbert, A., 2012. Computational recipes for electromagnetic inverse
problems. Geophys. J. Int. 189 (1), 251–267. https://doi.org/10.1111/j.1365-
246X.2011.05347.x.

Foltinek, D., Eaton, D., Mahovsky, J., Moghaddam, P., McGarry, R., 2009. Industrial-
scale reverse time migration on GPU hardware. In: SEG Technical Program
Expanded Abstracts 2009. Society of Exploration Geophysicists, pp. 2789–2793.
https://doi.org/10.1190/1.3255428.

Freund, R.W., 1993. A transpose-free quasi-minimal residual algorithm for non-
Hermitian linear systems. SIAM J. Sci. Comput. 14 (2), 470–482. https://doi.org/
10.1137/0914029.

Gropp, W., Lusk, E., 1994. Implementing MPI: The 1994 MPI implementors’ workshop.
In: Proceedings Scalable Parallel Libraries Conference. IEEE Comput. Soc. Press,
pp. 55–59. https://doi.org/10.1109/SPLC.1994.377005.

Gustafson, J.L., 1988. Reevaluating Amdahl’s law. Commun. ACM 31 (5), 532–533.
https://doi.org/10.1145/42411.42415.

Higham, N.J., Mary, T., 2022. Mixed precision algorithms in numerical linear algebra.
Acta Numer. 31, 347–414. https://doi.org/10.1017/S0962492922000022.

Jackson, A., Weiland, M., Brown, N., Turner, A., Parsons, M., 2020. Investigating
applications on the A64FX. In: 2020 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE Comput. Soc. Press, pp. 549–558. https://doi.org/
10.1109/CLUSTER49012.2020.00078.

Jiang, B., Wu, J., Povinelli, L., 1996. The origin of spurious solutions in computational
electromagnetics. J. Comput. Phys. 123 (125), 104–123. https://doi.org/10.1006/
jcph.1996.0082.

Kelbert, A., Meqbel, N.M., Egbert, G.D., Tandon, K., 2014. ModEM: a modular system for
inversion of electromagnetic geophysical data. Comput. Geosci. 66, 40–53. https://
doi.org/10.1016/j.cageo.2014.01.010.

Kordy, M., Wannamaker, P., Maris, V., Cherkaev, E., Hill, G.J., 2016. 3-dimensional
magnetotelluric inversion including topography using deformed hexahedral edge
finite elements and direct solvers parallelized on symmetric multiprocessor
computers – Part II: Direct data-space inverse solution. Geophys. J. Int. 204 (1),
94–110. https://doi.org/10.1093/gji/ggv411.

Lindquist, N., Luszczek, P., Dongarra, J., 2022. Accelerating restarted GMRES with mixed
precision arithmetic. IEEE Trans. Parallel Distr. Syst. 33 (4), 1027–1037. https://doi.
org/10.1109/TPDS.2021.3090757.

Liu, Shangbin, Chen, C., Sun, H., 2022. Fast 3D transient electromagnetic forward
modeling using BEDS-FDTD and GPU parallelization. Geophysics 87 (5), E359–E375.
https://doi.org/10.1190/geo2021-0596.1.

Liu, Sheng, Jin, S., Chen, Q., 2022. Three-dimensional gravity inversion based on
optimization processing from edge detection. Geodesy Geodynam. 13 (5), 503–524.
https://doi.org/10.1016/j.geog.2022.03.005.

Mackie, R.L., Watts, M.D., 2012. Detectability of 3-D sulphide targets with AFMAG. In:
SEG Technical Program Expanded Abstracts 2012. Society of Exploration
Geophysicists, pp. 1–4. https://doi.org/10.1190/segam2012-1248.1.

Mackie, R.L., Smith, J.T., Madden, T.R., 1994. Three-dimensional electromagnetic
modeling using finite difference equations: the magnetotelluric example. Radio Sci.
29 (4), 923–935. https://doi.org/10.1029/94RS00326.

Mackie, R.L., Rodi, W., Watts, M.D., 2001. 3-D magnetotelluric inversion for resource
exploration. In: SEG Technical Program Expanded Abstracts 2001. Society of
Exploration Geophysicists, pp. 1501–1504. https://doi.org/10.1190/1.1816392.

McCourt, M., Smith, B., Zhang, H., 2015. Sparse matrix-matrix products executed
through coloring. SIAM J. Matrix Anal. Appl. 36 (1), 90–109. https://doi.org/
10.1137/13093426X.

Mittal, S., Vetter, J.S., 2015. A survey of CPU-GPU heterogeneous computing techniques.
ACM Comput. Surv. 47 (4), 69. https://doi.org/10.1145/2788396.

Mudigere, D., Hao, Y., Huang, J., Jia, Z., Tulloch, A., Sridharan, S., et al., 2022. Software-
hardware co-design for fast and scalable training of deep learning recommendation
models. In: Proceedings of the 49th Annual International Symposium on Computer
Architecture. ACM Press, New York, NY, USA, pp. 993–1011. https://doi.org/
10.1145/3470496.3533727.

Newman, G.A., 2014. A review of high-performance computational strategies for
modeling and imaging of electromagnetic induction data. Surv. Geophys. 35 (1)
https://doi.org/10.1007/s10712-013-9260-0, 85–10.

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.
J., 2007. A survey of general-purpose computation on graphics hardware. Comput.
Graph. Forum 26 (1), 80–113. https://doi.org/10.1111/j.1467-8659.2007.01012.x.

Pandey, M., Fernandez, M., Gentile, F., Isayev, O., Tropsha, A., Stern, A.C.,
Cherkasov, A., 2022. The transformational role of GPU computing and deep learning
in drug discovery. Nat. Mach. Intell. 4 (3), 211–221. https://doi.org/10.1038/
s42256-022-00463-x.

Patro, P.K., Egbert, G.D., 2008. Regional conductivity structure of Cascadia: preliminary
results from 3D inversion of USArray transportable array magnetotelluric data.
Geophys. Res. Lett. 35 (20), L20311 https://doi.org/10.1029/2008GL035326.

H. Dong et al.

mailto:gary.egbert@oregonstate.edu
https://github.com/dong-hao/ModEM-GPU
https://data.mendeley.com/datasets/svwdw67tfv/2
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676

Computers and Geosciences 184 (2024) 105518

13

Rogers, B.M., Krishna, A., Bell, G.B., Vu, K., Jiang, X., Solihin, Y., 2009. Scaling the
bandwidth wall. Comput. Architect. News 37 (3), 371–382. https://doi.org/
10.1145/1555815.1555801.

Rothberg, E., Gupta, A., 1990. A Comparative Evaluation of Nodal and Supernodal
Parallel Sparse Matrix Factorization: Detailed Simulation Results, pp. 4–7. Stanford,
California.

Sadiku, M.N.O., 2000. In: Raton, Boka (Ed.), Numerical Techniques in Electromagnetics,
Second Edi). CRC Press, London, pp. 136–142.

Schwarzbach, C., 2009. Stability Of Finite Element Discretization of Maxwell’s Equations for
Geophysical Applications (PhD). Technische Universität Bergakademie Freiberg.

Siripunvaraporn, W., Egbert, G.D., 2009. WSINV3DMT: vertical magnetic field transfer
function inversion and parallel implementation. Phys. Earth Planet. In. 173 (3–4),
317–329. https://doi.org/10.1016/j.pepi.2009.01.013.

Smith, J.T., 1996. Conservative modeling of 3-D electromagnetic fields, part II:
biconjugate gradient solution and an accelerator. Geophysics 61 (5), 1319–1324.
https://doi.org/10.1190/1.1444055.

Varılsüha, D., 2020. 3D inversion of magnetotelluric data by using a hybrid forward-
modeling approach and mesh decoupling. Geophysics 85 (5), E191–E205. https://
doi.org/10.1190/geo2019-0202.1.

van der Vorst, H.A., 1993. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (2),
631–644. Retrieved from. http://epubs.siam.org/doi/abs/10.1137/0913035.

Wait, J.R., 1982. Geo-Electromagnetism. Elsevier, New York, pp. 184–208. https://doi.
org/10.1016/B978-0-12-730880-7.X5001-7.

Wang, M., Yang, T., Flechas, M.A., Harris, P., Hawks, B., Holzman, B., et al., 2021. GPU-
accelerated machine learning inference as a service for computing in neutrino

experiments. Front. Big Data 3, 604083. https://doi.org/10.3389/
fdata.2020.604083.

Weaver, J.T., Agarwal, A.K., Pu, X.H., 1999. 3-D finite-difference modeling of the
magnetic field in geoelectromagnetic induction. In: Oristaglio, M., Spies, B. (Eds.),
Three-Dimensional Electromagnetics, first ed. Society of Exploration Geophysicists,
pp. 426–443. https://doi.org/10.1190/1.9781560802154.ch27.

Weiland, T., 1985. On the unique numerical solution of Maxwellian eigenvalue problems
in three dimensions. Part. Accel. 17, 227–242.

Weiss, C.J., 2013. Project APhiD: a Lorenz-gauged A- decomposition for parallelized
computation of ultra-broadband electromagnetic induction in a fully heterogeneous
Earth. Comput. Geosci. 58, 40–52. https://doi.org/10.1016/j.cageo.2013.05.002.

Xiao, Y., Liu, Y., 2015. GPU acceleration for the Gaussian elimination in magnetotelluric
Occam inversion algorithm. In: Wong, W. (Ed.), Proceedings of the 4th International
Conference on Computer Engineering and Networks. Springer, Cham, pp. 123–131.
https://doi.org/10.1007/978-3-319-11104-9_15.

Yang, P., Gao, J., Wang, B., 2015. A graphics processing unit implementation of time-
domain full-waveform inversion. Geophysics 80 (3), F31–F39. https://doi.org/
10.1190/geo2014-0283.1.

Yang, D., Merchant, D., Haber, E., 2017. 3D electromagnetic inversion of logging while
drilling data. In: SEG Technical Program Expanded Abstracts 2017. Society of
Exploration Geophysicists, pp. 890–894. https://doi.org/10.1190/segam2017-
17795351.1.

Zhdanov, M.S., Keller, G.V., 1994. The Geoelectrical Methods in Geophysical
Exploration. Elsevier, Amsterdam; New York, pp. 248–252.

H. Dong et al.

https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref31
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref31
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref31
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref32
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref32
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref33
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref33
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
http://epubs.siam.org/doi/abs/10.1137/0913035
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref41
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref41
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
https://doi.org/10.1115/1.2899676
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref46
http://refhub.elsevier.com/S0098-3004(24)00001-3/sref46

	Hybrid CPU-GPU solution to regularized divergence-free curl-curl equations for electromagnetic inversion problems
	1 Introduction
	2 Divergence-free curl-curl equations
	3 Hybrid CPU-GPU implementations
	3.1 Workflow for hybrid forward/adjoint calculations
	3.2 Solution of the linear system
	3.3 Implementation of the GPU solver

	4 Mixed precision considerations
	5 Hybrid CPU-GPU parallel inversion framework
	6 Real-world EM inversion experiments
	7 Discussion and conclusions
	Code availability section
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

