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TECHNICAL NOTE

Effects of maceration on light stable isotopic (δ13C, δ18O) values 
of pig (Sus scrofa) rib bone carbonate: implications for geolocation 
estimates of unidentified human remains

Ligia Cejaa ● Angela Solerb ● Richard Mortlockc ● Rhonda Quinnd*

ABSTRACT: Geoprofiling isotopic analyses provide investigative leads for unidentified human remains cases by determining possible 
regions of origin or excluding unlikely residences during life, which in turn can reduce the number of missing persons cases an investiga-
tor must consider. However, maceration methods involving heat, bleach, baking soda, and detergents have much potential to significantly 
change biogenic isotopic values in the structural carbonate phase of bone bioapatite. Here we test the impact of seven maceration methods 
on δ13C and δ18O values of bone carbonate (BC) of pig (Sus scrofa) ribs. Four of the seven maceration methods altered pig δ13CBC values 
with offsets ranging from 0.4‰ to 1.4‰; this amount of change would not severely impact human diet or geolocation interpretations. Five 
of the methods significantly decreased pig δ18OBC values by averages ranging between 1.0‰ and 2.6‰ likely due to the isotopic exchange 
between bone and heated water. As an illustrative exercise, we compared our study’s results to macerated rib δ13CBC and δ18OBC values of 
an identified New York City resident previously in the custody of the New York City Office of Chief Medical Examiner (NYC OCME). We 
suggest that maceration methods, especially those involving heated water, can potentially contribute to erroneous geolocation estimates 
garnered from rib δ18OBC values of unidentified individuals.
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1. Introduction

Maceration is a standard procedure conducted by forensic 
anthropologists prior to analyses of human skeletal remains. 
Since the earliest cadaveric maceration in the nineteenth cen-
tury (Ghosh 2015), a variety of methods have been employed 
including mechanical removal, water submersion, boiling, 
simmering, and treatments with bleach, detergents, enzymes, 
and degreasers, depending on the conditions of remains, avail-
able facilities, funds, time, and purpose of analyses. Previous 
studies have compared different maceration methods to 
determine best practices for maximizing preservation of 
bone features and surface modifications with the aim of 

constructing the biological profile, conducting trauma and 
pathological analyses, and retrieval of nuclear and mitochon-
drial DNA (Mairs et al. 2004; Rennick et al. 2005; Stead-
man et al. 2006; Lee et al. 2010; King & Birch, 2015).

Biogeochemical analyses (e.g., radiogenic and stable iso-
topic analyses, elemental concentration analyses) of bone, 
enamel, and other tissues are used to complement the biolog-
ical profile and contribute to the estimations of year ranges 
of birth and death (Spalding et al. 2005; Ubelaker et al. 2006, 
2022; Hodgins 2009; Johnstone-Belford et al. 2022), geo-
graphic location of birth and residential mobility (Gulson 
et al. 1997; Beard and Johnson 2000; Ehleringer et al. 2008), 
as well as dietary practices (Nardoto et al. 2006; Chesson 
et al. 2008). Stable and radiogenic isotopes are incorporated 
into organismal tissues through food and water intake and 
particle inhalation (see reviews of Koch et  al. 1989, 1998). 
Measured isotopic values (e.g., δ13C, δ15N, δ18O, δ34S, 87Sr/86Sr, 
206Pb/207Pb) from various human tissues are patterned geo-
graphically (Ehleringer et al. 2010; West et al. 2010) and, when 
used in concert, triangulate potential geographic locations 
(“geolocations”) during the time of tissue formation (Laf-
foon et al. 2017; Bartelink & Chesson 2019; Kramer et al. 
2020). These analyses aid to further individuate unidenti-
fied remains, provide investigative leads, and potentially 
narrow the number of missing persons for consideration 
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(Rauch et  al. 2007; Meier-Augenstein & Fraser, 2008; 
Kamenov et  al. 2014; Remien et  al. 2014; Bartelink et  al. 
2016; Lehn et al. 2015b, 2022).

One commonly used and relatively inexpensive geopro-
filing isotopic analysis yields both δ13C and δ18O values from 
the structural carbonate phase of bone bioapatite (denoted 
here with subscript BC for bone carbonate). δ13C values 
(13C/12C ratios expressed in delta notation in parts per thou-
sand, per mil, ‰) of various human tissues reflect those of 
consumed foods (Katzenberg 2000) during the time of tis-
sue formation and/or remodeling (Hedges et al. 2007) and 
can be fractionated by physiology, health, and nutritional sta-
tus (Reitsema 2013). Dietary protein and carbohydrate δ13C 
values are differentially routed to organic (e.g., bone collagen, 
hair keratin) and inorganic (e.g., bone carbonate) phases of 
human tissues, where δ13CBC values represent whole-diet δ13C 
values (Ambrose & Norr 1993; Kellner & Schoeninger 2007). 
Culturally influenced dietary practices yield different food 
δ13C values, and thus human tissue δ13C values show broad 
geographic patterning (Lehn et al. 2015a). For example, exten-
sive use of corn- and sugarcane-based foods, both C4 plants, in 
the diets of US residents, influenced by socioeconomic factors 
of food choice (Ehleringer et al. 2020), typically yields rela-
tively higher δ13C values compared to those of individuals 
residing in some European and Asian countries (Valenzuela 
et al. 2011; Bartelink et al. 2014; Lehn et al. 2015a).

δ18O values (18O/16O ratios expressed in delta notation 
in parts per thousand, per mil, ‰), incorporated into organic 
(e.g., collagen) and inorganic (e.g., bone/enamel phosphate 
and carbonate) phases of human tissues, reflect consumed 
δ18O values from drinking water and water in food as well 
as from inhaled atmospheric O2 (Kohn & Cerling 2002). 
Drinking water δ18O values are primarily controlled by 
temperature- and latitude-influenced rainfall and ground-
water δ18O values (Craig 1961; Dansgaard 1964) generally 
resulting in a north (lower δ18O) to south (higher δ18O) 
gradient (Dutton et  al. 2005; Bowen et  al. 2007). δ18OBC 
values, as well as those of enamel carbonate and enamel 
or bone phosphate δ18O values (denoted with subscript 
PHOS), are used to infer the δ18O value of imbibed/ingested 
water (denoted here as δ18OIW) source regions and thus 
serve as a proxy of geolocation during bone and enamel 
formation (Ehleringer et al. 2008; Ammer et al. 2020). Local 
tap water δ18O (subscript tap) values are typically used as a 
proxy for bioavailable drinking water sources (e.g., Ammer 
et al. 2020).

Biogeochemical methods as applied to human skeletal 
and dental materials were initially established in archaeolog-
ical and paleontological contexts and not originally devel-
oped to meet the medicolegal standards of forensic sciences 
(e.g., Christensen & Crowder 2009). Consequently, tests of 
intra-laboratory isotopic variation (Pestle et al. 2014; Ches-
son et  al. 2019), enhanced measures of quality control 

(Chesson et al. 2021), and improved reporting (Szpak et al. 
2017; Berg et al. 2022) of human tissues are accumulating. 
Moreover, geoprofiling results of known individuals are 
utilized to better establish method parameters and gauge 
analytical resolution and accuracy while considering 
specific variables of unidentified human remains in foren-
sic contexts (O’Brien & Wooller 2007; Font et  al. 2012; 
Kamenov & Curtis 2017; Mancuso & Ehleringer 2019; Hu 
et  al. 2020; Regan et  al. 2020; Quinn et  al., 2021). The 
FIRMS (Forensic Isotope Ratio Mass Spectrometry) Net-
work (https://www​.forensic​-isotopes​.org) was founded to 
“to develop the scope of stable isotope techniques in forensic 
applications” and promotes best practices by method valida-
tion and inter-laboratory comparison studies (see Dunn & 
Carter 2018).

In the archaeological and paleontological literature, 
much work has focused on determining potential changes 
to biogenic (i.e., formed during life) isotopic values of dif-
ferent tissues and phases within tissue types due to diage-
netic (i.e., recrystallization, fossilization) and taphonomic 
(i.e., burial environment) alterations (Wang & Cerling, 
1994; Iacumin et al., 1996; Kohn & Cerling, 2002; Lee-Thorp, 
2002). As compared to archaeological and paleontological 
skeletal and fossil materials, time since death of human 
remains in forensic contexts is short (<75 years), and thus dia-
genesis is generally assumed to be negligible. However, 
experimental studies demonstrate that several taphonomic 
factors can potentially fractionate biogenic isotopic values of 
human remains in short time periods, especially those of 
bone carbonate. For example, cooking and burning signifi-
cantly change biogenic δ13CBC and δ18OBC values (DeNiro 
et al. 1985; Munro et al. 2008; Sarancha et al. 2022). Boiling 
and simmering increase water δ18O values as 16O is prefer-
entially removed via evaporative processes (Brettell et  al. 
2012; Gagnon et  al. 2015). These fractionated water δ18O 
values can then be incorporated into tissues via ingestion 
(Tuross et al. 2017). When fleshed and skeletal materials are 
submerged in boiling or simmering water, δ13CBC values are 
largely unchanged; however, δ18OBC values have been found 
to significantly decrease, likely due to exchange with the sub-
mersion water that has relatively lower δ18O values than 
bone (Munro et al. 2007, 2008; Tuross et al. 2017). Various 
chemical treatment procedures for removing exogenous com-
ponents from bone prior to mass spectrometry have also 
been assessed (Koch et al. 1997; Yoder & Bartelink 2010; 
Crowley & Wheatley 2014). Notably, procedures that utilize 
bleach significantly change δ13CBC and δ18OBC values due to 
bone’s high organic content, small crystallites, and large sur-
face areas for bicarbonate adsorption (Koch et  al. 1997; 
Crowley & Wheatley 2014).

Traditional maceration methods involving bleach and 
heated water similar to chemical treatment procedures or 
taphonomic alterations are predicted to change biogenic 
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δ13CBC and δ18OBC values. More recent maceration proce-
dures, typically involving heated water, utilize detergents, 
degreasers, and sodium carbonate, which also have poten-
tial to modify δ13CBC and δ18OBC values via dissolution and 
recrystallization, and adsorption of secondary materials 
(Koch et al. 1997; Crowley & Wheatley 2014). Thus, δ13CBC 
and δ18OBC analysis of macerated unidentified human remains 
has much potential to yield fractionated and thus non-
biogenic values, leading to erroneous diet and geolocation 
estimations. Here we quantified the impact of seven com-
monly used maceration methods on pig (Sus scrofa) rib 
δ13CBC and δ18OBC values. We then compared our experimen-
tal results to the δ13CBC and δ18OBC values of a macerated rib 
segment from a New York City resident who was identified 
by the New York City Office of Chief Medical Examiner 
(NYC OCME). Isotopic analyses were originally commis-
sioned by a private isotope testing company in an effort to 
identify the individual. A subsequent unrelated investigative 
lead eventually resulted in a DNA-based identification. To 
maintain confidentiality of the decedent and family, no iden-
tifying information is shared.

2. Materials and Methods

2.1. Pig rib bone sample

Pigs (Sus scrofa) were selected for this study because the spe-
cies shares anatomical, physiological, and dietary similari-
ties to humans and are the preferred analogue in forensic 
research (Healy et al. 2015, Armstrong et al. 2016, Matusze-
wski et al. 2020). Rib samples were also chosen for the study 
to skeletally match previously analyzed human rib seg-
ments. Ribs are commonly used for isotopic analysis due to 

availability and their potentially high turnover rates (Parfitt 
1983; Pearson & Lieberman 2004). Isotopic analysis of rib 
bone is estimated to provide geolocation and dietary infor-
mation ≤10  years prior to the individual’s year of death 
(Cox and Sealy 1995; Lamb et al. 2014). Racks of pig ribs 
representing five individual pigs were purchased from local 
butchers in Queens, New York, and show δ13CBC and δ18OBC 
values within the range of US residents (Valenzuela et  al. 
2011; Berg & Kenyhercz 2017) and NYC OCME cases 
(Quinn et al. 2020).

2.2. Macerated and control rib bone sets

First, rib racks were disarticulated with a scalpel, and indi-
vidual pig ribs were cut in half to create maceration-control 
rib bone sets in order to minimize potential intra- and inter-
individual δ13CBC and δ18OBC differences. Control samples 
were manually cleaned using a scalpel and forceps. Macer-
ated rib segments underwent one of seven different macera-
tion methods until flesh softened and could be easily removed 
with a blunt scraping tool. The maceration methods, described 
in Table 1, were taken from the literature (e.g., Fenton et al. 
2003; Steadman et al. 2006) and/or were previously or are 
currently employed by the NYC OCME. These include the 
following with abbreviation in parentheses: (1) sodium hypo-
chlorite bath (Bleach), 2) boiled water bath (Boil), (3) sim-
mered water bath (Simmer), (4) dish soap and meat tenderizer 
(DS+MT), (5) detergent and sodium carbonate (D+SC), 
(6)  detergent, sodium carbonate, and degreasing agent 
(D+SC+DA), and (7) degreasing detergent (SK). In all mac-
eration methods except Bleach, samples were monitored 
every hour. Bleach samples were monitored every hour for 
the first eight hours, then monitored every 12 hours until 
completion.

T1

TABLE 1—Descriptions and Durations of Maceration Methods Used in This Study

Maceration Method (abbreviation in text) Description of Maceration Method Duration

Sodium hypochlorite bath (Bleach) Submerged in 10% Clorox bleach solution at room temperature (20°C). 10 days

Boiled water bath (Boil) Submerged in 10 L of boiling (100°C) tap water. 4 hours

Simmered water bath (Simmer) Submerged in 10 L of heated (90°C) tap water. 6 hours

Dish soap and meat tenderizer (DS+MT) Submerged in heated (90°C) solution consisting of 36 cc of Adolph’s 
non-seasoned meat tenderizer, 36 cc of Palmolive dish soap, and 10 L of tap 
water.

6 hours

Detergent and sodium carbonate (D+SC) Submerged in heated (90°C) solution containing 20 cc of Alconox detergent, 
20 cc of sodium carbonate (Arm and Hammer Washing Soda), and 2 L of tap 
water.

6 hours

Detergent, sodium carbonate and 
degreasing agent (D+SC+DA)

D+SC method, rinsed with tap water, submerged in a heated (90°C) solution 
consisting of 150 mL of liquid household ammonia (Austin’s Clear Ammonia) 
and 2 L of tap water. Following Fenton et al. (2003), samples were monitored 
in ammonia solution until small lipid globules floated to the surface.

6 hours + 1 hour 
for degreasing

Degreasing detergent (SK) Submerged in heated (90°C) solution consisting of 60 mL of Super Kleen 
(Delta Foremost Chemical Corp.) and 2 L of tap water.

6 hours
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2.3. Sample preparation and mass spectrometry

Following maceration, powders were drilled from the corti-
cal bone of rib segments with a rotary drill (Foredom series) 
affixed with a carbide bit. From each of the seven maceration-
control sets, samples from three locations along a control rib 
segment and 10–16 locations along a maceration segment 
were drilled and collected into sterile polypropylene centri-
fuge tubes. Bone carbonate was isolated following methods 
of Koch et al. (1997), a commonly used method by light sta-
ble isotopic studies (as reviewed in Crowley & Wheatley, 
2014) and reported by the private isotope testing company 
originally commissioned by the NYC OCME. This entailed 
weighing 10–15 mg of bone treating with a 30% H2O2 for 24 h 
(0.5 ml/20 mg) to remove organic matter and with a 0.1 M 
acetic acid buffered with calcium acetate (pH 5, 0.5 ml/20 
mg) for 24 h to remove non-structural carbonate. Samples 
were rinsed five times in Milli-Q ultrapure water after each 
treatment and dried at room temperature. Powders weighing 
between 1–2 mg were loaded into Wheaton 1 ml v-vials and 
sealed. δ13C and δ18O were measured using a Multiprep 
device attached to a Micromass Optima isotope ratio mass 
spectrometer (IRMS). Samples were reacted in 100% H3PO4 
at 90°C and the evolved CO2 was collected in a liquid nitro-
gen cold finger. Stable isotope values are reported relative to 
Vienna-Pee Dee Belemnite (V-PDB) through the analysis of 
an in-house laboratory reference material (RGF1). Analyti-
cal precision is 0.05‰ and 0.08‰ for δ13C and δ18O, respec-
tively, based on replicates of RGF1.

2.4. Analytical standards in forensic isotopic analysis

Forensic isotopic analysis continues to be developed to meet 
international standards for medicolegal contexts. The FIRMS 
Network advocates the use of two international calibration 
standards to generate a stretch-shift or slope-intercept nor-
malization scheme during each run of the mass spectrometer 
(Dunn et  al. 2017; Dunn & Carter 2018). This protocol 
accounts for potential scale compression (Meier-Augenstein 
& Shimmelmann 2019) and better enables comparisons of 
isotopic values amongst different laboratories. Scale com-
pression, as defined by Meier-Augenstein and Shimmel-
mann (2019) is “the sum of all mass discriminatory effects 
associated with sample gas transfer to the IRMS, sample 
gas admission into the ion source of the IRMS and possibly 
processes inside the ion source itself.” Notably, the pig rib 
maceration experiment and associated δ13CBC and δ18OBC 
analyses, conducted as part of the first author’s (LC) thesis 
project in 2018, followed the protocol described below used 
by the Stable Isotope Laboratory in the Department of Earth 
and Planetary Sciences at Rutgers University.

During the pig rib δ13CBC and δ18OBC analyses, eight 
RGF1 standards were run intermittently with every 24 

samples and measured over the course of 20 hours, which 
represents one run of the mass spectrometer. RGF1 is rou-
tinely calibrated to NBS-19 to ensure consistency, using 
1.95‰ and −2.20‰ for δ13C and δ18O, respectively, as 
reported by Coplen (1994). The internal lab reference mate-
rial is offset from NBS-19 by +0.10 and +0.04‰ for δ13C 
and δ18O, respectively. The average standard deviation of 
RGF1 provides an estimate of external reproducibility and 
accounts for potential contributions to scale compression, 
including but not limited to reference gas depletion, 
changes in source response, and changing temperature and 
humidity room conditions. The lab analyzes NBS-19 in 
combination with NBS-18 (δ13C = −5.01‰ and δ18O = 
−23.2‰) to monitor and to correct for changes in source 
linearity, and their respective δ13C and δ18O values bracket 
the range of pig rib δ13CBC and δ18OBC values reported in our 
study. Notably, the analytical precision does not reflect the 
reproducibility of pig rib δ13C and δ18O values in this study, 
which due to the complex nature of bone remodeling 
(Hedges et al. 2007) and potential dietary heterogeneity of 
an omnivorous domestic pig are predicted to show signifi-
cant intra-individual variation. Since this study utilized 
only one standard (RGF1) during each run to account for 
scale compression rather than two as advocated by the 
FIRMS Network, we offer these results as a proof of con-
cept to further gauge if a comparable study with human 
skeletal elements is warranted.

2.5. Statistical analyses and conversion equations

We compared the control and maceration pig rib δ13CBC 
and δ18OBC values (‰, V-PDB) of each of the seven control-
maceration sets with two-tailed t-tests using StatPlus v7 
statistical software (AnalystSoft Inc). In order to compare 
pig rib δ18OBC values (relative to V-PDB) to local tap water 
δ18O values (reported relative to Vienna-Standard Mean 
Ocean Water, V-SMOW), we utilized the same conversion 
equations reportedly used by the private isotope testing 
company at the time of the commissioned work by NYC 
OCME for the NYC resident’s rib bone segment and 
employed by other forensic geoprofiling studies (e.g., 
Ammer et al. 2020). The equation δ18OV-SMOW = 1.03091 × 
δ18OV-PDB + 30.91 (Coplen et  al. 1988) converts the mea-
sured bone carbonate reported relative to V-PDB to 
V-SMOW. The equation δ18OPHOS = 0.998 × δ18OCARB − 8.5 
(‰, V-SMOW; Iacumin et  al. 1996) is utilized to convert 
carbonate δ18OBC to phosphate δ18OPHOS. To estimate the 
δ18OIW value from the δ18OPHOS value, the equation δ18OIW = 
1.54 (±0.09) × δ18OPHOS − 33.72 (±1.51; Daux et al. 2008) is 
used. To estimate the NYC resident’s geolocation, the pri-
vate isotope testing company mapped the calculated δ18OIW 
value (±0.5‰) on a modeled US tap water δ18Otap isoscape 
(data from Bowen et al. 2007).
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3. Results

3.1. Within group δ13CBC and δ18OBC variation

Separate control and maceration groups displayed intra-
individual (i.e., intra-rib) isotopic variation (see standard 
deviations in Tables 2 and 3). Maximum within group δ13CBC 
differences ranged from 0.1‰ to 2.4‰ in the control groups 
(n = 3) and from 0.5‰ to 3.5‰ in the maceration groups 
(n = 10 to 16). Maximum within group δ18OBC differences 
ranged from 0.2‰ to 3.1‰ in the control groups (n = 3) and 
from 2.4‰ to 4.0‰ in the maceration groups (n = 10 to 16).

3.2. Maceration vs. control group δ13CBC  
and δ18OBC values

The mean δ13CBC differences of all maceration methods 
ranged from −1.2‰ to +1.4‰ (Table 2). Mean δ13CBC differ-
ences within maceration-control rib bone sets that reached 
statistical significance (two-tailed t-test, p < .05) included 
Boil, Simmer, and both detergent-based methods, D+SC 
and D+SC+DA.

The mean δ18OBC differences of all maceration methods 
ranged from +0.2‰ to −2.6‰ (Table 3). Mean δ18OBC differ-
ences within maceration-control rib bone sets that reached 
statistical significance (two-tailed t-test, p < .05) included 

Boil, Simmer, DS+MT, D+SC, and SK. Six of the seven mac-
eration methods decreased δ18OBC by more than 1‰, 
although the D+SC+DA method did not reach statistical 
significance.

4. Discussion

4.1. Effects of maceration on pig rib δ13CBC  
and δ18OBC values

Statistical comparisons found that some of these maceration 
methods significantly altered biogenic pig rib δ13CBC and 
δ18OBC values; however, the degree of the effects is import-
ant to consider. Notably, the intra-individual (i.e., intra-rib) 
isotopic variation in each control group ranged from 0.2‰ 
to 3.1‰, which may reflect variability in dietary and drink-
ing water values available to domestic pigs. Generally, peo-
ple have a wide range of food and beverage options, and those 
choices appear to manifest as an equal or greater intra-
individual isotopic range (Eerkins et al. 2011, 2016; Mauer 
et al. 2014; Olsen et al. 2014; Fahy et al. 2017; Plomp et al. 
2020; Berg et al. 2022). Notably, inter- and intra-laboratory 
comparisons have found comparable and greater δ13CBC and 
δ18OBC variation even within a single human femoral bone 
(Pestle et al. 2014; Chesson et al. 2019).

The changes in pig rib δ13CBC values between the 
maceration-control sets were modest, non-directional, and 
within the range of intra-individual variation. However, the 
majority of maceration methods assessed here, all of which 
used heated water, significantly decreased pig rib δ18OBC val-
ues by 1.0–2.6‰. Maceration water was derived from NYC 
tap water, which yields δ18OV-SMOW values between −8‰ 
and −6‰ (Bowen et al. 2007). Pig rib δ18OBC values con-
verted to δ18OV-SMOW are 22.7‰ to 24.4‰. Based on compa-
rable results of the boiling study of Munro et al. (2008), we 
interpret that the exchange between pig rib bone δ18OV-SMOW 
and the markedly lower δ18OV-SMOW of maceration water for 
four to six hours is the likely cause for the significant decrease 
with all heated water methods. Sodium carbonate included in 
two of the maceration methods were predicted to cause par-
tial dissolution and potential reprecipitation of carbonate. 
However, results did not indicate larger isotopic offsets in the 
D+SC and D+SC+DA compared to the other maceration-
control group sets.

The potential effects of maceration on the accuracy of 
estimating geolocation and diet from δ13CBC and δ18OBC val-
ues depends on the offset amount within the constructed iso-
scapes and dietary models. For example, an individual’s 
measured δ13CBC value can be used to estimate δ13C of whole 
diet denoted in %C4 diet (Schwarcz et al. 1985; Ambrose et al. 
1997; Schoeninger 2009). Using a simple linear mixing model 
(methods reviewed in Quinn 2019), assuming average C3 

T2

T3

TABLE 2—δ13CBC Values (V-PBD, ‰) of the Control-Maceration 
Group Sets and Results of t-tests

Maceration 
Method

Control Group 
Mean δ13CBC 

±1σ ‰, 
V-PDB (n)

Maceration 
Mean δ13CBC 

±1σ ‰,  
V-PDB (n)

Maceration-
Control 
δ13CBC 

Difference 
‰, V-PDB

t-test 
Statistic, 
p-value

Bleach −5.7 ± 0.1 (3) −5.8 ± 0.4 (15) −0.1 0.3, .764
Boil −5.0 ± 0.0 (3) −4.5 ± 0.6 (13) +0.6 3.1, .008
Simmer −2.6 ± 0.1 (3) −3.7 ± 1.5 (11) −1.2 2.6, .027
DS+MT −4.1 ± 1.2 (3) −4.5 ± 1.0 (16) −0.4 0.6, .581
D+SC −3.8 ± 0.1 (3) −3.5 ± 0.2 (10) +0.4 4.6, .006
D+SC+DA −6.4 ± 0.3 (3) −5.0 ± 0.6 (10) +1.4 5.5, .001
SK −6.0 ± 0.2 (3) −5.9 ± 0.4 (11) +0.1 0.4, .671

TABLE 3—δ18OBC values (V-PBD, ‰) of the Control-Maceration 
Group Sets and Results of t-tests

Maceration 
Method

Control Group 
Mean δ18OBC 

±1σ ‰, 
V-PDB (n)

Maceration 
Mean δ18OBC 

±1σ ‰,  
V-PDB (n)

Maceration-
Control 
δ18OBC 

Difference 
‰, V-PDB

t-test 
Statistic, 
p-value

Bleach −7.2 ± 0.8 (3) −6.9 ± 0.8 (15) 0.3 0.5, 0.650
Boil −7.8 ± 0.1 (3) −9.7 ± 0.7 (13) −2.0 9.6, <0.001
Simmer −7.5 ± 0.4 (3) −8.5 ± 0.7 (11) −1.0 3.2, 0.015
DS+MT −6.9 ± 0.9 (3) −8.7 ± 1.0 (16) −1.9 3.6, 0.008
D+SC −8.0 ± 0.3 (3) −10.6 ± 0.8 (10) −2.6 8.2, <0.001
D+SC+DA −6.8 ± 1.6 (3) −8.0 ± 1.1 (10) −1.2 1.2, 0.303
SK −6.3 ± 0.3 (3) −7.7 ± 0.8 (11) −1.4 4.5, 0.001
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(–28‰) and C4 (–12‰) food endmembers, a shift of 1‰ 
equates to a ~6% change in %C4 diet. Statistically significant 
changes to δ13CBC values from maceration methods found 
here occurred in both positive and negative directions but 
were on average less than or only slightly above 1‰. Conse-
quently, although statistically significant, impacts of mac-
eration to δ13CBC values shown here would be negligible for 
modern human dietary reconstructions. That is, a substan-
tial dietary shift possibly due to a major change in geoloca-
tion would not be interpreted with a δ13CBC shift of ±1‰.

On the other hand, due to the limited span of precipitation 
δ18O values across the globe (Waterisotopes​.org) and within 
US δ18Otap values (Bowen et al. 2007; Ehleringer et al. 2008), a 
>1‰ decrease in a rib δ18OBC value has the potential to alter 
the geolocation interpretation of an unidentified individual. 
For example, annual tap water δ18Otap values across the US 
range from −22‰ and +2‰ (V-SMOW) and are depicted in 
2‰ intervals to provide general geographic boundaries of the 
isotopic gradient (Bowen et al. 2007; Cerling et al. 2016). The 
effect of maceration on a rib bone δ18OBC value exceeding 1‰ 
has potential to shift a geolocation estimation into a different 
interval of the US δ18Otap isoscape, possibly resulting in the 
designation of a resident as non-local to the region.

4.2. Known New York City resident

We compared the relative effects of one maceration method 
to the isotopic geoprofiling analyses of a previously sampled 
New York City resident who was positively identified through 
other means. One tissue type analyzed by the private isotope 
testing company originally commissioned by the NYC 
OCME, the right ninth rib, macerated with the D+SC method, 
represents the individual’s known residence in Brooklyn, 
approximately ≤10  years prior to death. Table  3 lists the 
measured δ13CBC and δ18OBC values and the calculated percent-
age of C4 foods in the diet (%C4) and δ18OIW value. Figure 1 
plots the calculated %C4 and δ18OIW values against the 
maceration-corrected %C4 and δ18OIW values for the NYC 
resident’s rib bone. Figure 2 was redrawn after the US δ18Otap 
isoscape of Bowen et al. (2007) and the original geolocation 
map provided to NYC OCME by the private isotope testing 
company.

The maceration conducted by the NYC OCME Foren-
sic Anthropology Unit for the presented case was the D+SC 
method, which in this study yielded average δ13CBC and 
δ18OBC offsets of +0.4‰ and −2.6‰, respectively. The esti-
mated percentage of whole diet C4 foods (%C4) based on the 
reported rib δ13CBC value of −9.9‰ is 38%. Considering an 
increase of 0.4‰ due to the D+SC maceration method, the 
individual’s calculated %C4 would shift to 36%, but would 
not result in a different diet interpretation (Fig. 1a). Both of 
these estimates are within typical US δ13C-based diets, which 
range from about 10% to 50% C4 resources (Valenzuela et al. 

2011; Berg & Kenyhercz 2017; Fig. 1a). Geolocation accord-
ing to the estimated δ18OIW value, however, was reconstructed 
in more northern and western US regions than the individ-
ual’s known residence in Brooklyn (Fig. 2, only northeastern 
US regions are depicted). Considering a decrease of 2.6‰ 
due to the D+SC maceration method, the individual’s cal
culated rib δ18OBC value shifts to −4.5‰ and equates to a 
δ18OIW value of −6.4‰ (Table 4; Fig. 1b), which is within the 
δ18Otap range (–8.0 to −6.0‰) for NYC (Bowen et al. 2007). 
The direction and magnitude of the δ18OBC offset due to the 
D+SC maceration procedure corresponds with the erroneous 
geolocation estimation of the NYC resident’s known geolo-
cation and the region’s δ18Otap range (Fig. 2).

4.3. Maceration as a potential source of  
error in geolocation estimations

Based on the results of this study, we suggest that macera-
tion can significantly alter biogenic pig rib δ13CBC and δ18OBC 
values. Coupled with the case study of a known NYC resi-
dent, we suggest that maceration is a potential source of error 
in δ18OBC-based geolocation estimations from human rib 
bones. The measured pig rib δ13CBC and δ18OBC offsets found 
in this study, however, are not intended to serve as correc-
tion factors for each reported maceration method, but should 
serve as a proof of concept, warranting additional research 
on human remains on the potential impacts of maceration on 
geoprofiling isotopes. We also advocate for employing the 
current analytical standards based on the method validation 

F1

F2

T4

FIGURE 1—Comparison of Brooklyn resident’s rib bone carbonate 
(A) %C4 diet and (B) δ18OIW estimations without (white-filled boxes) and 
with corrections for maceration effects (gray-filled boxes). Dotted areas 
in the graphs represent the ranges of NYC δ18Otap value (Bowen et al. 
2007) and typical US diets (Berg & Kenyhercz, 2017).
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FIGURE 2—NYC OCME Brooklyn resident’s rib bone carbonate 
δ18OIW-based geolocation estimation (shaded black) commissioned by a 
private isotope testing company (only northeastern US portion of map is 
shown here). US δ18Otap isoscape redrawn from Bowen et al. (2007).

TABLE 4—NYC OCME Brooklyn Resident’s Measured and  
Calculated Isotopic Values from the Ninth Rib Segment

Measured or Calculated Isotope Value or Range (‰)

Measured δ13CBC (V-PDB) –9.9
%C4 diet estimate 38%
Maceration effect-corrected δ13CBC (V-PDB) –10.3
Maceration effect-corrected %C4 diet estimate 36%
Typical US diet 10–50%
Measured δ18OBC (V-PDB) –7.1
Calculated δ18OBC (V-SMOW) 23.6
Calculated δ18OIW (V-SMOW) –10.5
Maceration effect-corrected δ18OBC (V-PDB) –4.5
Maceration effect-corrected δ18OBC (V-SMOW) 26.3
Maceration effect-corrected δ18OIW (V-SMOW) –6.4
NYC δ18Otap (V-SMOW) –8.0 to –6.0

studies of the FIRMS Network to aid in inter-laboratory com-
parisons and collaborations. Until correction factors spe-
cific to skeletal element, bone type, and isotopic system can 
be established, we suggest that best practices in forensic 

anthropology should include consideration of the potential 
direction and magnitude of δ13CBC and δ18OBC offsets when 
geoprofiling previously macerated remains of an unidentified 
individual.

5. Conclusion

Isotopic analyses are becoming increasingly widespread in 
forensic anthropology to enhance the biological profile and 
aid in identification efforts. Additional experimental studies 
are required to gauge the accuracy and precision of these 
methods that consider the particular contexts, procedures, 
and medicolegal standards of the discipline. Maceration, a 
standard procedure in forensic anthropology, commonly 
involves heated water, detergents, degreasers, and/or sodium 
carbonate. This study demonstrates that maceration methods 
involving heated water significantly altered biogenic pig cor-
tical rib δ13CBC and δ18OBC values. Comparing the isotopic 
offsets to an identified New York City resident illustrates that 
maceration may have been one of the factors that contributed 
to an erroneous geolocation estimation based on the individ-
ual’s rib δ18OBC value. Thus, additional research quantifying 
effects of maceration on human bone δ18OBC values is war-
ranted. We recommend practitioners should consider the 
impact of various maceration methods on bone elements typ-
ically submitted for isotopic analyses when planning to geo-
profile an unidentified individual.
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