RESEARCH ARTICLE

Food Has No Borders: Methodological Insights from the Forensic Isotopic Profile of a New York City Immigrant

Rhonda L. Quinna,b*·Helen Alesburyc·Ligia Cejad·Angela Solerc·Linda Godfreyb

ABSTRACT: Isotopic analyses of human remains augment the biological profile with geolocation and dietary information, furthering efforts to identify unknown individuals from a forensic context. Here we test the methodological resolution of geolocation (δ^{18} O, δ^{7} Sr/ δ^{8} Sr) and dietary (δ^{13} C, δ^{15} N) isotopes of one identified individual who immigrated to New York City from St. Vincent and the Grenadines (SVG), Lesser Antilles. Isotope-based geolocation estimates did not identify the childhood residency on SVG, but did point to New York City as a possible residence during early adulthood. The individual's C₃-based diet did not significantly change from childhood to early adulthood, illustrating the maintenance of food traditions after the immigration event. This study illustrates that further development of tissue-specific isoscapes incorporating bioavailable foods, drinking water, and cultural traditions is warranted to refine methodological resolution of isotopic applications in forensic anthropology.

KEYWORDS: geolocation isotopes, dietary isotopes, Caribbean isoscapes, US isoscapes, food traditions

1. Introduction

Forensic investigators employ multiple layers of data (e.g., biological profile, dental charting, unique features, recovery context, and personal effects) to propose matches of unidentified human remains to missing individuals. A proposed match can then be confirmed or excluded using accepted forensic identification methodologies, such as DNA, fingerprints, or comparative dental or medical radiography. Due to a variety of reasons, some unknown individuals are not identified with established techniques and may require additional investigative tools to aid identification efforts. Isotopic analyses of human remains, long established in bioarchaeology (e.g., Schoeninger 1981; Vogel & van der Merwe 1977) and paleoanthropology (e.g., Sillen et al. 1995; Sponheimer & Lee-Thorp 1999), are now being applied to unidentified human remains to aid in investigative efforts (Bartelink et al. 2016; Kamenov et al. 2014; Meier-Augenstein & Fraser 2008;

Remien et al. 2014). Ingested, imbibed, or inhaled chemicals recorded in human tissues and measured as isotopic values are patterned geographically. Depending on the specific isotopic system used and tissue measured, different aspects of lifeways, including location of residence ("geolocation") and diet during specific windows of time in the individual's life, are inferred and incorporated into the biological profile.

In forensic contexts, isotopic values measured in unidentified remains provide a means to infer geographic location of residence ("geolocation") during tissue formation. Isotopic systems such as carbon (δ^{13} C), nitrogen (δ^{15} N), oxygen $(\delta^{18}O)$, and strontium $(^{87}Sr/^{86}Sr)$ utilized in this study have been applied to differentiate immigrants from local residents especially within the context of the humanitarian crisis at the southern US border (Bartelink & Chesson 2019; Juarez 2008). Other isotopic systems such as hydrogen, sulfur, and lead, although not used in this study, are also used to assess geolocation in forensic contexts (Gulson et al. 1997; Keller et al. 2016; Lehn et al. 2011; Mant et al. 2016; Richards et al. 2001). For all of these isotopic systems, efficacy to detect the geolocation depends on the accurate measurement of the geographic distribution of isotopic ratios ("isoscapes") (West et al. 2010) through access to baseline samples relevant to patterns of ingestion and the biologically available ("bioavailable") values in a particular cultural context (Sillen 1992; Price et al. 2002; Bataille et al., 2020). We provide a brief overview of isotopic methods used in this study (See section 2 Forensic Isotopes, below); for detailed explanations as applied to forensic anthropology,

Received 7 October 2020; Revised 5 January 2021; Accepted 26 January 2021

© 2021 University of Florida Press

—-1 —0

FA_x_x_03_Quinn_1P.indd 1 12/10/21 7:23 PM

^aDepartment of Sociology, Anthropology, Social Work & Criminal Justice, Seton Hall University, South Orange, NJ 07079, USA

^bDepartment of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA

^cNew York City Office of the Chief Medical Examiner, New York, NY 10016, USA

^dSan Diego County Medical Examiner's Office, San Diego, CA 92101,

^{*}Correspondence to: Rhonda L. Quinn, Department of Sociology, Anthropology, Social Work & Criminal Justice, Seton Hall University, 400 South Orange Ave., South Orange, NJ 07079

e-mail: rhonda.quinn@shu.edu

see Meier-Augenstein (2010), Cerling et al. (2016), and Bartelink and Chesson (2019).

Studies involving the mapping of human isoscapes for forensic purposes (e.g., Bataille & Bowen 2012; Ehleringer et al. 2008; Keller et al. 2016; Laffoon et al. 2012) focus on bioavailable isotopic values, which are typically measured via local plants, animals, and drinking water. With respect to $^{87}\text{Sr}/^{86}\text{Sr}$ isoscapes, Sillen (1992) and Price et al. (2002) aptly recognized that geologic bedrock and surface waters do not fully characterize the $^{87}\text{Sr}/^{86}\text{Sr}$ values in bioavailable sources. Likewise, the systematic offset of US tap waterbased $\delta^{18}\text{O}$ isoscapes (Ehleringer et al. 2008) compared to the US and global rainfall-based $\delta^{18}\text{O}$ isoscapes (e.g., Dutton et al. 2005; Waterisotopes.org) illustrates the necessity of measuring $\delta^{18}\text{O}$ values of the water that people are actually drinking in order to construct accurate isoscapes for forensic purposes (e.g., Ammer et al. 2020, Kramer et al. 2020).

Numerous combinations of 87 Sr/ 86 Sr and δ^{18} O values are found across the US and around the world. Thus, dietary isotopes (δ^{13} C, δ^{15} N) from unidentified individuals are used to gauge general food inputs and point investigations to plausible regions of residence in order to triangulate ⁸⁷Sr/⁸⁶Sr and δ^{18} O values measured from the same tissue samples (e.g., Bartelink & Chesson 2019; Meier-Augenstein 2010). Culturally and geographically based identities from global communities have distinct food traditions. For example, the (pre) historical and industrial use of corn, a C₄ plant, in the Americas resulted in significantly higher δ^{13} C values across populations geographically (Hutchinson 1998; Valenzuela et al. 2011, 2012; Vogel & van der Merwe 1977), and thus can narrow the general region to then apply 87 Sr/ 86 Sr and δ^{18} O values. But for immigrants, it is quite possible for an individual to live in one geographic area and maintain the dietary habits of the ancestral home in part as a consequence of access and cultural tradition maintenance specific to family and community. Moreover, the incorporation of non-local foods and beverages from various US states or imported from other countries is a main concern in locations with extensive food trade networks, referred to as the "supermarket effect," (e.g., Chesson et al. 2010) which can potentially incorporate nonlocal residency signals within the human tissue. Human diets are shaped by numerous influences in addition to food traditions, such as food availability, economic security, personal tastes, and food allergies, among others. Corn and sugar, also a C₄ plant, are differentially utilized in low-cost foodstuffs (Chesson et al. 2008). Consequently, an abundance of processed, corn-based food items are found in poor neighborhoods, and a large diversity of food items are available in more affluent ones (Ehleringer et al. 2020). Thus, an individual's tissue δ^{13} C value can potentially reflect aspects of socioeconomic status and residence in so-called "food deserts."

Testing forensic isotopic methods with individuals of known residential histories, socioeconomic status, and cultural traditions is critical to gauging resolution and identifying avenues for future research (e.g., Kramer et al. 2020; Marcuso & Ehleringer, 2019). To this aim, we analyzed enamel δ^{18} O, δ^{13} C, and δ^{7} Sr/ δ^{8} Sr values; bone carbonate δ^{13} C and δ^{18} O values; and bone collagen δ^{13} C and δ^{15} N values of one individual with a known immigration history to New York City. The resection of all bone and tooth samples and isotopic analyses were originally conducted in an effort to identify the individual. Subsequent to these analyses, an unrelated investigative lead resulted in a DNA identification. To maintain confidentiality of the decedent and family, no identifying information will be shared.

2. Forensic Isotopes

Isotopic systems measured in a human tissue reflect dietary, imbibed, and inhaled inputs derived from bedrock, soil, aerosols, beverages, and foods where an individual lived during the time that particular tissue was formed. For example, strontium isotopic (87Sr/86Sr) values of bedrock, soils and aerosols are incorporated into local food and water without significant fractionation (see review of Bentley 2006). Because 87Sr/86Sr values vary geographically, human tissues, in turn, record ⁸⁷Sr/⁸⁶Sr values of ingested foods and beverages reflecting the measured individual's geolocation during tissue formation (Beard and Johnson 2000; Price et al. 1994; Sealy et al. 1991). Human tissues incorporate both internal (e.g., ingested food, imbibed beverages, inhaled particulates) and external (e.g., burial sediment, aerosols) ⁸⁷Sr/⁸⁶Sr sources to varying degrees and have different susceptibilities to chemical alteration or diagenesis. For example, hair ⁸⁷Sr/⁸⁶Sr ratios represent those from food and other ingested components; however, hair quickly incorporates ⁸⁷Sr/⁸⁶Sr ratios from the environment of deposition and/or contact such as sediment, aerosols, or water (Hu et al. 2020a, b; Tipple et al. 2018). Bone and enamel mineral phases primarily record 87Sr/86Sr values from ingested foods and beverages (Keller et al. 2016) and are less susceptible to diagenesis (e.g., Koch et al. 1997) especially in modern forensic contexts.

Oxygen isotopic (δ^{18} O) values in human tissues incorporate δ^{18} O values from drinking water, water in food, and atmospheric O₂ (Kennedy et al. 2011; Knudson & Price 2007; Kohn & Cerling 2002; Stuart-Williams et al. 1996; White et al. 1998). Both the phosphate (subscript PHOS) and carbonate (subscript CARB) phases of bone and enamel mineral reflect body water δ^{18} O values and demonstrate a strong correlative relationship with one another (Bryant et al. 1996; Iacumin et al. 1996). δ^{18} O values are analyzed more easily via mass spectrometry and also yield δ^{13} C values from the same analysis; however δ^{18} O values have been shown to be more susceptible to diagenesis than δ^{18} O PHOS in

-1— 0—

FA x x 03 Quinn 1P.indd 2 12/10/21 7:23 PM

archaeological and paleontological contexts (Iacumin et al. 1996; Sharp et al. 2000; Wang & Cerling 1994).

It is common for studies to compare meteoric water (e.g., local rainfall and tap water) δ^{18} O values to bone and enamel $\delta^{18}O_{CARB}$ for inferring geolocation from human remains (Ammer et al. 2020; Laffoon et al. 2017; Quinn et al. 2008; Turner 2013; Vanderpool & Turner 2013). Conversion equations are necessary to make the comparison, however, and are thus sources of error due to variation in the correlative relationships (Pollard et al. 2011). Typically, three equations are used to convert the $\delta^{18}{
m O}_{
m CARB}$ value measured from human enamel and bone to those of meteoric water. The first equation converts the measured tissue δ^{18} O value reported in V-PBD (Vienna-Pee Dee Belemnite) to those reported in V-SMOW (Vienna-Standard Mean Ocean Water) (Coplen et al. 1983). Then $\delta^{18}{\rm O}_{\rm CARB}$ must be converted into $\delta^{18}{\rm O}_{\rm PHOS}$ (Iacumin et al. 1996). Finally, $\delta^{18}{\rm O}_{\rm PHOS}$ is converted into imbibed water δ^{18} O subscript IW; Daux et al. 2008). Different combinations of equations produce slightly different $\delta^{18}O_{nv}$ estimations (Chenery et al. 2012; Pollard et al. 2011). Notably, prior to ingestion, imbibed water δ^{18} O values can be modified through cultural practices such as heating, cooking, boiling, and stewing (Brettell et al. 2012; Gagnon et al. 2015).

Diet is inferred through the analysis of stable carbon $(\delta^{13}C)$ and nitrogen $(\delta^{15}N)$ isotopic values measured in human tissues (see review of Katzenberg 2000). General diet groups can be delineated by plotting human tissue δ^{13} C and δ^{15} N values in concert (e.g., Ambrose et al. 1997; Müldner & Richards 2007; Nardoto et al.2006). Dietary δ^{13} C values are incorporated into both the organic (e.g., bone collagen, hair keratin) and inorganic phases (e.g., enamel and bone bioapatite) of human tissues with fractionation effects (Crowley et al. 2010; Lee-Thorp 1989; O'Connell et al. 2012). δ^{13} C values are used to differentiate diets composed of C, (Calvin-Benson photosynthesis), C₄ (Hatch-Slack photosynthesis) and CAM (Crassulacean acid metabolism) plants (Ehleringer 1989; Tieszen 1991), or the animals that feed on those plant types. Several studies, however, have shown that dietary isotopic values from macronutrients (e.g., proteins, carbohydrates) can be routed in various ways to different human tissues (Jim et al. 2004; Kellner et al. 2007). For example, $\delta^{13}C_{CARR}$ values available from human bone and enamel reflect whole diet δ^{13} C values, whereas collagen and keratin δ^{13} C values in bone/dentin and hair, respectively, record dietary protein δ^{13} C values (Ambrose & Norr 1993). δ^{15} N values are preserved in organic components of tissues (e.g., keratin, bone collagen, muscle), and represent the protein component of diet (Ambrose & Norr 1993). δ^{15} N values fractionate with increasing trophic level and therefore tend to be higher in individuals who consume animal protein compared to vegetarians (Ambrose 2000; Petzke et al. 2005). Moreover, freshwater and marine systems typically have more trophic spaces than those in terrestrial food webs; thus, humans who

regularly consume pelagic fish have elevated δ^{15} N values compared to those who consume reef fish, shellfish, or terrestrial animal protein (Ambrose et al. 1997; Jones & Quinn 2009; Schoeninger & DeNiro 1984). δ^{15} N values measured in human tissues have also been useful in detecting nutritional deficits and can mimic high protein diets (Fuller et al. 2005; see review of Reitsema 2013).

3. Materials and Methods

3.1. Tissue formation and isotopic time averaging

Time of tissue formation must be considered when applying isotopic systems to forensic contexts. For example, hair provides an incremental record of months to years prior to death depending on the length of the hair sample (Loussouarn et al. 2005). Bone records various intervals of time depending on the specific skeletal element formation and turnover rates. For instance, ribs, commonly used for forensic isotopic analyses, are thought to represent the last ~2–5 years prior to death; the femur, alternatively, records 15+ years prior to death (Hedges et al. 2007). Enamel formation time ranges from inutero/birth to late childhood (~9–12 years of age; Hillson 1996); thus, enamel provides an indication of childhood diet and geolocation.

To date, most isotopic studies of human remains have analyzed bulk samples. Bulk tissue samples can average years of isotopic inputs and, as a result, pose the issue of isotopic equifinality (Quinn 2019), which is when two or more isotopic inputs contribute to an erroneous interpretation of diet or geolocation from an averaged isotopic value. There is potential for measuring incremental isotopic data transversely along long bone diaphyses (e.g., Meier-Augenstein & Fraser 2008). Laser ablation mass spectrometry measurements combined with high-resolution imaging of daily enamel growth increments suggest that enamel records isotopic inputs during enamel secretion with little time averaging (Austin et al. 2013; Green et al. 2018; Smith et al. 2018). Thus, mobility and dietary information on short time scales (~days—weeks) during childhood can be inferred from enamel sampling via laser techniques.

3.2. Known New York City Immigrant

The individual analyzed in this study lived on the islands of St. Vincent and the Grenadines (SVG) in the Lesser Antilles (Caribbean) during childhood and subsequently immigrated to New York City. Two tissue types were analyzed, the right mandibular second premolar and the right 9th rib, which represent the individual's childhood (1–8 years of age; Hillson 1996) and early adulthood (last 2–5 years of life) periods, respectively. Based on the known residence during childhood, the enamel isotopic values reflect the geolocation

—-1 —0 —+1

FA_x_x_03_Quinn_1P.indd 3 12/10/21 7:23 PM

on SVG. The early adulthood period recorded in the bone sample represents geolocation in New York City. A total of four isotopic (δ^{13} C, δ^{15} N, δ^{18} O, 87 Sr/ 86 Sr) systems were used to test the accuracy of current isoscapes of the two known geolocations. Enamel and bone carbonate were measured for δ^{18} O and δ^{13} C values, representing imbibed water δ^{18} O and whole diet δ^{13} C values, respectively. Enamel 87 Sr/ 86 Sr ratios were measured to infer consumed food and water 87 Sr/ 86 Sr ratios. Bone collagen was measured for δ^{13} C and δ^{15} N to infer dietary protein δ^{13} C and δ^{15} N values.

The enamel bulk sample averages geolocation and dietary information for the total duration of enamel formation (1–8 years of age) when the individual lived on SVG. The bulk bone sample averages isotopic inputs during the last ~2–5 years of life during early adulthood when the individual resided in New York City. We utilized laser ablation techniques to measure ⁸⁷Sr/⁸⁶Sr ratios along enamel growth increments to detect variations in ⁸⁷Sr/⁸⁶Sr inputs and the potential for isotopic equifinality. Daily enamel growth thicknesses range from ~2 to ~7 mm (Smith 2008); thus, laser ablation lines spanning 1800 mm represent an internal between 8.5 months and 2.5 years within the childhood period (1–8 years of age).

3.3. Sample Preparation and Mass Spectrometry

Bulk enamel and bone $\delta^{18} O_{CARB}$ and $\delta^{13} C_{CARB}$ analyses were first commissioned by the NYC-OCME from IsoForensics, Inc., as part of a grant-funded project to use new technology to identify the missing (NIJ-2015-4055). IsoForensics, Inc. reported the following methodology: Enamel and bone powders were collected using a handheld rotary tool (Dremel®) and carbide bit. Powdered samples were treated with 3% hydrogen peroxide to remove organic material and 0.1 M acetic acid solution to remove labile carbonates. Bone samples were defatted with a methanol-chloroform solution. Between each step, samples were washed with deionized water. Dried, treated sample material was weighed (1.7–2.5 mg) into Exetainer® screw capped glass vials with rubber septa. Heliumflushed vials containing weighed samples and reference materials were placed in a heating block held at 26°C and five to eight drops of phosphoric acid were manually injected into each vial. Samples and reference materials were allowed to react for a minimum of 24 hours before measurement. The CO₂ gas evolved from carbonates reacting with the acid in the vials was collected via an autosampler and swept in a continuous helium stream to the isotope ratio mass spectrometer for simultaneous carbon and oxygen isotope ratio measurement. All reported δ^{18} O and δ^{13} C values are relative to Vienna-Pee Dee Belemnite (V-PDB) in delta notation (parts per thousand, per mil, %). Analytical error for both values is < 0.05\%.

For the second phase of analysis, sample pretreatment was conducted at Anthropological Isotope Lab at Seton Hall

University, and mass spectrometry was conducted at the Geochemistry Laboratory in the Department of Earth and Planetary Sciences at Rutgers University. Bone collagen was extracted following the methods reported by IsoForensics, Inc. to compare with other cases in the future. Bone samples were decalcified using a solution of 0.5N HCl. Humic acids were removed with 0.1N NaOH. Defatting was achieved with a methanol and chloroform mixture. After each step, samples were washed with deionized water until pH neutral. Treated samples were freeze-dried and approximately 200-300 mg was loaded into tins. Bulk collagen was analyzed on a GV Instruments Isoprime stable isotope mass spectrometer combined with a Eurovector elemental analyzer (continuous flow). Bone $\delta^{13} C_{COLL}$ and $\delta^{15} N_{COLL}$ values were standardized against reference materials: NBS-22 (oil) for δ^{13} C and IAEA-N-1 ((NH₄)₂SO₄) for δ^{15} N, additional certified C and N standards were included with each analysis (IAEA-CH6, IAEA-N-3). Analytical error for both isotopic values is < 0.05\%. Bone collagen fidelity was gauged with C:N ratio of 2.9–3.6 (Ambrose 1990).

The remaining outer enamel surface of the mandibular second premolar was smoothed from tooth cusp to cervicoenamel junction (cej) with a rotary drill (Foredom®) affixed with a diamond-tipped bit. 87Sr/86Sr ratios were measured incrementally oriented from cusp to cej with a Thermo Scientific Neptune Plus MC-ICP-MS coupled to a Teledyne CETAC Photon Machines laser ablation (LA) system with a HelEx II volume cell. An in-house carbonate standard, calibrated against NBS 987 thermal ionization mass spectrometry (TIMS), was ablated throughout to assure accuracy. In-house enamel samples of humans and mammals measured previously with column chemistry and TIMS techniques for ⁸⁷Sr/⁸⁶Sr were also used to gauge accuracy. Each measured area consisted of a 0.6 mm line with a 110 mm spot moving at 5 mm/s. A fluence of 6.5 J/cm² was used for ⁸⁷Sr/⁸⁶Sr ratios via laser ablation. Strontium concentrations as gauged with ⁸⁸Sr signals during analyses were sufficiently high (0.7 V) to minimize interfering isotopes (Horstwood et al. 2008).

3.4. Conversion Equations and Isoscape Comparisons

IsoForensics, Inc. utilized three equations to convert the enamel and bone $\delta^{18}{\rm O}_{\rm CARB}$ values to US tap water and global precipitation $\delta^{18}{\rm O}$ values. Measurements via mass spectrometry reported relative to the Vienna-Pee Dee Belemnite (V-PDB) standard were converted to Vienna-Standard Mean Ocean Water (V-SMOW) with the equation of Coplen et al. (1983): $\delta^{18}{\rm O}_{\rm V-SMOW}=1.03092*\delta^{18}{\rm O}_{\rm V-PDB}+30.92$. The equation of Iacumin et al. (1996): $\delta^{18}{\rm O}_{\rm PHOS}=0.998*\delta^{18}{\rm O}_{\rm CARB}-8.5$ (%o, V-SMOW) was utilized to convert $\delta^{18}{\rm O}_{\rm CARB}$ to $\delta^{18}{\rm O}_{\rm PHOS}$. In order to estimate the $\delta^{18}{\rm O}_{\rm IW}$ value from the $\delta^{18}{\rm O}_{\rm PHOS}$ value, the equation of Daux et al. (2008): $\delta^{18}{\rm O}_{\rm IW}=1.54$ (+/-0.09) * $\delta^{18}{\rm O}_{\rm PHOS}-33.72$ (+/-1.51) was used. Calculated $\delta^{18}{\rm O}_{\rm IW}$ values

-1— 0—

FA x x 03 Quinn 1P.indd 4 12/10/21 7:23 PM

from enamel and bone were mapped onto the World and US isoscapes by IsoForensics, Inc. These maps utilize the Interval Approach based on measured US tap-water δ^{18} O values (Bowen et al. 2007; Ehleringer et al. 2008) and global precipitation δ^{18} O values (Waterisotopes.org; West et al. 2010). We compared the calculated δ^{18} O $_{IW}$ value and incremental 87 Sr/ 86 Sr ratios of enamel to the established isoscapes of known residence from childhood in SVG (Laffoon et al. 2017).

We estimated the percentage of C_4 resources (% C_4) in whole diet across the migration event by comparing enamel and bone $\delta^{13} C_{\text{\tiny CARB}}$ values. We calculated the percentage of consumed C_4 foods from the $\delta^{13}C_{CARB}$ values using the linear mixing model as reviewed by Quinn (2019:405): $%C_4 =$ $(\delta^{13}C_{DIET} - \delta^{13}C_{C_3}) \times 100/(\delta^{13}C_{C_3} - \delta^{13}C_{C_4})$, where %C₄ diet represents the estimation of C₄ food contribution as a percentage of total diet, $\delta^{13}C_{\text{DIET}}$ is the estimation of the dietary δ^{13} C value, δ^{13} C_{C3} is the average ingested C₃ food δ^{13} C value, and $\delta^{13}C_{C_4}$ is average ingested C_4 food $\delta^{13}C$ value. $\delta^{13}C_{C_3}$ and $\delta^{13}C_{C_4}$ endmember values used to calculate percent C_4 diet are -27‰ and -13‰, respectively (Kohn 2010). The offset between the measured $\delta^{13} C_{CARB}$ value and dietary $\delta^{13} C$ value $(\epsilon^*_{CARB-DIET})$ is assumed as 12‰ (Crowley et al. 2010; Lee-Thorp 1989). Given the childhood location on SVG, we predicted that the enamel $\delta^{13}C_{CARB}$ value would be similar to those in South America but lower than those in the US (data compiled from Lehn et al. 2015) due to the Caribbean region's access to corn and pineapple, a CAM plant that yields δ^{13} C values near those of C₄ plants (Ambrose et al. 1997; Martinelli et al. 2020). We predicted that the individual's bone $\delta^{13}C_{CARB}$ value would be higher than the enamel $\delta^{13}C_{CARB}$ value, matching those found in the US, due to differential access to industrialized foods.

Bone $\delta^{13}C_{COLL}$ and $\delta^{15}N_{COLL}$ values were compared modern hair $\delta^{13}C$ and $\delta^{15}N$ values compiled in Lehn et al. (2015) to test if the geographic patterning in diet agreed with the known geolocation in New York City during early adulthood. In order to compare $\delta^{13}C_{COLL}$ and $\delta^{15}N_{COLL}$ to those of modern hair samples, we used the following tissue-spacings: $\delta^{13}C$ values: $\epsilon^*_{HAIR-COLL} = 1\%$ (Crowley et al. 2010); $\delta^{15}N$ values: $\epsilon^*_{HAIR-COLL} = 1\%$ (O'Connell et al. 2012). We also utilized the model of Kellner and Schoeninger (2007), which plots bone $\delta^{13}C_{CARB}$ and $\delta^{13}C_{COLL}$ values to gauge if dietary protein in early adulthood was derived from C_3 , C_4 or mixed C_3 - C_4 sources.

4. Results

The incrementally measured enamel 87 Sr/ 86 Sr values of the mandibular second premolar show a range of 0.70800–0.70943, averaging 0.70869 (Table 1). The measured enamel δ^{18} O_{CARB} value, -3.11%, equates to the δ^{18} O_{IW} estimate of -4.22%.

The individual's enamel $\delta^{13}C_{CARB}$ value, -11.05%, calculates to 23% of C_4 resources in the whole diet. The mandibular second premolar should reflect the individual's childhood years in the SVG, however, the maps based on enamel $\delta^{18}O_{1w}$ values provided by IsoForensics, Inc. did not include SVG or the Lesser Antilles (Figure 1). The individual's estimated childhood $\delta^{18}O_{1w}$ value is lower than that predicted by the precipitation-based $\delta^{18}O$ global isoscapes (Waterisotopes.org; West et al. 2010). Based on bone $\delta^{18}O_{CARB}$ values of human remains from across the Caribbean (Laffoon et al. 2013), there appears to be a high degree of overlap across the island groups. The individual measured here yielded an enamel $\delta^{18}O_{CARB}$ value that falls within the range of those identified as local to St. Lucia (–3.4 to –2.0 ‰), the island nearest to SVG of those reported in Laffoon et al. (2013).

TABLE 1—NYC-OCME individual's isotopic ($\delta^{13}C_{CARB'}$, $\delta^{18}O_{CARB}$) values of bulk enamel and bone carbonate, isotopic ($\delta^{13}C_{COLL'}$, $\delta^{15}N_{COLL}$) values of bulk collagen, incremental ${}^{87}Sr/{}^{86}Sr$ values of enamel by laser ablation, converted $\delta^{18}O$ values of imbibed water (IW), and calculated percentage of C, foods in whole diet.

Bulk enamel carbonate	$\delta^{13} C_{_{\mathrm{CARB}}}$ whole diet %C.	-11.05‰ 23%
	$\delta^{18} { m O}_{ m CARB}$	-3.11‰
	$\delta^{18}\mathrm{O}_{\mathrm{IW}}$	-4.22‰
Bulk bone carbonate	$\delta^{13} \mathrm{C}_{_{\mathrm{CARB}}}$	-12.01‰
	whole diet %C₄	17%
	$\delta^{18} { m O}_{ m CARB}$	-4.67‰
	$\delta^{18} { m O}_{{ m IW}}$	-6.72‰
Bulk bone collagen	$\delta^{13} \mathrm{C}_{_{\mathrm{COLL}}}$	-18.67‰
	$\delta^{15} N_{COLL}$	9.92‰
Incremental enamel	87 Sr/ 86 Sr mean $\pm 1\sigma$	0.70869 ± 0.00032
	⁸⁷ Sr/ ⁸⁶ Sr range (n)	0.70800-0.70943 (69)

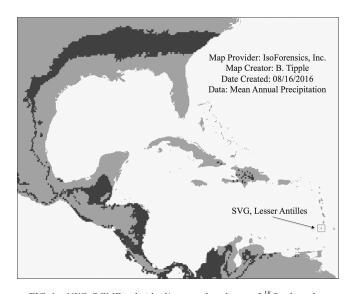


FIG. 1—NYC-OCME individual's enamel carbonate δ ¹⁸O_{IW}-based geolocation estimation during childhood commissioned by IsoForensics, Inc.; area of known residence is boxed.

-0

FA_x_x_03_Quinn_1P.indd 5 12/10/21 7:23 PM

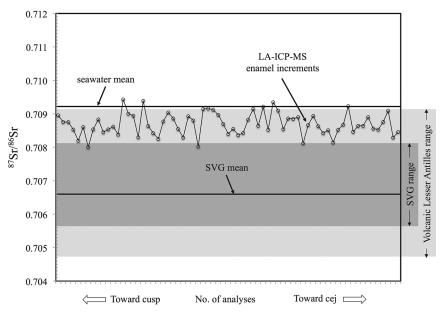


FIG. 2—NYC-OCME individual's incremental ⁸⁷Sr/⁸⁶Sr ratios along enamel growth layers. Color bands denote predicted ⁸⁷Sr/⁸⁶Sr ranges of SVG and all volcanic/intrusive islands of Lesser Antilles based on bioavailable (plant and animal) sources (data from Laffoon et al. 2012, 2017).

The individual's enamel ⁸⁷Sr/⁸⁶Sr ratios do not point to SVG as a possible geolocation when compared against the ⁸⁷Sr/⁸⁶Sr isoscape constructed by Laffoon et al. (2017) (Figure 2) based on SVG data reported in Laffoon et al. (2012). The individual's ⁸⁷Sr/⁸⁶Sr ratios are significantly higher (*t test*, p < 0.05) than the bioavailable ⁸⁷Sr/⁸⁶Sr ratios measured from eight plant and animal samples for SVG (average = 0.70659, range = 0.70566–0.70812; Laffoon et al. 2012), but fall within the higher end of the range of compiled bioavailable ⁸⁷Sr/⁸⁶Sr ratios measured from volcanic and intrusive islands in the Lesser Antilles (average = 0.70774, range = 0.70475–0.70920; Laffoon et al. 2012).

The bone $\delta^{18} O_{CARB}$ value, -4.67%, equates to a $\delta^{18} O_{IW}$ estimate of -6.72% (Table 1), which according to the isoscape map provided by IsoForensics, Inc., identifies New York City as a possible geolocation during the individual's early adulthood period (Figure 3). The individual's bone $\delta^{13} C_{CARB}$ value, -12.01%, calculates to 17% of C_4 resources in the whole diet (Table 1). Bone $\delta^{13} C_{COLL}$ and $\delta^{15} N_{COLL}$ values are -18.67% and 9.92%, respectively, and plot nearest to modern residents of Australia-New Zealand, Asia, and Europe (Figure 4, compiled dataset of Lehn et al. 2015). The bone $\delta^{13} C_{CARB}$ and $\delta^{13} C_{COLL}$ values fall near the C_3 protein diet line (Figure 5, model of Kellner and Schoeninger 2007).

5. Discussion

The reliability of isoscapes for matching unidentified human remains to place(s) of residence heavily depends on access

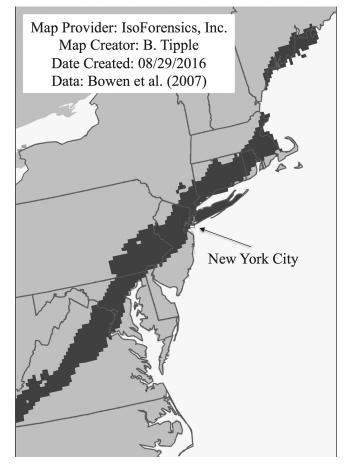


FIG. 3—NYC-OCME individual's bone carbonate δ ¹⁸O_{1W}-based geolocation estimation during early adulthood commissioned by IsoForensics, Inc.; area of known residence is boxed.

-1— 0—

FA_x_x_03_Quinn_1P.indd 6 12/10/21 7:24 PM

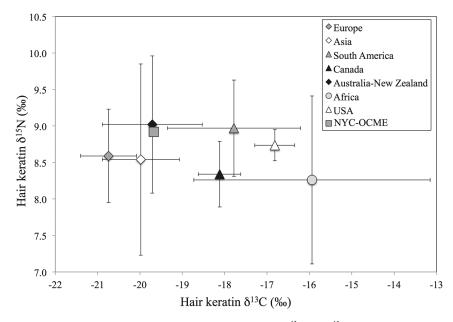


FIG. 4—NYC-OCME individual's corrected bone collagen $\delta^{13}C$ and $\delta^{15}N$ bivariate plot compared to those of modern hair keratin $\delta^{13}C$ and $\delta^{15}N$ values patterned geographically (data from compilation of Lehn et al. 2015).

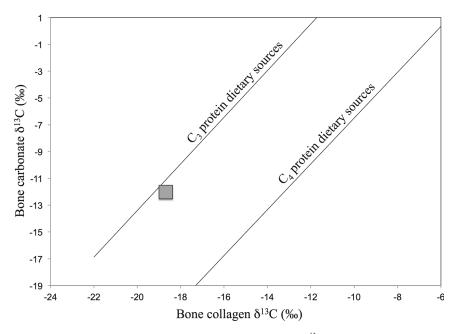


FIG. 5—NYC-OCME individual's bone carbonate and collagen $\delta^{13}C$ plot within protein model of Kellner and Schoeninger (2007).

to baseline samples relevant to food and water consumption. For example, the accurate geolocation estimate of the known immigrant's $\delta^{18}{\rm O}_{\rm IW}$ values presented in this study during early adulthood, and the lack of correspondence during childhood, reveals the contrast between the US tap-based $\delta^{18}{\rm O}$ isoscape (Bowen et al. 2007; Ehleringer et al. 2008) and the global precipitation-based $\delta^{18}{\rm O}$ isoscape (Waterisotopes.org; West et al. 2010). Our results emphasize the necessity of

measuring $\delta^{18}{\rm O}$ values of actual drinking water to construct isoscapes for forensic purposes (e.g., Ammer et al. 2020, Kramer et al. 2020). The known individual yielded a lower childhood $\delta^{18}{\rm O}_{\rm IW}$ value compared to precipitation $\delta^{18}{\rm O}$ values on SVG, which may reflect the relatively lower $\delta^{18}{\rm O}$ values of SVG tap water and/or other water treatment practices. Drinking water in the Lesser Antilles is primarily delivered by tap, but is also harvested via rain collection and other

—-1 —0 —+1

FA_x_x_03_Quinn_1P.indd 7 12/10/21 7:24 PM

surface sources (St. Vincent National Report 2001). Variable evaporative conditions and temperature changes alter surface water δ^{18} O values (Craig 1961; Gat 1996) and thus may not necessarily match δ^{18} O values of imbibed tap water. Other factors, such as heating and boiling during cooking, which have an 18 O-depletion effect on water δ^{18} O values (e.g., Brettell et al. 2012; Gagnon et al. 2015), as well as the error propagation of the various conversion equations, may have contributed to the individual's lower than expected childhood δ^{18} O_{1w} value.

In the forensic isotopic study in the Caribbean by Laffoon et al. (2017), the authors assert that the Likelihood Approach (e.g., Veen et al. 2014) provides more accurate geolocation estimations than the Interval Approach (Ehleringer et al. 2008, 2010) utilized in the commissioned work by IsoForensics, Inc. reported here. The childhood $\delta^{18} O_{CARB}$ value of the individual measured here falls between the $\delta^{18} O_{CARB}$ values of two individuals measured by Laffoon et al. (2017), and both indicate SVG as one of several probable geolocations in the Caribbean. Overlapping $\delta^{18} {\rm O}_{\rm CARB}$ values of the individual during childhood and those from comparable human tissues from nearby St. Lucia (data from Laffoon et al. 2013) also suggests a Caribbean residence likely including SVG. Both approaches, the Likelihood Approach and a comparable tissue comparison, identify SVG as a potential geolocation and therefore appear more accurate than the Interval Approach with regional precipitation δ^{18} O data. However, these methods point to many Caribbean locations, and consequently are not highly specific tools in the Caribbean region for forensic purposes. Clearly additional samples of drinking water are needed across the Caribbean and Central/South America to increase the resolution and gauge the utility of the method suggested by test cases of Kramer et al. (2020).

Our study also suggests that bioavailable ⁸⁷Sr/⁸⁶Sr ratios incorporating food traditions are needed for constructing accurate isoscapes for forensic purposes in the Caribbean. Laffoon and others (2012) showed that sea spray substantially impacted terrestrial plant and animal 87Sr/86Sr ratios in the Lesser Antilles causing a shift away from volcanic and intrusive bedrock ⁸⁷Sr/⁸⁶Sr ratios (< 0.70600) and toward those of seawater (0.70922). Although Laffoon et al.'s (2017) ⁸⁷Sr/⁸⁶Sr isoscape of the Caribbean incorporates a large number of bioavailable samples and represents one of the best resolved isoscapes globally to date, the known resident presented here demonstrates that human diets are not adequately characterized with existing local plant and animal ⁸⁷Sr/⁸⁶Sr ratios. Three issues are identified below that may have contributed individually or in concert to produce offsets from current baseline 87Sr/86Sr data.

Residents of SVG consume substantial amounts of fish and shellfish (Adams 1980, 1992; FAO Report 2010); for example, the national dish of SVG is roasted breadfruit and fried jack fish. Marine foods, which have ⁸⁷Sr/⁸⁶Sr ratios of

or near that of seawater (0.70922; Hodell et al. 2004), were not incorporated into the bioavailable ⁸⁷Sr/⁸⁶Sr dataset of plants, rodent, and snail samples reported by Laffoon et al. (2012). Additionally, the concentration of strontium in fish and shellfish is relatively high compared to terrestrial domestics (e.g., chicken, goat) and some vegetables (e.g., corn) (Balter 2004; Burton & Price 1999; Burton & Wright 1995) and thus may bias an individual's 87Sr/86Sr ratio toward that of seawater even if all foods are consumed in comparable amounts. That is, there is a concentration-dependent effect on ⁸⁷Sr/⁸⁶Sr ratios from dietary sources. SVG has had a reduction in local food production for a few decades and relies heavily on imported foods (Grossman 1993; Thomas-Hope 2017), potentially increasing the impact of the "supermarket effect." Thus, the individual may have achieved higher 87Sr/86Sr ratios than locally available with the ingestion of imported foods from areas with 87 Sr/ 86 Sr ratios > 0.70900, which are available in numerous locations around the Caribbean (Laffoon et al. 2012).

Our finding of comparable childhood and early adulthood $\delta^{13}C_{CARB}$ values suggests that the individual's food tradition practiced while on SVG was largely maintained after immigration to New York City. The individual's early adulthood $\delta^{13}C_{COLL}$ and $\delta^{13}C_{CARB}$ values indicate a protein diet dominated by C_3 resources (Figure 4; Table 1), which are not typical for corn-based and high-sugar diets in the US (Valenzuela et al. 2011). Moreover, the individual's whole diet % C_4 consumption decreased slightly from childhood to early adulthood, which is in the opposite of what we predicted by the immigration event to the US. This case study illustrates that some Caribbean food traditions utilize significantly higher amounts of C_3 vegetables and proteins than neighboring regions with a considerable reliance on corn (e.g., Yucatan Peninsula; Laffoon et al. 2013).

As previously emphasized, numerous combinations of $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ and $\delta^{18}\mathrm{O}$ values are found globally and span the US border (Ammer et al. 2020; Kramer et al. 2020), and dietary isotopes from unidentified individuals are used to gauge general food inputs and point investigations to plausible regions of focus (e.g., Bartelink & Chesson 2019; Meier-Augenstein, 2010). Our initial blind test of the individual's childhood geolocation based solely on the multi-isotopic data erroneously placed the individual in an Asian/European low-latitude, coastal location. Specifically, the individual's enamel $\delta^{18}{\rm O}_{\rm CARB}$ values are typical of low-latitude regions across the globe (e.g., Waterisotopes.org). The individual's enamel ⁸⁷Sr/⁸⁶Sr values overlap those of recent marine limestone bedrocks and/or marine foods aligned with modern seawater (~0.708-0.709; Hodell et al. 2004). The individual's reconstructed childhood whole diet composed of primarily C, resources is consistent with European and Asian diets rather than those found in the Americas and Africa, which are more reliant on C₄ foods (Chesson et al. 2010; Lehn et al. 2015; Valenzuela et al. 2011). This case study demonstrates the need for increasing

-1— 0—

FA_x_x_03_Quinn_1P.indd 8 12/10/21 7:24 PM

resolution of current isoscapes with bioavailable sources, the importance of considering geographic variations in food traditions within regions, and the potential for maintaining food traditions with migration events especially in multi-cultural metropolitan areas of the US such as New York City.

6. Conclusion

Forensic isotopic analysis holds promise for aiding in the investigation of unidentified human remains in a forensic context; however, accurate isoscape construction is critical to the methodological resolution. The individual presented here with a known residential history demonstrates that culturally influenced bioavailable food and water sources are not accurately mapped with non-food items and precipitation of the childhood residence of SVG. The accurate residency estimate of New York City during early adulthood attests to the importance of tap-based δ^{18} O isoscapes rather than those based on precipitation δ^{18} O values. The maintenance of food traditions may mask immigration events, especially in large metropolitan areas, like New York City, where a variety of food items are accessible and hundreds of cultural communities maintain food traditions that may not be similar to current dietary isoscapes of the US. Additional research of culturally distinct dietary and drinking practices must be incorporated into tissue-specific isoscape construction and isotope-based interpretations of geolocation of unidentified individuals in order to increase methodological utility and accuracy of forensic isotopes.

Acknowledgments

The authors thank the Forensic Anthropology Unit at the NYC-OCME, especially Bradley Adams and Christopher Rainwater. We are grateful for the generosity of Jacob Setera for laser ablation operation. The NYU Skeletal Biology MA Program under the direction of Susan Antón provided invaluable graduate student mentorship and training. Laboratory support was provided by the Department of Earth and Planetary Sciences at Rutgers University. Funding for forensic isotopic analyses was provided to the NYC-OCME by the National Institute of Justice (NIJ-2015-4055) and to RLQ for student laboratory training and isotopic analyses by the National Science Foundation (BCS-1455274).

References

- Adams JE. Fish lover of the Caribbean. *Caribbean Studies* 1992;
- Adams JE. Fish preferences and prejudices in a small Caribbean island: A study of fish consumption patterns in St. Vincent

- based on a household survey. In: Proceedings of the Gulf and Caribbean Fisheries Institute, 1980;32:15–34.
- Ambrose SH. Preparation and characterization of bone and tooth collagen for isotopic analysis. *Journal of Archaeological Science* 1990;17(4):431–451.
- Ambrose SH, Butler BM, Hanson DB, Hunter-Anderson RL, Krueger HW. Stable isotope analysis of human diet in the Marianas Archipelago, Western Pacific. American Journal of Physical Anthropology 1997;104(3):343–361.
- Ambrose SH, Norr L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert JB, Grupe G, eds. *Prehistoric Human Bone: Archaeology at the Molecular Level*. Berlin: Springer-Verlag; 1993:1–37.
- Ammer STM, Bartelink EJ, Vollner JM, Anderson BE, Cunha EM. Spatial distributions of oxygen stable isotope ratios in tap water from Mexico for region of origin predictions of unidentified border crossers. *Journal of Forensic Sciences* 2020;65(4): 1049–1055.
- Austin C, Smith TM, Bradman A, Hinde K, Joannes-Boyau R, Bishop D, Hare DJ, Doble P, Eskenazi B, Arora M. Barium distributions in teeth reveal early-life dietary transitions in primates. *Nature* 2013;498(7453):216–219.
- Balter V. Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains. *Oecologia* 2004; 139:83–88.
- Bartelink EJ, Berg GE, Beasley MM, Chesson LA. Application of stable isotope forensics for prediction region of origin of human remains from past wars and conflicts. *Annals of Anthropological Practice* 2014;38(1):124–136.
- Bartelink EJ, Chesson LA. Recent applications of isotope analysis to forensic anthropology. *Forensic Sciences Research* 2019; 4(1):29–44.
- Bartelink EJ, MacKinnon AT, Prince-Buitenhuys JR, Tipple BJ, Chesson LA. Stable isotope forensics as an investigative tool in missing persons investigations. In: Morewitz SJ, Sturdy Colls C, eds. *Handbook of Missing Persons*. New York: Springer International Publishing; 2016:443–462.
- Bataille CP, Bowen GJ. Mapping ⁸⁷Sr/⁸⁶Sr variations in bedrock and water for large-scale provenance studies. *Chemical Geology* 2012;304–305:39–52.
- Bataille CP, Crowley BE, Wooller MJ, Bowen GJ. Advances in global bioavailable strontium isoscapes. *Palaeogeography, Palaeoclimatology, Palaeoecology* 2020;555:109849.
- Bataille CP, Laffoon JE, Bowen GJ. Mapping multiple source effects on the strontium isotopic signatures of ecosystems from the circum-Caribbean region. *Ecosphere* 2012;3(12): 118
- Beard BL, Johnson CM. Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. *Journal of Forensic Sciences* 2000;45(5):1049–1061.
- Bentley RA. Strontium isotopes from the earth to the archaeological skeleton: A review. *Journal of Archaeological Method and Theory* 2006;13:135–187.
- Bowen GJ, Ehleringer JR, Chesson LA, Stange E, Cerling TE. Stable isotope ratios of tap water in the contiguous United States. *Water Resources Research* 2007;43(3):W03419
- Brettell R, Montgomery J, Evans J. Brewing and stewing: The effect of culturally mediated behaviour on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. *Journal of Analytical Atomic Spectrometry* 2012;27(5):778.
- Burton JH, Price TD. Evaluation of bone strontium as a measure of seafood consumption, *International Journal of Osteoar-chaeology* 1999;9(4):233–236.

—**-**1

.

FA_x_x_03_Quinn_1P.indd 9 12/10/21 7:24 PM

- Burton JH, Wright LE. Nonlinearity in the relationship between bone Sr/Ca and diet: Paleodietary implications. *American Journal of Physical Anthropology* 1995;96:273–282.
- Burton JH, Price TD, Cahue L, Wright LE. The use of barium and strontium abundances in human skeletal tissues to determine their geographic origins. *International Journal of Osteoarchaeology* 2003;13(1–2):88–95.
- Cerling TE, Barnette JE, Bowen GJ, et al. Forensic stable isotope biogeochemistry. *Annual Review of Earth and Planetary Sciences* 2016;44;175–206.
- Chenery CA, Pashley V, Lamb AL, Sloane HJ, & Evans JA. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. *Rapid Communications in Mass Spectrometry* 2012;26(3);309–319.
- Chesson LA, Podlesak DW, Erkkila BR, Cerling TE, Ehleringer JR. Isotopic consequences of consumer food choice: Hydrogen and oxygen stable isotope ratios in foods from fast food restaurants versus supermarkets. *Food Chemistry* 2010;119:1250–1256.
- Chesson LA, Podlesak DW, Thompson AH, Cerling TE, Ehleringer JR. Variation of hydrogen, carbon, nitrogen, and oxygen stable isotope ratios in an American diet: Fast food meals. *Journal of Agriculture Food Chemistry* 2008;56(11): 4084–4091.
- Coplen TB, Kendall C, Hopple J. Comparison of stable isotope reference samples. *Nature* 1983;302:236–238.
- Craig H. Isotopic variations in meteoric waters. *Science* 1961; 133:1702–1703
- Crowley BE, Carter ML, Karpanty SM, Zihlman AL, Koch PL, Dominy NJ. (2010). Stable carbon and nitrogen isotope enrichment in primate tissues. *Oecologia* 2010;164(3):611–626.
- Daux V, Lecuyer C, Heran M-A, Amiot R, Simon L, Fourel F, Martineau F, Lynnerup N, Reychler H, Escarguel G. Oxygen isotope fractionation between human phosphate and water revised. *Journal of Human Evolution* 2008;55(6):1138–1147.
- Dutton A, Wilkinson BH, Welker JM, Bowen GJ, Lohmann KC. Spatial distribution and seasonal variation in ¹⁸O/¹⁶O of modern precipitation and river water across the conterminous USA. *Hydrological Processes* 2005;19(20):4121–4146.
- Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE. Hydrogen and oxygen isotope ratios in human hair are related to geography. *Proceedings of the National Academy of Sciences of the United States of America* 2008;105(8): 2788–2793.
- Ehleringer JR, Thompson AH, Podlesak DW, Bowen GJ, Chesson LA, Cerling TE, et al. A framework for the incorporation of isotopes and isoscapes in geospatial forensic investigations. In: West JB, Bowen GJ, Dawson TE, Tu KP, eds. *Isoscapes*. New York: Springer; 2010:357–87.
- Ehleringer JR, Covarrubias Avalos S, Tipple BJ, Valenzuela LO, Cerling TE. Stable isotopes in hair reveal dietary protein sources with links to socioeconomic status and health. *Proceedings of the National Academy of Sciences* 2020;117(33): 20044–20051
- Food and Agriculture Organization (FAO) of the United Nations. A regional shellfish hatchery for the wider Caribbean: Assessing its feasibility and sustainability. In: FAO Fisheries and Aquaculture Proceedings, October 18–21, 2010; Kingston, Jamaica.
- Font L, van der Peijl G, van Wetten I, Vroon P, van der Wagt B, Davies G. Strontium and lead isotope ratios in human hair: Investigating a potential tool for determining recent human geographical movements. *Journal of Analytical Atomic Spectrometry* 2012;27(5):719–732.
- Gagnon CM, Andrus CFT, Ida J, Richardson N. Local water source variation and experimental Chicha de Maíz brewing: Implications for interpreting human hydroxyapatite δ¹⁸O values in

- the Andes. *Journal of Archaeological Sciences: Reports* 2015;4:174–181.
- Gat JR. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences 1996; 24:225–262.
- Green DR, Smith TM, Green GM, Bidlack FB, Tafforeau P, Colman AS. Quantitative reconstruction of seasonality from stable isotopes in teeth. *Geochemica et Cosmochimica Acta* 2018;235(15):483–504.
- Grossman LS. The political ecology of banana exports and local food production in St. Vincent, eastern Caribbean. *Annals of the Association of American Geographers* 1993;83(2): 347–367.
- Gulson BL, Jameson CW, Gillings BR. Stable lead isotopes in teeth as indicators of past domicile—A potential new tool in forensic science? *Journal of Forensic Sciences* 42(5):787–791.
- Hedges REM, Clement JG, Thomas DL, O'Connell TC. Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. *American Jour*nal of Physical Anthropology 2007;133(2):808–816
- Hillson S. Dental Anthropology. Cambridge University Press, Cambridge; 1996.
- Hodell DA, Quinn RL, Brenner M, Kamenov G. Spatial variation of strontium isotopes (⁸⁷Sr/⁸⁶Sr) in the Maya region: A tool for tracking ancient human migration. *Journal of Archaeological Science* 2004;31(5):585–601.
- Horstwood MSA, Evans JA, Montgomery J. Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel. *Geochimica et Cosmochimica Acta* 2008;72(23):5659–5674.
- Hu L, Chartrand MMG, St-Jean G, Lopes M, Bataille CP. (2020a). Assessing the reliability of mobility interpretation from a multi-isotope hair profile on a traveling individual. *Frontiers Ecology Evolution* 2020a; doi.org/10.3389/fevo.2020.568943
- Hu L, Fernandez DP, Cerling TE, Tipple BJ. Fast exchange of strontium between hair and ambient water: Implication for isotopic analysis in provenance and forensic studies. *PLoS One* 2020b;15:e0233712.
- Iacumin P, Bocherns H, Mariotti A, Longinelli A. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: A way to monitor diagenetic alteration of bone phosphate? *Earth and Planetary Science Letters* 1996;142:1–6.
- Jones S, Quinn RL. Prehistoric Fijian diet and subsistence: integration of faunal, ethnographic, and stable isotopic evidence from the Lau Island Group. *Journal of Archaeological Science* 2009;36:2742–2754.
- Juarez CA. Strontium and geolocation, the pathway to identification for deceased undocumented Mexican border-crossers: A preliminary report. *Journal of Forensic Sciences* 2008;53(1): 46–49
- Kamenov G, Kimmerle EH, Curtis JH, Norris D. Georeferencing a cold case victim with lead, strontium, carbon, and oxygen isotopes. *Annals of Anthropological Practice* 2014;38(1): 137–154.
- Katzenberg MA. Stable isotope analysis: A tool for studying past diet, demography, and life history. In: Katzenberg MA, Saunders SR, eds. *Biological Anthropology of the Human Skeleton*. New York: Wiley-Liss; 2000:305–328.
- Keller AT, Regan LA, Lundstrom CC, Bower NW. (2016). Evaluation of the efficacy of spatiotemporal Pb isoscapes for provenancing human remains. *Forensic Science International* 2016;261:83–92.
- Kellner CM, Schoeninger MJ. A simple carbon isotope model for reconstructing prehistoric human diet. *American Journal of Physical Anthropology* 2007;133:1112–1127.

-1— 0— +1—

FA x x 03 Quinn 1P.indd 10 12/10/21 7:24 PM

Koch PL, Tuross N, Fogel ML. The effects of sample treatment and diagenesis on the isotopic integrity in biogenic hydroxylapatite. *Journal of Archaeological Science* 1997;24:417–429.

- Kohn MJ. Carbon isotope compositions of terrestrial C₃ plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences of the United States of America 2010;107:19691–19695.
- Kohn MJ, Cerling TE. Stable isotope compositions of biological apatites. In: Kohn MJ, Rakovan J, Hughes JM, eds. *Phos*phates. Geochemical, Geobiological and Materials Importance. Reviews in Mineralogy and Geochemistry, vol. 48. Washington, D.C.: Mineralogical Society of American; 2002: 455–488
- Kramer RT, Bartelink EJ, Herrmann NP, Bataille CP, Spradley K. Application of stable isotopes and geostatistics to infer region of geographic origin for deceased undocumented Latin American migrants. In: Parra RC, Zapico SC, Ubelaker DH, eds. Forensic Science and Humanitarian Action: Interacting with the Dead and the Living. New York: John Wiley and Sons; 2020:425–440
- Laffoon JE, Davies GR, Hoogland MLP, Hofman CL. Spatial variation of biologically available strontium isotopes (87Sr/86Sr) in an archipelagic setting: a case study from the Caribbean. *Journal of Archaeological Science* 2012;39:2371–2384.
- Laffoon JE, Sonnemann TF, Shafie T, Hofman CL, Brandes U, Davies GR. Investigating human geographic origins using dual-isotope (87 Sr, 86 Sr, δ^{18} O) assignment approaches. *Plos One* 2017;12, e0172562.
- Laffoon JE, Valcarcel Rojas R, Hofman C.L. Oxygen and carbon isotope analysis of human dental enamel from the Caribbean: Implications for investigating individual origins. *Archaeometry* 2013;55(4):742–765.
- Lehn C, Lihl C, Roßmann A. (2015a). Change of geographical location from Germany (Bavaria) to USA (Arizona) and its effect on H–C–N–S stable isotopes in human hair. *Isotopes Environment Health Studies* 2015a;51(1):68–79.
- Lehn C, Mützel E, Rossmann A. Multi-element stable isotope analysis of H, C, N and S in hair and nails of contemporary human remains. *International Journal of Legal Medicine* 2011;125(5): 695–706.
- Lehn C, Rossmann A, Graw M. (2015b). Provenancing of unidentified corpses by stable isotope techniques—Presentation of case studies. *Science and Justice* 2015b;55(1):72–88.
- Lee-Thorp JA, Sealy JC, van der Merwe NJ. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. *Journal of Archaeological Science* 1989;16(6);585–599.
- Loussouarn G, El Rawadi C, Genain G. (2005). Diversity of hair growth profiles. *International Journal of Dermatology* 2005; 44(S1):6–9.
- Luz B, Kolodny Y, Horowitz M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. *Geochimica et Cosmochimica Acta* 1984;48: 1689–1693.
- Mancuso CJ, Ehleringer JR. Resident and nonresident fingernail isotopes reveal diet and travel patterns. *Journal of Forensic Sciences* 2019;64(1):77–87.
- Mant M, Nagel A, Prowse T. Investigating residential history using stable hydrogen and oxygen isotopes of human hair and drinking water. *Journal of Forensic Sciences* 2016;61(4):884–891.
- Martinelli LA, Nardoto GB, Perez MAZ, Arruda Junior G, Fracassi FC, Oliveira JGG, Ottano IS, Lima SH, Mazzi EA, Gomes TF, Soltangheisi A, Abdalla Filho AL, Mariano E, Costa FJV, Duarte-Neto PJ, Moreira MZ, Camargo PB. Carbon and nitrogen isotope ratios of food and beverages in Brazil. *Molecules* 2020;25:1457.

Meier-Augenstein W. Stable Isotope Forensics: An Introduction to the Forensic Application of Stable Isotope Analysis. Hoboken, NJ: Wiley; 2010.

- Meier-Augenstein W, Fraser I. Forensic isotope analysis leads to identification of a mutilated murder victim. Science & Justice 2008:48:153–159.
- Montgomery J, Evans JA, Horstwood MSA. (2010). Evidence for long-term averaging of strontium in bovine enamel using TIMS and LA-MC-ICP-MS strontium isotope intra-molar profiles. *Environmental Archaeology* 2010;15:32–42.
- O'Connell TC, Kneale CJ, Tasevska N, Kuhnle GGC. The dietbody offset in human nitrogen isotopic values: A controlled dietary study. *American Journal of Physical Anthropology* 2012;149:426–434.
- Petzke KJ, Boeing H, Metges CC. Choice of dietary protein of vegetarians and omnivores is reflected in their hair protein ¹³C and ¹⁵N abundance. *Rapid Communications in Mass Spectrometry* 2005;19:1392–1400.
- Pollard AM, Pellegrini M, Lee-Thorp JA. Technical note: Some observations on the conversion of dental enamel d18Op values to d18Ow to determine human mobility. *American Journal of Physical Anthropology* 2011;145:499–504.
- Price TD, Burton JH, Bentley A. The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. *Archaeometry* 2002;44:117–135.
- Price TD, Johnson C, Ezzo JA, Ericson J. Residential mobility in the prehistoric southwest United States—A preliminary study using strontium isotope analysis, *Journal of Archaeological Science* 1994;21:315–330.
- Quinn RL. Isotopic equifinality and rethinking the diet of Australopithecus anamensis. American Journal of Physical Anthropology 2019;169:403–421.
- Quinn RL, Tucker B, Krigbaum J. (2008). Diet and mobility in middle Archaic Florida: Stable isotopic and faunal evidence from the Harris Creek Archaeological Site (8Vo24), Tick Island. *Journal of Archaeological Science* 2008;35:2346–2356.
- Reitsema L. Beyond diet reconstruction: Stable isotope applications to human physiology, health and nutrition. *American Journal of Human Biology* 2013;25:445–456.
- Remien CH, Adler FR, Chesson LA, et al. Deconvolution of isotope signals from bundles of multiple hairs. *Oecologia* 2014; 175:781–789
- Richards MP, Fuller BT, Hedges REM. (2001) Sulphur isotopic variation in ancient bone collagen from Europe: Implications for human palaeodiet, residence mobility, and modern pollutant studies. *Earth and Planetary Science Letters* 2001;191: 185–190.
- Schoeninger MJ. The agricultural "revolution": Its effect on human diet in prehistoric Iran and Israel. *Paleorient* 1981;7:73–91.
- Schwarcz HP, Schoeninger MJ. (1991). Stable isotope analysis in human nutritional ecology. *Yearbook of Physical Anthropology* 1991;34:283–321.
- Sealy JC, van der Merwe NJ, Sillen A, Kruger FJ, Krueger HW. ⁸⁷Sr/⁸⁶Sr as a dietary indicator in modern and archaeological bone. *Journal of Archaeological Science* 1991;18: 399–416.
- Sharp ZD, Atudorei V, Furrer H. (2000). The effect of diagenesis on oxygen isotope ratios of biogenic phosphates. American Journal of Science 2000;300:222–237.
- Sillen, A. (1992). Strontium-calcium ratios (Sr/Ca) of *Australopithe-cus robustus* and associated fauna from Swartkrans. Journal of Human Evolution, 23, 495–516.
- Sillen A, Hall G, Armstrong R. Strontium-calcium ratios (Sr/Ca) and strontium isotope ratios (⁸⁷Sr/⁸⁶Sr) of *Australopithecus robustus* and *Homo* sp. from Swartkrans. *Journal of Human Evolution* 1995;28:277–286.

—-1 —0

FA x x 03 Quinn 1P.indd 11 12/10/21 7:24 PM

- Smith TM. (2008). Incremental dental development: Methods and applications in hominoid evolutionary studies. *Journal of Human Evolution* 2008;54:205–224.
- Smith TM, Austin C, Green DR, Joannes-Boyau R, Bailey S, Dumitriu D, Fallon S, Grün R, James HF, Moncel M-H, Williams IS, Wood R, Arora M. Wintertime stress, nursing, and lead exposure in Neanderthal children. Scientific Advances 2018;4:e9483.
- Sponheimer M, Lee-Thorp JA. Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science 1999; 283:368–370.
- St. Vincent National Report on integrating management of watershed and coastal areas inside of the Caribbean: The Vincentian Perspective.
- Thomas-Hope E. Migration, small farming and food security in the Caribbean: Jamaica and St. Vincent and the Grenadines. *International Migration* 2017;55:35–47.
- Tipple BJ, Valenzuela LO, Ehleringer JR. Strontium isotope ratios of human hair record intra-city variations in tap water source. *Scientific Reports* 8:3334.
- Valenzuela LO, Chesson LA, O'Grady SP, et al. (2011). Spatial distributions of carbon, nitrogen and sulfur isotope ratios in

- human hair across the central United States. *Rapid Communications in Mass Spectrometry* 2011;25:861–868.
- Vanderpool EMR, Turner BL. Stable isotopic reconstruction of diet and residential mobility in a postbellum African American community in rural Georgia. Southeastern Archaeology 2013; 32:97-110
- Vogel JC, van der Merwe NJ. Isotopic evidence for early maize cultivation in New York state. American Antiquity 1977;42: 238–242.
- Veen T, Hjernquist MB, Van Wilgenburg SL, Hobson KA, Folmer E, Font L, et al. (2014) Identifying the African wintering grounds of hybrid flycatchers using a multi-isotope (δ^2 H, δ^{13} C, δ^{15} N) assignment approach. *PLoS One* 2014;9, e98075.
- Wang Y, Cerling TE. A model of fossil tooth and bone diagenesis: Implications for paleodiet reconstruction from stable isotopes. *Palaeogeography, Palaeoclimatology, Palaeoecology* 1994; 107:281–289.
- Waterisotopes.org. https://wateriso.utah.edu/waterisotopes. Created 2003. Accessed April 27, 2021.
- West JB, Bowen GJ, Dawson TE, Tu KP. *Isoscapes*. New York: Springer; 2010.