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Abstract

Metal and ceramic fused filament fabrication (FFF) has been increasingly used additive manufacturing (AM) processes in the various applications
including product prototyping and rapid tooling. Due to its high flexibility in both material composition and part design fabrication, metal and
ceramic FFF has shown significant potential in fabricating various functional structures with specific properties of interest, such as mechanical
property and thermal conductivity. Moreover, those FFF processes have also demonstrated phenomenal advantages over the other AM
technologies, including its cost and energy efficiency. However, the quality control for these processes is still in its infancy, which hinders their
broader adoption in more mission critical applications. Therefore, there is an urgent need in understanding the process-structure-property
relationships in the metal and ceramic FFF. Both metal and ceramic FFF processes are generally composed of three major steps, i.e., materials
preparation, FFF, and post-treatment. In this paper, the state-of-the-art studies on metal and ceramic FFF has been examined from a stream of
variation (SoV) analysis perspective, where the variation sources introduced in each step are investigated and the metrological methods to
characterize those variation are summarized. Furthermore, research opportunities and challenges for the quality control for the production scale-
up of the FFF-based metal and ceramic AM are discussed.
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1. Introduction and applications, the FFF process has been extended from
printing using pure polymer materials to various other
materials, such as metal and ceramic, using the polymer as

binder material to facilitate the printing process. Metal and

Fused filament fabrication (FFF) has become one of the
most widely used additive manufacturing (AM) technologies,

due to its ease of use, versatility, robustness, and cost-
effectiveness [1], [2]. This AM process has been applied to
diversified engineering and research fields, including
biomedical studies with micro-components [3], printed
electrical conductors [4], antimicrobial toy manufacturing [5],
development of surgical implants [6], composites research [7],
[8], aerospace component design [9], as well as general
educational purposes [10]. With such a diverse array of fields

ceramic material filaments are formed by combining more than
one types of materials, each with their own physical and
chemical properties, and extruding into a filament form. The
diversified possible combinations of those materials facilitate
the metal and ceramic FFF builds to achieve certain customized
properties that the pure materials could not achieve on their
own. For example, the highly-filled polymers containing
various metal or ceramic micro-powders demonstrate
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significantly more favorable properties (e.g., thermal
conductivity [11], mechanical properties [12], [13]) when
compared with the pure polymer FFF builds.

Regarding metal and ceramic material FFF's applications,
the ability to produce complex geometries enables engineers to
streamline the process between design and finished product.
When compared with other AM processes in fabricating similar
materials, FFF demonstrates lower equipment cost [14], higher
build rates [13], enhanced flexibility in material composition
[15], as well as lower energy consumption [16]. Given all the
significant advantages of FFF, it has received growing attention
from the manufacturing research community in the past years,
as illustrated in Figure 1. The data in the figure were collected
from google scholar search using keywords of “FFF” and
“ceramic”/ “metal” within specific years.
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Figure 1: Ceramic & Metal FFF-related Research Growth from Year 2015 to
2022

Although a growing number of studies published, the
research in process modeling, monitoring, and control for metal
and ceramic FFF is still in its infancy. Moreover, the high
process complexity and flexibility in material composition
make the modeling and quality control an unprecedently
challenging task. Therefore, there is an urgent need in
systematically reviewing and characterizing the stream of
variations in the metal and ceramic FFF process. The outcome
of interests of the process include geometric dimensioning and
tolerancing (GD&T) aspects (e.g., dimensional variations and
surface roughness) and mechanical properties (e.g., tensile
strength and fatigue behaviour).

As illustrated in Figure 3, the metal and ceramic FFF

involves three stages: 1) material preparation involves the
fabrication of composite filament which incorporates mixing
and extruding the composite material to the filament form [17];
2) FFF is referred to as the material extrusion 3D printing
process using the composite filament to fabricate the designed
geometry in a layer-by-layer manner; and 3) post-treatment
includes the necessary debinding operations to remove the
binding agent in the composite to obtain the part composed of
the pure material of interests [18], as well as sintering the
printed part for improved density and mechanical strengths.
Within the three stages, the outcomes of the previous stage are
critical input of the consecutive stage, which aligns well with
the context of stream of variation (SoV) analysis [19].

Therefore, this paper aims to highlight the state-of-the-art
studies on metal and ceramic FFF from an SoV analysis
perspective, where a complex multi-stage process can be
analysed by elucidating all the variation sources and their
interactions in the process. The SoV analysis enables the
comprehensive characterization of the metal and ceramic FFF
process in a unified model-based framework, leading to
statistical quantification and reduction of the final product
variation [19]. The multi-stage nature and highly flexible
material composition makes it complicated to characterize and
control the variation in the FFF process, leading to significant
challenges in the quality control of the final parts.
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Figure 3: Major steps of metal and ceramic FFF

The reminder of this paper is organized as follows. Section
2 reviews and analyses the state-of-the-art metal and ceramic
FFF studies by focusing on the variation introduced at each
major stage. Subsequently, section 3 highlights the remaining
challenges and opportunities in the production scale-up of
metal and ceramic FFF, and section 4 summarizes the
conclusion of this review paper.

2. Stream of variation analysis for metal and ceramic FFF
In this section, the SoV in metal and ceramic FFF is analyzed

by highlighting the state-of-the-art studies related to each step,
i.e., materials preparation, FFF (shaping), and post-treatment.

process can be regarded as a multi-stage process, which More specifically, the major variation sources and their
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Figure 2: Overview of the SoV Analysis in Metal and Ceramic FFF



corresponding metrological methods that can be used for
characterization are summarized for each fabrication step. An
overview of the SoV analysis is illustrated in Figure 3.
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2.1. Material preparation

The feasibility of different metal and ceramic materials for

more attention

FFF has been extensively explored in recent studies. The

[20],

[21].

investigated materials as well as the quality outcomes have
been briefly summarized in Table 1. In general, these materials
can be divided into three groups: alloys, pure metals, and
ceramics. Notably, the investigation on alloys has attracted
In addition, fiber-reinforced
polymers (FRP) has also been well studied in the literature [22],
and the material preparation information has been summarized
in Appendix I.

Table 1: Summary of metal and ceramic materials fabricated using FFF (Nd: Nozzle diameter, Pt: Printing temperature)

(Cu) [37]-[39]

PLA, PW

o Thermally and electrically conductive

e Pt:120, or 160—
180 °C

Composition l Binder | Material property/potential applications | Machine setup I Notable quality outcomes
Alloys
Titanium APP, CW, DBP, | e Corrosion resistance e Nd: 0.4 mm e [sotropic mechanical properties
(Ti-6A1-4 V) [15], | EVA, PW, PVA, | e Stress-corrosion e Pt: 170-210, or e Low porosity
(23], [24] PP-PE, PIB, SA o High strength 240 °C
e Good ductility and strength
® Bioinert
Stainless Steel PW, PE, Polyolefin, | e Acid- and corrosion resistant prototypes e Nd: 0.3-0.6 mm | e Cost-effective with similar quality
(17-4PH) SA, TPE, POM, PP manufacturing e Pt: 175,0r210— | e Anisotropic shrinkage and
[25]-27] e Unique or series production parts in plant 250 °C mechanical properties still the
engineering, automotive industry, medical problem for relatively big parts
technology, jewelry
Stainless Steel DOP, DBP, LDPE, | e Corrosion resistance, ductility, and e Nd: 0.2-0.8 mm e Cost-effective
(316L) HDPE, POM, PW, biocompatibility, with promising structural | e Pt: 170240, or o Binder system significantly
[28]-[32] SA, TPE, SEBS, PP, applications and biomedical uses. 270-290 °C influence part’s properties
ZnO e Low strength and wear resistance e Nozzle size is important
Tungsten TPE e Hard metal e Nd: 0.3 mm e Low residual stress
carbide/cobalt o Wear-resistant parts e Pt: 190 °C e Uniform microstructure
(WC-10Co) o Cutting tools e Low powder requirements
[33], [34] e Mining part for excavation o No raw material loss
Titanium carbo- nNi, PLA, PEG, PEI | e Electronics’ packaging e Nd: 0.3 mm o Excellent sintering behavior
nitride o Cutting inserts e Pt: 155°C
Ti (C,N) o Noncutting shaping tools
Neodymium PA 11 o Strong magnetic material e Nd: 0.3 mm o Cost-effective
magnet e Pt: 200-245 °C e Low dimension accuracy
Nd,Fe4B [35]
Bronze PLA o Bearing parts e Pt:215°C o Cost-effective
(CuSn) [36] o Good mechanical properties
Pure metal
Copper ABS, TPE, PP, PO, | e Lightweight e Nd: 0.3 mm o Cost-effective

Iron Nylon, polyolefin- | e Motor parts e Nd: 0.3 mm e Thermal conductivity depends on
(Fe) [37], [40]-[42] | elastomer o Bone tissue engineering applications e Pt: 155°C metal filling
o Hydrophilic wetting behavior
o Cytocompatibility
o Surface post-processing needed
Ceramics
Titania PLA, PA, PP, PCL, | e Antimicrobial applications, food packaging | e Nd: 0.4 mm e Low porosity
(TiO,) [43] PEEK, PMMA e Pt:210°C e Good mechanical properties
Zirconia LDPE, PW e Resistance to chemicals and corrosion e Nd: 0.6,2.8 mm | e Low porosity
(Zr0,) [44], [45] o Dental frameworks e Pt: 160 °C
o Insulating rings
Alumina Polyolefin, PLA e Electrically and thermally insulating, high e Pt: 150 °C e Low porosity
(ALO;) [46] hardness, resistance to abrasion o Comparable to conventional
e Resistance to chemicals and corrosion manufacturing methods
e Wear resistance
Molybdenum LDPE o Heating elements e Nd: 0.6 mm e Promising to print reliable and
disilicide e Pt: 160 °C functional parts
(MoSi,) [45]
Barium ferrite ABS o Ferrimagnetic parts: filters, magnets e Nd: 0.4 mm e Demand several specific
(BaFe,0) [47] e Pt: 230 °C adjustments like enhanced printer,
Strontium ferrite PA 12 e Nd: 0.3 mm external alignment field.
(SrFe;019) [48] e Pt: 260 °C e Process optimization needed.
Chalcogenide glass | LDPE, PP o Lenses e Nd: 0.4 mm o No advantages compared to classic
(As4Se0) [49] o Light guides e Pt: 330 °C manufacturing methods yet
Yttria stabilized Pluronic o Dental frameworks e Nd: 0.58 mm o Notable dependence between part
zirconia F-127 o Refractory e Pt: 220 °C properties and machine setup
(YSZ) [50] o Implants for surgery
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To incorporate metal or ceramic materials in FFF, it is
important to use an appropriate binder composition as well as
printing under optimized printing conditions, as mentioned in
[32]. The FFF printed alloy parts are more cost effective
(especially for one-piece production) [25], [28] than other 3D
printing processes, such as powder bed fusion and directed
energy deposition. With the optimized material composition
and machine setup, FFF can also achieve comparable quality.
For the research on pure metal FFF, a lot of existing studies are
focused on copper [39] and stainless steel [51], which can be
used as thermal conductors and load-bearing structures,
respectively. More studies for the other potential of metals in
FFF are still urgently needed [21].

Ceramic FFF composites have shown a great demand from
the manufacturing community [45] due to their unique
properties, specifically, their resistance to different chemical,
biological and thermal conditions. These properties give great
opportunities in many areas, such as medical applications [52],
[53]. Overall, ceramic FFF is promising and has the potential
to reduce the manufacturing costs. Regarding the quality
concerns, the recent research has achieved significant results in
reducing the main quality issues of FFF printed ceramics, i.e.,
the porosity [43]. In addition, it is still worth paying attention
to the glass composites. As shown in [54], glass is not very
suitable for 3D printing, it might be challenging to observe
notable development progress in glass composites for FFF.

The major variation sources of the material preparation
step include material composition and the properties after
composition. These variations are resulted of composition
setup and binder selection. To quantify these variations, the
metrological devices for material characterization, such as the
scanning electron microscopy (SEM) and X-Ray Diffraction
(XRD), can be used [55]. Furthermore, the rheological
behaviour of the filament material is of significant importance
in the material preparation as well as the subsequent FFF
printing process. The rheological measurements can be

Green-Top Green-Side

LT=0.15mm

LT=0.35mm

captured by the rheometer [56], [57].

2.2. FFF (shaping)

The FFF step involves the part design, slicing, and 3D
printing to obtain the green parts. In this subsection, the
controllable inputs in the FFF step are summarized, and the
variation introduced in this step is highlighted.

The design artifacts are generated to test the specific part
outcome of interests. To test the material property obtained
from the FFF, standard testing coupons, such as various dog-
bone designs, can be fabricated for tensile testing [25], [58]. To
examine the porosity, compressive strength, shrinkage, and
infill adhesion of the printed material, basic rectangular prism
is generally used [59], [60]. Moreover, to test the thermal
conductivity of the printed part, cylindrical shaped specimen
can be fabricated [11]. More recently, researchers have started
focusing on part designs that are more complicated than the
standard testing coupons. For example, to study the surface
roughness of the resulting surface, parallelepiped shaped
specimen can be fabricated to examine the surfaces
characterized for different building orientations [61]. In
addition, to characterize the specific deformation patterns in the
overhang structures, various overhang structures with different
build angles can be fabricated [51].

The slicing and printing process of the green parts involves
various slicing and printing parameters, which are the major
parameters used to optimize the FFF. Previous studies have
shown that the slicing settings (including nozzle diameter, layer
thickness, raster pattern, infill percentage, and building
orientation) as well as the printing parameters (e.g., printing
speed and temperature) significantly affect both mechanical
performance and geometric accuracy of metal and ceramic FFF
parts. Caminero et al. [28] demonstrated the impacts of
extruder nozzle size on stainless steel printed with a

Sintered-Top Sintered-Side

-0.13mm

Figure 4: Surface variation of the green and sintered parts based on different slicing parameters: each row contains the scans of the top/side surface of the
green/sintered part. The surface scan data were collected using the wide-area 3D measurement system by Keyence Corporation. (LT: layer thickness)
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polyformaldehyde-based binder system and found that
increasing the nozzle diameter of the extruder resulted in a
decrease in porosity, which in turn, produced stronger
mechanical properties of the printed parts. On the other hand,
variations in the geometry, as well as surface roughness, both
decreased as a result in lowering the nozzle diameter. In
relation to nozzle diameter, it is also important to focus on
filament flow rate. Godec et al. [62] tested the effects of
extrusion temperature, layer thickness, and flow rate on the
tensile strength of 3D printed 17-4PH stainless steel samples
with a multicomponent binder. The experiments showed that,
among all three of these printing parameters, tensile strength of
the steel was most affected by the flow rate multiplier. Namely,
the increased flow rate creates denser parts. In this case, the
strands of material are able to intersect and attach. This causes
a reduction in the number of cavities between individual
strands of material in the printed parts.

Another slicing setting that adds more material to the parts
is infill density, which has also been shown to increase part
mechanical properties. Ait-Mansour ef al. showed that
increasing the infill levels will increase the compressive
strength of 3D printed 316L stainless steel [63]. Furthermore,
both experiments evaluated the effects of build orientation on
mechanical performance. It has been proven that build
orientation can have a substantial impact on the mechanical
performance of parts printed using the FFF process. With 3D
printed parts, pore structure is highly dependent on the layer
direction on the build platform. Therefore, build orientation is
vital to the mechanical properties, especially tensile strength,
of the completed parts [13], Parts printed in on-edge and flat
build orientations have been shown to maintain low average
porosity levels when compared to the upright orientation. For
this reason, parts can be printed near full density using the FFF
process [28].

The major variation sources of the FFF step are the green
part GD&T features, including the geometric and dimensioning
deviation and surface roughness. These variations are resulted
from the slicing and printing process parameter selection as
well as their resulting process uncertainty. To quantify the
geometric and dimensioning deviations both contact based
coordinate measuring machines (CMM) and noncontact-based
laser scanning can be used to generate a point cloud to fully
capture the geometry of the fabricated green parts [51], [64],
[65]. To characterize the surface roughness, both contact-based
profilometers and non-contact based scanning or imaging
systems can be used [61], [66], [67]. For example, the two
10mm Inconel cubicle parts were printed using different layer
thickness (i.e., 0.15mm and 0.35mm), and the surfaces of the
green parts and brown parts were characterized, as illustrated
in Figure 4.

2.3. Post-treatment

As the polymer in the filament serves as the binding agent
for the major material constitute (e.g., metal or ceramic
powders), the green parts need to go through the post-treatment
procedure to remove the binding agent and increase the
material density, leading to the final product with 100% major

material constitute. The post-treatment of the green parts
usually involves debinding and sintering. Debinding is used to
remove the polymeric binder in the green parts, resulting in the
“brown” parts. On the other hand, during the sintering process,
the brown parts are heated to temperatures that are below the
melting temperature of the major constituent in metal for a pre-
determined period of time. These post-treatment procedures are
critical to generate the desired dense structure.

There are three main debinding methods, i.e., thermal,
solvent, and catalytic debinding [68], [69]. Thermal debinding
heats the green parts in a furnace, and the debinding
temperature is determined by the thermogravimetric analysis
(TGA) of the polymer binder. The temperature and heating
rates are also determined by geometry of the part and the
material, where a higher heating rate is usually favorable,
unless the accelerated heating generates cracks in the resultant
brown parts. Solvent debinding uses a solvent to remove the
binders in the green parts, and the required treatment time is
highly dependent on the shape and size of the cross-sectional
area of the part. It is worth noting that the required treatment
time for solvent debinding is exponentially increased with the
wall thickness [31]. Catalytic debinding is offered by the
filament of BASF SE. This patented technology facilitates a
faster binder removal rate than the traditional thermal and
solvent debinding [70]. It is worth noting that the latter two
techniques will not remove all the polymetric binders in the
green parts. On the contrary, some polymer material is needed
to remain in the green-brown parts, serving as the backbone
material to retain the part geometry. To fully remove all the
polymetric binder material, these parts need to go through a
pre-sintering routine, where the temperature usually ranges
between 200 °C and 600 °C [71]. During the sintering process,
the brown parts are heated to temperatures below the melting
point of the material for a specified holding time. The duration
of the holding period is primarily determined by the part size.
During the sintering process, the internal atmosphere of the
furnace needs to be strictly controlled, where different types of
gas are needed for sintering different material. Detailed
summaries of the debinding and sintering process parameters
for different materials have been provided in a few recent
literature papers [20], [69].
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Figure 5: Sample specimen before and after the post-treatment procedure: a) A
green part fabricated using the copper filament by Virtual Foundry; b) A brown
part after post-treatment with significant shrinkage and slight deformation; and
c) A brown part after failed post-treatment with excessive heating and
oxidization.

The major resulting variation of the post-treatment step are
the final part GD&T features, including the geometric and
dimensioning deviation and surface roughness. These
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variations can be attributed to all the controllable variables and
process uncertainty in all the three major steps. Basically, all
the process variation can in the previous steps can be
propagated to the final part GD&T and material properties. In
addition, the post-treatment step itself leads to new variation in
part deformation and shrinkage, as illustrated in Figure 5.

3. Remaining challenges and opportunities in scale-up of
metal and ceramic FFF

Based on the SoV analysis conducted in section 2, a few
research challenges and opportunities have been identified in
scaling up the production of metal and ceramic FFF, including
online sensing and data acquisition, as well as process
modeling and control.

3.1. Online sensing and data acquisition for quality
management

Due to the significant quality concerns reported from the
recent studies [20], [72], to achieve effective online sensing and
data acquisition, which is crucial for process quality
management [73], is also an important research direction to be
further explored. Recently, online sensing and data acquisition
have demonstrated great success and potential in the
conventional FFF, which can make great contributions to
monitoring the process quality and help with the variation
reduction [1], [74], [75]. However, due to the uniqueness in the
metal and ceramic FFF, such as the complex material
composition and different requirements of machine/process
setup, there are still several remaining key gaps, which can be
summarized into two main aspects, as discussed below.

Appropriate sensor selection for the printing process:
The recent studies for the conventional FFF have explored a
large variety of sensors and investigated their effectiveness, for
example, the vibration sensors [74], [76], thermal/infrared
sensors [77], [78], acoustic sensors [79], [80], optical devices
[81], [82], 3D scanner [67], etc. Due to the same material
extrusion nature for the metal and ceramic FFF, these sensors
can still provide valuable information. For example, the
thermal sensors, as temperature still plays a significant role in
the printing process [74]. However, due to the higher
complexity of materials and more critical factors in the process
setup, sensor selection still needs to be further investigated and
validated for enabling comprehensive online process data
acquisition in metal and ceramic FFF, so that better process
quality management can be achieved. First, the expected
sensing capability may be different. For example, since the
nozzle diameter is usually much larger than the conventional
FFF, the width of printing path will also be larger. Thus, to
collect the real-time printing surface data via optical devices
(e.g., digital microscopes [83], [84]), larger field of view (FoV)
will be desired. Similarly, if considering the vibration or
acoustic sensors, the appropriate sensing capability should also
be investigated. Second, more types of sensors may also be
explored, in order to cover the sensing for more process
variables. For example, it would be helpful if the data for the
density of composition after deposition as well as the re-
melting (for binder) or oxidizing (if metal) effects can be

obtained through appropriate sensors.

Suitable in-process sensing strategy for sintering: As
discussed before, different from the conventional pure material
FFF, sintering is usually required to complete the part
fabrication in the metal and ceramic FFF [69]. Thus, how to
perform suitable sensing for the sintering process should also
be a critical aspect in online data acquisition. As sintering has
been applied to various additive manufacturing processes, such
as the selective laser sintering (SLS) [85], [86], the sensing
strategy in these processes may be considered in the sintering
for metal and ceramic FFF parts. For example, the infrared
camera may be considered to obtain the thermal distribution of
the part during sintering [87], which may help to better
understand the part properties and defect formation introduced
by sintering. However, the installation and cost effectiveness
still need to be investigated.

3.2. Process modeling and control

To further understand the process and improve the quality
of fabricated parts, with the assistance of quality
characterization and online sensing, effective process modeling
and control are also critical needed. However, the related
research is still limited. According to the existing studies in
AM, this section will discuss three potential research
directions, and their inter-connections are also illustrated in
Figure 6.

Quality
Characterization | | ayer-wise modeling
and prediction

Machine learning for
process monitoring

SoV

N Quality
Analysis

Prediction

Prescriptive design
and accuracy control

Figure 6: The inter-connections of the three potential research directions for
process modelling and control in metal and ceramic FFF.

Data fusion and pattern recognition for process
monitoring and control: To achieve effective process
monitoring, it is beneficial if all the data related to the process
quality can be utilized, in which data fusion and machine
learning can contribute. For example, data fusion could extract
the critical quality information from the high dimensional
multi-source data, and then machine learning can also help to
understand the variation from the extracted information for
process monitoring [75], [88]-[90]. As shown in Figure 6, the
extracted quality characteristics can also be the input for layer-
wise modeling and prediction. Moreover, this outcome can also
further facilitate the implementation of online close-loop
quality control, by leveraging appropriate the decision-making
techniques, e.g., PID control [91] and reinforcement learning
[92], which has been successfully implemented in the
conventional pure material FFF.

Layer-wise modeling and prediction: Similar to all other
AM processes, it is also important for metal and ceramic FFF
to implement layer-wise modeling and prediction, which can
help to better understand the process dynamics and thus enable
effective process optimization. As the statistical methods [93],
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[94] and machine learning models [95], [96] have demonstrated
great potential in layer-wise modeling and prediction of various
AM processes, it also provides a promising direction to achieve
effective modeling for the process variation in metal and
ceramic FFF.

Prescriptive design and accuracy control: To reduce the
final part’s deviation from the nominal design, developing
prescriptive design and accuracy control approach for the metal
and ceramic FFF would be very helpful. Similar research has
been conducted in other popular AM processes (e.g., SLA) and
demonstrated promising performance [97]-[99]. In the metal
and ceramic FFF, one major uniqueness is the sintering
process, which may lead to significant geometric deformation
and structural porosity. Thus, a computational model that can
evaluate and predict such variation and suggest the design
compensation is greatly needed.

4. Conclusions

This work provides an overview for the stream of variation
analysis in the metal and ceramic FFF, through the review of
existing studies and our preliminary printing experiments.
According to the review and analysis, it can be observed that
the metal and ceramic FFF can provide a cost-effective
manufacturing solution with product quality potentially
comparable to more expensive AM solutions. However, due to
the significant process variation induced in all the three
manufacturing stages (i.e., the material preparation, FFF, and
post-treatment), it still requires dedicated research efforts to
fully characterize the variation propagation in this multi-stage
process to accelerate the adoption of the metal and ceramic
FFF. Opportunities and challenges with quality control for
scale-up of the metal and ceramic FFF remains, but also lends
itself to improvements through better understanding of process
variations.

With the identified key sources of variations in this work,
the remaining gaps and future research opportunities to further
reduce the process variation and better manage the product
quality are also identified, including but not limited to: 1)
quality characterization; 2) online sensing and data acquisition;
as well as 3) process modeling and control. The extensive
research progress of these three fields in other popular AM
processes also provides strong confidence and inspiration to its
potential of success in the future.

Appendix I: FRP materials fabricated using FFF

Composition M:g:;;)ne Notable quality outcomes
Carbon fiber | e Nd: 0.35 e 100 pum fiber length specimen
powder [100] mm showed higher ductility and
e Pt: 230 °C toughness with respect to 150 pm.
Short carbon | e Nd: 0.5 mm | e Higher tensile strength and modulus
fiber [101] e Pt: 205 °C compared with the conventional
compression molded composites
Short glass e Pt: 200 °C o Strength of ABS was improved
fiber [102] significantly at the expense of
handleability and poor flexibility.
Carbon fiber- | ¢ Nd: 0.5 mm | e Carbon fiber greatly improve
reinforced e Pt: 215 or mechanical characteristics
(CFR) [103], 230 °C

[104] o Printing speed and nozzle

temperature should match.

o Higher modulus was obtained for
Carbon e Nd:0.2,0.5, higher infill density.
nanotube- 0.8 mm o CFR-PLA was found to be the
reinforced e Pt: 230 or strongest material.
(CNT) [103], 365 °C e CNT does not affect the mechanical
[105], [106] properties of the PEEK parts
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