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Abstract

Multi-channel sensor fusion can be challenging for real-time machinery fault identification and diagnosis when a substantial
amount of missing data exists. Usually, some (or even all) sensors may not function correctly during real-time data acquisition due
to sensor malfunction or transmission issues. Additionally, multi-channel sensor fusion yields a large volume of data. Imputation
of missing entries can also be challenging with a large volume of data, which can predominantly affect the accuracy of machinery
fault diagnosis. However, how to impute a substantial amount of missing data for machinery fault identification is an open research
question. In light of the above challenges, this paper proposes constructing time-domain tensors based on heterogeneous sensor
signals. Subsequently, the fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization method is adopted for missing data
imputation of diverse bearing faults signals. To validate the effectiveness of this proposed method, a machinery fault simulator
was used to collect diverse bearing fault signals by incorporating both acoustics and vibration sensors. A varying percentage of
continuous missing signal scenarios are introduced at the random locations among different acoustics and vibration channels to
construct incomplete tensors. Subsequently, the FBCP method was leveraged to complete the incomplete tensors and calculate
estimated tensors. To evaluate the performance of continuous missing data imputation, relative standard errors are computed based
on the estimated and actual time-domain tensors. Experimental results show that this proposed method can effectively impute a
substantial portion of continuous missing data from diverse bearing fault scenarios.
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1. Introduction monitoring and decision-making [2]-[4]. The emerging trend

of multi-channel sensor fusion is ubiquitous. Industry 4.0

1.1. Motivation and challenges

Advanced communication and sensing technologies have
established the platforms between the physical manufacturing
plants and the cyber world, which is defined as cyber-physical
manufacturing systems [1]. In cyber-physical systems, a
manufacturing plant can be operated and monitored
simultaneously at the physical plants with the help of remotely
controlled sensors that can collect real-time data for process

perspective, heterogeneous sensor fusion can be integrated
real-time for condition monitoring of machinery [5]. Advanced
sensing technologies provide novel opportunities for real-time
fault diagnosis of manufacturing machinery. Different sensors,
including accelerometers, infrared imaging sensors,
microphones, power loggers, and thermocouples, are widely
used for collecting real-time sensing signals[6], [7]. Among
those sensing technologies, microphones and accelerometers
are extensively used for acoustic and vibration signals.
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Numerous studies showed that combining acoustics and
vibration signals is more effective than the individual signal
analysis approach [8], [9]

Generally, multi-channel sensor fusion yields a large volume
of data. Hence, efficient sensor performance and real-time data
acquisition is significantly important for machinery
prognostics and health management (PHM) task [3]. However,
signal missing may prevail due to various reasons, including
sensor sensitivity malfunction, sensor hardware malfunction,
and transmission disruptions [10]-[13]. The effect of signal
missing data may ends up with either continuous or random
missing data [10]. Moreover, in the worst-case scenarios, for
example, during a blackout situation, a substantial portion of
continuous missing data may also occur [14], [15]. Ultimately,
this leads to a substantial volume of missing data occurrence.
While imputation of missing entries can also be challenging,
and that can also predominantly affect the performance of
imputation. However, the multidimensional data structure,
which is defined as a tensor, provides an effective way to
handle high-volume of data. Tensor completion task with
substantially missing data volume effectively imputes missing
entries when sensor signal missing occurrence exists.
Additionally, tensor factorization enables to capture of multi-
linear interaction (channels X signals) among latent factors of
sensor signals and imputes missing entries based on observed
signals [15], [16].

Seeking state-of-the-art, a significant number of studies have
been involved in imputing missing entries by adopting tensor
completion. This  study has  incorporated  the
CANDECOMP/PARAFAC (CP) tensor factorizations method
that captures multi-linear structures and incomplete tensor
completion tasks. This study adopted a tensorial missing signal
imputation by a fully Bayesian CANDECOMP/PARAFAC
(FBCP) factorization method with low-rank determination
[16]. The FBCP method provides several competitive
advantages in dealing with missing signal imputation along
with incomplete tensor completion. For instance, a. FBCP
method can automatically determine CP rank, b. efficiently
avoid overfitting, ¢. performs well in imputing missing entries
with incomplete tensors.

1.2. Technical contribution of this proposed method

This proposed method was conducted on a machinery faults
simulator (MFS) based on different bearing fault scenarios by
incorporating acoustics and vibration signals. A varying
percentage of continuous missing signal scenarios is generated
among an equal number of acoustics and vibration channels
with a unified length of signals. And then constructed time-
domain tensor. Missing signal imputation in the time-domain
tensor was adopted by a FBCP factorization method [16]. Fig.
1 demonstrates continuous missing signals among different
channels. It is worth noting that a continuous missing entry is
introduced at a random location with varying missing percent
based on a given length of signals.

e The FBCP method enables to capture of multi-linear

interaction (channels X signals) among latent factors of
sensor signals.

e The FBCP method performs missing entries imputation
along with incomplete tensor completion with low-rank
determination.

e  Overall, this proposed method performed well imputing
a varying length of continuous missing entries of multi-
channel sensor signals from diverse bearing fault
conditions.

2. Literature review

A systematic state-of-the-art has been conducted based on
mechanisms of missing data and different imputation methods.
Section 2.1 primarily demonstrated the mechanisms of missing
data and types of missing data patterns. In section 2.2, missing
data imputation mechanisms are briefly discussed. A summary
of the research gap is demonstrated in section 2.3.

2.1. Missing data patterns and their generating mechanisms

Missing data problems are widespread in various
applications, including industrial, social, biomedical, and
weather science [17]-[19]. Missing data pattern describes the
structure between missing entries and observed datasets.
Missing data mechanisms refer to probable relations between
the given variables and missing data [17]. Usually identifying
the cause of missing data is usually somewhat difficult, but
some inferences can help detect the missing data pattern [20].
Missing data occurrence can be responsible for various reasons,
including sensor failure, sensor aging, hardware malfunction,
and transmission interference [10]-[13].

Missing data mechanism can be explained by three mutually
exclusive categories: a. missing at random (MAR); b. missing
completely at random (MCAR); ¢. missing not at random
(MNAR) [17], [20], [21]. MAR relates the systematic link
between one or more calculate variables and the probability of
missing data [17], [22]. MAR occurrence is not random and
explains the systematic missing. Additionally, MAR also
explains the tendency for missing data that are correlated with
associated variables [22]. MAR may occur due to transmission
interruption that may end up with continuous missing signals
[10]. For example, in a global navigation satellite system , time
series data can be missing as MAR due to receiver crashes and
power failure [23]-[25]. Offshore wind farms face difficulties
of supervisory control and data acquisition systems when
signals are missing due to harsh weather condition that led to
sensor failure [26], [27]. MAR occurrence can also be found in
wireless sensor networks due to sensor’s node communication
lost [28]. MCAR occurrence is completely haphazard, and the
observed data can be assumed a random subsample of the
complete data. The probability of MCAR data is unrelated of a
given variable and also unrelated to other variables [22]. In
contrast with MAR, MCAR data follow more restrictive
conditions because of missing data is completely unrelated to
the data [17], [22]. For instance, Micro-electromechanical
systems (MEMS) senor malfunctioning can also be explained
by MCAR behavior based on its functional level that relates to
several factors such as thermomechanical failure, electrical
failure, and environmental failure [29]. Sound signal loss is
also associated with MCAR due to malfunctioning
microphone’s electro-acoustic sensitivity [30], [31]. MNAR
exists when the probability of missing data on a given variable
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is related to the value of itself. While other variables can also
be controlled. MNAR is likely to be related to unobserved data.
Similar to the MAR mechanism, there is no straightforward
way to confirm that records are MNAR without observing the
entries of the missing variables [17].

2.2. Missing data imputation methods

Missing value recovery can be completed by different
imputation techniques, including mean substitution that is
replace by column mean or median [32]. K- nearest neighbor
(KNN) is a widely used popular technique for missing data
imputation [33], [34]. For example, KNN-based missing data
imputation is implemented in wireless sensor networks missing
sensor data [28]. Studies found that KNN performs better using
continuous and discrete data [35]. However, the KNN-based
imputation approach is time intensive since it searches for
similar data patterns from its neighbors [36]. Different
regression models, including multiple linear regression,
logistics regression, and multinomial logistics regression, are
used for missing data imputation [32]. Regression models
establish a relation between missing and existing features,
where existing features are defined as predictors. However, this
regression shows poor performance when it cannot correlate
missing and existing features [32], [37]. Fuzzy c-means
clustering techniques applied for missing data imputation that
seeks the related features of a missing feature, and multiple
linear regression and support vector regression are utilized for
the particular features from fuzzy cluster [18]. While this
proposed method failed to select automatic parameter selection
in the regression model. In the state-of-the-art, deep learning
models are widely used in the missing data imputation
approach. Artificial neural network (ANN) is also a popular
method for missing data imputation [19], [27]. Overfitting
occurrences can be found in ANN when it shows good
performance in the training dataset but fails to perform better
in the testing dataset [27]. In the biomedical field, the missing
data imputation approach is also popular by using recurrent
neural network (RNN) [38], [39]. RNN showed better
performance on missing pattern prediction. In [38] method, the
proposed model was restricted to explain the correlation
between missing pattern and prediction task. Compressed
Sensing -based on missing data imputation is utilized to
condition monitoring of wind turbines [40]. However,
Compressed Sensing-based on missing data imputation
computational time is substantially high [41], [42].

Tensor completion methods are also widely used for high-
dimensional missing data imputation. Tensor completion tasks
can be categorized into several approaches, including
decomposition/factorization-based, trace-norm based, and
some other probabilistic methods. Tensor factorization coupled
with tensor completion task is aligned to underlying factors
based on partially observed data, and incorporating a multi-
linear generative model assumption with fixed rank enables the
prediction of missing entries [16], [43], [44]. Most widely used
tensor decomposition approach includes
CANDECOMP/PARAFAC and Tucker decomposition [45]—
[49]. Tensor factorization with missing data has been
conducted with several approaches including weighted least
square problem termed as CP weighted optimization

(CPWOPT) [50], CP with nonlinear squares (CPNLS) [51],
geometric nonlinear conjugate gradient (geomCG) [52]. Still,
the tensor factorization shows the tendency of overfitting
because of incorrect tensor rank approximation and estimations
of underlying factors that lead to poor predictive performance
[16]. In contrast, significant research work has also been
conducted missing data imputation based on low-rank tensor
completion (LRTC) [16]. Musialski et al. [53] incorporated
Gaussian residual-based expectation maximization (EM)
approach in Tucker decomposition with smoothing scheme
coupled with fast low rank tensor completion (FaLRTC) and
high accuracy low rank tensor completion (HaLRTC). Certain
probabilistic CP decomposition techniques with Bayesian
inference are also suggested for resolving missing entries
estimation problem. This method is based on log-likelihood
function that deletes the missing values from likelihood
functions to deal with missing values and perform imputation
[54]. However, tensor rank minimization based on nuclear
norm relies on parameter tuning approach, which performs
over or under-estimating the true tensor rank. Tensor rank
determination considers NP-complete because there is no
simple algorithm for computer rank even with a given specific
tensor [55]. Seeking the state-of-the-art solution, we have
adopted a FBCP factorization with low-rank determination
method for missing data imputation from a machinery faults
simulator (MFS) with diverse bearing faults signals.
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Fig. 1. Continuous missing of signals among different channels.
2.3. Summary of research gaps
After the systematic literature review, existing research gaps
and challenges are identified, emphasizing missing data
imputation by general, deep learning, and tensor completion

methods in Table 1.

Table 1. Summary of existing research gap.

Missing data
imputation
method

Research gaps

= KNN approach is time intensive since it search
for similar data pattern from its neighbours [36].

= Multiple linear regression method shows poor
performance when it cannot correlate missing
and existing features [32], [37].

. Fuzzy c-means clustering approach failed to
select automatic parameter selection in the
regression model [18].

General method
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- ANN approach shows good performance in
training dataset but fails to perform better in

Deep Learning testing dataset [27].

method . RNN model is restricted to explain the
correlation between missing pattern and
prediction task [38].

- CPWOPT, CPNLS, and geomCG methods show
the tendency of overfitting because of incorrect
tensor rank approximation and estimations of

Tensor underlying factors that lead to poor predictive
Completion performance[16], [SO]-[52].
method . Tensor rank minimization on nuclear norm

relies on tuning parameters, which could show
over or under-estimating the true tensor rank
[55].

3. Methodology

In this section, the proposed method is presented to impute
missing entries in the time-domain signals generated from
acoustic and vibration sensors. A varying percentage of
continuous missing signal scenarios is generated at a specific
channel with a unified length of signals at random location of
signals. And then constructed time-domain tensors with all
channels at a time, which is defined as incomplete time-domain
tensors. Missing signal imputation in incomplete time-domain
tensor is adopted by a FBCP factorization method [16] and
computed an estimated tensors. Thus, the performance
evaluation of FBCP method is calculated based on relative
standard error (RSE) of estimated and actual tensors. The
overview of the proposed method is depicted in Fig. 2, which
illustrates continuous missing signal scenarios at channel 1 and
constructed incomplete time-domain tensors with all channels.

3.1. Tensor formation of the time-domain signal

Acoustics and vibration time-domain channel-wise signals
are combined and expressed as s} (t), sZ(t),si(t), ..., sF(t),
where k represents the total number of channels and [ denotes
the observation index as [ = 1, 2, 3, ..., m. The combined time-
domain signals with [ observations are constructed as a time-

When Ch. 1 is missing

Time index

Incomplete Tensor X, (I)

domain tensor with the dimension of D X k. The resulting
time-domain tensor contains the actual acoustics and vibration
signals, which is denoted as Xg(I) € RP**  where D
represents the length of the unified time-domain signals, where
channel-wise continuous missing signals can occur at random
location. Furthermore, Q denotes the set of indices in Xq (1),
and (iy,i,) € Q where i, =1,2,...,1,, Iy =D and I, = k.
With continuous missing entries in the signal, the incomplete
time-domain tensor can be expressed as X{ (1) € RP* ¥ (Fig.
2).

3.2. Bayesian-CP based tensor completion

The FBCP algorithm can effectively correlate the latent
multi-linear factors based on the observed data with a low-rank
determination and estimates the predictive distributions among
missing entries. In this section, for simplicity, the sample index
l of Xq(l) is omitted, since the tensor completion is
implemented on each individual sample separately. Let X, €
RP* ¥ as a 2"-order tensor of dimension D X k with missing
entries. The entries of X € R°*¥ can be denoted by X ;.
The underlying idea of applying Bayesian-CP decomposition
is to approximate the X, by generating the low-rank structure
as shown in the Eq.(1) [56], X, is the estimated tensor.

R

Xg = ngl) o x? = [x®, x®] (1)
r=1

where the operator o denotes the outer product of vectors, and
[...] is termed as the Kruskal operator. The CP factorization
can be calculated as a sum of R rank-one tensors, where the
lowest integer R is determined as the CP rank [57]. {(X™}2_;
contains the set of n-th decomposed factor matrices, and
X™ € R®*KXR can be denoted as row-wise or column-wise

vectors XM = [x&"),...xgn),...,xgn)]T =
n n
[x_(f),...x_(rn),...,x_(;l)]. The calculation of Rankcp(X§) = R

is computationally challenging and costly. The Bayesian
inference process can reach automatic low-rank approximation
based on tensor factorization to avoid the overfitting problem.
The CP generative missing entries assumption is based on

Estimated Tensor X, (I)

A
/» RSE
Evaluation
oY

.
>

Time index

-Actual signal D Missing signal D Estimated signal *Ch. = Channel *Obs. = Observations (1)

Fig. 2. The proposed framework for multi-channel missing signal imputation.
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observed entries of X, and the factorized tensor elements of
p(X4|X™) . Now, in order to enable automated rank
determination, a sparsity-inducing prior is provided across the
hyperparameters, since the smallest R is more desirable in low
rank approximation. Specifically, the prior distribution over the
latent factor can be determined by A = [A, ... ... , Ag], where
A, control 7-th components in X that is expressed in the Eq.

Q).

In
p(X(n)|)\.) — n N(X-E-n)|0, A—l)’n = 1,2 (2)
in=1

where A = diag(A) represents the inverse covariance matrix,
also known as the precision matrix, that is shared from the
latent factor matrix in all modes. The hyperprior over p() is a
factorized dimension and characterized using a Gamma
distribution. The latent variables and hyperparameters are
collectively denoted in Eq. (3).

0 = (XD,X®,1} 3)

The Bayesian computation of the full posterior distribution of
all variables is demonstrated in the Eq. (4). Based on the
posterior distribution of all variables in O, the predictive
distribution of missing entries is estimated by the Eq. (5), where
Xq denotes predictive missing entries.

p(0,Xy)

PO Tote xpyde

“

p(X1_1X}) = f (XL [O)p(0,X})d0  (5)

The exact Bayesian inference in (4) and (5) integrate over all
latent variables and hyperparameters, which is analytically
intractable. Therefore, a deterministic approximate inference
under variational Bayesian (VB) framework is developed to
learn the probabilistic CP factorization model [16]. Basically,
a distribution q(0) based on the Eq. (4) and (5), is incorporated
to approximate true posterior distribution p(©[X]) by
minimizing Kullback-Leibler (KL) divergence, which is
denoted in the Eq. (6).

KL(q(®)Ip(0]1X0)) (6)

The lower bound of Eq. (6) is solved by Eq. (7) and the
maximum lower bound can be determined when KL
divergence vanishes assuming q(0) = p(0|X}).

p(Xg,0)
q(0) }de

Basically, for model learning via Bayesian inference, Eq. (6) is
further leveraged to obtain the posterior distribution of the
factor matrices, hyperparameters and lower bound of the model
evidence. Moreover, during Bayesian inference-based model
learning, tensor rank is determined automatically and implicitly
updating A in each iteration [16]. Specifically, the Algorithm
1 adopted from [16], which is illustrated in Fig. 4. This
algorithm can effectively correlate the latent multi-linear
factors leveraging Bayesian inference based on the observed

@)= | q(@)ln{ %)

data with a low-rank determination and also estimates the
predictive distributions among missing entries. To avoid
Bayesian inference to local minima, the initial points of the
hyperparameter set are to a fixed value. After completion of the
missing entries, the evaluation of missing data imputation can
be quantified considering actual time-domain tensor Xgq (1)
and estimated tensor X, (1), where the evaluation metric can
be defined as relative standard error (RSE) in the Eq. (8).

[ X0 = Xa® |,
[ENOIk

RSE, = (®)

Algorithm 1: Fully Bayesian CP Factorization for tensor completion

adapted from [16]
Input: A set of acoustics and vibration signals of missing entries with
incomplete tensor {X, (1) € RP*¥,[ = 1,2, ..., m}, where m is total
number of observations.
Initialization: Initialization of hyperparameters © set to fixed.
Output: Estimated tensor X, (1)
Algorithm:
Step 1 (Estimated tensor calculation):
Repeat
Forl =1:m
Calculate estimated tensor X4 (1) leveraging Eq. (1)
end
Reduce rank R by eliminating components of {X(")}
Evaluate the lower bound using the Eq. (7)
until maximum number of iterations

Step 2 (evaluation of missing data imputation)
Relative standard error calculation from the Eq. (8)

Fig. 4. Fully Bayesian CP factorization algorithm.

Based on the Algorithm 1, the tensor rank can be determined
automatically and in practice R is set manually for
computational purpose. In this entire process A updates in each
iteration that results in a new prior over {X(™} and then {X(™}
updates by using the new prior in the subsequent iteration.

4. Case study

The evaluation study was conducted on a testbed using a
machinery faults simulator (MFS) manufactured by Spectra
Quest Inc., which is illustrated in Fig. 3 [58] and equipped with
(accelerometers)  and

multiple  vibrations acoustics

Fig. 3. The MFS setup for data collection with acoustics and
vibration sensors.
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(microphones) sensors for real-time sensor signal acquisition
purpose. Fig. 5 demonstrates accelerometers and microphone
allocation in the MFS [58]. Sensor missing signals are
generated as planned continuous missing based on the concept
of a blackout situation. Equal channels of acoustics and
vibration signals are unified, forming tensorial arrays, and a
certain percentage of continuous missing signal scenarios is
generated among different channels. It is worth noting that
continuous missing entries is introduced at a random location
with a varying missing percent based on a given length of
signals, such as 1%, 3%, 5%, 10%, and 20% missing. Missing
entries are imputed along with incomplete tensor completion
by the FBCP method, which is illustrated in section 3.2.
Finally, the performance of the estimated tensor X¢, (1) with
missing completion was evaluated comparing with the actual
tensor X (1).

@' @ Microphones
(@- @ Accelerometers
@Bearing house -1

(i9)Bearing house -2

Fig. 5. Multi-channel sensor allocation in the MFS.

4.1. Experimental setup and data collection

In this study, acoustics and vibration signals were compiled
by microphones and accelerometers, respectively. Adafruit®
silicon MEMS microphones (SPW 2430 model) were
incorporated for acoustic signal collection. Single-axis
accelerometers (Industrial ICP® 608A11) were used for
vibration signal acquisition. Sensitivity performance of
accelerometer is 100 mV/g with the frequency ranges of 0.20
to 15 kHz. Six accelerometers were attached on the two bearing
housings, where three accelerometers placed on each bearing
house, respectively. These six accelerometers were connected
to a data acquisition system for data collection with the
sampling rate of 10,240 Hz. Also, six microphones were also
embedded to the inside wall of the MFS chamber and
connected to another data acquisition system to capture real-
time acoustic emission signals at the sampling frequency of
8,000 Hz. The working motor speed was 30 Hz. Table 2
demonstrates the experimental design for five different bearing
fault operating conditions and their corresponding observation
numbers. The multi-channel sensor signals were collected after
the motor reached the steady state operation conditions.

Table 2. Operation conditions performed in data collection.

Bearin, Bearin, Number of
house -gl house -g2 Class label observations
Good Good 1 12
Good Ball fault 2 6
Ball fault Good 2 6
Good Inner race fault 3 6
Inner race fault ~ Good 3 6
Good Outer race fault 4 6
Outer race fault  Good 4 6
Good Combined fault 5 6
Combined fault  Good 5 6
Total 60

4.2. Missing data imputation and performance evaluation

In this study, planned missing signal is generated in time-
domain tensor with 1%, 3%, 5%, 10%, and 20% percentage of
continuous missing among different channels by considering
each bearing fault conditions. Missing entries with time-
domain tensor size is 12 X 500 x 12, where 12, 500, and 12
represent the total number of channels, signal length, and
number of observations for each bearing fault conditions,
respectively. Continuous missing is calculated based on the
length of signals, where 10% continuous missing equivalent to
50 lengths of continuous missing, which is generated among
four different channels at different location randomly. The
similar approach is also applicable when 20% missing
equivalent to 100 lengths of continuous missing. In the given
incomplete tensor size of 12 X 500 X 12 is computed to
estimated tensor using each observation starting from 1 to 12.
Table 3 shows tuning parameters for FBCP-based tensor
completion work. While each observation is iterated to 1 to 150
based on performance loss objective value of tolerance limit,
which is set as 10712, In this incomplete-tensor completion, CP
rank R = 15 is used. The performance evaluation of
incomplete-tensor completion (estimated tensor), which is
denoted by X, (1) is compared with the actual tensor X (1).
RSE is computed by the Eq. (8). It is worth noting that, tensor
completion work is computationally faster when the tensor size
is substantially small. To evaluate the effectiveness of the
FBCP method, CP weighted optimization (CPWOPT) method
is leveraged as benchmark method [50]. In the benchmark
method CP rank R and number of iterations set to 15 and 150,
respectively, which is similar to the FBCP method.

Table 3. Tuning parameter for FBCP-based tensor completion.

Tuning parameter Value
CP Rank R 15
Tolerance limit 10712
Initial hyperparameter value 1078
Number of iterations 150

4.3. Results and discussion

Table 4 summarizes the performance of proposed and
benchmark methods for the evaluation of estimated tensors
based on channel-wise continuous missing percentages with
five different bearing fault conditions and their respective RSE
values. In different bearing conditions, channel-wise average
RSE wvalues are compared given corresponding missing
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percentages at channel 1, 5, 9 and 11, where channel 1 and 5
corresponds to acoustics signals and channel 9 and 11 contain
vibration signals. It is notable to mention that when a varying
percentage of continuous missing signal scenarios are
introduced at channel 1 then rest of 11 channels remained
unchanged. Similar approaches are also applied in channels 5,
9 and 11 respectively. Fig. 6 demonstrates the performance of
estimated signals at the location of missing occurrences (20%
missing) and compares with the actual signals among acoustics
and vibration channels. In acoustics channel-1, observations 1
and 2 show that estimated signals overlap the actual signals at
the location of missing. Their residual plots show the
effectiveness of the difference between estimated and actual
signals. Similarly, at vibration channel 11, estimated signals
overlap the actual at the location of a higher missing percentage

Obs. 1: Estimated and original
signals

Obs. 1: Residual plot

x10°3
0.02 Aﬂ 2
0.01
M ‘1 ‘,’ 0
nluar | ,H“ \\\ /‘I“
| VJ i -2
-0.01 |
-0.02 -4
] 50 100 0 50 100

-0.01 |\

(20% missing), and their residual plots show the effectiveness
of estimated and actual signals. Fig. 7 shows an overall trend
of RSE value in proposed and benchmark methods with respect
to different missing percentages among five different bearing
fault conditions. In contrast, it is noticeable that the proposed
method performs better than the benchmark method with
higher percentages of missing entries. Overall, the proposed
method enables to capture the multi-linear latent factors among
different channels with observed signals to impute continuous
missing entries with substantially higher missing percentages.
This proposed method was computed using the Intel (R) Core
(TM) 19-12900 CPU @ 2.40 GHz.

Obs. 2: Estimated and original
signals

Obs. 2: Residual plot

%1073

0.02 2

0.01 ﬁ / \ ,
”1]\” 'VH”H’,‘ ! L}\u‘h q I\.\IY

-0.02 -4

0 50 100 0 50 100

Vibration Ch. 11: Estimated and original signal overlaps at the location of missingness

Obs. 1: Estimated and original
signals

Obs. 1: Residual plot
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Obs. 2: Estimated and original Obs. 2: Residual plot
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Legend: Blue: Original signals;

Fig. 6. Imputation of missing signals at the location of missing occurrences in acoustics and vibration channels (MP: 20%) with FBCP method.

0.2 02 0.25 e ——
) ——FBCP = CPWOPT —+—FBCP —~ CPWOPT ——FBCP ——CPWOPT
0.2 - 0.2 0.2 0.2 02|
w 0.15 0.15 0.15 0.15 0.15|
o
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Missing %

Outer Race Fault
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Fig. 7. Performance evaluation of proposed and benchmark methods with diverse bearing fault conditions.
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Table 4 Summary results of proposed and benchmark method
Bearing MP: 1 % MP: 3 % MP: 5% MP: 10 % MP: 20 %
conditions Ch. # Avg. RSE Avg. RSE Avg. RSE Avg. RSE Avg. RSE
FBCP CPWOPT FBCP CPWOPT FBCP CPWOPT FBCP CPWOPT FBCP CPWOPT
Ch. 1 0.0358 0.0443 0.0406 0.0821 0.0453 0.1064 0.0500 0.1601 0.0582 0.2449
Good bearing Ch.5 0.0357 0.0334 0.0392 0.0675 0.0467 0.0830 0.0601 0.1126 0.0825 0.1856
Ch.9 0.0339 0.0470 0.0350 0.0879 0.0361 0.1115 0.0383 0.1595 0.0408 0.2460
Ch.11 0.0337 0.0331 0.0339 0.0536 0.0343 0.0739 0.0388 0.1192 0.0423 0.2137
Avg. 0.0348 0.0395 0.0372 0.0728 0.0406 0.0937 0.0468 0.1379 0.0560 0.2226
Ch. 1 0.0347 0.0260 0.0402 0.0450 0.0419 0.0624 0.0511 0.0889 0.0644 0.1415
Ball fault Ch.5 0.0351 0.0215 0.0429 0.0382 0.0469 0.0476 0.0590 0.0720 0.0806 0.1159
Ch.9 0.0280 0.0216 0.0280 0.0441 0.0286 0.0583 0.0293 0.0860 0.0362 0.1556
Ch.11 0.0303 0.0155 0.0302 0.0258 0.0308 0.0371 0.0310 0.0579 0.0347 0.1126
Avg. 0.0320 0.0212 0.0353 0.0383 0.0370 0.0514 0.0426 0.0762 0.0539 0.1314
Ch. 1 0.0462 0.0175 0.0445 0.0287 0.0437 0.0358 0.0508 0.0539 0.0519 0.0834
Inner race fault Ch.5 0.0420 0.0131 0.0434 0.0220 0.0463 0.0284 0.0470 0.0443 0.0560 0.0690
Ch.9 0.0468 0.0196 0.0452 0.0372 0.0464 0.0502 0.0473 0.0730 0.0644 0.1407
Ch.11 0.0397 0.0128 0.0400 0.0262 0.0425 0.0350 0.0439 0.0520 0.0500 0.1114
Avg. 0.0437 0.0158 0.0433 0.0285 0.0447 0.0374 0.0472 0.0558 0.0556 0.1011
Ch. 1 0.0814 0.0228 0.0828 0.0379 0.0843 0.0491 0.0867 0.0729 0.0916 0.1159
Outer race fault Ch.5 0.0811 0.0192 0.0825 0.0305 0.0843 0.0391 0.0871 0.0566 0.0924 0.0866
Ch.9 0.0819 0.0223 0.0877 0.0430 0.0845 0.0601 0.0896 0.0803 0.0924 0.1234
Ch.11 0.0807 0.0162 0.0814 0.0266 0.0872 0.0399 0.0831 0.0590 0.0899 0.1145
Avg. 0.0813 0.0201 0.0836 0.0345 0.0850 0.0471 0.0867 0.0672 0.0916 0.1101
Ch. 1 0.0299 0.0275 0.0343 0.0448 0.0379 0.0579 0.0461 0.0846 0.0597 0.1293
Combined fault Ch.5 0.0322 0.0250 0.0372 0.0406 0.0424 0.0553 0.0528 0.0753 0.0604 0.1117
Ch.9 0.0262 0.0192 0.0265 0.0393 0.0272 0.0536 0.0288 0.0769 0.0313 0.1328
Ch.11 0.0259 0.0116 0.0396 0.0246 0.0399 0.0350 0.0495 0.0513 0.0564 0.1122
Avg. 0.0285 0.0208 0.0344 0.0373 0.0368 0.0505 0.0443 0.0720 0.0519 0.1215

5. Conclusion and future work

The emerging trend of multi-channel sensor fusion is
ubiquitous. In the industry 4.0 perspective, heterogeneous
sensor fusion can be integrated for real-time machinery fault
identification and diagnosis. Multi-channel sensor fusion can
be challenging when a substantial amount of missing data
occurrence prevails. However, the effectiveness of
imputation of missing sensor signals is also significantly
important for monitoring machinery conditions. In quest of
the state-of-the-art, this proposed method adopted a fully
Bayesian CANDECOMP/PARAFAC factorization (FBCP)
method for missing data imputation from diverse bearing
fault signals. To validate the effectiveness of this proposed
method, a machinery fault simulator is used as a testbed to
collect diverse bearing fault signals by integrating an equal
number of acoustics (microphones) and vibration
(accelerometers) sensors simultaneously. Acoustics and
vibration signals are combined by forming time-domain
tensors. A varying percentage of continuous missing signal
scenarios are generated at random locations among different
acoustics and vibration channels, constructing incomplete
tensors. Then, the FBCP method is leveraged to complete the
incomplete tensors and calculate estimated tensors. To
evaluate the performance of continuous missing data
imputation, relative standard errors (RSE) are computed
based on the estimated and actual time-domain tensors. The
CP weighted optimization (CPWOPT) method is
incorporated as a benchmark method to evaluate the
effectiveness of the FBCP method. Experimental results
show that this proposed method can effectively impute a
substantial portion of continuous missing data from diverse
bearing fault scenarios.

For future work, this proposed method can be extended in
the following aspects. Firstly, in real-world applications,
multiple signal missing scenarios can occur to multiple
acoustics and vibration channels simultaneously. The
corresponding effectiveness of the FBCP method needs to be
examined for this type of complex data missing scenarios.
Secondly, this proposed method can be extended for bearing
faults classification. More specifically, machine learning
tools can be applied to the imputed multi-channel signals for
bearing fault diagnosis, similar to the studies in [58].
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