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Abstract 

Multi-channel sensor fusion can be challenging for real-time machinery fault identification and diagnosis when a substantial 
amount of missing data exists. Usually, some (or even all) sensors may not function correctly during real-time data acquisition due 
to sensor malfunction or transmission issues. Additionally, multi-channel sensor fusion yields a large volume of data. Imputation 
of missing entries can also be challenging with a large volume of data, which can predominantly affect the accuracy of machinery 
fault diagnosis. However, how to impute a substantial amount of missing data for machinery fault identification is an open research 
question. In light of the above challenges, this paper proposes constructing time-domain tensors based on heterogeneous sensor 
signals. Subsequently, the fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization method is adopted for missing data 
imputation of diverse bearing faults signals. To validate the effectiveness of this proposed method, a machinery fault simulator 
was used to collect diverse bearing fault signals by incorporating both acoustics and vibration sensors. A varying percentage of 
continuous missing signal scenarios are introduced at the random locations among different acoustics and vibration channels to 
construct incomplete tensors. Subsequently, the FBCP method was leveraged to complete the incomplete tensors and calculate 
estimated tensors. To evaluate the performance of continuous missing data imputation, relative standard errors are computed based 
on the estimated and actual time-domain tensors. Experimental results show that this proposed method can effectively impute a 
substantial portion of continuous missing data from diverse bearing fault scenarios.  
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1. Introduction 

1.1. Motivation and challenges  

Advanced communication and sensing technologies have 

established the platforms between the physical manufacturing 

plants and the cyber world, which is defined as cyber-physical 

manufacturing systems [1]. In cyber-physical systems, a 

manufacturing plant can be operated and monitored 

simultaneously at the physical plants with the help of remotely 

controlled sensors that can collect real-time data for process 

monitoring and decision-making [2]–[4]. The emerging trend 

of multi-channel sensor fusion is ubiquitous. Industry 4.0 

perspective, heterogeneous sensor fusion can be integrated 

real-time for condition monitoring of machinery [5]. Advanced 

sensing technologies provide novel opportunities for real-time 

fault diagnosis of manufacturing machinery. Different sensors, 

including accelerometers, infrared imaging sensors, 

microphones, power loggers, and thermocouples, are widely 

used for collecting real-time sensing signals[6], [7]. Among 

those sensing technologies, microphones and accelerometers 

are extensively used for acoustic and vibration signals. 

http://www.sciencedirect.com/science/journal/22128271
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Numerous studies showed that combining acoustics and 

vibration signals is more effective than the individual signal 

analysis approach [8], [9] 

Generally, multi-channel sensor fusion yields a large volume 

of data. Hence, efficient sensor performance and real-time data 

acquisition is significantly important for machinery 

prognostics and health management (PHM) task [3].  However, 

signal missing may prevail due to various reasons, including 

sensor sensitivity malfunction, sensor hardware malfunction, 

and transmission disruptions [10]–[13]. The effect of signal 

missing data may ends up with either continuous or random 

missing data [10]. Moreover, in the worst-case scenarios, for 

example, during a blackout situation, a substantial portion of 

continuous missing data may also occur [14], [15]. Ultimately, 

this leads to a substantial volume of missing data occurrence. 

While imputation of missing entries can also be challenging, 

and that can also predominantly affect the performance of 

imputation. However, the multidimensional data structure, 

which is defined as a tensor, provides an effective way to 

handle high-volume of data. Tensor completion task with 

substantially missing data volume effectively imputes missing 

entries when sensor signal missing occurrence exists. 

Additionally, tensor factorization enables to capture of multi-

linear interaction (channels × signals) among latent factors of 

sensor signals and imputes missing entries based on observed 

signals [15], [16].  

Seeking state-of-the-art, a significant number of studies have 

been involved in imputing missing entries by adopting tensor 

completion. This study has incorporated the 

CANDECOMP/PARAFAC (CP) tensor factorizations method 

that captures multi-linear structures and incomplete tensor 

completion tasks. This study adopted a tensorial missing signal 

imputation by a fully Bayesian CANDECOMP/PARAFAC 

(FBCP)  factorization method with low-rank determination 

[16]. The FBCP method provides several competitive 

advantages in dealing with missing signal imputation along 

with incomplete tensor completion. For instance, a. FBCP 

method can automatically determine CP rank, b. efficiently 

avoid overfitting, c. performs well in imputing missing entries 

with incomplete tensors.   

 

1.2. Technical contribution of this proposed method 

This proposed method was conducted on a machinery faults 

simulator (MFS) based on different bearing fault scenarios by 

incorporating acoustics and vibration signals. A varying 

percentage of continuous missing signal scenarios is generated 

among an equal number of acoustics and vibration channels 

with a unified length of signals. And then constructed time- 

domain tensor. Missing signal imputation in the time-domain 

tensor was adopted by a FBCP factorization method [16]. Fig. 

1 demonstrates continuous missing signals among different 

channels.  It is worth noting that a continuous missing entry is 

introduced at a random location with varying missing percent 

based on a given length of signals.  

• The FBCP method enables to capture of multi-linear 

interaction (channels × signals) among latent factors of 

sensor signals. 

• The FBCP method performs missing entries imputation 

along with incomplete tensor completion with low-rank 

determination.  

• Overall, this proposed method performed well imputing 

a varying length of continuous missing entries of multi-

channel sensor signals from diverse bearing fault 

conditions. 

2. Literature review 

 

A systematic state-of-the-art has been conducted based on 

mechanisms of missing data and different imputation methods. 

Section 2.1 primarily demonstrated the mechanisms of missing 

data and types of missing data patterns. In section 2.2, missing 

data imputation mechanisms are briefly discussed. A summary 

of the research gap is demonstrated in section 2.3. 

2.1. Missing data patterns and their generating mechanisms  

Missing data problems are widespread in various 

applications, including industrial, social, biomedical, and 

weather science [17]–[19]. Missing data pattern describes the 

structure between missing entries and observed datasets. 

Missing data mechanisms refer to probable relations between 

the given variables and missing data [17]. Usually identifying 

the cause of missing data is usually somewhat difficult, but 

some inferences can help detect the missing data pattern [20]. 

Missing data occurrence can be responsible for various reasons, 

including sensor failure, sensor aging, hardware malfunction, 

and transmission interference [10]–[13]. 

 

 Missing data mechanism can be explained by three mutually 

exclusive categories: a. missing at random (MAR); b. missing 

completely at random (MCAR); c. missing not at random 

(MNAR) [17], [20], [21]. MAR relates the systematic link 

between one or more calculate variables and the probability of 

missing data [17], [22]. MAR occurrence is not random and 

explains the systematic missing. Additionally, MAR also 

explains the tendency for missing data that are correlated with 

associated variables [22]. MAR may occur due to transmission 

interruption that may end up with continuous missing signals 

[10]. For example, in a global navigation satellite system , time 

series data can be missing as MAR due to receiver crashes and 

power failure [23]–[25]. Offshore wind farms face difficulties 

of supervisory control and data acquisition systems when 

signals are missing due to harsh weather condition that led to 

sensor failure [26], [27]. MAR occurrence can also be found in 

wireless sensor networks  due to sensor’s node communication 

lost [28]. MCAR occurrence is completely haphazard, and the 

observed data can be assumed a random subsample of the 

complete data. The probability of MCAR data is unrelated of a 

given variable and also unrelated to other variables [22]. In 

contrast with MAR, MCAR data follow more restrictive 

conditions because of missing data is completely unrelated to 

the data [17], [22]. For instance, Micro-electromechanical 

systems (MEMS) senor malfunctioning can also be explained 

by MCAR behavior based on its functional level that relates to 

several factors such as thermomechanical failure, electrical 

failure, and environmental failure [29]. Sound signal loss is 

also associated with MCAR due to malfunctioning 

microphone’s electro-acoustic sensitivity [30], [31]. MNAR 

exists when the probability of missing data on a given variable 
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is related to the value of itself. While other variables can also 

be controlled. MNAR is likely to be related to unobserved data. 

Similar to the MAR mechanism, there is no straightforward 

way to confirm that records are MNAR without observing the 

entries of the missing variables [17]. 

2.2. Missing data imputation methods 

 

Missing value recovery can be completed by different 

imputation techniques, including mean substitution that is 

replace by column mean or median [32].  K- nearest neighbor 

(KNN) is a widely used popular technique for missing data 

imputation   [33], [34]. For example, KNN-based missing data 

imputation is implemented in wireless sensor networks missing 

sensor data [28]. Studies found that KNN performs better using 

continuous and discrete data [35]. However, the KNN-based 

imputation approach is time intensive since it searches for 

similar data patterns from its neighbors [36]. Different 

regression models, including multiple linear regression, 

logistics regression, and multinomial logistics regression, are 

used for missing data imputation [32]. Regression models 

establish a relation between missing and existing features, 

where existing features are defined as predictors. However, this 

regression shows poor performance when it cannot correlate 

missing and existing features [32], [37]. Fuzzy c-means 

clustering techniques applied for missing data imputation that 

seeks the related features of a missing feature, and multiple 

linear regression and support vector regression  are utilized for 

the particular features from fuzzy cluster [18]. While this 

proposed method failed to select automatic parameter selection 

in the regression model.  In the state-of-the-art, deep learning 

models are widely used in the missing data imputation 

approach. Artificial neural network (ANN) is also a popular 

method for missing data imputation [19], [27]. Overfitting 

occurrences can be found in ANN when it shows good 

performance in the training dataset but fails to perform better 

in the testing dataset [27]. In the biomedical field, the missing 

data imputation approach is also popular by using recurrent 

neural network (RNN) [38], [39]. RNN showed better 

performance on missing pattern prediction. In [38] method, the 

proposed model was restricted to explain the correlation 

between missing pattern and prediction task. Compressed 

Sensing -based on missing data imputation is utilized to 

condition monitoring of wind turbines [40]. However, 

Compressed Sensing-based on missing data imputation 

computational time is substantially high [41], [42].  

Tensor completion methods are also widely used for high-

dimensional missing data imputation. Tensor completion tasks 

can be categorized into several approaches, including 

decomposition/factorization-based, trace-norm based, and 

some other probabilistic methods. Tensor factorization coupled 

with tensor completion task is aligned to underlying factors 

based on partially observed data, and incorporating a multi-

linear generative model assumption with fixed rank enables the 

prediction of missing entries [16], [43], [44]. Most widely used 

tensor decomposition approach includes 

CANDECOMP/PARAFAC  and Tucker decomposition [45]–

[49]. Tensor factorization with missing data has been 

conducted with several approaches including weighted least 

square problem termed as CP weighted optimization 

(CPWOPT) [50], CP with nonlinear squares (CPNLS) [51], 

geometric nonlinear conjugate gradient (geomCG) [52]. Still, 

the tensor factorization shows the tendency of overfitting 

because of incorrect tensor rank approximation and estimations 

of underlying factors that lead to poor predictive performance 

[16]. In contrast, significant research work has also been 

conducted missing data imputation based on low-rank tensor 

completion (LRTC) [16].  Musialski et al. [53] incorporated 

Gaussian residual-based expectation maximization (EM) 

approach in Tucker decomposition with smoothing scheme 

coupled with fast low rank tensor completion (FaLRTC) and 

high accuracy low rank tensor completion (HaLRTC). Certain 

probabilistic CP decomposition techniques with Bayesian 

inference are also suggested for resolving missing entries 

estimation problem. This method is based on log-likelihood 

function that deletes the missing values from likelihood 

functions to deal with missing values and perform imputation 

[54]. However, tensor rank minimization based on nuclear 

norm relies on parameter tuning approach, which performs 

over or under-estimating the true tensor rank. Tensor rank 

determination considers NP-complete because there is no 

simple algorithm for computer rank even with a given specific 

tensor [55]. Seeking the state-of-the-art solution, we have 

adopted a FBCP factorization with low-rank determination 

method for missing data imputation from a machinery faults 

simulator (MFS) with diverse bearing faults signals.   

Fig. 1. Continuous missing of signals among different channels. 

2.3. Summary of research gaps 

After the systematic literature review, existing research gaps 

and challenges are identified, emphasizing missing data 

imputation by general, deep learning, and tensor completion 

methods in Table 1. 

  

Table 1. Summary of existing research gap. 

 
Missing data 
imputation 

method 

Research gaps 

General method 

▪ KNN approach is time intensive since it search 

for similar data pattern from its neighbours [36]. 

▪ Multiple linear  regression method shows poor 
performance when it cannot correlate missing 

and existing features [32], [37]. 

▪ Fuzzy c-means clustering approach failed to 
select automatic parameter selection in the 

regression model [18]. 
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Deep Learning 

method 

▪ ANN approach shows good performance in 

training dataset but fails to perform better in 
testing dataset [27]. 

▪ RNN model is  restricted to explain the 
correlation between missing pattern and 

prediction task [38]. 

Tensor 
Completion 

method 

▪ CPWOPT, CPNLS, and geomCG methods show 
the tendency of overfitting because of incorrect 

tensor rank approximation and estimations of 

underlying factors that lead to poor predictive 
performance[16], [50]–[52]. 

▪ Tensor rank minimization  on nuclear norm 

relies on tuning parameters, which could show 
over or under-estimating the true tensor rank 

[55]. 

 

3. Methodology 

 In this section, the proposed method is presented to impute 

missing entries in the time-domain signals generated from 

acoustic and vibration sensors. A varying percentage of 

continuous missing signal scenarios is generated at a specific 

channel with a unified length of signals at random location of 

signals. And then constructed time-domain tensors with all 

channels at a time, which is defined as incomplete time-domain 

tensors. Missing signal imputation in incomplete time-domain 

tensor is adopted by a FBCP factorization method [16] and 

computed an estimated tensors. Thus, the performance 

evaluation of FBCP method is calculated based on relative 

standard error (RSE) of estimated and actual tensors. The 

overview of the proposed method is depicted in Fig. 2, which 

illustrates continuous missing signal scenarios at channel 1 and 

constructed incomplete time-domain tensors with all channels. 

 

3.1. Tensor formation of the time-domain signal 

Acoustics and vibration time-domain channel-wise signals 

are combined and expressed as 𝑠𝑙
1(𝑡), 𝑠𝑙

2(𝑡), 𝑠𝑙
3(𝑡), … , 𝑠𝑙

𝑘(𝑡) , 

where 𝑘 represents the total number of channels and 𝑙 denotes 

the observation index as 𝑙 = 1, 2, 3, … , 𝑚. The combined time-

domain signals with 𝑙 observations are constructed as a time-

domain tensor with the dimension of 𝐷 × 𝑘 . The resulting 

time-domain tensor contains the actual acoustics and vibration 

signals, which is denoted as 𝒳Ω(𝑙) ∈ ℝ𝐷× 𝑘 , where  𝐷 

represents the length of the unified time-domain signals, where 

channel-wise continuous missing signals can occur at random 

location. Furthermore, Ω denotes the set of indices in 𝒳Ω(𝑙), 

and (𝑖1, 𝑖2) ∈ Ω  where 𝑖𝑛 = 1,2, . . . , 𝐼𝑛 , 𝐼1 = 𝐷  and 𝐼2 = 𝑘 . 

With continuous missing entries in the signal, the incomplete 

time-domain tensor can be expressed as  𝒳Ω
′ (𝑙) ∈ ℝ𝐷× 𝑘 (Fig. 

2). 

3.2. Bayesian-CP based tensor completion 

The FBCP algorithm can effectively correlate the latent 

multi-linear factors based on the observed data with a low-rank 

determination and estimates the predictive distributions among 

missing entries. In this section, for simplicity, the sample index 

𝑙  of 𝒳Ω(𝑙)  is omitted, since the tensor completion is 

implemented on each individual sample separately. Let 𝒳Ω
′ ∈

ℝ𝐷× 𝑘 as a 2nd-order tensor of dimension 𝐷 × 𝑘 with missing 

entries. The entries of 𝒳Ω
′ ∈ ℝ𝐷× 𝑘  can be denoted by  𝒳𝑖1,𝑖2

′ . 

The underlying idea of applying Bayesian-CP decomposition 

is to approximate the 𝒳Ω
′ , by generating the low-rank structure 

as shown in the Eq.(1) [56], 𝒳Ω
′  is the estimated tensor. 

𝒳Ω
′ = ∑ 𝐱𝑟

(1)

𝑅

𝑟=1

o  𝐱𝑟
(2)

=  ⟦𝐗(1),  𝐗(2)⟧ (1) 

where the operator o denotes the outer product of vectors, and 

⟦… ⟧ is termed as the Kruskal operator. The CP factorization 

can be calculated as a sum of 𝑅 rank-one tensors, where the 

lowest integer 𝑅 is determined as the CP rank [57]. {𝐗(𝑛)}𝑛=1
2  

contains the set of 𝑛 -th decomposed factor matrices, and  

𝐗(𝑛)  ∈ ℝ(𝐷×𝑘)×𝑅  can be denoted as row-wise or column-wise 

vectors 𝐗(𝑛) = [𝐱1
(𝑛)

, . . . 𝐱𝑖𝑛

(𝑛)
, . . . , 𝐱𝐼𝑛

(𝑛)
]𝑇 =

[𝐱 .1
(𝑛)

, . . . 𝐱.𝑟
(𝑛)

, . . . , 𝐱.𝑅
(𝑛)

] . The calculation of Rank𝐶𝑃(𝒳Ω
′ ) = 𝑅 

is computationally challenging and costly. The Bayesian 

inference process can reach automatic low-rank approximation 

based on tensor factorization to avoid the overfitting problem. 

The CP generative missing entries assumption is based on 

Fig. 2. The proposed framework for multi-channel missing signal imputation. 
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observed entries of 𝒳Ω
′  and the factorized tensor elements of 

𝑝(𝒳Ω
′ |𝐗(𝑛)) . Now, in order to enable automated rank 

determination, a sparsity-inducing prior is provided across the 

hyperparameters, since the smallest 𝑅 is more desirable in low 

rank approximation. Specifically, the prior distribution over the 

latent factor can be determined by  𝛌 = [λ1, … … , λ𝑅], where 

λ𝑟  control 𝑟-th components in 𝐗(𝑛) that is expressed in the Eq. 

(2). 

 𝑝(𝐗(𝑛)|𝛌) =  ∏ 𝒩(𝐱𝑟
(𝑛)

|0, 𝚲−𝟏), 𝑛 = 1,2  

𝐼𝑛

𝑖𝑛=1

 (2) 

where 𝚲 = diag(𝛌) represents the inverse covariance matrix, 

also known as the precision matrix, that is shared from the 

latent factor matrix in all modes. The hyperprior over 𝑝(𝛌) is a 

factorized dimension and characterized using a Gamma 

distribution. The latent variables and hyperparameters are 

collectively denoted in Eq. (3). 

 Θ = {𝐗(1), 𝐗(2), 𝛌 } (3) 

The Bayesian computation of the full posterior distribution of 

all variables is demonstrated in the Eq. (4). Based on the 

posterior distribution of all variables in Θ , the predictive 

distribution of missing entries is estimated by the Eq. (5), where 

𝒳\Ω
′  denotes predictive missing entries. 

 𝑝(Θ|𝒳Ω
′ ) =  

𝑝(Θ, 𝒳Ω
′ )

∫ 𝑝(Θ, 𝒳Ω
′ )𝑑Θ

 (4) 

 

 𝑝(𝒳\Ω

′ |𝒳Ω
′ ) = ∫ 𝑝(𝒳\Ω

′ |Θ)𝑝(Θ, 𝒳Ω
′ )𝑑Θ (5) 

The exact Bayesian inference in (4) and (5) integrate over all 

latent variables and hyperparameters, which is analytically 

intractable. Therefore, a deterministic approximate inference 

under variational Bayesian (VB) framework is developed to 

learn the probabilistic CP factorization model [16]. Basically, 

a distribution 𝑞(Θ) based on the Eq. (4) and (5), is incorporated 

to approximate true posterior distribution 𝑝(Θ|𝒳𝑙
′)  by 

minimizing Kullback–Leibler (KL) divergence, which is 

denoted in the Eq. (6).  

 KL(𝑞(Θ)||𝑝(Θ|𝒳Ω
′ ) ) (6) 

The lower bound of Eq. (6) is solved by Eq. (7) and the 

maximum lower bound can be determined when KL 

divergence vanishes assuming 𝑞(Θ) = 𝑝(Θ|𝒳Ω
′ ). 

 ℒ(𝑞) =  ∫ 𝑞(Θ)ln {
𝑝(𝒳Ω

′ , Θ)

𝑞(Θ)
} 𝑑Θ (7) 

Basically, for model learning via Bayesian inference, Eq. (6) is 

further leveraged to obtain the posterior distribution of the 

factor matrices, hyperparameters and lower bound of the model 

evidence. Moreover, during Bayesian inference-based model 

learning, tensor rank is determined automatically and implicitly 

updating 𝛌 in each iteration [16]. Specifically, the Algorithm 

1 adopted from [16], which is illustrated in Fig. 4.  This 

algorithm can effectively correlate the latent multi-linear 

factors leveraging Bayesian inference based on the observed 

data with a low-rank determination and also estimates the 

predictive distributions among missing entries. To avoid 

Bayesian inference to local minima, the initial points of the 

hyperparameter set are to a fixed value. After completion of the 

missing entries, the evaluation of missing data imputation can 

be quantified considering actual time-domain tensor  𝒳Ω(𝑙) 

and estimated tensor 𝒳̃Ω
′ (𝑙),  where the evaluation metric can 

be defined as relative standard error (RSE) in the Eq. (8).     

𝑅𝑆𝐸𝑙  =  
‖𝒳̃Ω

′ (𝑙) − 𝒳Ω(𝑙) ‖
𝐹

‖𝒳Ω(𝑙)‖𝐹

 (8) 

Algorithm 1: Fully Bayesian CP Factorization for tensor completion 

adapted from [16] 
Input: A set of acoustics and vibration signals of missing entries with 

incomplete tensor  {𝒳𝛺
′ (𝑙) ∈ ℝ𝐷×𝑘 , 𝑙 = 1,2, … , 𝑚}, where 𝑚 is total 

number of observations. 

Initialization: Initialization of hyperparameters Θ set to fixed. 

Output: Estimated tensor 𝒳̃Ω
′ (𝑙) 

Algorithm: 

Step 1 (Estimated tensor calculation): 

Repeat 

For 𝑙 =  1 ∶ 𝑚  

Calculate estimated tensor 𝒳̃Ω
′ (𝑙) leveraging Eq. (1) 

end  

Reduce rank 𝑅 by eliminating components of {𝐗(𝑛)} 

Evaluate the lower bound using the Eq. (7) 

until maximum number of iterations 

 

Step 2 (evaluation of missing data imputation) 

Relative standard error calculation from the Eq. (8) 

Fig. 4. Fully Bayesian CP factorization algorithm. 

Based on the Algorithm 1, the tensor rank can be determined 

automatically and in practice 𝑅  is set manually for 

computational purpose. In this entire process 𝛌 updates in each 

iteration that results in a new prior over {𝐗(𝑛)} and then {𝐗(𝑛)} 

updates by using the new prior in the subsequent iteration.  

4. Case study 

The evaluation study was conducted on a testbed using a 

machinery faults simulator (MFS) manufactured by Spectra 

Quest Inc., which is illustrated in Fig. 3 [58] and equipped with 

multiple vibrations (accelerometers) and acoustics 

Fig. 3. The MFS setup for data collection with acoustics and 

vibration sensors. 
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(microphones) sensors for real-time sensor signal acquisition 

purpose. Fig. 5 demonstrates accelerometers and microphone 

allocation in the MFS [58]. Sensor missing signals are 

generated as planned continuous missing based on the concept 

of a blackout situation. Equal channels of acoustics and 

vibration signals are unified, forming tensorial arrays, and a 

certain percentage of continuous missing signal scenarios is 

generated among different channels. It is worth noting that 

continuous missing entries is introduced at a random location 

with a varying missing percent based on a given length of 

signals, such as 1%, 3%, 5%, 10%, and 20% missing. Missing 

entries are imputed along with incomplete tensor completion 

by the FBCP method, which is illustrated in section 3.2. 

Finally, the performance of the estimated tensor 𝒳̃Ω
′ (𝑙)with 

missing completion was evaluated comparing with the actual 

tensor 𝒳Ω(𝑙).  

 

4.1. Experimental setup and data collection 

In this study, acoustics and vibration signals were compiled 

by microphones and accelerometers, respectively. Adafruit® 

silicon MEMS microphones (SPW 2430 model) were 

incorporated for acoustic signal collection. Single-axis 

accelerometers (Industrial ICP® 608A11) were used for 

vibration signal acquisition. Sensitivity performance of 

accelerometer is 100 mV/g with the frequency ranges of 0.20 

to 15 kHz. Six accelerometers were attached on the two bearing 

housings, where three accelerometers placed on each bearing 

house, respectively. These six accelerometers were connected 

to a data acquisition system for data collection with the 

sampling rate of 10,240 Hz. Also, six microphones were also 

embedded to the inside wall of the MFS chamber and 

connected to another data acquisition system to capture real-

time acoustic emission signals at the sampling frequency of 

8,000 Hz. The working motor speed was 30 Hz. Table 2 

demonstrates the experimental design for five different bearing 

fault operating conditions and their corresponding observation 

numbers. The multi-channel sensor signals were collected after 

the motor reached the steady state operation conditions.  

Table 2. Operation conditions performed in data collection. 

Bearing 

house - 1 

Bearing 

house - 2 
Class label 

Number of 

observations 

Good Good 1 12 

Good Ball fault 2 6 
Ball fault Good 2 6 

Good Inner race fault 3 6 

Inner race fault Good 3 6 
Good Outer race fault 4 6 

Outer race fault Good 4 6 

Good Combined fault 5 6 
Combined fault Good 5 6 

Total 60 

 

4.2. Missing data imputation and performance evaluation 

In this study, planned missing signal is generated in time-

domain tensor with 1%, 3%, 5%, 10%, and 20% percentage of 

continuous missing among different channels by considering 

each bearing fault conditions. Missing entries with time-

domain tensor size is 12 × 500 × 12, where 12, 500, and 12 

represent the total number of channels, signal length, and 

number of observations for each bearing fault conditions, 

respectively. Continuous missing is calculated based on the 

length of signals, where 10% continuous missing equivalent to 

50 lengths of continuous missing, which is generated among 

four different channels at different location randomly. The 

similar approach is also applicable when 20% missing 

equivalent to 100 lengths of continuous missing. In the given 

incomplete tensor size of 12 × 500 × 12  is computed to 

estimated tensor using each observation starting from 1 to 12. 

Table 3 shows tuning parameters for FBCP-based tensor 

completion work. While each observation is iterated to 1 to 150 

based on performance loss objective value of tolerance limit, 

which is set as 10−12. In this incomplete-tensor completion, CP 

rank 𝑅 =  15  is used. The performance evaluation of 

incomplete-tensor completion (estimated tensor), which is 

denoted by 𝒳̃Ω
′ (𝑙) is compared with the actual tensor 𝒳Ω(𝑙). 

RSE is computed by the Eq. (8). It is worth noting that, tensor 

completion work is computationally faster when the tensor size 

is substantially small. To evaluate the effectiveness of the 

FBCP method, CP weighted optimization (CPWOPT) method 

is leveraged as benchmark method [50]. In the benchmark 

method CP rank  𝑅 and number of iterations set to 15 and 150, 

respectively, which is similar to the FBCP method. 

Table 3. Tuning parameter for FBCP-based tensor completion. 

Tuning parameter Value 

CP Rank R 15 

Tolerance limit 10−12 

Initial hyperparameter value 10−8 

Number of iterations 150 

4.3. Results and discussion 

Table 4 summarizes the performance of proposed and 

benchmark methods for the evaluation of estimated tensors 

based on channel-wise continuous missing percentages with 

five different bearing fault conditions and their respective RSE 

values. In different bearing conditions, channel-wise average 

RSE values are compared given corresponding missing 

Fig. 5. Multi-channel sensor allocation in the MFS. 
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percentages at channel 1, 5, 9 and 11, where channel 1 and 5 

corresponds to acoustics signals and channel 9 and 11 contain 

vibration signals. It is notable to mention that when a varying 

percentage of continuous missing signal scenarios are 

introduced at channel 1 then rest of 11 channels remained 

unchanged. Similar approaches are also applied in channels 5, 

9 and 11 respectively. Fig. 6 demonstrates the performance of 

estimated signals at the location of missing occurrences (20% 

missing) and compares with the actual signals among acoustics 

and vibration channels. In acoustics channel-1, observations 1 

and 2 show that estimated signals overlap the actual signals at 

the location of missing. Their residual plots show the 

effectiveness of the difference between estimated and actual 

signals. Similarly, at vibration channel 11, estimated signals 

overlap the actual at the location of a higher missing percentage 

(20% missing), and their residual plots show the effectiveness 

of estimated and actual signals. Fig. 7 shows an overall trend 

of RSE value in proposed and benchmark methods with respect 

to different missing percentages among five different bearing 

fault conditions. In contrast, it is noticeable that the proposed 

method performs better than the benchmark method with 

higher percentages of missing entries. Overall, the proposed 

method enables to capture the multi-linear latent factors among 

different channels with observed signals to impute continuous 

missing entries with substantially higher missing percentages. 

This proposed method was computed using the Intel (R) Core 

(TM) i9-12900 CPU @ 2.40 GHz.  
 

 

 

  

Fig. 6. Imputation of missing signals at the location of missing occurrences in acoustics and vibration channels (MP: 20%) with FBCP method. 

Fig. 7. Performance evaluation of proposed and benchmark methods with diverse bearing fault conditions. 
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Table 4 Summary results of proposed and benchmark method 

Bearing 

conditions 
Ch. # 

MP: 1 % MP: 3 % MP: 5 % MP: 10 % MP: 20 % 

Avg. RSE Avg. RSE Avg. RSE Avg. RSE Avg. RSE 

FBCP CPWOPT FBCP CPWOPT FBCP CPWOPT FBCP CPWOPT FBCP CPWOPT 

Good bearing 

Ch. 1 0.0358 0.0443 0.0406 0.0821 0.0453 0.1064 0.0500 0.1601 0.0582 0.2449 

Ch. 5 0.0357 0.0334 0.0392 0.0675 0.0467 0.0830 0.0601 0.1126 0.0825 0.1856 
Ch. 9 0.0339 0.0470 0.0350 0.0879 0.0361 0.1115 0.0383 0.1595 0.0408 0.2460 

Ch.11 0.0337 0.0331 0.0339 0.0536 0.0343 0.0739 0.0388 0.1192 0.0423 0.2137 

 Avg.  0.0348 0.0395 0.0372 0.0728 0.0406 0.0937 0.0468 0.1379 0.0560 0.2226 

Ball fault 

Ch. 1 0.0347 0.0260 0.0402 0.0450 0.0419 0.0624 0.0511 0.0889 0.0644 0.1415 
Ch. 5 0.0351 0.0215 0.0429 0.0382 0.0469 0.0476 0.0590 0.0720 0.0806 0.1159 

Ch. 9 0.0280 0.0216 0.0280 0.0441 0.0286 0.0583 0.0293 0.0860 0.0362 0.1556 

Ch.11 0.0303 0.0155 0.0302 0.0258 0.0308 0.0371 0.0310 0.0579 0.0347 0.1126 

 Avg. 0.0320 0.0212 0.0353 0.0383 0.0370 0.0514 0.0426 0.0762 0.0539 0.1314 

Inner race fault 

Ch. 1 0.0462 0.0175 0.0445 0.0287 0.0437 0.0358 0.0508 0.0539 0.0519 0.0834 

Ch. 5 0.0420 0.0131 0.0434 0.0220 0.0463 0.0284 0.0470 0.0443 0.0560 0.0690 
Ch. 9 0.0468 0.0196 0.0452 0.0372 0.0464 0.0502 0.0473 0.0730 0.0644 0.1407 

Ch.11 0.0397 0.0128 0.0400 0.0262 0.0425 0.0350 0.0439 0.0520 0.0500 0.1114 

 Avg. 0.0437 0.0158 0.0433 0.0285 0.0447 0.0374 0.0472 0.0558 0.0556 0.1011 

Outer race fault 

Ch. 1 0.0814 0.0228 0.0828 0.0379 0.0843 0.0491 0.0867 0.0729 0.0916 0.1159 
Ch. 5 0.0811 0.0192 0.0825 0.0305 0.0843 0.0391 0.0871 0.0566 0.0924 0.0866 

Ch. 9 0.0819 0.0223 0.0877 0.0430 0.0845 0.0601 0.0896 0.0803 0.0924 0.1234 

Ch.11 0.0807 0.0162 0.0814 0.0266 0.0872 0.0399 0.0831 0.0590 0.0899 0.1145 

 Avg. 0.0813 0.0201 0.0836 0.0345 0.0850 0.0471 0.0867 0.0672 0.0916 0.1101 

Combined fault 

Ch. 1 0.0299 0.0275 0.0343 0.0448 0.0379 0.0579 0.0461 0.0846 0.0597 0.1293 

Ch. 5 0.0322 0.0250 0.0372 0.0406 0.0424 0.0553 0.0528 0.0753 0.0604 0.1117 

Ch. 9 0.0262 0.0192 0.0265 0.0393 0.0272 0.0536 0.0288 0.0769 0.0313 0.1328 
Ch.11 0.0259 0.0116 0.0396 0.0246 0.0399 0.0350 0.0495 0.0513 0.0564 0.1122 

 Avg. 0.0285 0.0208 0.0344 0.0373 0.0368 0.0505 0.0443 0.0720 0.0519 0.1215 

 

 

5. Conclusion and future work 

The emerging trend of multi-channel sensor fusion is 

ubiquitous. In the industry 4.0 perspective, heterogeneous 

sensor fusion can be integrated for real-time machinery fault 

identification and diagnosis. Multi-channel sensor fusion can 

be challenging when a substantial amount of missing data 

occurrence prevails. However, the effectiveness of 

imputation of missing sensor signals is also significantly 

important for monitoring machinery conditions.  In quest of 

the state-of-the-art, this proposed method adopted a fully 

Bayesian CANDECOMP/PARAFAC factorization (FBCP) 

method for missing data imputation from diverse bearing 

fault signals. To validate the effectiveness of this proposed 

method, a machinery fault simulator is used as a testbed to 

collect diverse bearing fault signals by integrating an equal 

number of acoustics (microphones) and vibration 

(accelerometers) sensors simultaneously. Acoustics and 

vibration signals are combined by forming time-domain 

tensors. A varying percentage of continuous missing signal 

scenarios are generated at random locations among different 

acoustics and vibration channels, constructing incomplete 

tensors. Then, the FBCP method is leveraged to complete the 

incomplete tensors and calculate estimated tensors. To 

evaluate the performance of continuous missing data 

imputation, relative standard errors (RSE) are computed 

based on the estimated and actual time-domain tensors. The 

CP weighted optimization (CPWOPT) method is 

incorporated as a benchmark method to evaluate the 

effectiveness of the FBCP method. Experimental results 

show that this proposed method can effectively impute a 

substantial portion of continuous missing data from diverse 

bearing fault scenarios.  

 

For future work, this proposed method can be extended in 

the following aspects. Firstly, in real-world applications, 

multiple signal missing scenarios can occur to multiple 

acoustics and vibration channels simultaneously. The 

corresponding effectiveness of the FBCP method needs to be 

examined for this type of complex data missing scenarios. 

Secondly, this proposed method can be extended for bearing 

faults classification. More specifically, machine learning 

tools can be applied to the imputed multi-channel signals for 

bearing fault diagnosis, similar to the studies in [58].  
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