2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) | 979-8-3503-3667-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/WiMob58348.2023.10187809

2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

Communication-Efficient A-Stepping for
Distributed Computing Systems

Haomeng Zhang, Junfei Xie, Senior Member, IEEE, Xinyu Zhang, Senior Member, IEEE

Abstract—This paper considers the single source shortest
path (SSSP) problem, which is the key for many applications
such as navigation, mapping, routing, and social networking.
Existing SSSP algorithms are designed mostly for shared-memory
systems. Nevertheless, with the prevalence of diverse smart
devices like drones, there is a growing interest in deploying
SSSP algorithms over distributed computing systems so that
they can run efficiently onboard of smart devices via Mobile
Ad Hoc Computing or at the network edges via Mobile Edge
Computing. In this paper, we introduce a communication-efficient
A-stepping algorithm for distributed computing systems. The
proposed algorithm is featured by 1) a message coordination
architecture for reducing message exchanges between workers,
2) a pruning technique for reducing redundant computations,
and 3) an aggregation technique for further reducing message
exchanges when communication delay is significant. Theoretical
analyses and experimental studies on real-world graph datasets
demonstrate the promising performance of proposed algorithm.

Index Terms—Single source shortest path (SSSP), A-stepping,
Distributed computing, Communication efficiency

I. INTRODUCTION

Recent years have witnessed the prevalence of diverse smart
devices with sensing, computing, and communication capabil-
ities, such as unmanned aerial vehicles (UAVs), smartphones,
wearable devices, autonomous driving vehicles, etc. With the
advancement of Internet of Things (IoT) technology [1], these
smart devices are able to talk to each other wirelessly, share
information and resources to provide all kinds of services that
transform the way we live, work, and play. Nevertheless, there
is still much room for improvement of their intelligence and
capability, especially their reaction to data changes.

One major problem encountered in the data analysis or
decision making processes of many smart devices is the single
source shortest path (SSSP) problem, which is the key for
navigation, mapping, routing, and social networking applica-
tions, to name a few [2]. Solving SSSP problems is time-
consuming when the problem scale is large. As smart devices,
especially the UAVs, smartphones, and wearable devices, often
have limited computing resources, computation-intensive tasks
like SSSP are usually offloaded to the remote servers or
cloud, which however may encounter many issues such as

We gratefully acknowledge support from NSF CAREER 2048266.

Haomeng Zhang is with the Department of Electrical and Com-
puter Engineering, University of California San Diego (UCSD) and
San Diego State University (SDSU), San Diego, CA, 92182 (e-mail:
hzhang3986@sdsu.edu, haz069@ucsd.edu).

Junfei Xie is with the Department of Electrical and Computer Engineering,
SDSU, San Diego, CA, 92182 (e-mail: jxie4@sdsu.edu).

Xinyu Zhang is with the Department of Electrical and Computer Engineer-
ing, UCSD, La Jolla, CA, 92093 (e-mail: xyzhang@ucsd.edu) .

high latency, low coverage, and security vulnerability [3].
The emerging Mobile/Multi-access Edge Computing [3] and
Mobile Ad Hoc Computing [4] offer promising solutions to
address these issues by moving cloud resources close to users
at the network edges or allowing smart devices to perform
collaborative computing. To deploy SSSP algorithms on such
computing paradigms with distributed computing resources,
there is a need to parallelize the algorithms and make them
run efficiently over distributed networks with wired or wireless
connections among computing nodes.

Although the SSSP problem has been well researched in
the past decades [S]-[11], majority of the studies assume
the problem is solved by a single computer using one or
multiple CPU cores in a sequential or parallel manner. Among
existing SSSP algorithms, the Dijkstra’s algorithm [5] is the
most popular one, which is efficient but lacks parallelism.
The Bellman-Ford [6] algorithm is more amenable to paral-
lelization but has a considerably larger complexity than the
Dijkstra’s algorithm. To make the best of both worlds, the A-
stepping algorithm [7] was then proposed, which allows us to
adjust the degree of complexity and parallism by tuning the
parameter A. Following this pioneering work, various efforts
have been made to improve the implementation efficiency
[8], [9] and the theoretical bound [10], [11] of A-stepping.
Nevertheless, the proposed algorithms were designed mostly
for shared-memory systems.

When deploying parallel SSSP algorithms over a distributed
computing system, message exchanges are required for com-
puting nodes to share and synchronize results. The communi-
cation delay incurred can be significant, especially in wireless
networks. Therefore, existing parallel SSSP algorithms that
ignore communication delay will inevitably suffer from perfor-
mance degradation when they are implemented on distributed
computing systems, and the impact of communication delay
can be significant when large number of message exchanges
are involved or when communication resources are limited.

Little attention has been paid to the efficient implementa-
tion of SSSP algorithms over distributed computing systems.
In [12], the authors compared the performance of multiple
popular SSSP algorithms on distributed-memory systems, but
the impact of communication delay was not studied. [13] pre-
sented a new SSSP algorithm for massively parallel systems.
Although distributed memory was considered, the algorithm
was designed for running over multiple processors in a single
machine with negligible processor-to-processor communica-
tion delay, and it requires message exchange each time when
relaxing an edge. Also of relevance are the studies on using

Authorized licensed use limited to: San Diego State University. Downloaded on January 24,2024 at 05:17:32 UTC from IEEE Xplore. Restrictions apply.
979-8-3503-3667-2/23/$31.00 ©2023 IEEE 369

2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

graph partitioning (GP) strategies to improve the efficiency
of distributed graph algorithms [14]-[16]. These methods aim
to distribute graph vertices or edges across multiple worker
nodes to balance the workload and reduce communication
costs. Although they are particularly effective on graphs with
power law degrees, they are not optimized for sparse graphs
or SSSP algorithms.

Main Contributions: This paper introduces a
communication-efficient distributed A-stepping algorithm that
achieves high efficiency in distributed computing systems,
especially in wireless networks. In this algorithm, a master
is introduced to coordinate massage exchanges between
the workers and synchronize intermediate results. A novel
pruning technique is designed to speed up computation
for edge relaxations. To address high-latency scenarios,
we further introduce a novel aggregation technique that
significantly reduces the number of message exchanges,
and subsequently the communication cost. Nevertheless,
employing the aggregation technique will introduce redundant
computations. To achieve a better communication-computation
tradeoff, a switching mechanism that allows two techniques
to be combined is further suggested. To verify the merits
of the proposed algorithm, both theoretical analyses and
comparative experimental studies using real-world graph
datasets are conducted.

In the rest of the paper, Sec. II formulates the SSSP problem
and briefly reviews the standard Dijkstra’s and A-stepping
algorithms. Sec. III describes the proposed algorithm and
conducts theoretical analyses on its performance. Experimental
results are then presented in Sec. IV. Sec. V concludes the
paper with a brief discussion on future works.

II. PRELIMINARIES
A. SSSP Problem

Consider an undirected graph G = (V, E) composed of
a set of vertices V and edges E. Let m = |V| denote the
number of vertices and n = |E| the number of edges. Each
edge (v,u) € E is associated with a non-negative weight,
w(v,u) : V x V — RF. Let dist(s,v) > 0 be the weight of
a shortest path from a source vertex s € V' to another vertex
v € V. If v is unreachable, then dist(s,v) = co. Given the
source vertex s € V/, the goal of the SSSP problem is to find
the shortest path with the smallest weight dist(s,v) from s
to each reachable vertex v € V. In the rest of the paper, we
abbreviate dist(s,v) to dist(v) for the given s.

B. Dijkstra’s Algorithm

To solve the SSSP problem, the Dijkstra’s algorithm calcu-
lates a tentative distance tent(v) for each vertex v € V, which
is an estimate of the shortest distance dist(v) to the source
s and satisfies tent(v) > dist(v). The tentative distances are
improved iteratively until tent(v) = dist(v), Vv € V. Vertices
with tent(v) = dist(v) are said to be setrled. To improve
the tentative distances, the Dijkstra’s algorithm maintains a
queue of vertices at each iteration. Initially, only the source
s with tent(s) = 0 is queued. The tentative distances of all

Algorithm 1: A-Stepping Algorithm
1 Input: G = (V, E,w), A, s

2 Output: tent(v),Vv € V

3 relax(s, 0); i < 0;

4 while —isEmpty(B) do

5 Sett + 0; > Initialize the set of settled vertices

6 | while B[i] # 0 do

7 Regs < {(u,tent(v) + w(v,u)) : v € B[i] and
(v,u) € light(v)}; > Generate edge relaxation
requests

Sett <+ Sett U Bli]; Bli] + 0;
foreach (u,d) € Reqs do

9
10 L relax(u, d); > Relax light edges

11 Regs < {(u,tent(v) + w(v,u)) : v € Sett and
(v,u) € heavy(v)}

12 foreach (u,d) € Reqs do
13 | relax(u, d);

14 141+ 1;

> Relax heavy edges

15 return tent(v), Vv € V.
16 Function relax (u, d):
17 if d < tent[u] then

18 tent(u) « d; > Update tentative distance

19 Bl|tent(u)/A|] + Bl|tent(u)/A]]\ {u};

20 B[ld/A]] « B[ld/A]]U{u};

other vertices are set to tent(v) = oo, which are said to

be unreached. In each iteration, the queued vertex v with
the smallest tentative distance is settled and removed from
the queue. In addition, all edges from v, V(v,u) € E,
are relaxed, i.e., each tentative distance tent(u) is updated
by min{tent(u), tent(v) + w(v,u)}. If tent(u) = oo before
relaxation, then u is added into the queue.

C. A-stepping

Different from the Dijkstra’s algorithm, the A-stepping [7]
maintains an array of buckets, where each bucket B[i] stores a
set of queued vertices with tent(v) € [iA, (i+1)A). A > 0 is
a parameter known as the step or bucket width. A suggested
choice is A = O(1/d) for a random weighted graph with a
maximum degree of d [7].

As shown in Alg. 1, in each phase 1 (iteration of the outer
while-loop) (Lines 5-14), the algorithm settles all vertices in
bucket Bli] (vertices are removed if settled) and relaxes all
edges emanating from the vertices in the bucket. To settle
each vertex v in bucket Bli], it only considers the outgoing
light edges from v, denoted by light(v) € E, that have weight
w(v,u) < A, where (v,u) € light(v). Specifically, in each
iteration of the inner while-loop, the current bucket B[i] is
emptied and all outgoing light edges are relaxed (Lines 7-10).
Note that the relaxation may cause vertices deleted previously
being reinserted or new vertices being added into the current
bucket (Lines 19-20). Therefore, multiple iterations are usually

Authorized licensed use limited to: San Diego State University. Downloaded on January 24,2024 at 05:17:32 UTC from IEEE Xplore. Restrictions apply.

370

2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

needed to settle all vertices in the bucket. After all vertices
in BJ[i] have been settled, the algorithm relaxes all outgoing
heavy edges from each vertex v in B][i], denoted by heavy(v),
that have weight w(v,) > A, where (v, u) € heavy(v) (Lines
12-13). Note that relaxing heavy edges won’t cause associated
tentative distances being updated to fall within the scope of
the current bucket, and hence no vertices will be inserted into
the already emptied bucket.

Traditionally, the A-stepping is parallelized by randomly
assigning the vertices in the current bucket to multiple pro-
cessing units (PUs) at each iteration [7]. Each PU then scans
the adjacency list of the assigned vertices and relaxes all
edges emanating from these vertices. Referring to Alg. 1, the
relaxation of light edges (Lines 9-10) and the heavy edges
(Lines 12-13) are computed in a parallel manner.

III. COMMUNICATION-EFFICIENT DISTRIBUTED
A-STEPPING

In this section, we describe the communication-efficient
distributed A-stepping algorithm that runs efficiently in dis-
tributed computing systems.

A. Limitation of Traditional Parallel Implementation

In the traditional parallel A-stepping algorithm [7], when
relaxing the light edges light(v) (Lines 7-10 in Alg. 1), the PUs
need to update the tentative distances in the shared memory
whenever smaller values are found. However, in a distributed
computing system, computing nodes do not have access to
their peers’ memories. Message exchanges between computing
nodes are thus required to synchronize the shortest tentative
distances found. If we directly implement the parallel A-
stepping in a distributed computing system, the number of
message exchanges involved will be huge, as any update to
a tentative distance requires one message exchange. When
the communication delay incurred for each message exchange
cannot be ignored, the accumulated delay can be significant.

B. Proposed Algorithm

1) Message Coordination: Exchanging messages between
computing nodes in a decentralized manner like the parallel
A-stepping algorithm will lead to a high communication cost
due to the large number of message exchanges. To address
this issue, we assign one computing node, called master, to
coordinate the communications between other nodes, called
workers (or slaves). The workers perform edge relaxations and
send intermediate results all to the master for synchronization.
No communication between workers is thus needed.

2) Pruning: Since the master is responsible for synchro-
nizing all intermediate results obtained by the workers, the
computation cost for synchronization increases compared with
the decentralized synchronizations happening in the traditional
parallel A-stepping algorithm, where all computing nodes will
perform synchronizations. To reduce master’s workload, we
introduce a pruning technique. The idea is to detect and prune
redundant edge relaxation requests. As illustrated in Fig. 1(a),
when the outgoing edges of two vertices, v; and v, in the

Relax heavy edges Master node

ol NE 0|l |00 [O]cibal
B —Q - 8 ‘8 =100 O di;af\ce
\\ / o @ —O OO_‘ O|list
=06 33 [of”
, 9 o385 ——e
® @ TR sk
+ + —
Q. I (- Synchronization
3 2 N e}
Current - (o
No request =0..[oF—9||_|e®
need to g‘[ﬁk“ @7 O IOf—9||” 08~ 8 I\:xt
O — =2l [00 @)
0 o< o1 ReTax Tight ed]

(@) (b)
Fig. 1: Illustration of the (a) pruning and (b) aggregation methods.

current bucket intersect at the same vertex w, if one edge
(v1,u) with a shorter tentative distance has been relaxed, the
other edge (v2,u) does not need to be relaxed. To implement
this idea, at the beginning of each iteration, all neighbors u of
vertices v in the current bucket with (v,u) € F and v € B]i]
are found and divided into M subsets, {U1,Us,...,Un},
according to the allocation scheme specified by the master,
where M is the total number of workers. Here we assume
all workers have the same computing capability, so the set is
divided equally. Each subset U; = {u} is assigned to a worker
j, who then performs edge relaxations (Line 4-10 in Alg.
3). Redundant edge relaxation requests will be identified and
pruned by workers. This differs from the traditional parallel A-
stepping which partitions the current bucket B[i] among PUs.
As workers relax different edges, different relaxation-induced
updates will be made to the current bucket. The updated
bucket, denoted by B; [¢] for worker j, and associated tentative
distances are sent back to the master for synchronization at the
end of each iteration (Line 6 & 9 in Alg. 2).

3) Aggregation: As relaxing each bucket requires multiple
message exchanges (the inner while loop), the communication
cost can still be high when the delay incurred for each message
exchange is relatively large, e.g., in wireless networks. To
address this scenario, we propose another technique to further
reduce message exchanges. The idea is to aggregate the
multiple iterations performed in each phase. As illustrated in
Fig. 1(b), the current bucket BJi] is divided evenly into M
sub-buckets with each sub-bucket B;[i] assigned to a worker
7. Each worker j settles all vertices in the assigned sub-bucket
Bj;[i] by relaxing all light and heavy edges (Line 12-14 in
Alg. 3). The updated tentative distances are then sent back to
the master for synchronization. After each synchronization, the
settled vertices and associated shortest distances are stored in
the memory at the master (Line 10-13 in Alg. 2). Although this
method significantly reduces message exchanges, it introduces
redundant computations due to less-frequent synchronizations.
The amount of redundancy incurred is highly related to the
density of the graph, as more repeatedly relaxed edges may
exist in dense graphs than sparse graphs.

4) Switching between Pruning and Aggregation: The prun-
ing method works well when the communication delay for
each message exchange is small or when the graph is dense, as
we will show in Sec. IV. On contrary, the aggregation method
works well when the communication delay is large or when

Authorized licensed use limited to: San Diego State University. Downloaded on January 24,2024 at 05:17:32 UTC from IEEE Xplore. Restrictions apply.

371

2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

the graph is sparse. Although they cannot be implemented
in the same phase, they can be combined and implemented
in different phases to achieve a communication-efficiency
tradeoff and address more complicated scenarios, e.g., mobile
and wireless networks with dynamic communication delays or
graphs with large density variations. This can be realized by
using a switching mechanism that chooses the best method
to use at the beginning of each phase based on the network
condition and graph density. In Sec. IV, we will suggest an
empirical switching criteria based on observations from the
experiments.

Algorithm 2: Proposed Algorithm - Master

1 Input: G = (V, E,w), A, s.

2 Output: tent(v),Vv € V relax(s, 0); i < 0;

3 Broadcast allocation mechanism to all workers;
4 while —isEmpty(B) do

5 Select edge relaxation method;

6 | Broadcast {(v,tent(v)) : v € B[i]};

7 | Bli] < 0;

8 foreach j € {1,2,..., M} do

9 Recv {(v,tent(v)) : v € B;[i] U Sett;};
10 if —isEmpty(Sett;) then

1 foreach (v,d) € Sett; do

12 if d < glob_dis(v) then

13 L | glob_dis(v) « d;

14 B[i + 1] < Bli+ 1] U B;[i];

15 11+ 1;

Algorithm 3: Proposed Algorithm - Worker j

1 Listen to the channel;
2 if Recv Bli] and tent(v), Yv € Bli], from Master then

3 if Pruning method is used then

4 if B[i] # 0 then

5 Generate requests and relax light edges
(v,u;) € light(v) for v € Bli], where
(RS Uj;

6 Send {(v,tent(v)) : v € B;[i]} to master;

7 else

8 Generate requests and relax heavy edges
(v,u;) € heavy(v) for v € Sett;;

9 Send {(v,tent(v)) : v € B;[i] U Sett; };

10 Sett; « 0;

1 else if Aggregation method is used then

12 while B;[i] # 0 do

13 Generate requests and relax light edges
(v,u) € light(v) for v € B,[i];

14 Generate requests and relax heavy edges

(v,u) € heavy(v) for v € Sett;;
15 Send {(v,tent(v)) : v € B;[i] U Sett; };
16 Sett; < 0;

C. Analysis on Communication Cost

Define L := max{dist(v) : dist(v) < oo} as the maximum
shortest path weight. Define A-path as a path that has a weight
no larger than A and no edge repetitions. Let C'a denote a
set of all vertex pairs (u,v) connected by a A-path. Lemma
1 and 2 provide the amount of communication cost required
by the proposed algorithm when the pruning and aggregation
methods are used in all phases, respectively.

Lemma 1: The amount of communication cost required
by the proposed distributed A-stepping algorithm when
the pruning method is used in all phases is O(%),
where In = 1 4 maxgyec, min{|4] : A =
(u,...,v) is a minimum weight A-path}.

Lemma 2: The amount of communication cost required
by the proposed distributed A-stepping algorithm when the
aggregation method is used in all phases is O(%).

Both lemmas can be proved according to [7]. Particularly,
Ia computes the number of iterations required for calculating
a nonempty bucket. As the array B contains up to [L/A]
buckets, Ziri{m 2M (Ia + 1) transmissions are required for
the proposed algorithm when pruning is used in all phases.
The amount of communication cost is hence O(%). For
the proposed algorithm with aggregation used in all phases, as
settling vertices in a bucket only requires a single synchroniza-
tion, Zg{ 2190 transmissions are required and the required
communication cost is hence O(£1).

IV. EXPERIMENTAL STUDIES

This section conducts experiments to evaluate the per-
formance of the proposed algorithm. All experiments are
conducted on a desktop with Intel i9 12900KF CPU that has
a base frequency of 3.20 GHz and 16 GB memory.

A. Experiment setup

To implement the proposed algorithm, we use the open-
source packet mpidpy in Python for the Message Passing
Interface (MPI), which is a standard distributed computing
interface. Each CPU core represents a computing node with
distributed memory. In the experiment, four cores are used
among which three are the workers and one is the master. To
evaluate the performance of the two edge relaxation methods
(i.e., pruning and aggregation), we let all phases use only one
of the methods. The resulting algorithms are referred to as
Ours-pruning if pruning is used in all phases and Ours-
aggregation otherwise. For comparison, we also implement
the sequential Dijkstra’s algorithm using priority queue on
a single core (referred to as Dijkstra), distributed Dijk-
stra’s algorithm [17], Bellman-Ford [6], and the traditional
parallel A-stepping (referred to as Traditional A-stepping)
implemented over multiple cores with a master-slave message
coordination architecture and distributed memory. To evaluate
their performance, we consider six real-world graphs obtained
from SNAP [18] that have different sizes and densities. A
synthetic graph created by the Networkx expected degree
graph generator [19] is also considered. The characteristic of
each graph is described in Tab. L.

Authorized licensed use limited to: San Diego State University. Downloaded on January 24,2024 at 05:17:32 UTC from IEEE Xplore. Restrictions apply.

372

2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

3.5| W Traditional A-stepping

Ours-pruning 2
< 3.0 === Ours-aggregation © 1200
22

5
£
=1
20
2
515
]
X 1.0
w
0.5
o

= Traditional A-stepping
Ours-pruning
== Ours-aggregation

0
2 o ® 9
s 3 8 38
8 8 8 &

N
S
3

Number of synchronizations

= Traditional A-stepping
Ours-pruning

= Traditional A-stepping
Ours-pruning
@ 1.75{ mmm Ours-aggregation

~
o

EZDO

~
o

S 1.50

m=m Ours-aggregation
i=
Q125
=}
3100
g1
X
vo.75
=
Loso
8
=025
0.

I -
) n

Communication time (s)
o
I

0.02 0.033 0.067 0.1 01330167 0.3 002 00330057 01 01330167 03

(@) (b)

o
o

0.

0.02 0.033 0.067 0.1 01330157 0.3 02 0.0330.067 0.1 01330167 03

() (d)

Fig. 2: (a) Execution time, (b) number of synchronizations, (c) total communication time, and (d) master execution time of different distributed
A-stepping algorithms at different values of A when running on the graph PA.

Name | Type | Source | m | n | Avg. deg. | Max. deg.
PA Road Pennsylvania | 1 million (M) 1.5M 1.5 9

CA Road California 2M 2.8M 1.4 12

TX Road Texas 1.4M 1.9M 1.35 12
YO Social Youtube 1.1IM 3M 2.7 28754
DB Web Google 0.3M M 33 343
AM Social Twitch 0.3M 0.9M 3 549
SY Synthetic Networkx M 7.2M 7.2 38

TABLE I: Graphs used in the experiments.

Four performance metrics are used, including 1) execution
time spent to solve the SSSP problem; 2) number of synchro-
nizations taken to solve the problem; 3) total communication
time spent for exchanging intermediate results; and 4) master
execution time taken by the master to process intermediate
results. To reduce experimental uncertainty, each experiment
is repeated for 10 times and the average values are recorded.

B. Experiment Results

In the following experiments, we first analyze the impact of
key parameter A on distributed A-stepping algorithms using
graph PA. We then conduct comparison studies using different
graphs. The impact of communication delay and graph density
on the proposed algorithm are then investigated.

1) Impact of A: Fig. 2 shows the performance of the three
distributed A-stepping algorithms as A varies. Fig. 2(a) shows
that our algorithm with pruning achieves the best performance
for all A setups due to significantly reduced edge relaxation
requests. Our algorithm with aggregation is generally more
efficient than the traditional A-stepping but it achieves a worse
performance at very small or very large A values, due to the
additional redundant computations introduced. Its optimal per-
formance is achieved at A = 0.33. The optimal performance
of the other two algorithms is achieved at A = 0.02.

From Fig. 2(b), we see that all algorithms require fewer
rounds of synchronizations to solve the SSSP problem as A
increases. Our algorithm with aggregation requires the fewest
synchronizations as it only synchronizes once in each phase.
Of interest, as Fig. 2(c) shows, the total communication time
does not decrease with the increasing A and more synchro-
nizations. This is because the amount of data to be transmitted
for each synchronization increases with the increase of A,
as A directly impacts the size of the buckets. In terms of
master execution time, as shown in Fig. 2(d), all algorithms
are generally robust to the change of A, except our algorithm
with aggregation at very small or very large A values due
to introduced redundant computations. Meanwhile, we can
observe that our algorithm with pruning achieves the least

master execution time, indicating its effectiveness in pruning
redundant edge relaxation requests.

The above studies provide guidelines for selecting proper A
values for distributed A-stepping algorithms. In the following
experiments, we follow this procedure to configure A in the
distributed A-stepping algorithms.

2) Comparison Studies: Fig. 3 compares the mean and
standard deviation of execution times across different algo-
rithms and graphs. As we can see, our algorithms consistently
outperform all benchmark algorithms on all graphs. The one
with pruning achieves the best efficiency on most graphs, as it
involves the least amount of redundant work. However, as the
graph density increases, its superiority diminishes compared
to the algorithm with aggregation (Fig. 3(b)). This is because,
for sparse graphs, the amount of light edges to relax at each
iteration is small, making it more costly to perform one
synchronization than one computation iteration. Our method
that aggregates the computation over multiple iterations will
hence significantly reduce the communication time. Moreover,
as not much redundant computation will be introduced during
the aggregation due to the sparsity of graphs, the overall
execution time will also be reduced.

3) Impact of Data Transmission Rate: Communication de-
lay can greatly impact performance in distributed computing
systems. To evaluate its effect, we tested our algorithms under
various data transmission rates. The data rate in the wired
condition was measured to be 2.2 Gbps. To simulate various
data rates, we added a time delay proportional to the wired
communication cost. Specifically, we tested our algorithms at
data rates of 1100, 550, 220, 70, and 20 Mbps. The results
show that the aggregation method outperforms the pruning
method on the sparse PA graph (Fig. 4(a)), while the opposite
trend is observed on the dense YO graph (4(b)). They also
suggest that data rate has a greater impact on our algorithms’

performance for sparse graphs than for dense graphs.
102

I Distributed Dijkstra
= Dijkstra

Em Bellman-Ford

= Traditional A-stepping
=== Ours-aggregation

B Distributed Dijkstra
= Dijkstra

E Bellman-Ford

mmm Traditional A-stepping
W Oursfaggregation

10t

Ours-prufing

Ours=pruning

Execution time (s)
Execution time (s)

() (b)
Fig. 3: Execution time of different algorithms for different (a) sparse
graphs and (b) dense graphs.

Authorized licensed use limited to: San Diego State University. Downloaded on January 24,2024 at 05:17:32 UTC from IEEE Xplore. Restrictions apply.

373

2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)

100{ ™= Ours-pruning
m== Ours-aggregation

m= Ours-pruning
6| == Ours-aggregation

w & w

Execution time (s)
~

Execution time (s)

o

1100 550 220 70 20 1100 550 220 70
Data rate (Mbps) Data rate (Mbps)

(@) (®)
Fig. 4: Execution time of different algorithms at data rates for (a)
sparse graph PA and (b) dense graph YO.

4) Impact of Graph Density: To better understand the
impact of graph density, we generate random graphs of varying
density using the Erdos-Renyi [20] method, which takes two
parameters 1) the number of vertices m and 2) the probability
for an edge to exist between two vertices p = J/m Here d
specifies the graph density. In the experiments, we set m = 1M
and vary the value of d. If the generated graphs are not
connected, the largest connected subgraphs are used. Fig. 5
plots a heatmap that shows how much the aggregation method
outperforms the pruning method in terms of the execution
time when both d and data rate vary. The improvements in
percentage are marked on the grids. Negative values indicate
the pruning method performs better. This figure provides an
empirical switching criteria that allows us to make a proper
selection between the two methods based on network condition
and graph density, where the boundary that separates positive
percentages from negative ones specifies the decision surface.

2.0139.08 39.87 39.53 39.16 42.76 43.49 43.49 4528 49.96
40%

21.93 2236 23.01 23.69 27.83 27.45 29.16 29.47

20%

—-20%

—40%

36 33 31 29 27 26
Data rate (Mbps)

Fig. 5: The efficiency improvement percentages of the aggregation
method compared with the pruning method.

24 23 22

V. CONCLUSION

This paper presents a new communication-efficient A-
stepping algorithm for distributed computing systems. It
adopts a master-slave architecture for coordinating the com-
munication between computing nodes, which significantly
reduces message exchanges. To further speed up computa-
tion, two edge relaxation methods are designed, including
the pruning method that reduces redundant edge relaxation
requests and the aggregation method that reduces synchroniza-
tions. A switching mechanism is also suggested that allows
two methods to be combined for achieving communication-
efficiency tradeoff. Experiment results demonstrate the high

efficiency of proposed algorithms compared with existing
methods. They also suggest ways for selecting a proper edge
relaxation method. Particularly, pruning method is preferred
when communication delay is small or graph is dense. Oth-
erwise, the aggregation method is preferred. In the future, we
will consider more complicated distributed computing systems
with heterogeneous and moving computing nodes. We will
also test our algorithm in the wireless environment.

REFERENCES

[1] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Communications Magazine, vol. 54, no. 12, pp. 22-29,
2016.

[2] N. Meenakshi, V. Pandimurugan, L. Sathishkumar er al., “Optimal
routing methodology to enhance the life time of sensor network,”
Materials Today: Proceedings, vol. 46, pp. 5894-5900, 2021.

[3] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450465, 2017.

[4] 1. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani,
“Mobile ad hoc cloud: A survey,” Wireless Communications and Mobile
Computing, vol. 16, no. 16, pp. 2572-2589, 2016.

[5]1 E. W. Dijkstra, “A note on two problems in connexion with
graphs:(numerische mathematik, 1 (1959), p 269-271),” 1959.

[6] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, no. 1, pp. 87-90, 1958.

[7]1 U. Meyer and P. Sanders, “d-stepping: a parallelizable shortest path
algorithm,” Journal of Algorithms, vol. 49, no. 1, pp. 114-152, 2003.

[81 Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil,
S. Amarasinghe, and J. Shun, “Optimizing ordered graph algorithms
with graphit,” arXiv preprint arXiv:1911.07260, 2019.

[9]1 L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for

parallel graph algorithms using work-efficient bucketing,” in Proceed-

ings of the 29th ACM Symposium on Parallelism in Algorithms and

Architectures, 2017, pp. 293-304.

X. Dong, Y. Gu, Y. Sun, and Y. Zhang, “Efficient stepping algo-

rithms and implementations for parallel shortest paths,” arXiv preprint

arXiv:2105.06145, 2021.

G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan, “Parallel shortest

paths using radius stepping,” in Proceedings of the 28th ACM Symposium

on Parallelism in Algorithms and Architectures, 2016, pp. 443-454.

T. Panitanarak and K. Madduri, “Performance analysis of single-source

shortest path algorithms on distributed-memory systems,” in SIAM

Workshop on Combinatorial Scientific Computing (CSC). Citeseer,

2014, p. 60.

V. T. Chakaravarthy, F. Checconi, P. Murali, F. Petrini, and Y. Sabharwal,

“Scalable single source shortest path algorithms for massively parallel

systems,” IEEE Transactions on Parallel and Distributed Systems,

vol. 28, no. 7, pp. 2031-2045, 2016.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, ‘“Pow-

ergraph: Distributed graph-parallel computation on natural graphs,” in

Presented as part of the 10th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 12), 2012, pp. 17-30.

C. Xie, L. Yan, W.-J. Li, and Z. Zhang, “Distributed power-law graph

computing: Theoretical and empirical analysis,” Advances in neural

information processing systems, vol. 27, 2014.

G. Ma, Y. Xiao, T. Willke, N. Ahmed, S. Nazarian, and P. Bogdan,

“A distributed graph-theoretic framework for automatic parallelization

in multi-core systems,” Proceedings of Machine Learning and Systems,

vol. 3, pp. 550-568, 2021.

A. Pradhan and G. Mahinthakumar, “Finding all-pairs shortest path for

a large-scale transportation network using parallel floyd-warshall and

parallel dijkstra algorithms,” Journal of Computing in Civil Engineering,

vol. 27, no. 3, pp. 263-273, 2013.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network

dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-

ture, dynamics, and function using networkx,” Los Alamos National

Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

P. ErdGs, A. Rényi et al., “On the evolution of random graphs,” Publ.

Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17-60, 1960.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Authorized licensed use limited to: San Diego State University. Downloaded on January 24,2024 at 05:17:32 UTC from IEEE Xplore. Restrictions apply.

374

