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In recent years, networked airborne computing (NAC) has emerged as a promising paradigm because it can leverage the collaborative
capabilities of unmanned aerial vehicles (UAVs) for distributed computing tasks. Despite the burgeoning interests in NAC and UAV-
based computing, many existing studies depend on over-simplified simulations for performance evaluation. This reliance has led to
a gap in our understanding of NAC’s true potential and challenges. To fill this gap, this paper presents a comprehensive approach:
the creation of a realistic simulator and a novel hardware testbed. The simulator, developed using ROS and Gazebo, emulates
networked UAVs, focusing on resource-sharing and distributed computing capabilities. This tool offers a cost-effective, scalable,
and adaptable environment, making it ideal for preliminary investigations across a myriad of real-world scenarios. In parallel, our
hardware testbed comprises multiple quadrotors, each equipped with a Pixhawk control unit, a Raspberry Pi computing module,
a real-time kinematic (RTK) positioning system, and multiple communication units. Through extensive simulations and hardware
tests, we delve into the key determinants of NAC performance, such as computation task size, number of UAVs, communication
quality, and UAV mobility. Our findings not only underscore the inherent challenges in optimizing NAC performance but also
provide pivotal insights for future enhancements. These insights encompass refining the simulator, reducing computation overheads,
and equipping the hardware testbed with cutting-edge communication devices.
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1. Introduction burgeoning interest among researchers to seamlessly inte-

grate UAVs into contemporary computing paradigms such

Unmanned aerial vehicles (UAVs), when equipped with
onboard computing capabilities, can transcend their tra-
ditional roles, acting as aerial servers to cater to ground
users.! Such advanced computing not only augments core
UAV functionalities like precise positioning and efficient
image processing but also paves the way for a myriad of
applications. These encompass surveillance,? search and
rescue operations,® remote sensing,* and traffic monitor-
ing.> Given these compelling benefits, there has been a

as multi-access edge computing (MEC), fog computing, and
mobile cloud computing.':%

While small UAVs are known for their agility and
adaptability, their constrained payload capacity often limits
their onboard computing capabilities. To address this, our
team introduced the concept of networked airborne com-
puting (NAC).®2 NAC is designed to harness and amplify
airborne computing resources by promoting inter-vehicle
resource sharing through direct flight-to-flight communi-
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cation links. Leading the charge in this domain, our re-
search® ' unveiled a novel distributed computing frame-
work for static UAV networks. This framework integrates
resource allocation with advanced coding techniques, en-
suring a robust and efficient airborne computing experi-
ence. Recognizing the dynamic nature of UAV operations,
we further extended our research to accommodate UAVs
in motion, developing a reinforcement learning-based algo-
rithm!! that jointly optimizes computation load allocation
and UAV trajectories. To bridge the gap between theory
and practice, we also pioneered a dedicated hardware plat-
form,'2 which is equipped with the powerful NVIDIA Jet-
son TX2 and supports high-bandwidth wireless communi-
cation, laying a solid foundation for future UAV network
research. While this platform has been instrumental in ad-
vancing UAV computing, it was primarily designed with a
focus on individual UAV operations, and inter-vehicle re-
source sharing is not supported. Moreover, its communi-
cation module, equipped with a directional antenna, was
designed and tested only for point-to-point communica-
tions. Nevertheless, NAC may involve point-to-multipoint
or multipoint-to-multipoint communications.

Shifting our focus to contributions from other research
teams, a plethora of studies on UAV-based computing has
been conducted in the last few years.!»'3716 Despite the
importance of these studies, we notice that most exist-
ing studies rely on mathematical model-based simulations
for performance evaluation. These simulations, though eco-
nomical and convenient, encapsulate UAV dynamics, com-
munication, and computational behaviors within rudimen-
tary mathematical constructs. Such abstractions, despite
their appeal, might not always resonate with the intricate
behaviors observed in real-world UAV deployments. More-
over, when venturing into the realm of testing real UAVs,
the breadth of these studies seems somewhat constrained,
often tethered to single or dual UAV configurations. For
instance, the study presented in'” explored the potential of
airborne computing in the domains of computer vision and
machine learning, in which the authors developed a UAV-
based MEC system with a pair of UAVs to analyze commu-
nication and computational delays during inter-UAV video
streaming.

While there remains a noticeable gap in the avail-
ability of realistic testbeds tailored for NAC research, the
UAV research community has made significant strides in
developing testbeds aimed at UAV control, communica-
tion, and networking.!® 24 For instance, Diller et al.'® de-
vised a testbed specifically to probe into the intricacies of
communication and control within UAV swarms. Pereira
et al.t? took a different route, unveiling a UAV hardware
testbed centered around control and information acquisi-
tion. Schmittle et al.,? catering to robotics applications
like collision avoidance, introduced a cloud-based UAV sim-
ulator leveraging Docker. For UAV communication, Moradi
et al.?* showcased an evolved packet core (EPC) tailored
to be mounted directly onto tethered UAVs, facilitating
the establishment of UAV-based long-term evolution (LTE)
networks. Their two-UAV LTE network experiment yielded

promising results, notably enhancing client connectivity
during handoff. Moon et al.?> developed a Robot Oper-
ating System (ROS) and Gazebo-based simulator to em-
ulate wireless communication dynamics among networked
UAVs. Li et al.?? ventured into the realm of UAV-to-UAV
(U2U) communication, pioneering a directional antenna-
based system capable of self-adjusting its antenna orienta-
tions to optimize communication in unpredictable environ-
ments. Sheshadri et al.?® put forth a novel UAV network
design harnessing mmWave technology, aiming for Gigabit-
speed communication, and validated their design using a
hardware testbed.

In this paper, we aim to bridge the existing research
gap concerning the lack of realistic testbeds tailored for
NAC research. Our main contributions are summarized as
follows:

(1) Realistic NAC Simulator Leveraging ROS?® and
Gazebo.?” Distinct from existing ROS and Gazebo-
based UAV simulators, our simulator seamlessly inte-
grates the Message Passing Interface (MPI) to emulate
distributed computing across UAV computing clusters.
This simulator paves the way for cost-efficient prelim-
inary NAC investigations and offers a platform to as-
sess scenarios that pose challenges for hardware testbed
configurations, especially those spanning large-scale en-
vironments.

(2) Hardware Testbed Fortified with Networked Airborne
Computing Prowess. This testbed comprises multiple
quadrotors, each equipped with computing, communi-
cation, and inter-vehicle resource-sharing functionali-
ties. It serves as a conduit for precise evaluations of
NAC performance under real flight conditions.

(3) In-depth Analysis of Determinants Influencing NAC
Performance. A plethora of experiments, executed
using the aforementioned simulator and hardware
testbed, delve into the pivotal determinants of NAC
performance. These encompass computation task size,
number of UAVs, U2U communication, and UAV mo-
bility. By implementing diverse computation tasks and
distributed computing paradigms, we glean insights
into their ramifications, thereby illuminating the chal-
lenges in optimizing NAC performance. These revela-
tions also chart the course for future refinements in our
NAC testbed designs.

(4) Comparative Study of State-of-the-Art Communica-
tion Apparatuses. Recognizing the indispensable role
of U2U communication in NAC, we compare the per-
formance of three communication devices, each with a
unique communication capability. The devices under
investigation comprise: 1) TP-Link TL-WR902AC?8
with an omnidirectional antenna, operating in the
2.4GHz band, 2) Ubiquity Loco M52° with a directional
antenna, working in the 5GHz band, and 3) MikroTik
wAP 60G?° fortified with phased-array antennas, func-
tioning in the 60GHz band. The outcomes of this com-
parison provide invaluable insights into the selection
of communication techniques that are crucial to NAC
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performance.

(5) Real-World Application in Forest Fire Detection. Our
hardware testbed is utilized to actualize a forest fire
detection mechanism using federated learning, under-
scoring its pragmatic utility in tangible scenarios.

The rest of the paper is organized as follows. Sec. 2
introduces the system model for UAV-based NAC. Sec. 3
and Sec. 4 describe the designs for the simulator and hard-
ware testbed, respectively. The simulation and hardware
test results are presented in Sec. 5 and Sec. 6, respectively.
Sec. 7 then discusses the insights gained from the exper-
iments. Finally, Sec. 8 concludes the paper and discusses
future work.

2. System Model

In this section, we first describe how a computation task is
completed collaboratively by UAVs in NAC. We then in-
troduce the main computation tasks and schemes that will
be evaluated in this study.

2.1. Computing System

Consider a NAC system with N + 1 UAVs, where N € Z+
UAVs are the workers and one UAV serves as the mas-
ter. Suppose the master UAV needs to complete a de-
composable computation task f(X), where X is the in-
put to the task. To enhance computational efficiency, the
master partitions the task into IV subtasks represented as
{1(X), f2(X), ..., fn(X))}, and assigns each worker 7 with
subtask f;(X). During execution, the master shares the in-
put X with all the workers, which then calculates their
respective subtasks and sends the results back to the mas-
ter. The master then combines the results to produce the
final output of the task f(X). Algorithm 1 summarizes the
task execution procedure.

Algorithm 1 NAC Computing Model

Master:
1: Broadcast X to workers.
2: fori=1:N do
3: Listen to the channel and collect result f;(X) from
worker 1.
4: Calculate and output the
{fl(x)va(X)7 . 7fN(X)}
Worker i:
5: Listen to the channel and receive X from the master.
6: Compute f;(X) and send results back to the master.

final result wusing

2.2. Computing Schemes

We primarily use matrix multiplication as the computation
task for conducting comprehensive performance evaluations
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and analyzing the key impact factors in NAC. Matrix mul-
tiplication is chosen as it is straightforward to configure and
serves as a fundamental building block for more complex
computations, including those commonly found in machine
learning applications.3! 32

Consider a matrix multiplication task AX, where A €
R™*" is a pre-stored matrix and X € R™*! is the input. To
compute the output Y = AX, different distributed com-
puting schemes can be applied. In this study, we imple-
ment the following two fundamental distributed computing
schemes.

(1) Uncoded Distributed Computing: In the traditional
uncoded distributed computing scheme,'® the matrix
A is divided equally row-wise into N submatrices
A1, As, ..., Ay, where each submatrix A; is pre-stored
in the corresponding worker i. Upon receiving the in-
put X, the master distributes X to each worker 7, which
then computes A; X and returns the results to the mas-
ter. Finally, the master aggregates the received results
to obtain the final output Y = [A1X, AX, ..., AyX].

(2) Coded Distributed Computing: The uncoded scheme de-
scribed above may not perform well in mobile com-
puting systems characterized by significant uncertain
system disturbances, especially in NAC systems with
high node mobility that can lead to frequent topol-
ogy changes. To address this issue, various coded dis-
tributed computing schemes!?33:34 have been devel-
oped to enhance system resilience and improve compu-
tational efficiency. The key idea is to introduce redun-
dancies into the computation process by leveraging the
principles of coding theory. To provide a comparison
to the uncoded scheme, we also implement a classi-
cal coded scheme!? in the simulations. In this scheme,
prior to task execution, the matrix A is first encoded
into a larger matrix A = HA with more rows, where
H € R?*™ is the encoding matrix with any m rows be-
ing full rank and ¢ > m. This encoded matrix A is then
divided into N submatrices Al, AQ, ceey AN, with each
submatrix A, pre-stored in a worker i. Upon receiving
the input X, each worker i multiplies A; with X and
returns the computed result to the master. When the
master receives a sufficient amount of results, i.e., when
the number of received rows of inner product results ex-
ceeds the value of m, it proceeds to compute the final

output by Y = ﬂ;le, where Y, € R™*! denotes the
aggregated results the master has received. H, € R**"™
is a submatrix of H corresponding to Y.

To showcase the practicality of the designed NAC
testbed, we also implement and evaluate a real learning-
enabled application using federated learning® in Sec. 6.3.
Following the procedure outlined in Algorithm 1, in fed-
erated learning, the master broadcasts the parameters of
the machine learning model to be trained (input X) at the
beginning of each iteration. Each worker then utilizes the
received model parameters and its local data, which can
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be considered a subset of the entire training dataset, to
compute a model update (e.g., gradients). The model up-
dates from all workers are sent to the master, which then
aggregates these updates to calculate new model parame-
ters. This procedure is repeated iteratively for a predefined
number of iterations or until convergence.

3. Simulator Design

This section presents a ROS and Gazebo-based simulator
designed to provide a realistic simulation environment for
NAC research. The simulator (see Fig. 1) consists of five
core modules: UAV hardware module, controller module,
wireless communication module, computing module, and
visualization module. These modules interact through ROS
topics.?6 The functionalities of each module and their as-
sociated ROS topics are described as follows.
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Fig. 1. NAC simulator design.

3.1. UAV Hardware Module

The UAV hardware module simulates the physical at-
tributes of a UAV including its frame, motor, and sen-
sors. Users can configure UAV’s frame such as its base size,
weight, shape, and arm length, using the configuration file
based on the application needs. Additionally, users can se-
lect different types of motors to simulate UAVs of different
sizes and aerodynamics. In our simulator, we install the hec-
tor quadrotor UAV package3” to emulate quadrotor UAV
systems.

ROS offers plugins for various sensors that can be at-
tached to the UAV to track its states, such as position,
velocity, and orientation. In our simulator, each UAV is
equipped with a GPS sensor for localization, a magnetic
sensor for orientation, an IMU sensor for acceleration, a
barometer sensor for flight height measurement, etc. More-
over, each UAV includes a Wi-Fi receiver and transmitter?®
to simulate wireless communication between two UAVs. Of
course, users can also add additional sensors based on their
needs.

3.2. Controller Module

The controller module governs the movement of the UAV.
In our simulator, the UAVs are configured to follow pre-
planned waypoints. This is achieved by using two con-
trollers: velocity controller and position controller. The po-
sition controller calculates the desired velocities based on
the planned waypoints and inputs the desired velocities into
the velocity controller. The velocity controller, provided by
ROS plugin, then generates control commands to drive the
UAV to reach the desired velocities. The calculation of the
desired velocities is performed using the following equa-
tions:

Uy = ko(z — 24)
by = ky(y —yy)
0r = k(2 — zg) (1)

where 9,0y, D, are the desired velocities in three directions.
kz, ky, k. are the gains of the position controller. (z,y, 2)
and (z4,Yg, 24) are UAV’s current position and the desired
position, respectively.

3.3. Wireless Communication Module

The communication module3” simulates the wireless com-
munication between two UAVs, each equipped with a Wi-
Fi transmitter and receiver. The received signal strength
(RSS) at the Wi-Fi receiver, represented as S (dBm), is de-
termined using the well-known Hata-Okumura model.3:39
This model estimates the RSS by the following equation:

S =5+ P, (2)

where S; (dBm) is the transmission power and Pr, (dB) is
path loss given by

In the above equation, d (m) is the distance between two
UAVs. The values of D, E, and F' depend on the transmis-
sion frequency, antenna heights, and environment types. In
particular, D and F are defined as

D = 69.55 + 26.1610g10(f.) — 13.82l0g10(hs) — a(hum)
E = 44.9 — 6.55l0g10(hs) (4)

where f. is the transmission frequency in MHz (valid range:
150MHz-1500MHz), h;, is the effective height of the trans-
mitter in meters (valid range: 30m-200m), hy, is the effec-
tive height of the receiver (valid range: 1m-10m), and a(h.,)
is the mobile antenna height correction factor, which is a
function that depends on the environment. F' is a factor to
correct formulas for open rural and suburban areas. Given
RSS S, the maximum data rate, denoted by C (bps), can
then be calculated according to Shannon’s Theory “:

S—30
10 ™
C = Wlog, (1 TN ) , (5)

where W (Hz) is the communication bandwidth and Ny
(Watts) is the noise power.
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3.4. Computing Module

The computing module simulates the distributed comput-
ing process using the Message Passing Interface (MPI),*!
which provides system interfaces for users to program par-
allel computing applications and supports various program-
ming languages. In our simulator, each UAV runs as an in-
dividual thread assigned by MPI to execute computation
tasks in parallel on a multi-core machine. Functions such
as send(), iSend (), recv(), iRecv() are used to transmit
data between the master and workers. Since the data trans-
mission occurs instantaneously within the same machine, to
simulate the data transmission delay between two UAVs,
each thread obtains the states of the UAVs and calculates
the data rate C' using (5). The transmission delay is then
calculated as & (s), where I (bits) is the size of the data
being transmitted. This delay is manually introduced using
the time.sleep() function in Python before sending data
via MPI. The Barrier() function is used to synchronize
the process of all UAVs at the beginning of each matrix
multiplication task.

3.5. Visualization Module

The visualization module allows users to monitor the sta-
tus of UAVs during NAC simulations in real time. This is
achieved using Gazebo,?” which provides a realistic sim-
ulation environment and an interactive graphic interface.
Moreover, by using Rviz,*? the data captured by UAV’s
sensors, such as trajectories and images captured by the
onboard camera, can be displayed. Our simulator provides
the real-time visualization of waypoints and UAV trajecto-
ries.

3.6. ROS Topics

In our simulator, communication between modules is
achieved through ROS topics as shown in Fig. 1.
Each module can either subscribe to a topic to re-
ceive messages or publish messages to a topic. For
example, GPS publishes UAV’s position to the topic
/uav/ground_truth _to_tf/pose. The position controller
subscribes to this topic to receive the UAV’s current po-
sition. After calculating the desired velocities, the posi-
tion controller then publishes these values to the topic
/uav/cmd_vel, which is subscribed by the UAV’s velocity
controller. Moreover, the Wi-Fi receiver publishes the RSS
signals to the topic /uav/recv_signal, which is subscribed
by the communication module to calculate the data rate.

4. Hardware Testbed Design

In this section, we present the design of a NAC hardware
testbed, consisting of three UAVs, two constructed using
Tarot 650 Quadrotor frames and one using a DJI F550
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frame (see Fig. 2). In the following, we describe the hard-
ware design from five aspects: computing, communication,
localization, flight control, and power management. For
each aspect, we detail its functionalities and the hardware
devices used to achieve them.
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Fig. 2. NAC hardware testbed design.

4.1. Computing

The execution of distributed computing tasks is achieved
by a Raspberry Pi 4 installed on each UAV, which contains
a Quad-core Cortex-A72(ARM v8) processor running at
1.8GHz and 4GB LPDDR4-3200 SDRAM. It has a weight
of approximately 46g and a dimension of 3.94 x 2.76 x 1.18
inches, making it compact and lightweight for UAV appli-
cations. In terms of wireless connectivity, it supports both
2.4GHz and 5.0GHz IEEE 802.11B/g/n/ac standards. To
enable computing resource sharing among UAVs, we con-
nect Raspberry Pis to the same network as described in
the following subsection and implement MPI on each de-
vice. This allows UAVs to perform collaborative computing
using MPI.

4.2. Communication

As illustrated in Fig. 2, there are three types of communi-
cations involved in our testbed including UAV-to-UAV
(U2U), Ground-to-UAV/UAV-to-Ground (G2U/U2G),
and Controller-to-UAV (C2U) communications. The fea-
tures and enabling techniques for each communication type
are described as follows.

4.2.1. U2U Communication

The U2U communication is used to exchange data between
UAVs, such as data needed for computation and UAV’s
state information. Our testbed achieves this through a Wi-
Fi router network using three TP-Link TL-WR902AC?8
routers. This router is equipped with an omnidirectional
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antenna and can operate at both the 2.4GHz and 5GHz fre-
quency bands. It offers three modes including access point
(AP) mode, client mode, and range extender mode. To es-
tablish the NAC network, we set one router to AP mode
and connect it to the Raspberry Pi on the master UAV
via an Ethernet port. The remaining two routers are set to
the client mode and connected to the worker UAVs. More-
over, all routers are configured to use the default WLAN
service set identifier (SSID) of the AP, enabling point-
to-multipoint communication between the master and the
two workers. All routers operate at the 2.4GHz band. The
WLAN IP is assigned randomly by Dynamic Host Config-
uration Protocol (DHCP) for all three UAVs.

In addition to the 2.4GHz omnidirectional antenna-
based U2U communication, we also implement and evalu-
ate another two advanced communication techniques:

(1) 5GHz directional antenna-based U2U communication:
We achieve this by using the Ubiquiti Nanostation Loco
M52 that operates at the 5GHz band with a default
antenna gain of 13dBi. It also offers three modes in-
cluding AP mode, client mode, and wireless distribu-
tion system mode. For setting up the NAC network,
we use three Loco M5 devices. One is connected to
the master and operates in the AP mode. The others
are connected to the workers and operate in the client
mode. To establish point-to-multipoint connections, we
configure all Loco M5 to use the same WLAN SSID.
The channel width is set to 40MHz. Additionally, we
assign a static IP for the WLAN.

(2) 60GHz phased-array antenna-based U2U communica-
tion: This is achieved by using the MikroTik wAP
60G,%° which contains 96 antenna elements and oper-
ates at the 60GHz band. It offers three modes includ-
ing AP bridge mode (for point-to-point connections),
bridge mode (for point-to-multipoint connections), and
station-bridge mode (for client nodes). Similarly, we use
three wAP 60G devices to set up the NAC network.
One is connected to the master, operating in the AP
bridge mode, while the other two are connected to the
workers, operating in the station-bridge mode. All de-
vices are configured to use the same WLAN SSID. The
channel frequency is set to the default value 58.24GHz.
The WLAN IP is randomly selected by DHCP for all
three UAVs.

4.2.2. G2U/U2G Communication

The G2U/U2G communication is used to monitor the state
of UAV such as its position, rotation, battery status, etc. on
the ground. It is enabled by the FPVDrone 500MW Radio
Telemetry Kit 915 MHz Air and the Ground data transmit
module, which operate at the 915MHz band. The air data
transmit module is connected to the Pixhawk telemetry
port and the ground module is connected to the ground sta-
tion, which is a laptop. In our design, we use the QGround-
Control software*? installed on the ground station to in-
teract with the UAV such as commanding it to perform

different missions like waypoint following.

4.2.3. C2U Communication

This communication link is used for transmitting control
signals from the remote controller to the UAV, which op-
erates at the 2.4GHz band. The remote controller has joy-
sticks that allow manual control of throttle, yaw, pitch, and
roll angles. The UAV’s flight modes can also be changed by
adjusting the switches, such as the Manual control mode,
Mission mode for completing pre-programmed missions,
and Hold mode for maintaining altitude. In the flight tests
presented in Sec. 6, the remote controller primarily serves
to initiate (and terminate if needed) the waypoint following
missions, where waypoints are generated using the QGound
Control software and uploaded to the UAV prior to mission
execution.

4.3. Localization

Each UAV is equipped with a Here3 Real-Time Kinematic
(RTK) module** for localization, which has dimensions of
68mmx68mmx 16mm, a weight of 48.8g, and an update
rate of 8Hz. The complete Here3 RTK system comprises
two main components: a stationary reference station posi-
tioned on the ground with a known coordinate and mobile
rovers mounted on each UAV. The reference station con-
tinuously collects signals from multiple Global Navigation
Satellite System (GNSS) satellites, determining signal er-
rors by comparing actual satellite positions with those in-
ferred from received signals. These errors are then transmit-
ted as correction data to the rovers. Utilizing this correction
data, the rovers can improve their position calculations de-
rived from received satellite signals to achieve a centimeter-
level accuracy. This is a significant improvement over the
meter-level accuracy of conventional GPS modules.*> Our
flight tests (see Fig. 3) show that precise positioning signif-
icantly enhances the navigation performance of the UAVs
during waypoint following missions.

54

54
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E270 E270
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Fig. 3. UAV trajectories: (a) with conventional GPS vs. (b)
with Here3 RTK.

4.4. Flight Control

Each UAV is equipped with a Pixhawk flight controller,
which is capable of controlling the UAV based on manual
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inputs or following planned waypoints with the aid of RTK
signals. Both the receiver and the telemetry air module are
connected to the Pixhawk.

4.5. Power Management

Each UAV is equipped with a 4S Lipo battery, which op-
erates at 14.8V. This battery is specifically used to power
the flight control and propulsion subsystems of the UAV.
With the battery fully charged, the UAV has an approx-
imate flight time of 15 minutes. To power the Raspberry
Pi, we use a 5V 3A portable battery with a USB-C con-
nector. To power the TP-Link Wi-Fi router, we utilize a
separate portable battery with an output of 5V and 2.5A.
This battery is connected to the router using a Micro USB
wire.

5. Simulation Studies

In this section, we simulate NAC using the designed ROS
and Gazebo-based simulator with UAVs collaboratively
completing matrix multiplication tasks. We specifically fo-
cus on investigating the impact of four key factors on NAC
performance, including task size, number of workers, U2U
communication distance, and topology changes induced by
UAV mobility. Both uncoded and coded schemes are imple-
mented to gain a better understanding of the NAC system.

5.1. Simulation Configurations

Four simulations are designed to examine each impact fac-
tor. In all simulations, the parameters of the wireless com-
munication module as described in (2), (4) and (5) are
set to S; = 1200MHz, f. = 1200MHz, W = 1200MHz,
Ny = 1.1 x 10~3%watts. The gains of the position controller
in (1) are set to k, = 0.15,k, = 0.15,k, = 1, which are
selected to emulate the kinematic attributes of UAVs as
configured in our hardware tests. The parameter g in the
coded scheme is set to ¢ = 1.5m in all simulations except
for Simulation Four, where it is configured as ¢ = 2m to
gain higher resilience. In both coded and uncoded schemes,
the workload is equally divided among the workers as they
have the same computing power. Detailed configurations
and the results of each simulation are presented in the sub-
sequent subsections. In Fig. 4, we show an illustration of
the simulation environment. All simulations are performed
on a Precision 7865 Tower workstation, featuring the AMD
Ryzen threadripper pro 5965wx CPU that contains 24 cores
and 48 threads. The machine is equipped with 32GB of
memory and runs on a 64-bits Ubuntu 20.04.5 LTS oper-
ating system.
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Fig. 4. Visualization of the simulation environment with
Gazebo.

5.2. Simulation One: Impact of Task Size

In the first simulation, we investigate the impact of the task
size on the NAC performance by varying the size of matrix
A. Specifically, we maintain the size of the input matrix X
at 2000 x 1 and fix the number of columns of matrix A to
2000. The number of rows of matrix A, i.e., m, is varied
between 4000 and 10000. Five UAVs, including one master
and four workers, are deployed which form a NAC system.
The master UAV is surrounded by the workers, which are
equally distanced and are all 40m away from the master.
After taking off, all UAVs maintain a constant altitude of
10m and hover persistently throughout the entire task ex-
ecution phase, as depicted in Fig. 5(a). We then let the
NAC system repeatedly perform the matrix multiplication
task 10 times (referred to as iterations). The average task
completion time is recorded and shown in Fig. 5(b).

—— Master
~— Worker 1
=+ Worker 2
== Worker 3
— = Worker 4

—e— Coded
=4 Uncoded

ompletion Time(s)

4000 6000 8000 10000
Number of Rows of A

(b)

Fig. 5. Results of Simulation One: (a) UAV trajectories and (b)
average task completion time of different computing schemes at
various task sizes.

As anticipated, the task completion time grows as the
task size increases. Notably, the coded scheme consistently
outperforms the uncoded scheme. This is because in the
coded scheme, the introduction of redundancies enhances
the system’s resilience to uncertainties such that network
disturbances or computing node slowdowns have minimal
impact on the overall system performance.

5.3. Simulation Two: Impact of Number of
Workers

In the second simulation, we investigate the impact of the
number of workers on the NAC performance. We employ
the same configuration as before, with the workers evenly
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positioned around the master and at a fixed distance of 40m
from the master. All UAVs maintain a steady altitude of
10m after taking off. However, in contrast to the previous
simulation, we let the workers move around the master, as
illustrated in Fig. 6(a). To make the workers move at ap-
proximately the same speed, we interpolate the circle with
a radius of 40m and with the master at the center to obtain
30 evenly spaced waypoints. By following these waypoints,
each worker moves at an average speed of 0.36 m/s. For
the computation task, we set the size of the matrix A and
input X to 1000 x 2000 and 2000, respectively.

Fig. 6(b) displays the average task completion time as
performed by the NAC system, measured over 10 iterations.
The task completion times are presented for various num-
bers of workers involved in the computation. As we can see,
as more workers share the workload, the task completion
time decreases. However, it is worth noting that the per-
formance degrades when the number of workers is large.
This phenomenon occurs due to the additional time re-
quired for data transmission between the master and work-
ers. As more workers are involved in sharing the workload,
the data transmission time may exceed the computation
time of the workers. Consequently, communication plays a
major role in influencing the overall performance. As the
number of workers, from which the master must wait for
results, increases, any rise in transmission delay may lead
to a degradation of the overall performance.
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Fig. 6. Results of Simulation Two: (a) UAV trajectories when

N =10 and (b) average task completion time of different com-
puting schemes at various numbers of workers.
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5.4. Simulation Three: Impact of U2U
Communication Distance

In the third simulation, we investigate the impact of the
U2U communication distance on the NAC performance.
Similar to the first simulation, we construct a NAC system
with five UAVs, comprised of one master and four workers.
The workers are positioned evenly around the master. All
UAVs fly at the same altitude of 10m during task execution.
To study the impact of the U2U communication distance,
we let all workers gradually move away from the master,
as depicted in Fig. 7(a). The distance between each worker
and the master UAV is initially set to 40m, and then incre-
mentally increased to a final distance of 100m. While the
workers are in motion, the NAC system is assigned to exe-
cute 30 matrix multiple tasks. Each task is configured with

matrices A € R10000x2000 3pq X ¢ R2000x1 Note that the
NAC system is able to complete all assigned tasks before
the workers reach their final positions.
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Fig. 7. Results of Simulation Three: (a) UAV trajectories, and
(b) task completion of different computing schemes at various
master-worker distances.
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Fig. 8. Results of Simulation Three: throughputs of different
master-worker communication links for the (a) coded and (b)
uncoded computing scheme.

Fig. 7 shows the time taken to complete each of the 30
matrix multiplication tasks versus the corresponding aver-
age master-worker distance at the moment of task comple-
tion. It can be observed that as the distance increases, the
task completion time for both computing schemes tends
to increase, indicating the degradation in the NAC per-
formance. This is attributed to the reduction of the U2U
throughputs, as depicted in Fig. 8. Comparing the two com-
puting schemes (see Fig. 7), it is evident that the coded
scheme exhibits greater resilience to throughput fluctua-
tions and reductions compared to the uncoded scheme. This
is mainly attributed to the nature of the coded scheme,
where the master can utilize early-arriving results from
high-throughput links for computing the final output. Con-
sequently, fluctuations in throughput have a reduced im-
pact on the overall performance. In contrast, the uncoded
scheme relies on results from all workers, making it highly
susceptible to any transmission delays.

5.5. Simulation Four: Impact of Topology
Change

In a multi-UAV network, UAVs may leave or join the net-
work during task execution, leading to alterations in the
network’s topology. To examine the impact of such net-
work topology changes on NAC performance, we adopt the
same configuration as Simulation Two with the number of
workers set to N = 10. We then let some of the workers
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leave the network by moving away from the master. Once
the distance between a worker and the master exceeds 50m,
it is considered out of the master’s communication range,
and its results can no longer be received by the master.

In Fig. 9(a), we illustrate the trajectories of the UAVs
when two workers leave the network. Fig. 9(b) shows the
average task completion time of the coded scheme when dif-
ferent numbers of workers leave the network. Additionally,
Fig. 9(c) plots the corresponding task completion time for
each iteration as some workers move away from the mas-
ter. Notably, the results of the uncoded scheme are not
presented in the figure as it fails to complete all the tasks
in all cases. This is due to its dependency on the results
from all workers to compute the final output. Therefore,
when any worker moves out of the master’s communication
range, the absence of that worker’s result renders the un-
coded scheme ineffective. As illustrated in Fig. 9(d), in the
case where there are two workers leaving the NAC network,
the uncoded scheme fails to execute the last four iterations
due to disconnections between the master and any of the
two workers. However, as shown in Fig. 9(b)-9(c), although
topology changes degrade the computation efficiency, the
coded scheme is still able to complete all tasks efficiently,
demonstrating its high resilience to topology changes. The
specific number of workers leaving the coded scheme can
tolerate depends on the level of redundancies incorporated,
which is governed by the parameter ¢. In this simulation,
with ¢ = 2m, the coded scheme can tolerate up to 5 workers
leaving the network.

Also of interest, the average task completion time,
as depicted in Figs. 9(b)-9(c), does not necessarily in-
crease when more UAVs leave the network. This is because,
with the use of the coded scheme, task completion occurs
once the master UAV receives sufficient results, specifically,
those from any 5 workers. Since all workers possess identi-
cal computing capabilities and are assigned identical work-
loads, the time required for each worker to complete its as-
signed task is approximately uniform. This implies that the
overall task completion time aligns with the time taken by
each worker to complete its assigned task. Consequently, as
long as there is an adequate number of workers, specifically
5, within the communication range of the master UAV, the
task completion time remains resilient and doesn’t deteri-
orate as more workers depart from the network. The vari-
ations in time shown in Figs. 9(c)-9(d) can be attributed
to uncertain system disturbances, such as communication
delays and slowdowns experienced by workers. For a more
comprehensive understanding of the coded scheme, we rec-
ommend referring to references.'? 1!
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Fig. 9. Results of Simulation Four: (a) UAV trajectories in
the scenario where two workers leave the network, (b) average
task completion time of the coded scheme with varying num-
bers of workers leaving the network, (c) task completion time of
different iterations for the coded scheme in different scenarios,
and (d) task completion time of different iterations for different
computing schemes in the scenario where two workers leave the
network.

6. Hardware Tests

In this section, we utilize the designed NAC testbed to con-
duct hardware tests, providing us with additional insights
into the NAC systems. Our primary objective through these
tests is twofold. Firstly, we seek to gain a more compre-
hensive understanding of two crucial factors that have a
great impact on NAC performance: U2U communication
and UAV mobility. Secondly, we aim to showcase the prac-
tical application of the testbed by demonstrating its effec-
tiveness in the context of forest fire detection. We conduct
the outdoor flight tests at the sport fields at San Diego
State University (SDSU) as illustrated in Fig. 10.

Fig. 10. Conducting flight tests using the NAC hardware
testbed at the SDSU sport field.
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6.1. Comparison of U2U Communication
Techniques

Recognizing the vital role of U2U communication links
within the NAC system, we compare three cutting-edge
communication techniques for establishing the U2U com-
munications. Through a comprehensive comparison, we
thoroughly examine their performance and impact on the
NAC performance.

To assess and compare their performance, we conduct
a series of experiments in both indoor and outdoor set-
tings. In the indoor scenario, UAVs are positioned in close
proximity to each other. In the outdoor scenario, the two
worker UAVs are near each other, with each worker located
about 24m away from the master. Given the payload limi-
tations of our current UAV platform, lifting the relatively
large and heavy MikroTik wAP device is not currently fea-
sible®. As a result, to ensure fairness, the UAVs are placed
on the ground in all experiments. In each experiment, we
let the NAC testbed repeatedly compute the matrix mul-
tiplication task 10 times and record the average time to
complete each task. The matrices are randomly generated,
with X € R2000x1 and the size of A varied. The uncoded
distributed computing scheme is implemented to perform
the computations.

Fig. 11 shows the results obtained by using differ-
ent communication devices in both indoor and outdoor
settings. Comparing the two scenarios, the obtained re-
sults demonstrate consistency. Particularly, in both sce-
narios, using the 60GHz phased-array antenna-based de-
vice consistently yields the best performance. Interestingly,
the 2.4GHz omnidirectional antenna-based device exhibits
superior performance compared to the 5GHz directional
antenna-based device. To gain a deeper understanding of
this phenomenon, we conduct additional experiments in
the outdoor environment. Specifically, we vary the distance
between the master and the workers while keeping the dis-
tance between the two workers constant. This allows us to
evaluate the performance of different communication de-
vices under varying distances.
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Fig. 11. Average task completion time achieved using different

communication devices for various task sizes in the (a) indoor
and (b) outdoor scenarios.

The results are presented in Fig. 12(a), showing the
average task completion time, and in Fig. 12(b), demon-

strating the average throughput of the master-worker link,
where the throughput is measured using Iperf3.46 A notable
observation is the absence of results for the 2.4GHz omni-
directional antenna-based device when the master-worker
distance exceeds 48m. The reason behind this is that, in
our experiments, the device often fails to establish reliable
communication links beyond this distance, demonstrating
its restricted transmission range. In contrast, our earlier
experiments have demonstrated that the 5GHz directional
antenna-based device can communicate over a long dis-
tance, reaching up to 5km while sustaining a throughput of
2Mbps.?? Additionally, the 60GHz phased-array antenna-
based device achieves a throughput that surpasses 800Mbps
for communication distances of up to 250m. As the dis-
tance extends to 300m, the throughput decreases to around
400Mbps. Beyond the 350m mark, establishing a reliable
connection becomes unfeasible.
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Fig. 12. (a) Average task completion time and (b) through-

put achieved using different communication devices for various
master-worker distances.

Another noteworthy observation is that the 5GHz di-
rectional antenna-based device achieves a higher through-
put (see Fig. 12(b)) compared to the 2.4GHz omnidirec-
tional antenna-based device. However, interestingly, this
higher throughput didn’t result in improved computation
performance, as depicted in Fig. 12(a). This phenomenon
is likely attributed to the larger overhead required by the
directional antenna-based device during the data transmis-
sion initiation process. To validate this hypothesis, we mea-
sure the time dedicated to computations and subtract it
from the task completion time to obtain the communi-
cation time, which primarily includes the data transmis-
sion time and the time required to initiate the data trans-
mission process. Fig. 13 shows the communication time
recorded for running the matrix multiplication task with
A € R10000x2000 554 X € R2000%1 when the master-worker
distance is set to 24m. The task is repetitively performed 50
times (iterations). This figure validates that the 5GHz de-
vice indeed requires more time to initiate the data transmis-
sion process compared to the 2.4GHz device. This is evident
from the longer communication time of the 5GHz device,
accompanied by its shorter data transmission time as indi-
cated by its higher throughput (see Fig. 13(a)). However,
it is anticipated that this limitation will be compensated
for by its higher throughput when more data are transmit-

#This limitation will be addressed in the future by using larger UAV frames for increased payload capacity.
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ted. To demonstrate this, we increase the data transmission
size by expanding the number of columns in X. Fig. 13(b)
displays the average communication time across 50 itera-
tions for the two communication devices. As we can see,
the 5GHz device outperforms the 2.4GHz when the data
transmission size surpasses a certain threshold.
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Fig. 13. Comparison of 2.4GHz and 5GHz devices in terms

of (a) the communication time at different iterations when the
number of columns of X is set to 1 and (b) the average commu-
nication time at different numbers of columns of X.

6.2. Impact of UAV Speed

In this experiment, we aim to delve deeper into the impact
of UAV mobility, particularly focusing on speed, on NAC
performance. It is noted that the simulator’s capabilities
are inadequate for this study due to its simplified wireless
communication module, which does not take into consider-
ation the speed of UAVs. Consequently, the simulator does
not reflect the potential impact of UAV speed on NAC per-
formance.

To make UAV speed the only variable, we let the three
UAVs fly in parallel, ensuring a roughly constant master-
worker distance. Two worker UAVs fly on the two sides of
the master UAV, maintaining an identical speed to that of
the master. All UAVs fly back and forth between two ends
of their predefined paths. The trajectories of these three
UAVs are visualized in Fig. 14. Whenever the UAVs ar-
rive at one end of their pre-defined paths, they pause at
that location for 10 seconds and then resume their move-
ment to the other end at a different speed. During the flight,
the UAVs collaboratively execute the matrix multiplication
task repeatedly.
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Fig. 14. UAV trajectories.

Fig. 15(a) shows the distances between the master and
each worker calculated using the RTK coordinates recorded
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by the Pixhawk flight controller. As we can see, the master-
worker distances remain relatively consistent, fluctuating
only slightly within a narrow range of 13m to 16m through-
out the test. Fig. 15(b) plots the speeds of each UAV cal-
culated from the velocity data recorded by the flight con-
troller. Note that the flat segments observed at the valleys
of the speed curves indicate the time intervals during which
the UAVs are hovering in place. The peaks of the speed
curves occur when the UAVs approach the center of their
predefined paths.
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Fig. 15. (a) Distances between the master and each worker,
and (b) speeds of each UAV.

To illustrate the impact of UAV speed on NAC per-
formance, we calculate the average task completion time
across different UAV speeds. Specifically, we take the av-
erage of task completion times from iterations associated
with similar speed values of the master UAV, ensuring that
the speed difference does not exceed 1m/s. The results are
shown in Fig. 16(b). As we can see, the task completion
time increases with the ascent of UAV speed, indicating
that higher UAV speeds will degrade NAC performance.
This phenomenon could be attributed to the increased
chance of data loss when UAVs move at higher speeds. To
ensure that the performance degradation is not a result of
an increased master-worker distance, we also plot in Fig.
16(b) the average task completion across different master-
worker distances. The mean values are calculated by aver-
aging over iterations associated with similar distance values
between the master and worker 1. As shown in this figure,
no significant influence of master-worker distance on NAC
performance can be observed, compared to the impact of
UAV speed.
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6.3. Application in Forest Fire Detection

To demonstrate the practicality of the designed NAC
testbed, we also implement and evaluate a real applica-
tion: forest fire detection. Particularly, we use a real-world
dataset collected in Montesinho park?” as input to train
a forest fire detector. The goal is to predict burned areas
given meteorological information by training a linear re-
gressor using federated learning. The dataset consists of 517
meteorological data samples, each containing 13 features in-
cluding location in the park, time, temperature, humidity,
wind speed, amount of rainfall, and the burned area of the
forest.

To train the linear regressor over the NAC testbed, the
dataset is divided into N = 2 equal parts, with each part
pre-stored in a worker. The training process starts with the
master initializing the parameters of the linear regressor,
which then updates these parameters iteratively. During
each iteration, the master sends the current parameters to
each worker, which calculates the gradients using their local
data and returns the gradients to the master. The master
then updates the parameters using the received gradients.
Throughout the entire training process, the three UAVs
maintain a hovering position in the air, with the master
being around 14m away from the workers.

Fig. 17(a) shows the time required to execute every
100 training iterations and Fig. 17(b) depicts the trajec-
tory of the cost function’s value after every 100 iterations.
From Fig. 17(b), we can observe that the cost converges
at around 10000 iterations, which takes about 18.51s. The
average training time for each iteration is about 0.00185s.
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Fig. 17. (a) Time per completing 100 training iterations and
(b) the associated training cost after every 100 iterations.

7. Discussions

The simulations and hardware tests reveal challenges in
achieving high-performance NAC. When executing a de-
composable computation task over an NAC system, several
factors must be considered simultaneously when designing
distributed computing schemes to achieve high computa-
tional efficiency and high resilience to uncertain system dis-
turbances. These factors encompass task size, the distance
between the master and workers, the number of workers
involved, UAV mobility, and the communication technique
used for U2U communications. It’s important to note that
UAV mobility influences not just the network topology but

also the quality of U2U communications, a facet often over-
looked by existing studies.® 50

There are several other important factors to consider
depending on the application needs and the characteristics
of the NAC platform. For example, the battery capacity of
the UAV becomes important for applications that appreci-
ate extended flight durations. Hence, energy consumption
should be taken into account when designing distributed
computing schemes. Moreover, UAVs may vary in terms of
computing power or storage space, which should also be
considered. The impacts of these two factors are not stud-
ied in this work due to the constraints of our existing sim-
ulator and hardware testbed. However, they can be easily
enhanced to accommodate the requirements of such inves-
tigations. Particularly, an energy consumption model can
be incorporated into the simulator to enable the measure-
ment of energy consumed by the UAVs during computing,
communication, and maneuvering. The computing power of
the UAVs in the simulator can be varied by implementing
appropriate limitations on the processes, such as installing
the cpulimit module on Linux systems to regulate resource
usage. For the hardware testbed, the energy consumption
of the UAV can be measured using suitable tools such as
the USB power meter. Additionally, we can deploy differ-
ent single-board computers with different computing power
and/or storage capacities to investigate heterogeneous sce-
narios.

The hardware tests also demonstrate the limitations of
standard Wi-Fi routers used in the current testbed, which
are equipped with omnidirectional antennas. They have
a restricted communication range and provide a limited
communication throughput. The directional antennas can
largely extend the communication range, but their effec-
tiveness is limited to a fixed direction. To achieve opti-
mal performance, proper antenna direction control mecha-
nisms are required to align the antennas at the transmitter
and receiver.?? As a result, they are not the ideal choice
for point-to-multipoint or multipoint-to-multipoint com-
munications. The phased-array antennas can potentially
overcome these limitations and enable long-distance and
broadband multipoint-to-multipoint communications. The
MikroTik wAP 60G, which was tested in this study, shows
promise as a candidate to partially achieve this. However,
further designs and testing are necessary to successfully
deploy it on the UAV platform and achieve robust multi-
device communications. Moreover, as the device operates
at the 60GHz band, its communication range is limited,
with a maximum distance of around 350m according to
our tests.

In comparison to the hardware testbed, the designed
ROS and Gazebo-based simulator offers a range of benefits,
including low-cost, low-risk, scalable, and flexible. However,
we acknowledge the presence of one major limitation asso-
ciated with the simulator, which is the high overhead in-
troduced by running MPI and ROS together. This may be
caused by the resource contention between MPI and ROS.
We notice that when executing the simulator, ROS occu-
pies a majority of the CPU resources, resulting in decreased
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efficiency of MPI compared to running it alone. Moreover,
the high overhead may also be caused by the differences
in communication models of MPI and ROS, resulting in
the need for coordination between the two systems, which
incurs additional overhead. In addition, since the simula-
tor relies on models, like the wireless communication model
in (5), it cannot fully replicate the real hardware systems.
Consequently, relying solely on it proves inadequate for at-
taining a comprehensive understanding of NAC and inves-
tigating all of its impact factors, such as the UAV speed.

8. Conclusion and Future Work

This paper introduces a realistic simulator and hardware
testbed with complementary capabilities to facilitate NAC
research. The simulator, built using ROS and Gazebo, em-
ulates networked UAVs with inter-vehicle resource sharing
and distributed computing capabilities. It can simulate di-
verse real-world scenarios both at small and large scales
with low cost, high scalability, and exceptional flexibility,
making it suitable for initial investigations. The hardware
testbed, on the other hand, comprises three quadrotors,
each featuring a Pixhawk control unit, Raspberry Pi com-
puting unit, RTK localization unit, and telemetry radio
and TP-Link Wi-Fi router for communications. The simu-
lations and hardware tests conducted with various com-
putation tasks and distributed computing schemes shed
light on the critical factors that can influence NAC per-
formance, which include task size, number of UAVs, U2U
communication, and UAV mobility. The results also reveal
challenges in achieving high-performance NAC and offer in-
sights that guide further improvements to both the simula-
tor and testbed. In the future, we will enhance the simulator
by incorporating additional features that accommodate di-
verse application requirements. Additionally, we will focus
on mitigating the overhead that arises when running MPI
and ROS concurrently. To enhance the hardware testbed,
we will focus on deploying phased-array antennas on the
UAV platform to improve the U2U communication perfor-
mance. Additionally, we plan to augment the testbed by
equipping it with additional sensors, such as cameras, to
enable the evaluation of a broader spectrum of applications
and scenarios.
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