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Abstract—The integration of onboard computing capabil-
ities with unmanned aerial vehicles (UAV) has gained signif-
icant attention in recent years as part of mobile computing
paradigms such as mobile edge computing (MEC), fog comput-
ing, and mobile cloud computing. To enhance the performance
of airborne computing, networked airborne computing (NAC)
aims to interconnect UAVs through direct flight-to-flight links,
with UAVs sharing resources with each other. However, despite
the growing interest in NAC and UAV-based computing, exist-
ing studies rely heavily on numerical simulations for perfor-
mance evaluation and lack realistic simulators and hardware
testbeds. To fill this gap, this paper presents the development
of two NAC platforms: a realistic simulator based on ROS and
Gazebo, and a hardware testbed with multiple UAVs communi-
cating and sharing computing resources. Through simulation
and real flight tests with two computation applications, we
evaluate the platforms and examine the impact of mobility on
NAC performance. Our findings offer valuable insights into
NAC and provide guidance for future advancements.

Keywords—Unmanned Aerial Vehicles, Networked Airborne
Computing, Simulator Design, Testbed Development.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), when equipped with
onboard computing capabilities, can function as servers to
provide computing services to ground users [1]. Advanced
onboard computing capabilities can also enhance many UAV
functions such as positioning and image processing, hence
benefiting a wide range of applications such as surveillance
[2], search and rescue [3], remote sensing [4], and traffic
monitoring [5]. These exciting advantages have motivated
numerous researchers to investigate the integration of UAVs
into the multi-access edge computing (MEC), fog comput-
ing, or mobile cloud computing paradigms [1], [6], [7].

As small UAVs are restricted in payload capacity, the
onboard computing capability of individual UAVs is limited.
To address this limitation, networked airborne computing
(NAC) [8] arises that aims to maximize airborne computing
resources through inter-vehicle resource sharing via direct
flight-to-flight communication links. To enable NAC, a novel
distributed computing framework for static UAV networks
was introduced in [9], [10]. It optimizes resource allocation
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and utilizes coding techniques to achieve efficient and robust
airborne computing. To address scenarios where UAVs may
move during computing, a reinforcement learning-based
algorithm for jointly optimizing computation load allocation
and UAV trajectory was introduced in [11]. Besides theoret-
ical investigation, a hardware platform was introduced in
[12] to facilitate airborne computing research. This platform
is equipped with NVIDIA Jetson TX2 of high computing
power and also supports broadband wireless communication
that can facilitate network-based UAV research. Neverthe-
less, its design is centered on a single UAV, and inter-
vehicle resource sharing is not supported. Moreover, its
communication module, equipped with a directional antenna,
was designed and tested only for point-to-point communi-
cations. Nevertheless, NAC may involve point-to-multipoint
or multipoint-to-multipoint communications.

In existing studies on UAV-based computing [1], [13]-
[16], performance evaluation was typically conducted
through simulations with UAV movement, communication,
and computing behaviors described using mathematical
models. While mathematical model-based simulations offer
the advantage of being inexpensive and easy to deploy,
their underlying models, due to simplicity, may not accu-
rately reflect the intricate behavior of real UAV systems.
Hardware tests have been limited to single or dual UAVs.
For example, [17] investigated the application of airborne
computing for computer vision and machine learning, and
developed a UAV-based MEC system with two UAVs to
analyze communication and computation delays for video
streaming between the two UAVs.

Although the absence of realistic testbeds for NAC
research remains, various testbeds have been created to aid
research in UAV control, communication, and networking
[18]-[24]. For instance, [18] created a testbed to inves-
tigate the communication and control in UAV swarms.
[19] introduced a UAV hardware testbed for control and
information acquisition. To support robotics applications,
such as collision avoidance, [20] built a UAV simulator
that runs on the cloud using Docker. In the realm of UAV
communication, [21] presented a new evolved packet core
(EPC) that can be placed directly on UAV to establish UAV-
based LTE networks. They evaluated its performance in a
two-UAV LTE network, which resulted in improved client
connectivity. A ROS/Gazebo simulator was designed in [25]
to emulate wireless communication among networked UAVs.
[22] developed a directional antenna-based broadband and
long-range communication system for UAV-to-UAV com-
munication, which has the ability to automatically adjust an-
tenna directions for optimizing communication performance
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Algorithm 1: Computing model in NAC

// Master:
1 Broadcast X to workers.
2 fori=1:N do
3 Listen to the channel and collect result f;(X)

from worker 7.
end

Calculate and output final result using
{fl(X)an(X)v e 7fN(X)}

// Worker i:

Listen to the channel and receive X from the
master.

Compute f;(X) and send results back to the master.

4

wm

2

in unknown communication environments. [23] proposed
a new UAV network design using mmWave for Gigabit
speed communication and evaluated it on a hardware testbed.
Additionally, [24] created a UAV simulator to investigate the
communication security issue.

Main contributions: In this paper, we aim to address the
research gap regarding the scarcity of realistic testbeds for
NAC research. To this end, two NAC platforms are designed
and implemented. One is a realistic simulator created using
ROS (Robot Operating System) [26] and Gazebo [27]. An-
other is a hardware testbed composed by multiple UAVs with
computing and inter-vehicle resource sharing capabilities.
Moreover, we conduct various simulations and real flight
tests with two computation applications to examine the
impact of UAV mobility on NAC. The obtained insights
are vital for progressing NAC research by uncovering the
barriers to achieving high-performance NAC. They also
provide guidance for future enhancements of the proposed
NAC platforms.

The rest of the paper is organized as follows. Sec. II
presents the computing model for UAV-based NAC. Sec.
IIT and Sec. IV describe the designs for the simulator and
hardware testbed, respectively. The simulation and flight test
results are presented in Sec. V and Sec. VI, respectively.
Finally, Sec. VII concludes the paper.

II. COMPUTING MODEL

In this section, we describe how a computation task is
completed collaboratively by UAVs in NAC. Consider a
NAC system with N+1 UAVs, where N UAVs are the work-
ers and one UAV serves as the master. Suppose the master
UAV needs to complete a decomposable computation task
f(X), where X € R™*™ is the input to the task. To enhance
computational efficiency, the master partitions the task into
N subtasks represented as {f;(X), f2(X),..., fn(X))},
and assigns each worker ¢ with subtask f;(X). During
execution, the master shares the input X with all the workers,
which then calculate their respective subtasks and send
the results back to the master. The master then combines
the results to produce the final output of the task f(X).
Algorithm 1 summarizes the task execution procedure.

In subsequent simulation and experimental studies, we
select two computation tasks to be executed using the above
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computing model. They are 1) matrix multiplication and 2)
linear regression, both of which are fundamental components
for more complicated computations such as those in machine
learning applications [28], [29]. Here we briefly describe
each of the tasks.

To perform a matrix multiplication task AB, where A €
R™*" is a pre-stored matrix and B € R™*! is the input,
the master equally divides A row-wise into N submatrices
A1, Ao, ..., An. Suppose each submatrix A; is pre-stored
in the corresponding worker ¢. The master distributes B to
each worker, which then computes A;B, AsB, ... AxyB,
respectively, and returns the results to the master. The master
then aggregates the received results [A;B, AsB, ..., AyB]
to obtain the final result AB.

For linear regression, we use a real-world data set
collected in Montesinho park [30] as input to train a forest
fire detector. The goal is to predict burned areas given
meteorological information by training a linear regressor
using gradient descent. The data set consists of 517 me-
teorological data samples, each containing information such
as location in the park, time, temperature, humidity, wind
speed, and the burned area of the forest. To train the
linear regressor in NAC, the data set is divided into N
equal parts, with each part stored in a worker. The master
starts by initializing the parameters of the linear regressor
and updating them iteratively. During each iteration, the
master sends the current parameters to each worker, which
calculates the gradients using their local data and returns
the gradients to the master. The master then updates the
parameters using the received gradients.

III. SIMULATOR DESIGN

This section presents a ROS- and Gazebo-based simu-
lator designed to provide a realistic simulation environment
for NAC research. The simulator (see Fig. 1) consists of
five modules: UAV hardware module, controller module,
visualization module, wireless communication module, and
computation module. These modules communicate through
ROS topics [31]. The functionalities of each module and
their associated ROS topics are described as follows.

A. UAV Hardware Module

The UAV hardware module simulates the physical at-
tributes of a UAV including its frame, motor, and sensors.
Users can configure UAV’s frame such as base size, weight,
shape, arm length, etc. using the configuration file based on
the application needs. Additionally, users can select different
types of motors to simulate UAVs of different sizes and
aerodynamics.

ROS offers plugins for various sensors that can be
attached to UAV to track its states, such as position, velocity,
and orientation. In our simulator, each UAV is equipped
with a GPS sensor for localization, a magnetic sensor for
orientation, an IMU sensor for acceleration, and a barometer
sensor for flight height measurement, etc. Moreover, each
UAV includes a Wi-Fi receiver and Wi-Fi transmitter [25]
to simulate wireless communication between UAVs. Users
can also add additional sensors as needed.
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Fig. 1. NAC simulator design.

B. Controller Module

The controller module controls UAV’s movement to
follow the planned waypoints. This is achieved by using
two controllers: velocity controller and position controller.
Particularly, the position controller calculates the desired
velocities based on the planned waypoints and inputs the
desired velocities into the velocity controller. The velocity
controller, provided by ROS plugin, then generates control
commands to drive the UAV to reach the desired velocities.
The calculation of the desired velocities is performed using
the following equations:

Uy = ky(x — xy)
by = ky(y — yg)
Uy = k. (2 — 24) €))
where 9,7, 0, are the desired velocities in three directions.
kg, ky, k, are the gains of the position controller. (z,y, 2)
and (z4,yg,25) are UAV’s current position and the desired
position, respectively.

C. Visualization Module

The visualization module allows users to monitor the
status of UAVs during NAC simulations in real time. This
is achieved using Gazebo [27], which provides a realistic
simulation environment and an interactive graphic interface.
Moreover, by using Rviz [32], the data captured by UAV’s
sensors, such as trajectories and images captured by the on-
board camera, can be displayed. Our simulator provides the
real-time visualization of waypoints and UAV trajectories.

D. Wireless Communication Module

The communication module simulates the wireless com-
munication between UAVs, each equipped with a Wi-Fi
transmitter and receiver. The received signal strength (RSS)
at the Wi-Fi receiver, denoted by S(dBm), is calculated

publish] _

i fwaypoints
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module

using the well-known Hata-Okumura model [33], [34] by
the following equation:

S=5+ Py, 2

where Si(dBm) is the transmission power and Pr(dB) is
path loss given by

Pr, = D + Elog,,(d) + F. 3)

In the above equation, d(km) is the distance between
two UAVs. The values of D, E, and F' depend on the
transmission frequency, antenna heights, and environment
types. In particular, D and E are represented by

D = 69.55 + 26.16log10(fc) — 13.82l0og10(hp) — a(hm)
E = 44.9 — 6.55log10(hy) @)

where f. is the frequency of transmission in MHz (valid
range: 150M Hz — 1500M H z), hy, is the effective height of
the transmitter in meters (valid range: 30m — 200m), h,, is
the effective height of the receiver (valid range: 1m — 10m),
and a(h,,) is the mobile antenna height correction factor,
which is a function that depends on the environment. F' is a
factor to correct formulas for open rural and suburban areas.
Given RSS S, the maximum data rate, denoted by C' (bps),
can then be calculated according to Shannon’s Theory:

(S—30)
10

10 )

Ny ’
where W (Hz) is the communication bandwidth and Ny
(Watts) is the noise power.

C = Wlog,(1 + (5)

E. Computing Module

The computing module simulates the distributed com-
puting process using Message Passing Interface (MPI) [35],
which provides system interfaces for users to program
parallel computing applications and supports various pro-
gramming languages. In our simulator, each process rep-
resents a UAV that runs computation tasks in parallel and
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Fig. 2. NAC hardware testbed design.

communicates with each other via MPI. Each process uses
the states of UAV to calculate the data rate using (5). We
calculate the delay as & (s), where I(bits) is the size of
data being transmitted. This delay is introduced manually
using the time.sleep() function in Python before sending

data via MPI.

F. ROS Topics

In our simulator, communication between modules
is achieved through ROS topics as shown in Fig. 1.
Each module can either subscribe to a topic to re-
ceive messages or publish messages to a topic. For
example, GPS publishes UAV’s position to the topic
Juav/ground_truth_to_tf /pose. The position controller
subscribes to this topic to receive the UAV’s current po-
sition. After calculating the desired velocities, the posi-
tion controller then publishes these values to the topic
Juav/emd_vel, which is subscribed by the UAV’s velocity
controller. Moreover, the Wi-Fi receiver publishes the RSS
signals to the topic /uav/recv_signal, which is subscribed
by the communication module to calculate the data rate.

IV. HARDWARE TESTBED DESIGN

In this section, we present the design of a NAC hardware
testbed, consisting of three UAVs, two constructed using
Tarot 650 Quadrotor frames and one using a DJI F550
frame (see Fig. 2). The Tarot quadrotors serve as workers,
while the F550 serves as the master. In the following, we
describe the hardware design from four aspects: computing,
communication, flight control, and power management. For
each aspect, we detail its functionalities and the hardware
devices used to achieve them.

A. Computing

The computing unit on each UAV is a NVIDIA Jetson
TX2 [36], which boasts a powerful 6-core CPU and 256-
core NVIDIA Pascal GPU, and has 8GB memory. Despite
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its compact size (50mmx87mm) and lightweight (85g),
Jetson TX2 requires a development board to operate and
the original one from NVIDIA is too large (17cmx17cm)
to be placed on the UAV. To overcome this, we utilize a
compact carrier board developed in our previous works [12].
To enable computing resource sharing among UAVs, we
connect Jetson TX?2 to the same Wi-Fi network as described
in the following subsection. This allows UAVs to perform
collaborative computing using MPL

B. Communication

As illustrated in Fig. 2, there are three types of
communications in NAC including UAV-to-UAV, UAV-to-
Ground/Ground-to-UAYV, and Transmitter-to-Receiver. The
features and enabling techniques for each communication
type are described as follows.

1) UAV-to-UAV Communication: The UAV-to-UAV com-
munication is used to exchange data between UAVs, such as
data needed for computation and UAV’s state information.
Our testbed achieves this through a TP-Link Wi-Fi router
network. In particular, one TP-Link Wi-Fi router is set
up as an access point on the master while the remaining
TP-Link Wi-Fi routers on the workers are configured as
clients connecting to the master. This allows the master to
communicate with both workers simultaneously. Each router
is connected to the Jetson TX2 via an Ethernet port.

2) UAV-to-Ground/Ground-to-UAV Communication: The
UAV-to-Ground/Ground-to-UAV communication is used to
monitor the states of UAV such as its position, rotation,
battery status, etc. It is enabled by the FPVDrone SO0OMW
Radio Telemetry Kit 915 Mhz Air and the Ground data
transmit module. The air data transmit module is connected
to the Pixhawk telemetry port and the ground module is
connected to a laptop USB port. In our design, we use
the QGroundControl software [37] installed on the ground
station, which is a laptop, to interact with the UAV such
as commanding it to take off or land. We can also create
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Fig. 3. Visualization of the simulation environment with Gazebo.

Fig. 4. Visualization of the UAVSs’ pre-planned waypoints and paths with
Rviz.

different missions such as waypoint following and upload
them to the flight controller.

3) Transmitter-to-Receiver Communication.: The
transmitter-to-receiver communication is used to control
the UAV. The transmitter has joysticks that allow manual
control of throttle, yaw, pitch, and roll angles. The UAV’s
flight modes can also be changed by adjusting the switches,
such as the Manual control mode, Mission mode for
completing pre-programmed missions, and Hold mode for
maintaining altitude.

C. Flight Control

Each UAV is equipped with a Pixhawk flight controller,
which is capable of controlling the UAV based on manual
inputs or following planned waypoints with the aid of GPS
signals. Both the receiver and the telemetry air module are
connected to the Pixhawk.

D. Power Management

Each UAV is equipped with two 4S Lipo batteries having
14.8 Voltage to provide power to all its subsystems. The
first battery is designated to power the computing and
communication subsystems while the second battery is used
to power the flight control and propulsion subsystems of the
UAV. The flight time of UAV with the battery fully charged is
around 15 minutes and the operation time of the computing
and communication unit with the battery fully charged is
around 45 minutes.

V. SIMULATION STUDIES

In this section, we simulate NAC using the designed
ROS- and Gazebo-based simulator with UAVs collabora-
tively completing the matrix multiplication task. We examine
the impact of UAV mobility by comparing results from two
scenarios: the moving scenario where UAVs move continu-
ously during task execution and the static scenario where
the UAVs remain stationary during task execution. The
detailed simulation configurations and results are presented
as follows.
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A. Simulation Configurations

We simulate a NAC system with four UAVs. The compu-
tation task considered is matrix multiplication as described
in Sec. II. The matrices A and B are randomly generated and
have a dimension of 100 x 10000 and 10000 x 1, respectively.
This matrix multiplication task is conducted repeatedly for
40 iterations. The parameters of the position controller
described in (1) are set to k, = 0.15,k, = 0.15,k, = 1.
The parameters of the wireless communication module as
described in (2), (4) and (5) are setto S; = 1200M Hz, f. =
1200M Hz, W = 1200M Hz, Ng = 1.1 x 1073 watts. In
the moving scenario, UAVs are controlled to follow pre-
planned waypoints (see Figs. 3-4 as an illustration). In the
static scenario, UAVs are placed on the ground.

B. Simulation Results

The simulation results, including the throughput and
computation time, for both the moving and static scenarios,
are presented as follows.

1) Moving Scenario: The trajectories of the four UAVs in
the moving scenario are shown in Fig. 5(a). Each UAV takes
off from the ground, flies straightly at a constant altitude,
and finally lands. The master UAV flies a shorter distance
than the worker UAVs to vary the distances between them.
Fig. 5(b) shows the distances between the master and worker
UAVs. As we can see, the distances between the master and
workers decrease during the first 35s, remain stable for 15s,
and then decrease again until landing at around 60s.

As shown in Fig. 6(a), the varying distances between the
master and workers result in changes in the throughputs. The
throughputs increase over time as the distances decrease. It is
also noted that there are significant variations in the through-
puts due to UAVs’ mobility. Fig. 6(b) shows the completion
time for a single iteration of matrix multiplication, which
has an average value of around 5s.
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Fig. 8. Throughput between two UAVs at various distances in simulations.

2) Static Scenario: In the static scenario, the distances
between the master and worker UAVs are set to 9.43m,
12.80m, and 17m. Fig. 7(a) depicts the throughputs be-
tween UAVs. Compared to Fig. 6(a), we can see that the
throughputs between the static UAVs have smaller variances,
resulting in more stable communication between the UAVs.
The time for completing a single iteration of matrix multi-
plication in the static scenario is shown in Fig. 7(b).

To further understand the relationship between distance
and communication performance, we vary the distance be-
tween two UAVs and measure the throughput. The results,
which include the mean values and standard deviations of
100 data samples, are shown in Fig. 8. As we can see, the
throughput decreases quickly as the distance between the
UAVs increases. This graph demonstrates the crucial impact
of UAV mobility in NAC.

VI. REAL FLIGHT TESTS

In this section, we conduct real flight tests at San Diego
State University (SDSU) sport field as shown in Fig. 9 to
evaluate the NAC hardware testbed for performing linear
regression. The experiments include both moving and static
scenarios to assess the impact of UAV mobility on the
system performance. The configurations and results of the
experiments are described in detail below.

A. Experiment Configurations

In the flight tests, each UAV in the moving scenario
follows pre-planned waypoints with a flying speed of 0.67
m/s and a constant altitude of 3.04m. In the static scenario,
all UAVs remain stationary on the ground. The computation
task performed by the UAVs in both scenarios is to train a
linear regressor for forest fire detection as described in Sec.
II. The throughput between two UAVs is measured using
Iperf3 [38].
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Fig. 9. Flight test of NAC hardware testbed with three UAVs at the San
Diego State University (SDSU) sport field
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Fig. 10. Trajectories of the three UAVs.

B. Experiment Results

1) Moving Scenario: We extract the positions of UAVs
from the flight logs and calculate the distance between the
master UAV and the two worker UAVs. The trajectories
of the UAVs are displayed in Fig. 10. The two workers
follow straight lines in parallel, while the master flies a
short distance in between them and then hovers until the
completion of the task.

The distances between master UAV and worker UAVs
are shown in Fig. 11(a). The corresponding throughputs
between UAVs are depicted in Fig. 11(b). It can be ob-
served that within the first 40s, the throughput between
master and worker 2 increases even though the distance
between them remains relatively stable. This variation in the
throughput may be attributed to the impact of UAV mobility
and wireless communication interference. Moreover, the
throughput between master and worker 2 is much larger
than that between master and worker 1 during the first
40s, due to the shorter distance between them. After this
point, both throughputs decrease drastically as the distances
continuously increase and approach zero when the distances
reach around 20m. The training terminates after 75s due to
communication loss caused by increasing distances.

Fig. 12. presents the impact of distance on communi-
cation performance. As expected, the throughput decreases
as the distance between the UAVs increases. The maximum
communication distance between two UAVs is around 25m
as indicated in the figure.

2) Static Scenario: To further evaluate the impact of mo-
bility on the communication and computation performance,
we keep all UAVs stationary on the ground and re-run the
forest fire detection application. This allows us to compare
and contrast the results with those obtained from the moving
scenario.

In this scenario, we set the distances between the master
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Fig. 12. Throughput between two UAVs at various distances in flight tests.

and worker 1 and 2 to 9.8m and 8.9m, respectively. The
throughputs between the UAVs are shown in Fig. 14(a).
Compared to the throughputs when UAVs are moving as
shown in Fig. 11(b), we can see that, during the first 40s,
the throughput between the master and worker 2 is lower
in the static case due to the larger distance. However, the
throughput variance is smaller when the UAVs are static.

We further analyze the computation performance by
showing the training time for 10 iterations and the training
cost in Fig. 14(b) and Fig. 14(c), respectively. The results
indicate that the task completion time is generally smaller
in the static case compared to the case when UAVs are
moving due to shorter inter-vehicle distances as shown in
Fig. 13(a). Moreover, the training completes 640 iterations
within 200s when UAVs are static, while only 310 iterations
are completed in the moving case within 75s. This is due to
the fact that, in the moving scenario, the training terminates
when workers move out of the master’s communication
range, which occurs at 75s. As more training iterations are
performed, the training cost is also smaller in the static case
as shown in Fig. 13(b) and Fig. 14(c).

VII. DISCUSSIONS AND CONCLUSIONS

The simulation and flight tests reveal challenges in
achieving high-performance NAC. In particular, UAV mo-
bility results in significant communication variance, which
can lead to communication bottlenecks that affect robust
airborne computing. The flight tests also demonstrate the
limitations of standard Wi-Fi routers with omni-directional
antennas. They have limited communication range and do
not provide sufficient communication throughput for real-
time applications. To address these limitations, our future
work will focus on improving the UAV-to-UAV communi-
cation range and throughput through the use of phased array
antennas and mmWave 5G technology [23]. Additionally, we
will implement coding techniques [10] to improve the ro-
bustness of NAC to uncertain system disturbances and apply
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the computation load allocation framework we previously
developed [11] to optimize computation resource allocation.

In conclusion, this paper introduces a realistic simulator
and hardware testbed for NAC research. The simulator, built
using ROS and Gazebo, emulates networked UAVs with
inter-vehicle resource sharing and distributed computing
capabilities and can simulate various realistic environments.
The hardware testbed consists of three quadrotors each
with a Pixhawk control unit, Jetson TX2 computing unit,
and telemetry radio and TP-Link Wi-Fi router for com-
munication. The simulation and real flight tests on two
computation applications showed that UAV mobility has a
direct impact on the throughput, resulting in degraded and
unstable communication performance as distance increases.
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