
Title: Disease Bundling or Specimen Bundling? Cost- and Capacity-Efficient Strategies for Multi-

disease Testing with Genetic Assays

Authors:

Douglas R. Bish: Professor, Department of Information Systems, Statistics, and Management Science,

University of Alabama, Tuscaloosa, Alabama, 35487, United States, email: drbish@ua.edu

Ebru K. Bish: Professor, Department of Information Systems, Statistics, and Management Science, Uni-

versity of Alabama, Tuscaloosa, Alabama, 35487, United States, email: ekbish@ua.edu

Hussein El Hajj: Assistant Professor, Department of Information Systems and Analytics, Santa Clara

University, Santa Clara, California, 95053, United States, email: helhajj@scu.edu

mailto:drbish@cba.ua.edu
mailto:ekbish@cba.ua.edu
mailto:helhajj@scu.edu


Disease Bundling or Specimen Bundling?

Cost- and Capacity-Efficient Strategies for Multi-disease Testing

with Genetic Assays

Douglas R. Bish1, Ebru K. Bish1∗, Hussein El Hajj2

1. Department of Information Systems, Statistics, and Management Science,

University of Alabama, Tuscaloosa, AL 35487, United States

2. Department of Information Systems and Analytics, Santa Clara University,

Santa Clara, CA 95053, United States

June 15, 2022; Revised: December 10, 2022; March 26, 2023; June 15, 2023

Abstract

Problem definition: Infectious disease screening can be expensive and capacity-constrained. We

develop cost- and capacity-efficient testing designs for multi-disease screening, considering: (1) mul-

tiplexing (disease bundling), where one assay detects multiple diseases using the same specimen (e.g.,

nasal swabs, blood); and (2) pooling (specimen bundling), where one assay is used on specimens from

multiple subjects, bundled in a testing pool. A testing design specifies an assay portfolio (mix of

single-disease/multiplex assays) and a testing method (pooling/individual testing per assay).

Methodology/results: We develop novel models for the nonlinear, combinatorial multi-disease

testing design problem: a deterministic model, and a distribution-free, robust variation, which both

generate Pareto frontiers for cost- and capacity-efficient designs. We characterize structural properties

of optimal designs, formulate the deterministic counterpart of the robust model, and conduct a case

study of respiratory diseases (including COVID-19) with overlapping clinical presentation.

Managerial implications: Key drivers of optimal designs include the assay cost function, the tester’s

preference towards cost- versus capacity-efficiency, prevalence/co-infection rates, and, for the robust

model, prevalence uncertainty. When an optimal design uses multiple assays, it does so in conjunction

with pooling, and uses individual testing for at most one assay. While prevalence uncertainty can be

a design hurdle, especially for emerging or seasonal diseases, the integration of multiplexing and

pooling, and the ordered partition property of optimal designs (under certain co-infection structures),

serve to make the design more structurally robust to uncertainty. The robust model further increases
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robustness, and is also practical as it needs only an uncertainty set around each disease prevalence.

Our Pareto designs demonstrate the cost- versus capacity trade-off, and show that multiplexing-only

or pooling-only designs need not be on the Pareto frontier. Our case study illustrates the benefits of

optimally integrated designs over current practices, and indicates a low price of robustness.

Keywords: Testing design, public health screening, multiplex assay, pooled testing, assay portfolio,

partition problem



1 Introduction and Motivation

Infectious disease screening improves health outcomes by identifying disease-positive subjects and

their underlying pathogen. Pathogen detection is done through in-vitro laboratory testing on a speci-

men (e.g., nasal swab, blood) collected from the subject, and is especially important for diseases that

manifest with overlapping symptoms, but require different treatment. Examples include: respiratory dis-

eases; sexually-transmitted diseases; transfusion-transmittable diseases; gastrointestinal diseases; blood

infections and sepsis. Consider respiratory diseases, a common cause of medical visits and hospitaliza-

tions [22, 80]; treatment may differ depending on the virus causing the disease, e.g., influenza, respiratory

syncytial virus, COVID-19; or there may be no treatment at all, e.g., the common cold, but only testing

can distinguish one pathogen from another [18]. Further, not knowing whether the pathogen is bacterial

can result in antibiotic overuse [40, 70], contributing to the growing problem of antibiotic resistance [60].

We use the terms disease and pathogen interchangeably, and refer to a specific disease/pathogen by the

most common name.

A widely used assay is the Polymerase Chain Reaction (PCR) assay, a highly sensitive and specific

genetic assay that detects a pathogen’s DNA (or RNA) [16, 38]. Upon collection, specimens are sent to

a testing laboratory, where they are prepared, and a small sample of each specimen is placed in a PCR

assay (i.e., a commercial testing kit that consists of a small vial with reagents), which, in turn, is placed

in a PCR machine. PCR machines have capacities that range from 1 to several hundred assays per run

(96 and 384 are common capacities, e.g., [51]). Each run typically requires 1-4 hours (depending on

the machine) to complete; the run-time, along with the capacity, determines the machine’s throughput.

During a run, a unique section of the pathogen’s DNA, if present, is amplified using reagents such

as polymerase, DNA nucleotides, and pathogen-specific primers; and pathogen-specific probes emit a

signal (e.g., a fluorescence) if the pathogen is detected in the specimen. Disease screening via PCR is

expensive, and can be capacity-restricted. Screening is often performed in state public health, hospital,

blood donation agency, or commercial laboratories, which can test hundreds, or more, specimens per

week for multiple diseases. Thus, it is essential for screening efforts to be cost- and capacity-efficient. In

this light, we study a novel testing design problem that utilizes two bundling strategies to make screening

more cost- and capacity-efficient:

Multiplexing (Disease Bundling): One multiplex assay can detect multiple diseases using the same spec-

imen, as opposed to single-disease (singleton) assays. Multiplex assays are available for many disease

groups, including, for example, respiratory, sexually-transmitted, transfusion-transmittable, and gas-

trointestinal diseases, e.g., [10]. For instance, commercially available multiplex assays for respiratory

diseases bundle two to 33 pathogens [9, 10, 24, 44, 52, 61, 76]; the Alabama Department of Public Health

uses a 20-plex assay to screen for respiratory pathogens, including COVID-19 [8].
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Pooling (Specimen Bundling): Under pooling, specimens from multiple subjects are bundled (i.e., pooled)

and tested with one assay. Dorfman pooling [30] is the most common pooling method in practice, and is

the method considered in this paper; we describe it here for a singleton assay: if the pooled test outcome

is negative, then all subjects in the pool are declared negative for the disease; otherwise, each subject

is re-tested individually via the same type of assay, and is classified as negative or positive based on

their individual test outcome. Because only a small sample of the specimen is needed for each test, each

specimen has sufficient material for multiple tests. Examples of pooling (mostly for singleton assays)

range from transfusion-transmittable (e.g., West Nile virus, B. microti, Zika virus), to respiratory (e.g.,

influenza), to sexually-transmitted diseases, and many others, e.g., [2, 4, 12, 64, 78, 82, 84]. More recently,

the CDC and the FDA have provided guidance for pooling for COVID-19 [17, 37].

Multiplex PCR assays are widely available, and pooling with PCR is commonly used, as PCR is

conducive to both bundling strategies for the following reasons: (1) From a cost perspective, many of

the reagents are not disease-specific (e.g., the polymerase and the DNA nucleotides), and the required

amount of these reagents is fairly insensitive to the number of diseases in the assay. The disease-specific

reagents (e.g., the primers and the probes) are relatively inexpensive compared to the other reagents.

Thus multiplexing reduces the testing cost per disease over the corresponding singleton assays, leading

to a concave cost structure in the number of diseases bundled. (2) From a technology perspective, due

to amplification, PCR can detect minute quantities of the pathogen’s genetic material, and thus is not

very susceptible to dilution, preserving its high sensitivity with pooling, e.g., [66]. (3) From a testing

capacity perspective, multiplexing leads to a more efficient use of the limited testing capacity, improving

both the throughput and turn-around times. Pooling also reduces the number of tests required (hence

the testing cost and the capacity used) for low prevalence diseases, e.g., [4].

When multiplexing and pooling are used separately for a given set of diseases (the disease selection

problem, while of great interest, is beyond the scope of this paper), the cost- and capacity-efficiency

objectives coincide, and the best nonintegrated design is straightforward: (i) formultiplexing-only, bundle

all the diseases into one multiplex to take advantage of the concave nature of the assay cost in the

number of diseases bundled; and (ii) for pooling-only, pool each singleton assay if the disease prevalence

is below a threshold. When integrating multiplexing and pooling, however, the design problem becomes

nonlinear and combinatorial, due to the interdependent decisions of an assay portfolio (the mix and

composition of singleton and multiplex assays) and a testing method (individual testing or pooling for

each assay). Integrated multiplexing and pooling is not commonly used, although practical examples

exist. We illustrate this integrated testing design through the American Red Cross’ use of a 3-plex assay

for hepatitis B, C, and HIV in Dorfman pools of 16 [2]: A specimen of each blood donation is sent to a

testing laboratory, where samples from 16 specimens (each from a different donor) are pooled and tested
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with one 3-plex assay for hepatitis B, C, and HIV. If the pooled test is negative for all three diseases,

then the 16 donations are declared negative for all three diseases. Otherwise (the pool tests positive for

at least one of the three diseases), then each specimen (via another small sample) is individually re-tested

using the same 3-plex assay. Donations are then classified as negative or positive for each disease based

on their individual test outcome. There are no guidelines on when, and how, these strategies should be

integrated. This knowledge gap partially explains why integrated strategies are uncommon. We narrow

the knowledge gap with the following methodological contributions and managerial insights:

Methodological contributions: (1) Development of novel multi-disease testing design models

for this nonlinear, partition-type combinatorial problem: a deterministic model, and a distribution-

free, robust variation, which both generate Pareto frontiers for cost- and capacity-efficient designs; (2)

Development of the deterministic counterpart of the robust model (Theorem A.1, Corollary A.1); (3)

Characterization of structural properties of optimal testing designs as a function of key problem pa-

rameters (Theorems 1-4); and establishing the optimality of ordered partitions for certain co-infection

structures (Theorem 5), leading to a polynomial-time algorithm (Corollary 1).

Managerial contributions and insights: (1) Key drivers of optimal designs include the assay

cost function, the tester’s preference towards cost- versus capacity- efficiency, prevalence/co-infection

rates, and, for the robust model, prevalence uncertainty. Given a disease set, the most capacity-efficient

design bundles all diseases into one multiplex, and uses pooling only if the combined disease prevalence

is below a threshold (Theorem 2), but this is not necessarily the most cost-effective design (Theorem 3).

Once a combination of cost- and capacity-efficiency is considered, the structure of an optimal design

becomes complex (Theorems 1, 4). Now a portfolio of multiplex and/or singleton assays can be optimal

as long as pooling is used; in this case, individual testing can be used by at most one assay. Further, as

co-infection rates rise, multiplexing becomes more favorable (Lemma 1). These properties highlight the

interdependence between multiplexing and pooling; (2) Designs that integrate multiplexing and pooling

are more structurally robust to variations in prevalence estimates than pooling alone, because the pooling

performance becomes a function of the assay prevalence (i.e., combined prevalences of the diseases in

the assay), rather than the individual disease prevalences. Further, when ordered partitions are optimal

(under certain co-infection structures, Theorem 5), the design becomes more robust; (3) The robustness

of the design can be further improved through a robust model, which is also practical, as it only needs

an uncertainty set around each disease prevalence. These last two insights are especially promising for

seasonal (e.g., respiratory diseases) or emerging diseases (e.g., COVID-19), for which prevalence rates

are difficult to estimate; (4) The Pareto designs allow the tester to choose a design based on their cost

and capacity priorities; (5) Our case study of 18 respiratory diseases illustrates that Pareto designs

improve upon cost- and/or capacity-efficiency of multiplexing-only or pooling-only benchmarks by as
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much as 40%. This is despite the fact that the respiratory disease group is a relatively difficult group for

testing design, compared to other disease groups, as some respiratory diseases exhibit high seasonality,

high uncertainty (partially caused by COVID-19), and relatively high prevalences. Further, the price of

robustness is low in our case study.

These findings underscore the value of integrated multiplexing and pooling optimization, a unique

feature of our model. The use of cost- and capacity-efficient testing designs could further allow expanded

screening, to cover larger populations or more diseases, providing a win-win situation for both public

health practitioners (e.g., state public health laboratories, healthcare providers) and patients.

The remainder of the paper is organized as follows. §2 provides a review of the literature; and

§3 provides the notation and formulates the testing design problem. §4 and §5 establish properties of

optimal designs and derive strategy insight. §6 illustrates the value of optimal designs through a case

study based on publicly available data; and §7 concludes with research limitations and future research

suggestions. Mathematical proofs and some case study results are relegated to the Online Appendix.

2 Literature Review

This paper is related to research on pooling and multiplexing. While the literature in each area

is large, the literature that studies their integration from a cost- and capacity-efficiency perspective is

limited. Our review of each area is not exhaustive, but rather representative of the related research, so

as to position our work in the literature.

We focus on PCR assays. Alternative testing technologies for pathogen identification include antigen

assays and cell cultures [1, 28, 41, 42, 56, 68]. Antigen assays tend to be less expensive, but also less

sensitive, than PCR; further, PCR can identify a larger set of pathogens, because not all viral pathogens

have antigen assays. On the other hand, testing via cell cultures is highly accurate (like PCR), but more

expensive, with much longer turn-around times. As a result, PCR (and more recently, multiplex PCR)

assays are becoming increasingly common.

Regarding pooling, Dorfman pooling was first proposed in the 1940’s for syphilis screening in military

inductees [30]. Since then, many variations of Dorfman pooling, as well as other pooling schemes, have

been extensively studied, mostly for a singleton assay, to minimize the per subject expected number of

tests. While minimizing this metric improves both the cost- and capacity-efficiency for a singleton assay,

these metrics diverge for multiple diseases, due to different costs of multiplex and singleton assays; this is

one of the departures of our work from this literature. It is well-known that pooling reduces the expected

number of tests over individual testing when disease prevalence is sufficiently low, and an optimal pool

size has been analytically characterized for various pooling schemes, see [4, 11, 54, 67] for reviews of the

pooling literature, and the references therein.

Considering PCR multiplexing, three main research streams are of interest: (1) Efficacy studies,
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many of which establish that multiplexing generally preserves the high sensitivity and specificity of their

counterpart singleton PCR assays, e.g., [52]. (2) Design studies, which focus on compatibility from

a biochemical perspective, e.g., how to design primers for different pathogens that work well together

(i.e., without interference) when combined in an assay, e.g., [73, 86]. (3) Cost-effectiveness studies:

Large multiplex assays typically offer higher operational efficiencies over their multiple singleton assay

counterparts (see §6). Thus, much of this literature explores the benefits of multiplexing in comparison to

current practices, or in clinical settings, mainly in terms of whether the pathogen identification improves

treatments and reduces costs. For example, a major benefit of pathogen identification is reduction

in unnecessary antibiotic use [40, 70], along with reduction in inpatient stay [75]. Multiplexing has

been shown to be cost-effective for many disease groups and populations, e.g., [5, 72, 81], including

respiratory diseases, e.g., [77], see also the survey paper that compares assay performance, and clinical

(e.g., mortality rate, inpatient stay, unnecessary antibiotic use) and economic (e.g., hospitalization cost)

impacts of various FDA-approved multiplex assays for different disease groups (bloodstream, respiratory,

gastrointestinal, central nervous system), based on previously published studies [74].

In summary, much of the multiplexing literature studies existing commercial assays, and does not

delve into assay design; and the biochemical assay design research is complementary to the operational

design problem that we study: we start, as an input, with a set of pathogens, with reagents compatible

for multiplexing, and construct multiplex and/or singleton assays for these pathogens so as to maximize

the operational efficiencies. Importantly, we show that, while it is feasible to bundle all these diseases in

one multiplex, this strategy is not necessarily optimal when considering pooling.

The operations/biostatistics literature that studies the design of multiplexing and pooling strategies

from an efficiency perspective is limited. [79] considers Dorfman pooling (with pool sizes determined

via enumeration) for a 2-plex for Chlamydia trachomatis and Neisseria gonorrhoeae (both sexually-

transmitted diseases); their numerical study shows that this 2-plex with pooling reduces the number of

tests over both its counterpart with individual testing, and two singletons with pooling. [46, 47] extend

this work to other pooling schemes for the two-disease setting. Thus, all three papers [46, 47, 79] consider

only the two-disease setting, where the 2-plex is the only multiplex, and do not delve into assay portfolio

design; they also consider the expected number of tests – which is equivalent to the testing cost only

when the 2-plex and the singleton assays have the same cost, which is not necessarily true (see §1); and

these papers do not provide analytical methods for optimal pool size determination. From a clinical

perspective, [59] shares results from the implementation of a 2-plex PCR for Chlamydia trachomatis

and Neisseria gonorrhoeae, both with Dorfman pooling (in pools of five), and with individual testing,

at two clinics, and shows that pooling reduces the number of tests by 50.3% over individual testing,

while achieving high efficacy. [83] studies the cost-effectiveness of three Dorfman pool sizes (6, 24, 48)
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for the hepatitis B, C, and HIV 3-plex over current blood screening practices in different countries; as

a practical example, this 3-plex is used by the American Red Cross in Dorfman pools of 16 [2]. From a

methodological perspective, our problem is also related to the partition problem, discussed subsequently.

3 The Notation, Decision Problem, and Model

3.1 The Notation and the Decision Problem

We denote all vectors in boldface. N = {1, 2, · · · , n} denotes the disease set for testing, arranged

in non-increasing order of disease prevalence. Co-infections are possible, and unless otherwise stated,

we make no assumptions on the co-infection structure, that is, each pair of diseases in set N can be

positively or negatively correlated, or independent.

We study both deterministic and robust versions of the multi-disease testing design problem for

genetic assays, considering multiplexing and Dorfman pooling (hereafter, “pooling”) strategies. While

the deterministic model is the first step in the study of this novel problem, the robust model, i.e., under

prevalence uncertainty, provides a realistic extension, especially for emerging or seasonal diseases, which

typically exhibit high uncertainty, e.g., [4, 31, 67]. The objective is to minimize a convex combination

of the two key dimensions of testing design: the expected testing cost and capacity requirement (i.e.,

expected number of tests), or a robust version of it, with the relative weights dictated by parameter

λ ∈ [0, 1]. The set of optimal designs (∀λ ∈ [0, 1]) provides the Pareto designs, including the cost and

test minimizing special cases (the latter is the primary objective studied in the pooling literature, §2).

A testing design corresponds to:

(i) An assay portfolio, represented by a partition of set N into mutually exclusive and exhaustive

disease subsets, such that the diseases in each subset are bundled into one assay. Let S = (Sk)k=1,··· ,q,

for some q = 1, 2, · · · , n, denote a partition of set N : Sk∩Sl = ∅, k, l = 1, · · · , q : k ̸= l, ∪q
k=1S

k = N ,

with sk = |Sk| denoting the size of assay Sk. Then, sk = 1 corresponds to a singleton; and sk ≥ 2

corresponds to a multiplex, or an sk-plex, for the diseases in Sk.

(ii) A testing method for each assay, i.e., pooling or individual testing, and if pooling, then the pool

size, denoted by t ∈ Z+. Let t = (tk)k=1,··· ,q denote the pool size vector. Then, if tk = 1, assay Sk is

tested individually, and if tk ≥ 2, assay Sk is tested via pooling, with pool size tk.

In general, we use the superscript k for assay index, the subscript i for disease index, and drop the

indices when clear from context, e.g., we use set S when referring to an assay, and a vector of sets S

when referring to a partition of set N , that is, to an assay portfolio.

Each assay produces a binary outcome for each disease that it tests, e.g., an s-plex produces

an s-dimensional binary test outcome vector, with a positive/negative outcome indicating the pres-

ence/absence of the corresponding disease. We assume that all assays have perfect sensitivity and

specificity (reasonable for genetic assays). In pooling, if the outcome vector for the pooled test is nega-
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tive for all the diseases in the assay, then all subjects in the pool are declared negative for those diseases;

otherwise (the pool tests positive for at least one disease in the assay), each subject is re-tested indi-

vidually via the same type of assay, and is classified as negative or positive for each disease based on

their individual test outcome vector. Assay sensitivity may reduce for large pools due to dilution. While

dilution is not pronounced for genetic assays (due to the amplification of the genetic material from the

specimens), we follow the common practice, and restrict pool sizes to a pool size limit, M , e.g., [4, 66].

Assumption (A). The assay cost function for an s-plex, c(s), s ∈ Z+, is concave non-decreasing in s,

with c(1) = γ (> 0), and c(s) ≤ γ × s, s ∈ Z+, that is, bounded from above by a linear function.

A concave functional form is realistic for genetic assays, because many of their reagents are not disease-

specific, and the disease-specific primers and probes are less expensive, and also similar to each other

(mainly consisting of simple strands of DNA), hence have similar cost, see §1. We define the composite

cost function, c̃(s, λ) ≡ λ c(s) + 1− λ, s ∈ Z+, λ ∈ [0, 1].

We express all performance metrics per testing subject. Let T (S, t) and C(S, t) respectively denote

the per subject expected number of tests (“expected tests”) and the per subject expected testing cost

for assay S and pool size t, where

C(S, t) = c(s)× T (S, t). (1)

Then, the per subject expected total testing cost (“total cost”) for assay portfolio S, pool size vector t,

and λ ∈ [0, 1], denoted by TC(S, t, λ), is a convex combination of the expected testing cost and tests:

TC(S, t, λ) = λ
∑︂
k

C(Sk, tk) + (1− λ)
∑︂
k

T (Sk, tk) =
∑︂
k

c̃(sk, λ)× T (Sk, tk). (2)

We use TD(S, t) to denote the the per subject expected tests under pooling with pool size t ∈ Z+, t ≥ 2.

Because co-infections are possible, each subject is either free of all diseases in setN , or infected by one,

or more, diseases in this set. To represent all infection possibilities of a subject, let N(l), l = 1, 2, · · · , n,

denote the set of all l-tuples of set N , i.e., the set of all
(︁
n
l

)︁
ordered elements (arranged in increasing

disease index), each with l diseases. For example, N(1) = N,N(2) = {ij : i, j ∈ N, i < j}, N(3) = {ijr :

i, j, r ∈ N, i < j < r}, and so on. Thus indices 0, i, ij, ijr, · · · , 12...n, respectively denote the cases of

no-infection, infection i only, infections i and j only, infections i, j, and r only, and so on.

For the deterministic prevalence model (see §3.2 for extension to stochastic prevalences), the deter-

ministic joint prevalence vector (“joint vector”), p = [p0, (pi)i∈N , (pij)ij∈N(2), (pijr)ijr∈N(3), · · · , p12...n],
denotes the probability that a random subject is in each of the 2n infection categories, that is, with

p0 denoting the no-infection probability, pi, i ∈ N(1), denoting all mono-infection probabilities, and the

other elements denoting all possible co-infection probabilities, where:

p0 +
∑︂
i∈N

pi +
∑︂

ij∈N(2)

pij +
∑︂

ijr∈N(3)

pijr + ...+ p12...n = 1. (3)

We define A+
i as the event that a random subject is infected with disease i ∈ N (and may be co-infected
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with some other diseases in set N \ {i}).

Definition 1. For assay S ⊆ N , assay prevalence, π(S), is the probability that a random subject is

infected by at least one disease in assay S (and may be co-infected with other diseases in set N \ S):

π(S) = Pr(∪i∈SA
+
i ) =

∑︂
i∈S

pi +
∑︂

ij∈N(2):i∈S or j∈S

pij +
∑︂

ijr∈N(3):i∈S or j∈S or r∈S

pijr + · · ·+ p12...n. (4)

The marginal prevalence of each disease, denoted πi, i ∈ N , and the overall prevalence of the disease

set, denoted π(N), are given by:

πi =Pr(A+
i ) = pi +

∑︂
j:ij∈N(2)

pij +
∑︂

j:ji∈N(2)

pji +
∑︂

jr:ijr∈N(3)

pijr +
∑︂

jr:jir∈N(3)

pjir +
∑︂

jr:jri∈N(3)

pjri + · · ·+ p12···n, i ∈ N,

(5)

π(N) =Pr(∪i∈NA+
i ) =

∑︂
i∈N

pi +
∑︂

ij∈N(2)

pij +
∑︂

ijr∈N(3)

pijr + ...+ p12...n = 1− p0, (6)

where π = (πi)i∈N is the marginal prevalence vector (“marginal vector”).

The following relationship trivially holds due to co-infections and the disease indexing:

πn ≤ πn−1 ≤ · · · ≤ π1 ≤ π(N) ≤
∑︂
i∈N

πi. (7)

Regarding the per subject expected tests function, for assay S, one test suffices for individual testing

(t = 1), while for pooling with pool size t ≥ 2, one pooled test is conducted for all t subjects, which, if

positive for at least one disease in assay S, is followed by an individual re-test for each of the t subjects

in the pool. Thus, we can write, e.g., [4]:

T (S, t) =

⎧⎪⎨⎪⎩TD(S, t) = 1
t + 1−

(︁
1− π(S)

)︁t
, if t ≥ 2

1 , if t = 1
. (8)

3.2 Model Formulations

To formulate the multi-disease testing design problem, we represent a partition (assay portfolio) S

by the binary decision variable vector x = (xk)k=1,··· ,n, where each xk = (xki )i∈N , ∀k, that is, xki = 1 if

disease i is included in assay Sk, and 0 otherwise, hence π(Sk) = π(xk), ∀k.
Deterministic Multi-Disease Testing Design Problem (TD):

minimize
x,t

TC(x, t, λ) = λ

n∑︂
k=1

C(xk, tk) + (1− λ)

n∑︂
k=1

T (xk, tk)

=

n∑︂
k=1

c̃

(︃∑︂
i∈N

xk
i , λ

)︃
×min

{︄
1,

1

tk
+ 1−

(︃
1− π(xk)

)︃tk
}︄

(9)

subject to

n∑︂
k=1

xk
i = 1, i ∈ N (10)

tk ≤ M, k = 1, · · · , n (11)

tk ≥ 0, integer, k = 1, · · · , n, (12)

xk
i binary, i ∈ N, k = 1, · · · , n. (13)
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Objective (9) minimizes a convex combination of the expected testing cost and expected tests, with

weights dictated by parameter λ ∈ [0, 1]; thus by varying λ, the model generates the Pareto designs,

including the cost and test minimizing special cases. (10) ensures that each disease is tested by an

assay; (11) restricts pool sizes to the pool size limit; (12)-(13) are logical constraints on integer decision

variables. There is symmetry among solutions, and symmetry breaking constraints can be added.

We now formulate the robust testing design problem under stochastic prevalences. To this end, we

denote random variables in upper-case and their realizations in lower-case letters; use Ω(.) to denote an

uncertainty set; and use “;” for probabilistic conditioning. Let P denote the continuous random joint

vector, which implies, via Eq. (5), a continuous random marginal vector, Π = (Πi)i∈N , with respective

realizations p and π (converging to the notation for the deterministic problem).

Robust Multi-Disease Testing Design Problem (R-TD):

minimize
x, t

max
p∈Ω(P )

{︄
λ

n∑︂
k=1

C(xk, tk;p) + (1− λ)

n∑︂
k=1

T (xk, tk;p)

}︄
(14)

subject to (10), (11), (12), (13).

It is difficult to accurately estimate the distribution of the marginal vectorΠ (at disease prevalence level),

let alone the distribution of the joint vector P (at mono- and co-infection probability level). Therefore,

we adopt a distribution-free approach, and construct an interval type uncertainty set, e.g., [31, 32, 71],

for each random marginal prevalence, Πi, i ∈ N , which then implies an equivalent uncertainty set on P

(Remark A.1). The former is relatively easier to construct, e.g., the lower and upper limits of a statistical

confidence interval (CI) on each disease prevalence can be used, as we do in the case study. (While not

practical due to the large number of co-infections, one can also start with an uncertainty set on P .)

The joint optimization of multiplexing and pooling, the cost- and capacity-based objective, and the

robust model are our main modeling departures from the literature (§1- §2), leading to a combinatorial

problem: TD, with a non-linear objective and a partition-type decision, is NP-hard in general [21]; and

R-TD, with a mini-max objective, is even harder.

In particular, our decision problem is related to partitioning a set of objects, each with a certain

attribute, into a variable number of mutually exclusive and exhaustive groups, to minimize the total cost

of the partition. Within this large body of this literature, the most relevant works include [21], which

shows the optimality of an ordered partition for a cost function that is concave in the attribute sum,

and [3], which extends this result to a cost function that depends on the group size, and the average or

the maximum attribute in the group. The ordered partition property leads to an equivalent Shortest

Path-based formulation that can be solved in polynomial time [3, 21], see §5.2. [3] also provides the

necessary conditions for the optimality of a monotone partition, i.e., an ordered partition for which

objects with smaller attributes are placed in smaller groups (this property does not hold in our setting).
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The aforementioned results require the concavity of the total cost function in the attribute sum - in our

setting, concavity in the sum of marginal disease prevalences, which does not necessarily hold for our

problem (see Eqs. (2), (4), (8)), except for a special case with no co-infections (§5.2). Others extend

the necessary conditions for the optimality of an ordered partition to different cost functions that do

not apply to our setting, e.g., [48, 49]. A mini-max variation of the partition problem, when restricted

to ordered partitions, is also studied, e.g., [62, 69], which, in our setting, corresponds to the ordered

partition that minimizes the highest cost per assay for a given prevalence vector. This is in contrast with

our robust model, which minimizes the highest total cost (i.e., for all assays) over all possible prevalence

vectors in an uncertainty set. In the absence of the ordered partition property, the partition problem

remains NP-hard; and the literature develops various heuristics and exact algorithms, such as genetic

algorithms [57]; linear relaxation-based methods, e.g., dual heuristics, volume algorithms [7, 13, 23, 39];

implicit enumeration and search trees; simplex, hybrid primal, and symmetric subgradient cutting plane

methods; and column generation [6]. We refer the interested reader to [6, 7, 39, 58] for detailed overviews.

4 Structural Properties of Optimal Testing Designs

§4.1 provides preliminaries on testing method optimization; and §4.2 integrates assay portfolio optimiza-

tion into testing design in a multi-disease setting, a unique feature of our model.

4.1 Preliminaries: Optimal Testing Method - Pooling versus Individual Testing

Given an assay portfolio S, the testing design problem reduces to testing method optimization (pool-

ing versus individual testing for each assay), and the single-disease results from the literature extend in

a straightforward manner to our multi-disease setting. We use t∗D to denote the optimal Dorfman pool

size, i.e., in the domain t ∈ Z+, t ≥ 2, and t∗ to denote the (global) optimal pool size, i.e., in the domain

t ∈ Z+, t ≥ 1 (including the individual testing option, t = 1). To make the dependence of T (.) and t∗(.)

on π(S) explicit, in places we use π(S) as an argument, e.g., t∗(π(S)).

Property 1. [From [4]]. Consider a single disease with prevalence π. The optimal integer pool size,

t∗D(π), that minimizes the expected tests function under Dorfman pooling, i.e., minimizet∈Z+,t≥2 TD(π, t),

is the solution to:

t∗D(π) = min

{︃
argmint∈{⌊tfrac⌋,⌈tfrac⌉, M}

{︁
TD(π, t)

}︁
,M

}︃
, where tfrac =

2

ln(1− π)
W0

(︂
− 1

2

(︁
− ln(1− π)

)︁1/2)︂
,

where W0(·) denotes the principle branch (i.e., the largest solution) of the Lambert function W (x),

defined by, x = W (x)eW (x),∀x ∈ R [25].

Property 1 trivially extends to a multiplex, and a threshold for when pooling is optimal over individual

testing can be derived for integer pool sizes, extending a similar result for continuous pool sizes, e.g., [4].

Property 2. For any assay S ⊆ N , the optimal integer pool size, t∗D(π(S)), can be derived by Property

1, by letting π = π(S). Further:
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1. T (π(S), t∗D(π(S))) ≤ T (π(S), 1) = 1 only if π(S) ≤ p = 1 − 3

√︂
1
3 ≈ 0.31, where the pooling threshold

p is independent of assay size s, that is,

t∗(π(S)) =

⎧⎪⎨⎪⎩t∗D(π(S)), if π(S) ≤ p

1, otherwise
, leading to: T (π(S), t∗(π(S))) =

⎧⎪⎨⎪⎩TD(π(S), t∗D(π(S))), if π(S) ≤ p

1, otherwise
.

2. [From [4, 34]] T (π(S), t∗(π(S))) = TD(π(S), t
∗
D(π(S))) is strictly concave increasing in π(S) ∈ [0, p],

and T (π(S), t∗(π(S))) = 1 for π(S) ∈ [p, 1].

As Property 2 indicates, for a given assay portfolio S, an optimal testing method can be determined

independently for each assay in the portfolio. In the remainder of the paper, we consider that all assay

portfolios use the optimal testing method delineated in Properties 1-2.

4.2 Optimal Testing Designs

For the robust formulation R-TD, under an interval type uncertainty set for the marginal vector

(Remark A.1), we are able to characterize the worst-case solution (Theorem A.1 and Corollary A.1).

These results lead to the deterministic counterpart for R-TD, which corresponds to a specific instance

of TD, as outlined in the following remark.

Remark 1. 1. By Theorem A.1, the deterministic counterpart of R-TD has the following objective

function:

minimize
x, t

n∑︂
k=1

c̃

(︃∑︂
i∈N

xki , λ

)︃
×min

⎧⎨⎩1,
1

tk
+ 1−

(︄
1−min

{︄
1,
∑︂
i∈N

πix
k
i

}︄)︄tk
⎫⎬⎭ .

2. Noting the equivalent objective of TD in (9), i.e., a function of assay prevalences only, the de-

terministic counterpart of R-TD reduces to an instance of TD with specific assay prevalences:

π(S) = min
{︁
1,
∑︁

i∈S πi

}︁
, ∀S ⊆ N . This equivalence indicates that the structural properties for

TD (Theorems 1-4) continue to hold for R-TD, with π(S) = min
{︁
1,
∑︁

i∈S πi

}︁
, ∀S ⊆ N .

3. Further, for the special case where
∑︁

i∈N πi ≤ 1, the deterministic counterpart of R-TD also reduces

to TD with the specific p provided in Corollary A.1.

Importantly, the deterministic counterpart of R-TD requires only an upper limit on each disease

prevalence, πi, i ∈ N . From an implementation point, this is highly desirable, and such upper limits

can be derived, for example, from statistical CIs for disease prevalences. In general, the higher the

uncertainty around a disease prevalence, the higher its upper limit will be, increasing the conservatism

of the robust solution, which will be studied in §6.

Next, we characterize the optimal testing designs for TD and derive insight. (By Theorem A.1,

Corollary A.1, and Remark 1, the structural results extend to R-TD.) To this end, we provide a series

of definitions, which allow us to decompose the set of all possible testing designs into a number of
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mutually exclusive and exhaustive design classes, based on how the disease set is partitioned and the

testing methods used (see Table 1 for a mapping of all possible design classes and strategies).

Definition 2. A partition S = (Sk)k=1,··· ,q is a q-partition, q = 1, 2, · · · , n, if it consists of exactly q

assays; and an ordered q-partition if S1 = {1, · · · , s1}, S2 = {s1 + 1, · · · , s1 + s2}, · · · , Sq = {
∑︁q−1

k=1 s
k +

1, · · · , n}, for some cardinality vector s = (sk)k=1,··· ,q :
∑︁q

k=1 s
k = n, that is, the disease set is partitioned

into q assays following a non-increasing order of disease prevalences, πi, i ∈ N .

Definition 3. Consider a q-partitioned testing design (S, t), for any q = 1, 2, · · · , n:

1. If all q assays utilize pooling (t ≥ 2), it is a Dorfman design; if all q assays utilize individual testing

(t = 1), it is an individual-testing design; and if some assays utilize pooling while others utilize

individual testing (t : ∃k, l = 1, · · · , q : tk = 1, tl ≥ 2), it is a mixed-testing design.

2. If at least one multiplex is used (q = 1, · · · , n − 1), it is an mx design; otherwise (q = n), it is an

all-singleton design.

We use the notation D(q), I(q), q = 1, · · · , n, and M (q), q = 2, · · · , n, to denote the optimal testing

design when constrained to be within the q-partitioned Dorfman, individual-testing, and mixed-testing

design classes, respectively. (The M (1) design, i.e., one assay with a mix of pooling and individual

testing, is not possible.)

Table 1: The mapping between all design classes and strategies

Strategy Design Class

only multiplexing (no pooling) I(q), q = 1, · · · , n− 1

only pooling (no multiplexing) D(n) and M (n)

both multiplexing and pooling D(q), q = 1, · · · , n− 1, and M (q), q = 2, · · · , n− 1

no multiplexing and no pooling I(n)

Definition 4. Design class A dominates design class B, denoted A ⪯ B, if the total cost of an optimal

TD solution within design class A is less than or equal to that for design class B.

We are ready to provide structural properties of optimal designs; in case of multiple optimal designs,

the results characterize one of the optimal designs. To put our results into perspective, we first provide

the optimal design when multiplexing and pooling strategies are optimized separately (which will serve

as benchmarks in the case study of §6), representing the current modeling of these strategies in the

literature (§2); in this case the cost- and capacity-efficiency objectives coincide.

Remark 2. 1. Multiplexing-only (t = 1): For an individual-testing design, the optimal assay port-

folio is to bundle all diseases into one multiplex (see Assumption (A)), that is, an I(1) design.

2. Pooling-only (S = ({i})i∈N ): For an all-singleton design, the optimal testing method for each

assay follows the pooling threshold policy (Properties 1-2), that is, each singleton is pooled only if the

prevalence of its disease is sufficiently low, that is, I(n), D(n), or M (n) design.
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When multiplexing and pooling are optimized jointly (i.e., TD), a main departure from the literature,

the interplay between multiplexing and pooling impacts the design, and the optimal designs in Remark 2

are no longer necessarily optimal.

Theorem 1. Consider TD. We have that, I(1) ⪯ I(q),∀q = 2, · · · , n; and an optimal M (q), q = 2, · · · , n−

1, design is such that only one assay is individually tested, and q−1 assays are pooled, ∀λ ∈ [0, 1]. Further,

an optimal design class can be characterized as follows for any λ ∈ [0, 1]:

1. If π(N) ≤ p, then D(q), i.e., Dorfman, for some q = 1, · · · , n.

2. If π1 ≤ p < π(N), then either I(1), or D(q) for some q = 2, · · · , n, or M (q) for some q = 2, · · · , n−1.

3. If πn ≥ p, then I(1), i.e., n-plex individual-testing.

4. Otherwise (if ∃i ∈ {1, · · · , n− 1} : πi+1 < p < πi ), then either I(1), or M (q) for some q = 2, · · · , n− i+1.

Thus, the joint optimization of multiplexing and pooling implies testing designs that span the entire

spectrum of design classes (see Table 1), demonstrating the richness of this decision problem. Now

the optimal design is driven by the tension between reducing the expected number of tests versus the

expected testing cost, hence the capacity versus cost trade-off. In particular, the expected tests function

under pooling (at optimal pool sizes) is concave increasing in assay prevalence (Property 2), favoring

multiplexing. On the other hand, the expected testing cost is the product of the assay cost function and

the expected tests function (Eq. (1)), both of which are concave increasing as more diseases are bundled

(as this also increases the assay prevalence), but the expected testing cost is not necessarily concave in

the number of bundled diseases. To see the intuition, observe that the bundling of more diseases raises

the assay prevalence, thus increasing the (individual) re-test probability (Eq. (8)), but all individual

re-tests use the same type of assay as the original assay, the cost of which is increasing in the number of

bundled diseases. Further, if disease bundling raises an assay’s prevalence too much, then the efficiency

provided by pooling is lost. As a result of these tensions, an assay portfolio of multiplex and/or singleton

assays can now be optimal as long as at least one assay is pooled (i.e., M (q) or D(q)). Further, a portfolio

of multiple assays and a combination of testing methods can be optimal (i.e., M (q)) as long as only one

assay uses individual testing (all other assays must be pooled). We also note that the integration of

multiplexing and pooling makes the designs structurally robust to prevalence uncertainty, because it is

the assay’s prevalence (i.e., the combined prevalences of the diseases in the assay) that drives the pool

size, and not the disaggregate disease prevalences; we quantitatively study this aspect in the case study.

Theorem 1 highlights the dependencies between multiplexing and pooling, hence the need for joint

optimization. The next section discusses these dependencies in a more precise manner, through the main

drivers of optimal designs.
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5 Design Insight: Main Drivers of an Optimal Testing Design

We now analyze the two main drivers of optimal designs: the cost structure (§5.1), and the disease

prevalence/co-infection structure (§5.2).

5.1 Impact of the Cost Structure

We first study how the optimal testing design changes as the assay cost function (c(.)) or the tester’s

preference towards cost versus test minimization (parameter λ) changes. Let C̃ denote the infinitely

many composite cost functions, c̃(s, λ) = λ c(s)+ 1−λ,∀λ ∈ [0, 1], for which the assay cost function c(.)

satisfies Assumption (A). The marginal differences of any composite cost function in this set are non-

negative and bounded by γ (i.e., 0 ≤ c̃(s+1, λ)− c̃(s, λ) ≤ γ,∀s ∈ Z+,∀c̃(.) ∈ C̃), and satisfy concavity.

The following definition allows us to compare cost functions in terms of their marginal differences.

Definition 5. We say that function g(.) has higher differences relative to function g′(.), written g(.) ≥diff

g′(.), if g(s+ 1)− g(s) ≥ g′(s+ 1)− g′(s), ∀s ∈ Z+.

Property 3. Any composite cost function c̃(s, λ) ∈ C̃ attains lower differences as: (1) the assay cost

function c(s) attains lower differences, or (2) λ decreases.

Remark 3. Among the infinitely many composite cost functions c̃(.) ∈ C̃:

1. The smallest-difference function in set C̃ is attained when λ = 0 or c(s) = γ,∀s ∈ Z+ (i.e., constant

assay cost). Under this function, TD objective reduces to test minimization.

2. The highest-difference function in set C̃ is attained when λ = 1 and c(s) = γ × s, ∀s ∈ Z+. Under

this function, TD objective reduces to cost minimization with a linear assay cost.

In what follows, we first characterize the optimal design for the smallest- and highest-difference

composite cost functions described in Remark 3, which respectively reduce to test minimization and

cost minimization (with linear assay cost), allowing us to gain insight into the tension between these

objectives. The test minimization special case is also important for positioning our work within the

pooling literature, which extensively studies this objective (§2).

Theorem 2. Consider the smallest-difference composite cost function in set C̃, that is, with λ =

0 or c(s) = γ,∀s ∈ Z+. We have that, I(1) ⪯ M (q), ∀q = 2, · · · , n.

Further, if π(N) ≤ p, then D(1) ⪯ D(2) ⪯ · · · ⪯ D(n).

The optimal design class can be characterized as follows:

1. If π(N) ≤ p, then D(1), i.e., n-plex Dorfman.

2. Otherwise (if π(N) > p), then I(1), i.e., n-plex individual-testing.

Theorem 3. Consider the highest-difference composite cost function in set C̃, that is, with λ = 1 and c(s) =

γ × s, ∀s ∈ Z+. We have:
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If π(N) ≤ p, then D(n) ⪯ D(n−1) ⪯ · · · ⪯ D(1).

If π1 ≤ p < π(N), then D(n) ⪯ D(q),∀q = 1, · · · , n− 1.

The optimal design class can be characterized as follows:

1. If π1 ≤ p, then D(n), i.e., all-singleton Dorfman.

2. If πn ≥ p, then any individual testing design, I(q), for any q = 1, · · · , n.

3. Otherwise (if ∃i ∈ {1, · · · , n − 1} : πi+1 < p < πi), then any M (q), for q = n − i + 1, · · · , n, which

uses any individual testing design for diseases in set {1, 2, · · · , i}, and pooled testing and singleton

assays for each disease in set {i+ 1 · · · , n}.

Table 2: Optimal design class based on the composite cost function c̃(.) (p ≈ 0.31; mx: multiplex)

Prevalence Range
Composite Cost Function

π(N) ≤ p
π(N) > p

π1 ≤ p πi+1 < p < πi, for some i ∈ {1, · · · , n− 1} πn ≥ p

I(1) or I(1) or

general c̃(.) D(q) (some q = 1, · · · , n) D(q) (some q = 2, · · · , n) or M (q) (some q = 2, · · · , n− i+ 1) I(1)

(Theorem 1) M (q) (some q = 2, · · · , n− 1)
pooling (mx possible) mx and pooling both possible mx (pooling possible) mx only

Special Cases

the smallest-difference c̃(.) D(1) I(1)

(λ = 0 or c(s) = γ,∀s ∈ Z+)
(Theorem 2) both mx and pooling mx only

the highest-difference c̃(.) D(n) D(n) Any M (q), Any I(q),
(λ = 1 and c(s) = γ × s, ∀s ∈ Z+) q = n− i+ 1, · · · , n q = 1, · · · , n

(Theorem 3) pooling only pooling only pooling (mx possible) no pooling (mx possible)

Table 2 summarizes the properties of optimal designs for the general as well as the extreme cases (the

smallest- and highest-difference composite cost functions), established in Theorems 1-3. We note that all

prevalence regions in the table are relevant in practice, as it is possible for the overall prevalence to be

below or above the 31% threshold, as our case study indicates (§6). In the extreme cases, multiplexing is

in the form of “all-or-none,” that is, either all diseases are bundled into one n-plex (1-mx design), or each

disease is tested separately via its own singleton assay (all-singleton design). Such all-or-none type assay

portfolios also represent the designs when multiplexing and pooling are considered separately (Remark

2). As Theorems 2-3 show, this all-or-none form is driven by the tension between reducing the expected

tests versus the expected testing cost. In particular, when pooling is optimal (i.e., π(N) ≤ p), for the

smallest-difference composite cost function (i.e., test minimization objective), one additional assay in

a Dorfman design increases the expected tests (i.e., D(1) ⪯ D(2) ⪯ · · · ⪯ D(n)); and for the highest-

difference composite cost function (testing cost minimization objective), one fewer assay in a Dorfman

design increases the expected testing cost (i.e., D(n) ⪯ D(n−1) ⪯ · · · ⪯ D(1)). Table 2 also provides

insight into the behaviour of robust designs as prevalence uncertainty rises: as the upper limit of the

uncertainty set for a disease prevalence, used in the deterministic counterpart of R-TD (Remark 1),

increases, the robust design moves from left to right through the columns of Table 2, and in the most

conservative case, it defaults to the multiplexing-only (I(1)) benchmark.
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The tension between test versus cost minimization continues to drive an optimal design in general,

when the composite cost function lies in between the two extremes. To demonstrate this tension clearly,

we now focus on the case where the overall disease prevalence does not exceed the pooling threshold

(π(N) ≤ p ≈ 0.31), when pooling is always optimal. In this case, the optimal design is D(1) for the

smallest-difference, and D(n) for the highest-difference, composite cost function (Theorems 2-3, Table 2).

Then the next question is whether there exists a (unique) cost threshold function c̃q(.), such thatD(q−1) ⪯

D(q) (D(q) ⪯ D(q−1)) for all composite cost functions with smaller (higher) differences than c̃q(.). As

Example 1 shows, such a threshold cost function does not exist.

Example 1. Consider disease set N = {1, 2, 3, 4}, with equal marginal prevalences, and no co-infections:

πi = 0.06, i ∈ N , and π(N) =
∑︁

i∈N πi = 0.24 ≤ p; and assay cost functions c(.) and c′(.) (with

corresponding composite cost functions c̃(.) and c̃′(.)) : c(1) = 1, c(2) = 1.43, c(3) = 1.75, c(4) = 2.05,

and c′(1) = c(1), c′(s) = c(s) − 0.10, s = 2, 3, 4. By Definition 5, c′(.) ≤diff c(.), hence by Property 3,

c̃′(λ) ≤diff c̃(λ), ∀λ ∈ [0, 1]. However, at λ = 1, D(1) is optimal for c̃(λ = 1), whereas D(2) is optimal

for the smaller-difference function, c̃′(λ = 1).

As the following result indicates, such thresholds do exist on λ.

Theorem 4. Consider that π(N) ≤ p. Then, ∃ λ
(q) ≤ 1, q = 1, · · · , n− 1, such that the optimal design

has the following structure:

optimal design class:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D(1), if λ ∈

[︂
0, λ

(1)
]︂

D(r), for some r = 2, · · · , q, if λ ∈
(︂
max

{︂
λ
(1)

, λ
(q−1)

}︂
, λ

(q)
]︂
, q = 2, · · · , n− 1

D(n), if λ ∈
(︂
max

{︂
λ
(1)

, λ
(n−1)

}︂
, 1
]︂

Remark 4. 1. Among the optimality regions delineated in Theorem 4, only the D(1)-optimal region,

[0, λ
(1)

], is guaranteed to be non-empty (see the λ = 0 case in Theorem 2). That is, it is possible

that there is no λ ∈ [0, 1] for which design D(q), q = 2, · · · , n, is optimal. Further, the D(n)-optimal

region is guaranteed to be non-empty only for the linear assay cost function (see Theorem 3, Remark

3), otherwise it is possible for λ
(n−1)

= 1, hence (λ
(n−1)

, 1] to be empty.

2. When π(N) ≤ p, the optimal design is completely characterized for n ≤ 3, and the number of assays

is non-decreasing in λ:

For n = 2: D(1), ∀λ ∈ [0, λ
(1)

]; and D(2),∀λ ∈ (λ
(1)

, 1].

For n = 3: D(1), ∀λ ∈ [0, λ
(1)

]; D(2), ∀λ ∈ (λ
(1)

, λ
(2)

]; and D(3), ∀λ ∈
(︂
max{λ(1)

, λ
(2)}, 1

]︂
.

In general, however, the number of assays in an optimal Dorfman design need not be monotone in

λ, for example, for n = 4, the optimal design is D(2) or D(3),∀λ ∈
(︂
max{λ(1)

, λ
(2)}, λ

(3)
]︂
, that

is, it can potentially alternate between D(2) and D(3) in this region, although such a numerical

example is lacking.
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5.2 Impact of the Disease Prevalence and Co-infection Structure

In this section, we discuss how the disease prevalence/co-infection structure, relatedly the correlations

among disease prevalences, impacts the optimal assay portfolio; and develop an exact, efficient algorithm

for certain co-infection structures. We first make the link between the co-infection and correlation

structure explicit, and introduce two special cases that will guide our analysis.

Remark 5. Let ξ = (ξi)i∈N denote a multivariate binary vector, which assumes a value of 1 if a random

subject is infected with disease i ∈ N (i.e., event A+
i occurs), and 0 otherwise, in accordance with the

joint vector p. The marginal distributions, ξi ∼ Bernoulli(πi), i ∈ N [27].

1. The pairwise correlation coefficient, ρ(ξi, ξj) =
pij−πiπj√

πi(1−πi)πj(1−πj)
,∀ij ∈ N(2), is increasing in co-

infection probability (pij), as long as the marginal prevalences (πi, πj) remain unchanged. (ρ(ξi, ξj)

may have a narrower range than [−1, 1] unless πi = πj, e.g., [36].)

2. Consider two special co-infection structures:

(a) No co-infections: Events A+
i , ∀i ∈ N , are mutually exclusive. Then, assay prevalence (Eq. (4))

reduces to:

π(S) =
∑︂
i∈S

πi, ∀S ⊆ N, (15)

and ρ(ξi, ξj) < 0, ∀ij ∈ N(2).

(b) Independent diseases: Events A+
i , ∀i ∈ N , are mutually independent. Then, assay prevalence (Eq.

(4)) reduces to:

π(S) =
∑︂
i∈S

πi −
∑︂

ij∈N(2):i,j∈S

πiπj +
∑︂

ijr∈N(3):i,j,r∈S

πiπjπr + · · ·+ (−1)s+1
∏︂
i∈S

πi, ∀S ⊆ N, (16)

and ρ(ξi, ξj) = 0, ∀ij ∈ N(2).

Definition 6. We say that joint vector p′ is more correlated than joint vector p, if p′i···j ≥ pi···j ,∀i · · · j ∈

N(l), l = 2, · · · , n, and their marginal vectors are equal, π′ = π, that is, each co-infection probability in

p′ is at least as large as its counterpart in p, while their marginal prevalences are equal.

Lemma 1. Consider π(N) ≤ p. The threshold λ
(n−1)

is non-decreasing as p becomes more correlated.

Thus, when pooling is optimal, as the prevalence vector becomes more correlated (i.e., some co-

infection probabilities rise while disease prevalences remain the same, Definition 6), the λ-region where

an all-singleton design (D(n)) is optimal shrinks, that is, multiplexing becomes more favorable.

The optimal design is completely characterized for the smallest- and highest-difference composite

cost functions (Theorems 2-3). For the remaining cases, however, the optimal design is either some form

of Dorfman or mixed-testing design, D(q) or M (q), or n-plex individual-testing design, I(1) (Table 2).

Hence, one must consider all possible partitions of the disease set N , and this general partition-type

problem, with no assumed relationship among disease prevalences, is NP-hard [21]. The following result
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shows that when disease prevalences are independent, or when there are no co-infections, there exists an

optimal design that uses an ordered partition (Definition 2) for both Dorfman and mixed-testing designs.

This result plays a key role in the development of an efficient, exact solution procedure for these special

cases. (Dorfman designs with q = 1 and q = n are excluded from the theorem, as their assay portfolio

and testing method are completely fixed.)

Theorem 5. Suppose all disease prevalences are independent, or there are no co-infections:

1. Within each q-partitioned Dorfman design class, D(q), q = 2, · · · , n−1, there exists an optimal design

that uses an ordered q-partition.

2. Within each q-partitioned mixed-testing design class, M (q), q = 2, · · · , n, there exists an optimal

design for which diseases {1, · · · , nI} (i.e., the nI diseases with the highest prevalences) are bundled

into one multiplex assay, which is individually tested, and diseases {nI + 1, · · · , n} are tested via

pooling, following some ordered q − 1-partition, for some nI , nD ∈ Z+ : nI + nD = n.

From a practical perspective, the optimality of an ordered partition indicates that small forecasting

errors in disease prevalences may not have a large impact on an optimal design as long as disease ordering

is mostly preserved. Intuitively, the ordered partition result holds because, for both independent diseases

and no co-infections cases, an ordered 2-partition yields the highest (lowest) possible assay prevalence

for one (the other) assay, among all 2-partitions with fixed assay sizes (hence fixed assay costs), and

the expected tests function is concave in assay prevalence (Property 2). This reasoning extends to any

q-partition, because it can be split into multiple 2-partitions. In particular, in the no co-infections case,

the total cost function (TC(.)) becomes concave in the sum of disease prevalences, and the results by

[21] and [3] apply to our setting. In general, however, the total cost function is not necessarily concave

in the sum of disease prevalences (due to co-infections), but the ordered partition result continues to

hold for independent diseases (Theorem 5). The following remark and example provide some insight on

when the ordered partition result may/may not hold.

Remark 6. Consider that the prevalence vector satisfies the transitivity property, that is, if πi ≥ πj for

some i, j ∈ N , then π({i, r}) ≥ π({j, r}), ∀r ∈ N \ {i, j}. The transitivity property is satisfied in both the

independent diseases and the no co-infections cases.

The transitivity property of the prevalence vector is necessary, but not sufficient, for the ordered partition

result in Theorem 5 to hold, as the following example demonstrates.

Example 2. Consider disease set, N = {1, 2, 3}, with joint vector, p = (p0 = 0.79, p1 = 0.05, p2 =

0.05, p3 = 0, p12 = 0.06, p13 = 0.05, p23 = 0, p123 = 0) (i.e., A+
3 ⊆ A+

1 ), and marginal prevalences,

π1 = 0.16, π2 = 0.11, π3 = 0.05, which satisfy the transitivity property (Remark 6). However, for λ = 0.6

and assay cost function c(s) = s0.8, s = 1, 2, 3, the optimal design is a D(2) design with S1 = {1, 3} and

S2 = {2}, which is not an ordered partition.
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Theorem 5 leads to an efficient algorithm.

Corollary 1. Suppose all disease prevalences are independent, or there are no co-infections:

1. The problem of finding an optimal partition of set N reduces to a Shortest Path Problem on an acyclic

directed graph G(V (N), E(N)) with:

• Vertex set V (N) = N ∪ {n+ 1}, i.e., each disease in set N represents a vertex, and vertex n+ 1

represents a dummy vertex;

• Edge set E(N) = {(i, j) : i < j, i, j ∈ V (N)}, where edge (i, j) represents an assay for diseases

i, i + 1, · · · , j − 1 (equivalently, S = {i, i + 1, · · · , j − 1}, with size s = j − i), with edge weight

wi,j = c̃(s, λ)× T (S, t∗(S)), i.e., the assay’s expected cost at the optimal pool size.

2. Both the construction of graph G(V (N), E(N)) and solving the Shortest Path Problem (e.g., via a

topological sorting algorithm [26]) have polynomial complexity, O(n2).

Corollary 1 holds because each ordered q-partition of set N , q = 1, · · · , n, is represented by a path

from vertex 1 to vertex n + 1 on G(V (N), E(N)). Thus, the set of all ordered partitions of set N

corresponds to the set of all paths from vertex 1 to vertex n + 1, and an optimal partition of set N

corresponds to the shortest path from vertex 1 to vertex n + 1. Thus, when disease prevalences are

independent or there are no co-infections, an optimal testing design can be found in polynomial time.

When there are co-infections and disease prevalences are not independent, the problem remains NP-

hard; and some of the existing algorithms for the partition problem (§3.2) can be modified to solve our

problem, which is outside the scope of this paper.

Remark 7. When
∑︁

i∈N πi ≤ 1, Theorem 5 and Corollary 1 continue to hold for the deterministic

counterpart of the robust problem, R-TD, which, in this case, is based on a deterministic joint vector p

with no co-infections (Corollary A.1). Thus, there exists an optimal robust design that is ordered, which

can be determined in polynomial time.

6 A Case Study of Respiratory Diseases

Large multiplex assays are used for a variety of diseases (see §1). In this case study, we focus

on respiratory diseases, which are challenging for the testing design problem: Some respiratory diseases

exhibit seasonal prevalence fluctuations, which not only lead to high uncertainty, but also alter the disease

ordering dynamically throughout the year; as a group, respiratory diseases have higher prevalences than

other disease groups, making pooling less beneficial; and during our study period of 2018 to 2021, this

group not only included an emerging disease (COVID-19), but also diseases that responded to COVID-19

mitigation measures, resulting in drastic changes in their prevalence during the study period. We present

the study design in §6.1, the data and sources in §6.2, and a discussion of the results in §6.3.

19



6.1 Study Design

We consider 18 respiratory diseases (14 viral, 4 bacterial) that manifest with overlapping clinical

presentation over a four-year period (2018 to 2021) that spans both pre- and post-COVID periods.

Weekly prevalence data are available during the study period.

Optimal designs: Assay design is a tactical decision, as design changes require the acquisition of assays

and modification of procedures. Consequently, we produce a family of base Pareto designs for each of

2018 (without COVID-19) and 2021 (with COVID-19), which include the deterministic (mean-based)

and robust designs, using models TD and R-TD, respectively, based on the yearly means and the CI

upper limits of disease prevalences, for λ ∈ [0, 1], in increments of 0.05, illustrating the trade-offs between

testing cost and capacity.

Performance evaluation: We evaluate the base designs using weekly data from 2018-2021, and, in

our discussion, distinguish between two settings: (1) the perfect-information setting, where a design is

evaluated using the data from which it is derived; in this setting the design must contend with the weekly

prevalence variations that underscore the mean (or the CI upper limit) due to seasonality and/or other

natural variations; and (2) the imperfect-information setting, where a design is evaluated using another

year’s data, such that the design must also contend with forecast error in the yearly mean. We compare

the base designs with the two benchmarks from Remark 2: multiplexing-only (I(1)) and pooling-only

(the best of I(n), D(n), and M (n)).

The total cost (TC(.), Eq. (2)), which is a convex combination of the expected testing cost and

number of tests, is an abstract construct. To better illustrate the trade-offs, we report the testing cost

and the number of tests (evaluated based on actual data), for all λ ∈ [0, 1]. For reference, the λ = 0

and λ = 1 designs minimize the expected number of tests and testing cost, respectively. We also report,

∀λ ∈ [0, 1], the price of robustness ratio (Table B.1, Appendix B), and

Value of joint optimization ratio (VoJ)(λ) (%) =
[TC(I(1), λ)− TCX(λ)]

TC(I(1), λ)
× 100, X ∈ {TD,R-TD},

i.e., in comparison to the multiplexing-only benchmark, which consistently outperforms the pooling-only

benchmark in the case study (due to high prevalence rates) and represents current testing practices.

6.2 Data: Sources and Descriptive Statistics

Table 3 reports the mean prevalences for the 18 diseases for each year in the study period, along

with the data sources. For the 14 viral diseases, this mean is the average of the weekly prevalences; for

the four bacterial diseases (Mycoplasma pneumoniae, Bordetella parapertussis, Bordetella pertussis, and

Chlamydophila pneumoniae) this data were not available, and we use the literature to estimate weekly

prevalences. The diseases are indexed following a non-increasing order of their 2018 mean prevalences

(thus COVID-19 is #18). This order does not necessarily coincide with the weekly orders throughout
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2018, the mean-based orders for other years, nor the CI-based orders for 2018 to 2021.

Co-infection rates, needed for TD, are not reported in the data sources, hence we assume disease

prevalences are independent, that is, co-infection rates are proportional to the corresponding disease

prevalences. Further, for R-TD, based on our data,
∑︁

i∈N πi ≤ 1 in each year of the study period.

Thus, we determine the optimal TD and R-TD designs in polynomial time using Corollary 1, i.e., by

determining the best ordered partition (Theorem 5).

TD designs are based on the yearly mean prevalences in Table 3. For R-TD, we use the 52 weekly

prevalence data each year to construct a 95% CI for each disease prevalence based on the Wald’s method

[65], which serves as the uncertainty set for Π (Appendix B). Fig. 1 plots the overall prevalence and

select disease prevalences for each week in the study period; and illustrates how disease prevalences, hence

their ordering, fluctuate substantially throughout each year, with some diseases being highly seasonal.

Therefore, even in the perfect-information setting, an optimal TD design, which is an ordered partition

based on yearly means, is not necessarily optimal for any given week in the year.

Table 3: Disease index, name, yearly mean prevalences for 2018 to 2021, and data sources

Index Disease
Yearly Mean

Data Source
2018 2019 2020 2021

1 Influenza A 0.1902 0.2932 0.0930 0.0055 [20]
2 Influenza B 0.0978 0.0887 0.0488 0.0001 [20]
3 Respiratory syncytial virus (RSV) 0.0599 0.0596 0.0207 0.0613 [19]
4 Human metapneumovirus 0.0315 0.0293 0.0149 0.0150 [19]
5 Respiratory adenovirus 0.0310 0.0368 0.0186 0.0284 [19]
6 Parainfluenza virus 3 0.0277 0.0273 0.0012 0.0340 [19]
7 CoVOC43 0.0096 0.0140 0.0023 0.0137 [19]
8 Parainfluenza virus 2 0.0093 0.0020 0.0005 0.0076 [19]
9 CoVNL63 0.0070 0.0081 0.0053 0.0069 [19]
10 CoVHKU1 0.0070 0.0062 0.0072 0.0003 [19]
11 Parainfluenza virus 4 0.0062 0.0054 0.0022 0.0048 [19]
12 Mycoplasma pneumoniae 0.0051 0.0049 0.0050 0.0050 [76]
13 Bordetella parapertussis 0.0021 0.0021 0.0021 0.0021 [63]
14 Parainfluenza virus 1 0.0019 0.0152 0.0016 0.0003 [19]
15 CoV229E 0.0015 0.0061 0.0007 0.0028 [19]
16 Bordetella pertussis 0.0004 0.0004 0.0004 0.0004 [76]
17 Chlamydophila pneumoniae 0.0003 0.0003 0.0003 0.0004 [76]
18 COVID-19 N/A N/A 0.0450 0.0613 [15, 50]

π(N) Overall prevalence 0.4042 0.4838 0.2421 0.2254

Cost structure: PCR cost data from the literature, e.g., [76], confirms the concave nature of the

assay cost function in the number of diseases bundled. This is expected for genetic assays (see §1),

because each PCR assay uses: (1) common reagents and materials that are not pathogen-specific (e.g.,

the polymerase enzyme, DNA nucleotides, vials), the required amounts of which are fairly insensitive to

the number of diseases in the assay; and (2) pathogen-specific reagents (e.g., the primers and probes)

that depend on the number of diseases, but their structure (hence cost) is fairly similar for the different

diseases. Consequently, we consider a fixed cost per assay, and a variable cost per disease bundled; this

function satisfies Assumption (A). The cost data for medical tests is often difficult to find. Based on
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Figure 1: Overall prevalence, and select disease prevalences per week over 2018-2021

the limited data in [76], we fit various assay cost functions (Appendix B). We demonstrate our findings

for the c(s) = 25.54+ 4.46× s function, but sensitivity analysis for other cost functions indicates similar

qualitative findings. Because the number of tests (per subject) is 1 for the I(1) benchmark, and the

total cost is a convex combination of the testing cost and number of tests, we normalize the assay cost

function so that c(n) = 1.

We consider a pool size limit, M , of 32, which is common for PCR assays [11, 33, 85].

6.3 Case Study Findings

Key properties of optimal designs are established analytically (§4-5). In §6.3.1, we use the perfect-

information setting to show additional properties; in §6.3.2, we compare optimal designs with benchmarks

through the progression of the COVID-19 pandemic in the realistic, imperfect-information setting.

6.3.1 Properties of mean-based and robust designs (perfect-information setting)

To motivate our discussion, Tables 4-5 provide the TD and R-TD Pareto designs, along with the

benchmarks designs, and their results, evaluated using 2018 (17 diseases) and 2021 (18 diseases, including

COVID-19) weekly data, in terms of the actual testing cost and number of tests (mean, minimum, and

maximum values over the 52 weeks), under the perfect-information settings, i.e., the 2018/2021-designs

are evaluated using the 2018/2021 weekly data (under weekly variations but no forecast error). Fig. 2

plots the mean values for the testing cost and number of tests for each of the TD and R-TD designs, to

visualize the Pareto frontier. Tables 4-5 also report the value of joint optimization ratios (V oJ , in terms

of its range over λ), i.e., with respect to the 17-plex (for 2018) or the 18-plex (for 2021) I(1) benchmarks.

Mean-based versus robust designs:Mean-based designs and their robust counterparts are quite sim-

ilar, despite the differences in their inputs, including different disease orderings (e.g., for 2018, the mean

overall prevalence for TD is π(N) = 0.4042, whereas for R-TD it is 0.6079, i.e., the sum of the CI upper

limits). This underscores another benefit of TD: by integrating multiplexing and pooling, the designs be-

come structurally robust to variations in mean prevalences. To see this, consider that pooling is the cause
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Table 4: 2018 TD and R-TD designs, metrics, and V oJ based on 2018 data - without COVID-19 testing

Perfect-information Setting
Model Range of Design Assay Pool Testing Cost Number of Tests V oJ(λ) (%)

(n = 17) λ values Class Sizes Sizes Mean (Min-Max) Mean (Min-Max) Range

TD 0.00-0.40 I(1) [17] [1] 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.00-0.00

0.45-0.55 M (2) [15, 2] [1, 32] 0.93 (0.93-0.93) 1.05 (1.05-1.06) 0.11-1.35

0.60-0.80 M (2) [12, 5] [1, 13] 0.85 (0.84-0.89) 1.16 (1.13-1.24) 2.56-8.60

0.85 M (2) [11, 6] [1, 10] 0.84 (0.83-0.87) 1.21 (1.19-1.27) 10.21

0.90 M (3) [8, 7, 2] [1, 6, 32] 0.81 (0.76-0.97) 1.39 (1.29-1.67) 13.40

0.95-1.00 M (3) [6, 6, 5] [1, 5, 13] 0.79 (0.72-0.94) 1.55 (1.40-1.85) 16.70-21.50

Disease Order: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

R-TD 0.00-0.40 I(1) [17] [1] 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.00-0.00

0.45-0.60 M (2) [15, 2] [1, 32] 0.93 (0.93-0.93) 1.05 (1.05-1.06) 0.11-1.97

0.65-0.80 M (2) [12, 5] [1, 12] 0.85 (0.84-0.89) 1.16 (1.13-1.23) 4.03-8.57

0.85-0.90 M (2) [11, 6] [1, 9] 0.84 (0.83-0.87) 1.21 (1.19-1.26) 10.16-11.98

0.95 M (3) [10, 5, 2] [1, 8, 32] 0.83 (0.80-0.88) 1.31 (1.25-1.42) 14.75

1.00 M (3) [7, 5, 5] [1, 5, 12] 0.80 (0.74-0.96) 1.52 (1.39-1.84) 19.54

Disease Order: 1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 11, 12, 14, 13, 15, 16, 17

Multiplexing-only N/A I(1) [17] [1] 1.00 1.00 N/A

Pooling-only N/A D(17) 17 singletons 3 to 32 1.24 4.20 N/A

Table 5: 2021 TD and R-TD designs, metrics, and V oJ based on 2021 data - with COVID-19 testing

Perfect-information Setting
Model Range of Design Assay Pool Testing Cost Number of Tests V oJ(λ) (%)

(n = 18) λ values Class Sizes Sizes Mean (Min-Max) Mean (Min-Max) Range

TD 0.00-0.30 D(1) [18] [3] 0.86 (0.59-1.02) 0.86 (0.59-1.02) 14.43-14.43

0.35-0.70 D(2) [13, 5] [3, 26] 0.71 (0.49-0.84) 0.93 (0.66-1.10) 14.65-22.44

0.75 D(2) [11, 7] [3, 13] 0.68 (0.48-0.82) 1.00 (0.71-1.21) 23.76

0.80 D(3) [7, 6, 5] [3, 7, 26] 0.63 (0.45-0.81) 1.21 (0.87-1.57) 25.77

0.85-1.00 D(3) [6, 7, 5] [3, 6, 26] 0.62 (0.45-0.80) 1.23 (0.89-1.57) 28.62-37.82

Disease Order: 18, 3, 6, 4, 5, 8, 15, 9, 1, 12, 11, 10, 14, 16, 17, 13, 7, 2

R-TD 0.00-0.30 D(1) [18] [3] 0.86 (0.59-1.02) 0.86 (0.59-1.02) 14.43-14.43

0.35-0.65 D(2) [13, 5] [3, 26] 0.71 (0.49-0.84) 0.93 (0.66-1.10) 14.65-21.33

0.70-0.75 D(2) [11, 7] [3, 13] 0.68 (0.48-0.82) 1.00 (0.71-1.21) 22.14-23.76

0.80-1.00 D(3) [6, 7, 5] [3, 6, 26] 0.62 (0.45-0.80) 1.23 (0.89-1.57) 25.56-37.82

Disease Order: 18, 3, 6, 5, 4, 7, 8, 9, 1, 12, 11, 15, 13, 16, 17, 10, 14, 2

Multiplexing-only N/A I(1) [18] [1] 1.00 1.00 N/A

Pooling-only N/A D(18) 18 singletons 5 to 32 0.92 3.25 N/A

of weekly variability in the metrics; individual testing always uses one test, for all prevalences. Then:

(1) through bundling of diseases in an assay, the assay’s performance becomes a function of the assay

prevalence (i.e., combined prevalences of the diseases in the assay), rather than the individual disease

prevalences, which serves to increase its robustness under both weekly prevalence variations and forecast

error; (2) the ordering of diseases within an assay is immaterial, it is only when ordering errors place the

disease in the “wrong” assay do sub-optimalities arise; and (3) a particular pool size remains optimal

for a range of prevalences, and beneficial for an even larger range. The performances of the mean-based

and robust designs are even closer in 2021, due to a lower overall prevalence and lower CI upper limits

(e.g., influenza had lower prevalences, and less pronounced seasonality, hence lower uncertainty). The
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price of robustness is also low (Table B.1, Appendix B). Robust designs may even lower the actual cost

(e.g., λ = 0.70 for 2021, Table 5 and Table B.1), because TD uses the expected costs based on yearly

means, which may deviate from the actual costs due to weekly variations.

Comparison with benchmarks: The multiplexing-only (I(1)) benchmark is on the Pareto frontier

only for 2018 (not 2021), and only for 0 ≤ λ ≤ 0.4 (Theorem 2, Fig. 2). For 2018 (Table 4), both

TD and R-TD use multiple assays with mixed testing methods (pooling and individual testing) for all

λ ≥ 0.45; these designs have positive VoJ values, and show the trade-off between testing cost and number

of tests. For 2021 (Table 5), which has a lower overall prevalence than 2018, every TD and R-TD design

is a Dorfman design with multiplexing; and some of these Pareto designs improve upon both the testing

cost and number of tests compared to the benchmarks. To better understand the practical impact of

the trade-off between the testing cost and number of tests, remember that PCR machines can have large

capacities (see §1), hence there are many settings in which they are run below capacity; and increasing

the number of tests to reduce the testing cost in these settings can be an especially good trade-off.

Pooling alone does not provide as much benefit as the integrated mean-based or robust designs; the

pooling-only benchmark is not on the Pareto frontier in either year. On the other hand, pooling of the

n-plex (D(1)) is not useful in 2018; for 2021, it can improve the 18-plex benchmark by 14.43% (i.e.,

V oJ(λ = 0)), compared to a V oJ of 37.82% attained through integrated multiplexing and pooling.

Design structures: Noting the mean overall prevalence of 0.4042 for 2018, and 0.2254 for 2021 (above

and below the pooling threshold of 0.31, respectively), the optimal designs in Tables 4-5 are in agreement

with Theorems 1-2. As λ increases, all designs move towards more assays: This is expected for the 2021-

designs in light of Theorem 4 (as π(18) = 0.2254 < 0.31 for 2021), but, in the absence of this condition,

we still see a similar trend for the 2018-designs. The first assay almost always bundles the most diseases

(which have the highest prevalence), hence has the largest assay prevalence and the smallest pool size.

This keeps the first assay’s pool size constant as λ increases, allowing the other assays to use larger pools.

The robust designs tend to have smaller pools than the mean-based designs due to the use of the CI

upper limits.

Effect of seasonality: One challenge for testing design for respiratory diseases is seasonality. We

explore the benefits of accounting for seasonality through the use of a separate TD design for the high

versus low season, constructed and evaluated based on the 2018 data. We define the seasons based

on the pooling threshold of 31%, as this implies when pooling is beneficial for the 17-plex: The low

season spans the period for which the weekly overall prevalence remains below 31%, which, for 2018,

was weeks 20-44, the remaining weeks represent the high season. The V oJ range over the 17-plex I(1) is,

[V oJ(λ = 0) = 0, V oJ(λ = 1) = 20.5%] (Table 4) for original 2018 TD designs (without accounting for

seasonality), and [V oJ(λ = 0) = 5.3%, V oJ(λ = 1) = 25.2%] (Table B.2, Appendix B) with high- and

low-season designs. Thus accounting for seasonality can further increase the benefits of optimal designs.
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Figure 2: 2018 and 2021 perfect-information TD and R-TD designs and benchmarks

6.3.2 Testing design during the pandemic (imperfect-information designs)

The previous perfect-information setting provides a reference point on the potential benefits of joint

optimization. Next, we study testing design in the realistic, imperfect-information setting, where preva-

lences are unknown at the time of testing design. One can integrate a sophisticated forecasting method

(available in the literature for influenza and COVID-19) into our testing design models. While this is

worthy of future investigation, a main finding from the study of the imperfect-information setting in this

section is that sophisticated forecasting methods may not be necessary to reap most of the benefits. Inte-

grating multiplexing and pooling already increases the robustness of optimal designs to forecast errors,

see §6.3.1. As we shall see, the 2018-designs, or simple modifications of them to account for COVID-19

effects on influenza rates, work very well compared to the benchmarks.

2019-2021 (without COVID-19 testing): performance of 2018-designs

We first explore the performance of the 2018-designs for the 17 diseases (from Table 4, i.e., designs

constructed using the 2018 data) on data from 2019 to 2021. While the disease ordering in 2018 does

not match that in 2019, 2020, or 2021, these TD and R-TD imperfect-information designs continue

to substantially outperform both benchmarks for the 2019-2021 period (Table B.3, Appendix B). For

example, the V oJ(λ = 1) values for mean-based and robust designs are 20.5% and 18.4% respectively,

over the I(1) benchmark, in this period. These benefits are similar in scale to the 2018-designs under

perfect information, continuing to show that both TD and R-TD are quite robust to forecast errors.

Next, we show that we can improve upon the performance of the 2018-designs, evaluated using 2021

data, via design modifications based on minimal information on the impact of COVID-19.

2021 (both with and without COVID-19 testing): performance of modified-2018-designs

Due to the pandemic, 2021 was quite an unusual year for respiratory diseases. The protective measures

taken for COVID-19 also reduced the influenza rates, greatly perturbing the order of diseases from 2018.
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This was apparent in November to December of 2020 (the beginning of the 2020/21 influenza season),

during which the reported influenza rates were much lower than the historic averages, and such unusual

influenza patterns were anticipated to continue into 2021. Thus, we now demonstrate how the testing

designs for 2021 can be improved with simple forecasting: to this end, we simply set influenza A and B

prevalences to their averages from November and December of 2020; for all other diseases, we continue

to use the 2018 data. Using this modified 2018 data, we produce modified-2018-designs using TD and R-

TD. First we produce testing designs for the 17 diseases (without COVID-19), then turn our attention

to COVID-19. Forecasting an emerging, and evolving, disease is very difficult, and many COVID-19

forecasting methods in the literature turned out to be highly inaccurate. In the absence of a reliable

COVID-19 forecast in 2021, we explore a simple strategy of adding COVID-19 into the first assay in

the modified-2018-designs for TD and R-TD, thus bundling it with the most prevalent diseases in each

design. Retrospectively, this can be accomplished using the modified-2018 data and a mean COVID-19

prevalence of 10%. With an actual 2021 COVID-19 mean of 6.1% (unknown at the time of testing

design), it is sub-optimal, and represents an overestimation.

Table B.4 (Appendix B) report the results for the modified-2018-designs, and for comparison pur-

poses, the 2021 perfect-information designs, both with and without COVID-19 testing, all evaluated

using 2021 data. For each design with COVID-19 testing, Fig. 3 also depicts the weekly performance

using 2021 data, in terms of the actual testing cost and the number of tests, and its mean performance

over the year (in solid lines). The pooling-only benchmark is not depicted in Fig. 3, as it continues to

be substantially dominated by all other designs. Finally, Table 6 reports the V oJ for the modified-2018

and perfect-information 2021 designs with respect to the I(1) benchmark based on the 2021 data.

Figure 3: Modified-2018 versus 2021 TD designs and I(1) benchmark based on 2021 data

Perfect-information versus imperfect-information designs: The family of modified-2018 TD de-

26



signs performs very well in 2021, both with and without COVID-19 testing (Table B.4, Fig. 3); and

their V oJ values are high and close to the 2021 perfect-information design values, which represent the

maximum possible benefits under perfect information (Table 6). These findings continue to illustrate

the structurally robust nature of TD designs under prevalence uncertainty.

Table 6: V oJ for modified-2018 and 2021 TD and R-TD designs based on 2021 data - with/without
COVID-19 testing

Without COVID-19

Modified-2018 TD
λ range 0.00-0.40 0.45-0.60 0.65-0.85 0.90-0.95 1.00

V oJ(λ) (%) 24.40-24.40 19.35-22.69 26.26-32.63 34.71-37.52 39.68

Modified-2018 R-TD
λ range 0.00-0.35 0.40-0.55 0.60-0.80 0.85 0.90 0.95 1.00

V oJ(λ) (%) 24.40-24.40 18.50-21.82 24.77-31.12 32.56 34.88 37.27 39.48

2021 TD
λ range 0.00-0.35 0.40-0.75 0.80 0.85-0.90 0.95-1.00

V oJ(λ) (%) 24.40-24.40 25.15-32.40 33.60 35.72-38.39 41.00-43.81

2021 R-TD
λ range 0.00-0.30 0.35-0.70 0.75 0.80 0.85 0.90-1.00

V oJ(λ) (%) 24.40-24.40 24.12-31.36 32.11 33.31 35.72 38.18-43.81

With COVID-19

Modified-2018 TD
λ range 0.00-0.35 0.40-0.55 0.60-0.80 0.85 0.90 0.95 1.00

VoJ(λ) (%) 14.43-14.43 8.66-12.22 15.92-22.79 24.97 26.60 31.47 34.29

Modified-2018 R-TD
λ range 0.00-0.35 0.40-0.55 0.60-0.85 0.90 0.95 1.00

VoJ(λ) (%) 0.00-0.00 (-5.23)-(-1.31) 2.91-12.67 13.71 31.54 34.09

2021 TD
λ range 0.00-0.30 0.35-0.70 0.75 0.80 0.85-1.00

VoJ(λ) (%) 14.43-14.43 14.65-22.44 23.76 25.77 28.62-37.82

2021 R-TD
λ range 0.00-0.30 0.35-0.65 0.70-0.75 0.80-1.00

VoJ(λ) (%) 14.43-14.43 14.65-21.33 22.14-23.76 25.56-37.82

Mean-based versus robust designs: Based on the 2021 data, the price of robustness is very low for

the modified-2018 and 2021 perfect-information designs, with the exception of the modified-2018 R-TD

designs with COVID-19 testing (Table 6). This is mainly because, the overestimation of the COVID-19

mean, combined with higher prevalence upper limits for the other diseases (based on the modified-2018

data), leads to an overall prevalence for the robust model that exceeds the pooling threshold, making it

more conservative than all other designs, which is expected based on Table 2. In particular, comparing

modified-2018 TD and R-TD designs with COVID-19 testing (based on Table B.4): for λ ∈ [0, 0.35],

the robust design is the 18-plex I(1) benchmark, while the mean-based design uses a pool of 3; for

λ ∈ [0.40, 0.55], the robust design has a negative V oJ , unlike the mean-based design with a positive V oJ

(in this case, the robust design reduces the testing cost, but not enough to compensate for the increase

in the number of tests); the robust design starts improving on the I(1) benchmark only at λ = 0.6, and

at λ = 0.95 it performs nearly as well as the mean-based design with respect to V oJ . This is because

as λ increases, the robust design moves away from the I(1) benchmark and starts using multiple pooled

assays, the cost benefit of which outweighs the increase in the number of tests.

Comparison with benchmarks: Modified-2018 TD designs outperform the I(1) benchmark on 2021

data; for the robust model, this happens mainly for the no COVID-19 testing case, as explained above.
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7 Conclusions, with Limitations and Future Research Directions

We develop tools and insights for multi-disease testing design for public health screening practition-

ers. In the absence of practical guidelines on how multiplexing and pooling should be integrated, our

study sheds important light into efficient testing practices, which can also benefit other stake-holders.

For example, efficient testing enables timely and accurate diagnosis, leading to improved public health

outcomes. Because the use of multiplexing and pooling does not require obtaining extra specimens from

the patient, the patient does not notice any difference, but expanded testing improves patient outcomes

and satisfaction [76]; assay manufacturers can also benefit from expanded testing, hence an expanded

market. Quantifying such benefits for other stake-holders is an important research direction.

Limitations and Future Research Directions

To our knowledge, our model is the first mathematical model to combine multiplexing and pooling

optimization in testing design for public health screening, and it is our hope that this work will spur new

academic research as well as empirical explorations to further investigate the benefits of optimal testing

designs. While our model considers many realistic aspects of the testing problem, any analytical model

must rely on certain assumptions. Some of these assumptions, discussed below, can be considered as

limitations of this research, but also present opportunities for future research.

To increase model realism, several assumptions can be relaxed. For example, while PCR assays are

highly sensitive in general, they may miss a disease during the window period, when the pathogen has

extremely low concentration in the specimen. Incorporating the pathogen dynamics into testing design

is an important extension. We consider that the set of diseases for screening is given; adding a disease

selection component to testing design (thus selecting from a set of potential diseases) would increase the

practical impact of this research effort. Further, studying a stochastic formulation of the testing design

problem, and considering correlated disease prevalences over time (e.g., due to seasonality) are worthwhile

extensions. Relatedly, while the price of robustness was low in our case study, in general a mini-max

type objective can be overly conservative; and it might be promising to explore other objectives, such as

regret-based objectives, e.g., [31].

Testing design for respiratory diseases, considered in our case study, can be challenging; a primary

reason for this challenge is seasonality. Our simple way of accounting for seasonality in testing design

shows promise, and should be explored further. Our case study also suggests that optimizing the testing

design infrequently, and using simple forecasting methods to deal with a rare event, such as the emergence

of COVID-19, work well for testing design in the post-COVID period. This is one particular strength

of multiplex assays: by bundling diseases in an assay, their combined prevalence becomes more reliable;

further, small forecasting errors may not impact an optimal design as long as disease ordering is not

altered much. Nevertheless, it is valuable to explore the benefits of more accurate forecasting methods
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for testing design, or more frequent optimization of pool sizes than that for the assay portfolio, because

pool sizes may be easier to change on a more frequent basis. It is also important to conduct case studies

of other disease groups so as to quantify the benefits of optimal testing designs in other contexts.

We study the tactical testing design decision. Complementary future research directions include

operational decisions, for instance, the online optimization problem [35, 43, 53] that arises in our setting

when batches of specimens arrive at the laboratory in a stochastic manner. Thus, given PCR testing

machine(s) and capacity, the tester needs to decide when to run the machine, i.e., below capacity, or

wait for more specimens?
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A Online Appendix

A.1 Summary of Notation
We denote vectors in boldface, random variables in upper-case and their realization in lower-case letters, use

“;” for probabilistic conditioning, and provide the arguments of a function in parantheses.

The disease set N = {1, 2, · · · , n} is arranged in non-increasing order of disease prevalences πi, i ∈ N , that is,

π1 ≥ π2 · · · ≥ πn. The joint vector, p, contains all mono-, co-, and no-infection probabilities for the n diseases, and

the marginal vector π = (πi)i∈N contains the disease prevalences (Definition 1). S = (Sk)k=1,··· ,q, q = 1, · · · , n,
denotes a q-partition of the disease set N , where each assay Sk has cardinality (size) sk, prevalence π(Sk), and

pool size tk, with t∗k(Sk) = t∗k(π(Sk)) denoting an optimal pool size within the domain t ∈ Z+, t ≥ 1 (with t = 1

denoting individual testing), which is a function of assay prevalence π(Sk) only (Property 1). When referring to

an optimal Dorfman pool size, we use the notation t∗kD (π(Sk)), that is, considering the domain t ∈ Z+, t ≥ 2. We

use the terms partition and assay portfolio interchangeably. In general, we use the superscripts k, k′, l for assay

(with a subscript added to the index in places, e.g., k1, k2), and the subscripts i, j, r for disease.

Functions T (S, t) and C(S, t) respectively denote the per subject expected number of tests (“expected tests”)

and per subject expected testing cost (“expected testing cost”) for assay S with pool size t, and TC(S, t, λ) denotes

the expected total testing cost (“total cost”) for partition S, pool size vector t, and coefficient λ ∈ [0, 1], where λ

(hence, 1− λ) is the weight of the expected testing cost (expected tests) in the objective function.

By Definition 3, D(q) and I(q), q = 1, · · · , n, and M (q), q = 2, · · · , n, respectively denote the optimal testing

design when constrained to be within the q-partitioned Dorfman, individual-testing, and mixed-testing design

classes (an M (1) design is not possible). When needed, we use the design class as a subscript to refer to the

corresponding metric for the optimal design within that design class, e.g., SD(q) , TD(q) , and TCD(q) respectively

denote the partition, the expected tests, and the total cost for an optimal D(q) design.

The composite cost function is given by c̃(s, λ) = λ c(s) + 1 − λ,∀s ∈ Z+, λ ∈ [0, 1], where c(.) is the assay

cost function; by definition, any c̃(.) ∈ C̃ must satisfy Assumption (A). When needed, we use the notation

that composite cost functions c̃(.) and c̃′(.) respectively utilize assay cost functions c(.) and c′(.). The notation,

c̃(.) ≥diff c̃′(.), denotes that function c̃(.) has higher differences than function c̃′(.) (Definition 5).

To simplify the notation, we drop the indices and function arguments when clear from context, e.g., c̃(s) for

c̃(s, λ) when λ does not change, or c̃(.) when referring to a generic composite cost function, S for SD(q) when it is

clear from context that we are referring to an optimal partition for the D(q) design class. We also use the notation

that T ∗(S) = T ∗(π(S)) = T (π(S), t∗(π(S))) and T ∗
D(S) = T ∗

D(π(S)) = T (π(S), t∗D(π(S))), that is, expected tests

for assay S at the (global) optimal pool size, and at the optimal Dorfman pool size, respectively.

A.2 Preliminaries
By Definition 3, optimal pool size vectors for the different design classes are given by, tI(q) = 1, tD(q) ≥ 2, and

tM(q) : ∃k, l = 1, · · · , q : tk
M(q) = 1, tl

M(q) ≥ 2. Any assay with individual testing (t = 1) uses one test per subject

for all the diseases in the assay, i.e., T (S, 1) = 1,∀S ⊆ N (Eq. (8)).

Then, by Eq. (2), the total cost of the (global) TD optimal solution (denoted by superscript *), and the

optimal solution when constrained to be within each design class (denoted by the design class subscript), follow:

TC∗(λ) = TC(S∗, t∗, λ) =

q∗∑︂
k=1

c̃(sk∗, λ)× T ∗(Sk∗), where q∗ ∈ {1, · · · , n} (17)

TCI(q)(λ) =

q∑︂
k=1

c̃(skI(q) , λ)× T (Sk
I(q) , 1) =

q∑︂
k=1

c̃(skI(q) , λ)× 1 =

q∑︂
k=1

c̃(skI(q) , λ), ∀q = 1, · · · , n (18)

TCD(q)(λ) =

q∑︂
k=1

c̃(skD(q) , λ)× T ∗
D(Sk

D(q)) =

q∑︂
k=1

c̃(skD(q) , λ)×

[︄
1

tk∗
D(q)

+ 1−
(︁
1− π(Sk

D(q))
)︁tk∗

D(q)

]︄
, ∀q = 1, · · · , n (19)

TCM(q)(λ) =
∑︂

k=1..q:tk
M(q)

=1

c̃(skM(q) , λ)× T (Sk
M(q) , 1) +

∑︂
l=1..q:tl

M(q)
≥2

c̃(slM(q) , λ)× T ∗
D(Sl

M(q)). (20)

The following definition and properties will be used subsequently in the proofs.
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Definition A1. 1. Function f(.) is a subadditive real-valued function if f(x + y) ≤ f(x) + f(y), ∀x, y ∈ R [55].

2. Function f(.) is a subadditive set function if f(S1 ∪ S2) ≤ f(S1) + f(S2), for any pair of sets S1, S2 [45].

Property A.1. (1) T ∗(π(S)) and T ∗
D(π(S)) are subadditive in π(S) ∈ [0, p]. (2) Both c(s) and c̃(s, λ) are

subadditive in s ∈ Z+, ∀λ ∈ [0, 1]. (3) π(S1 ∪ S2) is a subadditive set function, ∀S1, S2 ⊆ N .

Proof. T ∗
D(π(S)) is non-negative and concave increasing in π(S) ∈ [0, p], and T ∗(π(S)) = T ∗

D(π(S)) for π(S) ∈ [0, p]

(Property 2). Similarly, c(s) is non-negative and concave non-decreasing in s, ∀s ∈ Z+ (Assumption (A)), and

c̃(s, λ) = λ c(s) + 1 − λ is a linear function of c(s), ∀λ ∈ [0, 1]; and for any two sets S1, S2 ⊆ N , π(S1 ∪ S2) =

π(S1) + π(S2)− π(S1 ∩ S2) ≤ π(S1) + π(S2). Then, the subadditivity results follow by Definition A1.

Property A.2. For the independent diseases or no co-infections cases, T ∗(S) is strictly concave increasing in

each πi, ∀i ∈ S, as long as π(S) ≤ p.

Proof. For both the independent diseases and no co-infections cases, π(S) is linear increasing in πi, ∀i ∈ S (Eqs.

(15)-(16)), and T ∗(π(S)) is strictly concave increasing in π(S) ∈ [0, p] (Property 2). Then, it follows that T ∗(π(S))

is strictly concave increasing in πi,∀i ∈ S, in the region 0 ≤ π(S) ≤ p [14].

Remark A.1. If Π has an interval type uncertainty set given by,

Ω(Π) = {π : πi ∈ [πi, πi], i ∈ N}, where 0 ≤ πi ≤ πi ≤ 1, i ∈ N, (21)

then P has the following uncertainty set,

Ω(P ) = {p ≥ 0 : (p;π) is a solution to (5)-(6), π ∈ Ω(Π)}, (22)

where (p;π) (i.e., p conditional on π) represents a solution to (5)-(6) for a given realization π ∈ Ω(Π), and set

Ω(P ) contains all such non-negative solutions, (p;π), for π ∈ Ω(Π). Note that for each given π ∈ Ω(Π), there

may be multiple solutions, (p;π), i.e., with different mono-/co-infection probabilities, because the linear system in

(5)-(6), where π is given, has 2n unknowns and n+ 1 constraints, where 2n > n+ 1,∀n ≥ 2.

Similarly, given an uncertainty set on P , denoted by Ω(P ), the uncertainty set on Π is given by,

Ω(Π) = {π ≥ 0 : (πi;p), i ∈ N, is the unique solution to (5), p ∈ Ω(P )}.

Letting πi ≡ min{πi ∈ Ω(Π)} and πi ≡ max{πi ∈ Ω(Π)},∀i ∈ N , we can equivalently write:

Ω(Π) = {π : πi ∈ [πi, πi], i ∈ N}.

Thus, given an uncertainty set Ω(Π), one can obtain an uncertainty set Ω(P ), and vice versa.

A.3 Supporting Results
Theorem A.1. Consider Ω(Π) = {π : πi ∈ [πi, πi], i ∈ N}, where 0 ≤ πi ≤ πi ≤ 1, i ∈ N, and its equivalent

Ω(P ) from Remark A.1. For any given x and t, the inner maximization in R-TD objective function (14) can be

equivalently expressed as follows:

max
p∈Ω(P )

{︄
λ

n∑︂
k=1

C(xk, tk;p) + (1− λ)

n∑︂
k=1

T (xk, tk;p)

}︄
=

n∑︂
k=1

[︃
max

p∈Ω(P )

{︃
λ× C(xk, tk;p) + (1− λ)× T (xk, tk;p)

}︃]︃

=

n∑︂
k=1

c̃

(︃∑︂
i∈N

xk
i , λ

)︃
×min

⎧⎨⎩1,
1

tk
+ 1−

(︄
1−min

{︄
1,
∑︂
i∈N

πix
k
i

}︄)︄tk
⎫⎬⎭ , (23)

where, for each x, ∃p ∈ Ω(P ): π(xk;p) = min
{︁
1,
∑︁

i∈N πix
k
i

}︁
, ∀k = 1, · · · , n.

Corollary A.1. For the special case where
∑︁

i∈N πi ≤ 1, the worst-case solution, π(xk;p) = min
{︁
1,
∑︁

i∈N πix
k
i

}︁
,

∀k = 1, · · · , n, is attained at p: pi = πi,∀i ∈ N, pij = 0,∀ij ∈ N(2), pijr = 0,∀ijr ∈ N(3), · · · , p12...n = 0, p0 =

1−
∑︁

i∈N πi, that is, each marginal prevalence is at its upper limit and there are no co-infections.
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A.4 Proofs
Proof of Theorem A.1. From the definitions of Ω(Π) and Ω(P ) (Eqs. (21), (22)), for any given assay portfolio

x = (xk)k=1,··· ,n and pool size vector t = (tk)k=1,··· ,n, we can write:

max
p∈Ω(P )

{︄
λ

n∑︂
k=1

C(xk, tk;p) + (1− λ)

n∑︂
k=1

T (xk, tk;p)

}︄
(24)

= max
p∈Ω(P )

{︄
n∑︂

k=1

c̃

(︃∑︂
i∈N

xk
i , λ

)︃
×min

{︄
1,

1

tk
+ 1−

(︃
1− π(xk;p)

)︃tk
}︄}︄

(25)

≤
n∑︂

k=1

[︃
max

p∈Ω(P )

{︄
c̃

(︃∑︂
i∈N

xk
i , λ

)︃
×min

{︄
1,

1

tk
+ 1−

(︃
1− π(xk;p)

)︃tk
}︄}︄]︃

(26)

=

n∑︂
k=1

c̃

(︃∑︂
i∈N

xk
i , λ

)︃
× max

p∈Ω(P )

{︄
min

{︄
1,

1

tk
+ 1−

(︃
1− π(xk;p)

)︃tk
}︄}︄

(27)

≤
n∑︂

k=1

c̃

(︃∑︂
i∈N

xk
i , λ

)︃
×min

⎧⎨⎩1,
1

tk
+ 1−

(︄
1−min

{︄
1,
∑︂
i∈N

πix
k
i

}︄)︄tk
⎫⎬⎭ , (28)

where (25) follows by Eqs. (2) and (8); (26) follows because, for a given assay portfolio x = (xk)k=1,··· ,n, and pool

size vector t = (tk)k=1,··· ,n, the solution to (24) requires a common worst-case vector, p ∈ Ω(P ), for all assays

k = 1, · · · , n, while (26) relaxes this restriction and allows for a potentially different worst-case vector, pk ∈ Ω(P ),

for each assay k = 1, · · · , n. (27) follows because the term,
∑︁n

k=1 c̃

(︃∑︁
i∈N xk

i , λ

)︃
, is a constant for a given x, that

is, independent of the joint vector p. Finally, the upper bound in (28) follows, because for any given xk and tk, the

term, 1
tk
+1−

(︁
1− π(xk;p)

)︁tk
is strictly increasing in π(xk;p), and π(xk;p) ≤ min

{︁
1,
∑︁

i∈N πix
k
i

}︁
,∀k = 1, · · · , n.

Then, to prove the equivalence of (24) and (27), and the equivalence of (27) and (28), it is sufficient to show

that, for a given x and t, there exists a common p ∈ Ω(P ) (for all assays 1, · · · , n) that corresponds to the upper

bound in (28), in which case this particular p must be a worst-case solution to both (24) and (27). Equivalently,

we wish to show that ∃p ≥ 0 that satisfies: (i) (assay equations) π(xk;p) = min
{︁
1,
∑︁

i∈N πix
k
i

}︁
, ∀k = 1, · · · , n;

(ii) (disease equations) Pr(A+
i ;p) = πi; and (iii) (universal set equation) (π(N);p) + p0 = 1, where (i)

follows from (28), and (ii)-(iii), along with the constraint p ≥ 0, ensure that p ∈ Ω(P ).

Observe that if an assay has exactly one disease, then its assay equation reduces to the equation for its

corresponding disease, and is redundant; these assay equations are omitted from further consideration. Therefore,

we only consider the assay equations for assays in Q ≡ {k = 1, · · · , n : sk ≥ 2}, with cardinality m : 0 ≤ m ≤ ⌊n
2 ⌋;

without loss of generality, the assays in Q are re-indexed as assays 1, · · · ,m. Thus, we wish to show that the

following system of linear equations (based on Eqs. (3)-(5)) has a non-negative solution, p ∈ ℜ+(2n)×1:

pi +
∑︁

j:ij∈N(2) pij +
∑︁

j:ji∈N(2) pji + · · ·+ p12···n = πi, ∀i ∈ N, (29)∑︁
i∈Sk pi +

∑︁
ij∈N(2):i∈Sk or j∈Sk pij + · · ·+ p12...n = min

{︁
1,
∑︁

i∈Sk πi

}︁
, ∀k ∈ Q (30)

p0 +
∑︁

i∈N pi +
∑︁

ij∈N(2) pij +
∑︁

ijr∈N(3) pijr + · · ·+ p12...n = 1. (31)

This system has n + m + 1 linearly independent equations and 2n unknowns (i.e., each element of p), where

2n ≥ n + ⌊n
2 ⌋ + 1,∀n ≥ 2. Let A ∈ {0, 1}(n+m+1)×(2n) and b ∈ ℜ+(n+m+1)×1 respectively denote the binary

coefficient matrix, and the non-negative RHS of this system of linear equations. By Farka’s Lemma [29], exactly one

of the following alternatives hold:
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1. Either ∃p ∈ ℜ(2n)×1 that satisfies:

Ap = b, p ≥ 0, (F-1)

2. or else ∃y = (u1, · · · , un, v1, · · · , vm, z) ∈ ℜ(n+m+1)×1, where ui corresponds to (29) for disease i ∈ N , vk

corresponds to (30) for assay k ∈ Q, and z corresponds to (31), that satisfies:

ATy ≥ 0, (F-2a)

bTy < 0. (F-2b)

Then it suffices to show that ∄y ∈ ℜ(n+m+1)×1 that satisfies (F-2a)-(F-2b), which we prove by contradiction.

To simplify the subsequent presentation, we introduce some new notation. Denote the columns of A by

Ax, x = 1, · · · , 2n, where each column represents the constraint coefficients for an element of p ∈ ℜ+(2n)×1. Hence,

each row of (F-2a), AT
xy ≥ 0, corresponds to an element of p, which is the probability of either a mono-infection

(pi, i ∈ N), a co-infection (pi···j , i, · · · , j ∈ N), or no-infection (p0); in either case, it is the probability of a set of

diseases S ⊆ N (e.g., S = {i}, S = {i, · · · , j}, S = ∅), and we refer to this inequality as (F-2a)(S), i.e., indexed by

its disease set. As defined above, p, b, and y are all column vectors.

Suppose, to the contrary, that y = (u1, · · · , un, v1, · · · , vm, z) is a solution to (F-2a)-(F-2b). Based on the

signs of assay and disease variables, we decompose assay set Q into six mutually exclusive sets:

Qi+
a+ ≡ {k ∈ Q : vk ≥ 0 and {ui ≥ 0,∀i ∈ Sk}}, Qi−

a+ ≡ {k ∈ Q : vk ≥ 0 and {ui < 0,∀i ∈ Sk}},

Qi0
a+ ≡ {k ∈ Q : vk ≥ 0 and {∃i ∈ Sk : ui ≥ 0, and ∃j ∈ Sk : uj < 0}},

Qi+
a− ≡ {k ∈ Q : vk < 0 and {ui ≥ 0,∀i ∈ Sk}}, Qi−

a− ≡ {k ∈ Q : vk < 0 and {ui < 0,∀i ∈ Sk}},

Qi0
a+ ≡ {k ∈ Q : vk < 0 and {∃i ∈ Sk : ui ≥ 0, and ∃j ∈ Sk : uj < 0}}. (32)

Observe that we use the indices k and i to respectively refer to assay variables and disease variables; the subscripts

a+ and a− to respectively refer to assay sets with non-negative versus negative assay variables (vk); and the

superscripts i+, i−, and i0 to respectively refer to assay sets whose corresponding disease variables (ui) are all

non-negative, negative, or neither. Finally, let Sk− ≡ {i ∈ Sk : ui < 0}, k ∈ Q.

The proof by contradiction proceeds in two parts. First we consider a specific row of (F-2a) and perform row

operations on it in order to bring it into a form that is a lower bound for the LHS of (F-2b), and show that this

lower bound is non-negative, thus reaching a contradiction with the inequality in (F-2b).

To this end, consider disease set S̃ ⊆ N :

S̃ ≡
⋃︂

k∈Qi+
a−

argmini∈Sk{ui}
⋃︂

k∈Qi−
a+∪Qi−

a−

Sk
⋃︂

k∈Qi0
a+∪Qi0

a−

Sk−,

which contains the disease with the lowest ui value (breaking ties arbitrarily) for each assay k ∈ Qi+
a−, all the

diseases in assays k ∈ Qi−
a+ ∪ Qi−

a−, and all the diseases with a negative ui value in assays k ∈ Qi0
a+ ∪ Qi0

a−. (As

will be clear in the sequel, the diseases in the assays in set Qi+
a+ are omitted, as their assay and disease variables

are non-negative by definition). Consider the joint (co-infection) probability of the s̃ diseases in set S̃, and its

corresponding column Ax, where Ai,x = 1, ∀i ∈ S̃, An+k,x = 1 if S̃ ∩ Sk ̸= ∅, ∀k ∈ Q, An+m+1,x = 1, and

Aj,x = 0 otherwise. Then:

(F-2a)(S̃) : z +
∑︂

k∈Qi−
a+

vk +
∑︂

k∈Qi0
a+

vk +
∑︂

k∈Qi+
a−

vk +
∑︂

k∈Qi−
a−

vk +
∑︂

k∈Qi0
a−

vk +
∑︂

k∈Qi−
a+

∑︂
i∈Sk

ui +
∑︂

k∈Qi0
a+

∑︂
i∈Sk−

ui

4



+
∑︂

k∈Qi+
a−

min
i∈Sk

{ui}+
∑︂

k∈Qi−
a−

∑︂
i∈Sk

ui +
∑︂

k∈Qi0
a−

∑︂
i∈Sk−

ui ≥ 0.

Through a series of row operations (detailed below), (F-2a)(S̃) can be converted into the following form:

z +
∑︂

k∈Qi−
a+

vk ×max
i∈Sk

{πi}+
∑︂

k∈Qi0
a+

vk × max
i∈Sk−

{πi}+
∑︂

k∈Qi+
a−∪Qi−

a−∪Qi0
a−

vk ×min{1,
∑︂
i∈Sk

πi}

+
∑︂

k∈Qi+
a−

min
i∈Sk

{ui} ×min{1,
∑︂
j∈Sk

πj}+
∑︂

k∈Qi−
a+

∑︂
i∈Sk

ui ×max
j∈Sk

{πj}+
∑︂

k∈Qi−
a−

∑︂
i∈Sk

ui ×min{1,
∑︂
j∈Sk

πj}

+
∑︂

k∈Qi0
a+

∑︂
i∈Sk−

ui × max
j∈Sk−

{πj}+
∑︂

k∈Qi0
a−

∑︂
i∈Sk−

ui ×min{1,
∑︂
j∈Sk

πj} ≥ 0. (33)

In the remainder of the proof, we first describe the bounding of the LHS of (33), so as to reach a contradiction

based on Farka’s Lemma. Then we detail the specific row operations needed to convert (F-2a)(S̃) to (33).

Bounding the LHS of (33): We bound the LHS of (33) to reach the form in (F-2b), i.e., bTy, where each

vk, k ∈ Q, has a coefficient of min{1,
∑︁

i∈Sk πi}, each ui, i ∈ N, has a coefficient of πi, and z has a coefficient of 1.

We do this through a series of upper bounds on the different terms in (33). First, because 0 ≤ πi ≤ 1,∀i ∈ N :

πj ≤ max
i∈S

{πi} ≤ min{1,
∑︂
i∈S

πi}, ∀j ∈ S, S ⊆ N. (34)

The next set of inequalities follow by (34), the definitions in (32), the definition of Sk−, and because Sk− ⊆
Sk,∀k ∈ Q: ∑︂

k∈Qi+
a+

vk ×min{1,
∑︂
i∈Sk

πi}+
∑︂

k∈Qi+
a+

∑︂
i∈Sk

uiπi ≥ 0 (35)

∑︂
k∈Qi−

a+

vk ×max
i∈Sk

{πi} ≤
∑︂

k∈Qi−
a+

vk ×min{1,
∑︂
i∈Sk

πi} (36)

∑︂
k∈Qi0

a+

vk × max
i∈Sk−

{πi} ≤
∑︂

k∈Qi0
a+

vk ×max
i∈Sk

{πi} ≤
∑︂

k∈Qi0
a+

vk ×min{1,
∑︂
i∈Sk

πi} (37)

∑︂
k∈Qi+

a−

min
i∈Sk

{ui} ×min{1,
∑︂
j∈Sk

πj} ≤
∑︂

k∈Qi+
a−

min
i∈Sk

{ui} ×
∑︂
j∈Sk

πj ≤
∑︂

k∈Qi+
a−

∑︂
i∈Sk

uiπi (38)

∑︂
k∈Qi−

a+

∑︂
i∈Sk

ui ×max
j∈Sk

{πj} ≤
∑︂

k∈Qi−
a+

∑︂
i∈Sk

uiπi (39)

∑︂
k∈Qi−

a−

∑︂
i∈Sk

ui ×min{1,
∑︂
j∈Sk

πj} ≤
∑︂

k∈Qi−
a−

∑︂
i∈Sk

uiπi (40)

∑︂
k∈Qi0

a+

∑︂
i∈Sk−

ui × max
j∈Sk−

{πj} ≤
∑︂

k∈Qi0
a+

∑︂
i∈Sk−

uiπi ≤
∑︂

k∈Qi0
a+

∑︂
i∈Sk

uiπi (41)

∑︂
k∈Qi0

a−

∑︂
i∈Sk−

ui ×min{1,
∑︂
j∈Sk

πj} ≤
∑︂

k∈Qi0
a−

∑︂
i∈Sk−

uiπi ≤
∑︂

k∈Qi0
a−

∑︂
i∈Sk

uiπi. (42)

Using (35)-(42), we can bound the LHS of (33) as follows:

RHS of (33) = 0 ≤ LHS of (33) ≤ z +
∑︂
k∈Q

vk ×min{1,
∑︂
i∈Sk

πi}+
∑︂
i∈N

uiπi = bTy, (43)

which contradicts with (F-2a):

(F-2a) : bTy < 0 ⇔ z +
∑︂
k∈Q

vk ×min{1,
∑︂
i∈Sk

πi}+
∑︂
i∈N

uiπi < 0,

that is, ∄y ∈ ℜ(n+m+1)×1 that satisfies (F-2a) and (F-2b). Then, by Farka’s Lemma, system (F-1) must have a
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solution, that is, ∃p ∈ ℜ(2n)×1 such that Ap = b and p ≥ 0. Then to complete the proof, it is sufficient to detail

the row operations needed to convert (F-2a)(S̃) to (33), which we do next.

Row operations: We define the assay multipliers, ∆k, k ∈ Q \Qi+
a+, as:

∆k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︁

i∈Sk πi, ∀k ∈ Qi+
a− ∪Qi−

a− ∪Qi0
a−

maxi∈Sk{πi}, ∀k ∈ Qi−
a+

maxi∈Sk−{πi}, ∀k ∈ Qi0
a+

, (44)

and construct the ordered vector ∆ to include any ∆k < 1, k ∈ Q\Qi+
a+, and the element 1, which are re-indexed

following a non-decreasing order, i.e., ∆1 ≤ ∆2 ≤ · · · ≤ ∆H < 1 = ∆H+1, that is, ∆ includes the multipliers for

all assays in Qi−
a+ ∪Qi0

a+; and the multipliers for assays in Qi+
a− ∪Qi−

a− ∪Qi0
a− only if they are strictly less than 1.

We use index h to refer to the elements of ∆. By construction, each ∆h, h = 1, · · · , H, is the multiplier of at least

one assay, denoted by assays kh, · · · , lh, and ∆H+1 = 1.

In what follows, we will conduct a series of row operations on (F-2a)(S̃), i.e., the inequality for the joint

probability of the diseases in set S̃. In each row operation, we will modify set S̃ by progressively removing a

certain subset of diseases. Then we will consider the inequality in (F-2a) for the joint probability of the remaining

diseases in this set, multiply both sides of this inequality by certain assay multipliers, and add to (F-2a)(S̃), until

we reach the desired form, (33). In the following, we describe this series of row operations first in words, then

using mathematical notation.

We first multiply both sides of (F-2a)(S̃) by ∆1, i.e., the assay multiplier for assays k1, · · · , l1; multiply (F-

2a)(S̃ \ ∪k1,··· ,l1S
k) by ∆2 − ∆1; and add the two inequalities to obtain a new inequality (F-2a)(S̃)(1) in which

the variables for assays k1, · · · , l1 and their diseases (vk, k = k1, · · · , l1, and ui, i ∈ ∪k=k1,··· ,l1S
k) are multiplied

by ∆1, and all the remaining variables (in y) are multiplied by ∆2. Next, we consider ∆2, i.e., the multiplier for

assays k2, · · · , l2; multiply (F-2a)(S̃ \ ∪k1,··· ,l1,k2,··· ,l2S
k) by (∆3 −∆2); and add to (F-2a)(S̃)(1), to obtain a new

inequality in which the variables for assays k1, · · · , l1 and their diseases are multiplied by ∆1, for assays k2, · · · , l2
and their diseases are multiplied by ∆2, and the remaining variables are multiplied by ∆3. We repeat this process

until H such row operations are completed, at which point we reach (33). In the following, we formally describe

this series of row operations. To this end, at each iteration h, that is, when considering ∆h, h = 1, · · · , H, we

update the assay and disease sets as follows:

Qi+
a−(∆h) ≡

⎧⎨⎩k ∈ Qi+
a− :

∑︂
i∈Sk

πi > ∆h

⎫⎬⎭ , Qi−
a+(∆h) ≡

{︃
k ∈ Qi−

a+ : max
i∈Sk

{πi} > ∆h

}︃
, Qi0

a+(∆h) ≡
{︃
k ∈ Qi0

a+ : max
i∈Sk−

{πi} > ∆h

}︃
,

Qi−
a−(∆h) ≡

⎧⎨⎩k ∈ Qi−
a− :

∑︂
i∈Sk

πi > ∆h

⎫⎬⎭ , Qi0
a−(∆h) ≡

⎧⎨⎩k ∈ Qi0
a− :

∑︂
i∈Sk

πi > ∆h

⎫⎬⎭ , and

S̃(∆h) ≡
⋃︂

k∈Qi+
a−(∆h)

argmini∈Sk{ui}
⋃︂

k∈Qi−
a+(∆h)∪Qi−

a−(∆h)

Sk
⋃︂

k∈Qi0
a+(∆h)∪Qi0

a−(∆h)

Sk−,

that is, when considering ∆h, we remove the diseases of assays kh, · · · , lh from the previous disease set S̃(∆h−1).

The row operations follow:

1. ∆1×(F-2a)(S̃) +(∆2−∆1)×(F-2a)(S̃(∆1)) ≡ (F-2a)(S̃)(1): In the new inequality (F-2a)(S̃)(1), the variables

for assays k1, · · · , l1 and their diseases (vk, k = k1, · · · , l1, and ui, i ∈ ∪k=k1,··· ,l1S
k) are multiplied by ∆1,

and all the remaining variables (in y) are multiplied by ∆2.

2. For h = 2, · · · , H : (F-2a)(S̃)(h−1) + (∆h+1 −∆h)× (F-2a)(S̃(∆h)) ≡ (F-2a)(S̃)(h): In the new inequality

(F-2a)(S̃)(h), the variables for assays k1, · · · , l1 and their diseases are multiplied by ∆1, for assays k2, · · · , l2
and their diseases are multiplied by ∆2, and so on, and for assays kh, · · · , lh and their diseases are multiplied

by ∆h, and all the remaining variables are multiplied by ∆h+1.
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3. At the conclusion of row operation H, the final inequality (F-2a)(S̃)(H) is such that the variables for assays

k1, · · · , l1 and their diseases are multiplied by ∆1, for assays k2, · · · , l2 and their diseases are multiplied by

∆2, for assays k3, · · · , l3 and their diseases are multiplied by ∆3, and so on, for assays kH , · · · , lH and their

diseases multiplied by ∆H , and all the remaining variables are multiplied by 1, that is, we reach (33). This

completes the proof.

Proof of Corollary A.1. The result follows directly from Theorem A.1 because π(xk;p) =
∑︁

i∈N πix
k
i ≤ π(N) =∑︁

i∈N πi ≤ 1, ∀k = 1, · · · , n. Hence, to conserve π(xk;p) =
∑︁

i∈N πix
k
i , ∀k = 1, · · · , n, and π(N) =

∑︁
i∈N πi, we

have that pi = πi,∀i ∈ N, pij = 0,∀ij ∈ N(2), pijr = 0,∀ijr ∈ N(3), · · · , p12...n = 0, p0 = 1−
∑︁

i∈N πi.

Proof of Property 2. Part 1. For any assay S ⊆ N , from Eq. (8):

T (S, t) =
1

t
+ 1− (1− π(S))t ≤ T (S, 1) = 1 ⇔ π(S) ≤ 1− t

√︃
1

t
, where

∂
(︂
1− t

√︂
1
t

)︂
∂t

= −t(
−2t−1

t
) [ln(t)− 1] > 0 ⇔ t < e,

that is, function 1− t

√︂
1
t is strictly increasing for t ≤ 2, and strictly decreasing for t ≥ 3. Therefore, the maximum

value of π(S) for which pooled testing, with integer pool sizes, outperforms individual testing is attained at t = 2

or t = 3. Then, the prevalence threshold, p, follows because 1− 2

√︂
1
2 = 0.292893 < 1− 3

√︂
1
3 = 0.306639 ≈ 0.31.

Proof of Theorem 1. The following relationships hold ∀λ ∈ [0, 1], hence we drop λ as an argument.

By Property A.1, c̃(s) is subadditive in s, that is, c̃(s) ≤
∑︁q

k=1 c̃(s
k), ∀sk ∈ Z+ :

∑︁q
k=1 s

k = s, ∀q =

2, · · · , s,∀s ∈ Z+ (Definition A1). Then, from Eq. (18), TCI(1) = c̃(n) ≤
∑︁q

k=1 c̃(s
k
I(q)) = TCI(q) , ∀q = 2, · · · , n,

hence I(1) ⪯ I(q), ∀q = 2, · · · , n. Let S ⊆ N denote the set of diseases that are individually tested in an optimal

M (q) design. For set S, TCI(1)(S) = c̃(s) ≤
∑︁q

k=1 c̃(s
k
I(q)) = TCI(q)(S), ∀q = 2, · · · , s, S ⊆ N , hence, it is optimal

to bundle all the diseases in set S into one multiplex and individually test.

Part 1. Case where π(N) ≤ p: Then, π(S) ≤ π(N) ≤ p,∀S ⊆ N ⇒ T ∗
D(S) ≤ T (S, 1) = 1,∀S ⊆ N (Property 2).

Hence by Eqs. (18)-(19), TCD(1) = c̃(n)× T ∗
D(N) ≤ c̃(n)× T (N, 1) = TCI(1) , hence D(1) ⪯ I(1) ⇒ D(1) ⪯ I(q),

∀q = 1, · · · , n, because I(1) ⪯ I(q), ∀q = 2, · · · , n, as shown above.

Next, consider an M (q) design, which, by definition and as shown above, must contain exactly one assay with

individual testing, say assay k′ ∈ {1, · · · , q} : T (Sk′

M(q) , t
k′

M(q) = 1) = 1. Construct an alternative design that uses

the M (q) partition, SM(q) , but with pool size vector t∗D(SM(q)) ≥ 2, that is, each assay in the M (q) partition

is now pooled with the optimal pool size. Because π(S) ≤ p,∀S ⊆ N , we have that T ∗
D(Sk

M(q)) ≤ T (Sk
M(q) , 1),

∀k = 1, · · · , q (Property 2), that is, this new design, where all assays are pooled, is a feasible design for the D(q)

class, and has a total cost less than or equal to that of the optimal M (q) design. This inequality continues to hold

for the optimal D(q) design, and we have that D(q) ⪯ M (q),∀q = 2, · · · , n. Therefore, the optimal design class is

D(q), for some q = 1, · · · , n.

Part 2. Case where π1 ≤ p < π(N): By Property 2, 1 = T (N, 1) ≤ T ∗
D(N) ⇒ I(1) ⪯ D(1); and from Eq. (7),

π1 ≤ p ⇒ πi ≤ p,∀i ∈ N ⇒ T ∗
D({i}) ≤ T ({i}, 1) = 1, ∀i ∈ N . Then, because M (n) is an all-singleton design,

i.e., S = ({i})i∈N , it must have exactly one assay that is individually tested, and the total cost of this design can

be improved by pooling this particular assay (with optimal pool size), hence converting the design into a feasible

D(n) design with a total cost less than or equal to the optimal M (n) design. This inequality continues to hold for

the optimal D(n) design, and we have that D(n) ⪯ M (n). Therefore, the optimal design class is either I(1), or D(q)

for some q = 2, · · · , n, or M (q) for some q = 2, · · · , n− 1.

Part 3. Case where πn ≥ p: Then, p ≤ πn ≤ π(S),∀S ⊆ N ⇒ T (S, 1) = 1 ≤ T ∗
D(S),∀S ⊆ N (Property 2).

Therefore, we can show that I(q) ⪯ D(q),∀q = 1, · · · , n, and I(q) ⪯ M (q),∀q = 2, · · · , n. Further, I(1) ⪯ I(q),∀q =

2, · · · , n as shown above. Then, the optimal design class is I(1).
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Part 4. Case where ∃i ∈ {1, · · · , n− 1} : πi+1 < p < πi: Then, π(N) ≥ π1 ≥ π2 · · · ≥ πi > p. Hence, by Property

2, 1 = T (N, 1) ≤ T ∗
D(N) ⇒ I(1) ⪯ D(1). Consider any D(q), q = 2, · · · , n, which must contain at least one assay

k′ ∈ {1, · · · , q} : π(Sk′

D(q)) > p ⇒ T ∗
D(Sk′

D(q)) > T (Sk′

D(q) , 1) = 1 (Property 2). Construct an alternative design that

uses the D(q) partition, SD(q) , but with tk
′

D(q) = 1, which is a feasible design for the M (q) class, and has a total

cost less than or equal to that of the optimal D(q) design. This inequality continues to hold for the optimal M (q)

design, and we have that M (q) ⪯ D(q),∀q = 2, · · · , n.
Next consider set S = {1, · · · i} ⊂ N , where π(S) ≥ πi > p. Then, by part 3 of this theorem, I(1) is optimal

for set S, that is, in an optimal design, all the diseases in set S are bundled into one multiplex and individually

tested. Because the total cost is additive over assay sets; the set of remaining diseases, N \S = {i+1, · · · , n}, has
cardinality n− i; and all the i diseases in set S are bundled into one multiplex assay, an optimal design can have

at most n − i + 1 assays, exactly one of which is individually tested. That is, the optimal design class is either

I(1), or M (q) for some q = 2, · · · , n− i+ 1.

Proof of Property 3. The first part follows from Definition 5 because c̃(s, λ) = λ c(s) + 1 − λ is a linear function

of c(s), s ∈ Z+. For the second part, for any ϵ ∈ (0, λ), we have:

c̃(s+ 1, λ− ϵ)− c̃(s, λ− ϵ) = (λ− ϵ) [c(s+ 1)− c(s)] ≤ λ [c(s+ 1)− c(s)] = c̃(s+ 1, λ)− c̃(s, λ), ∀s ∈ Z+,

and it follows, by Definition 5, that c̃(s, λ) ≥diff c̃(s, λ− ϵ).

Proof of Theorem 2. Consider the smallest-difference composite cost function in C̃, that is, λ = 0 or c(s) =

γ,∀s ∈ Z+, where the objective reduces to the minimization of the expected tests function, T (.). By Theorem

1, I(1) ⪯ I(q),∀q = 2, · · · , n, and an M (q) design contains exactly one assay with individual testing, that is,

T (Sk′

M(q) , t
k′

M(q) = 1) = 1, for some k′ ∈ {1, · · · , q}, and q − 1 assays are pooled. Then, TM(q) > 1 = TI(1) , hence

I(1) ⪯ M (q),∀q = 2, · · · , n. Next we characterize an optimal design class.

Part 1. Case where π(N) ≤ p: By Theorem 1, the optimal design class is D(q), for some q = 1, · · · , n. Consider a
D(q) design, with partition SD(q) , for any q = 2, · · · , n. We construct a feasibleD(q−1) design by combining any two

sets, Sk1

D(q) and Sk2

D(q) , k1, k2 ∈ {1, · · · , q}, k1 ̸= k2, into a new set, Sk ≡ Sk1

D(q) ∪Sk2

D(q) . Because T
∗
D(S) is subadditive

in π(S) ∈ [0, p], and π(S) is subadditive in set S (Property A.1), it follows that
∑︁2

r=1 T
∗
D(Skr ) ≥ T ∗

D(Sk). Because

this result holds for a feasibleD(q−1) design, it continues to hold for an optimalD(q−1) design, henceD(q−1) ⪯ D(q),

for all q = 2, · · · , n. Consequently, D(1) ⪯ D(2) ⪯ · · · ⪯ D(n), and the optimal design class is D(1).

Part 2. Case where π(N) > p: Because I(1) ⪯ I(q) and I(1) ⪯ M (q),∀q = 2, · · · , n, it is sufficient to show that

I(1) ⪯ D(q), that is, TI(1) ≤ TD(q) ,∀q = 1, · · · , n. By Property 2, 1 = TI(1) < T ∗
D(N) = TD(1) , hence I(1) ⪯ D(1).

Next consider any Dorfman design, D(q), q = 2, · · · , n, with partition SD(q) . There are two possible cases:

(a) Case where ∃k′ ∈ {1, · · · , q} : π(Sk′

D(q)) > p: Then, we have that T ∗
D(Sk′

D(q)) > T (Sk′

D(q) , 1) = 1 (Property 2),

and it trivially follows that 1 = TI(1) <
∑︁q

k=1 T
∗
D(Sk

D(q)), hence I(1) ⪯ D(q),∀q = 2, · · · , n.

(b) Case where π(Sk
D(q)) ≤ p, ∀k = 1, · · · , q: Because π(Sk

D(q)) ≤ p < π(N),∀k = 1, · · · , q, ∃k′ ∈ {1, · · · , q} :

π(∪k′−1
k=1 Sk

D(q)) ≤ p < π(∪k′

k=1S
k
D(q)).

Define some dummy set S̃ : π
(︂(︁

∪k′−1
k=1 Sk

D(q)

)︁
∪ S̃
)︂
= π

(︂
∪k′−1
k=1 Sk

D(q)

)︂
+π
(︂
S̃
)︂
= p, and let S′ ≡

(︂
∪k′−1
k=1 Sk

D(q)

)︂
∪

S̃. By construction, π(S′) = p ⇒ T ∗
D(S′) = 1, and we can write:

TI(1) = 1 = T ∗
D(S′) ≤ T ∗

D(S̃) +

k′−1∑︂
k=1

T ∗
D(Sk

D(q)) <

k′∑︂
k=1

T ∗
D(Sk

D(q)) ≤
q∑︂

k=1

T ∗
D(Sk

D(q)),

where the first two equalities follow by Property 2, the first inequality follows because T ∗
D(S) is subadditive in

π(S), the second inequality follows because T ∗
D(S) is strictly increasing in π(S), and the last inequality follows

because k′ ≤ q. Hence I(1) ⪯ D(q), q = 2, · · · , n.
In each case the optimal design class is I(1), completing the proof.
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Proof of Theorem 3. Consider the highest-difference composite cost function in C̃, that is, λ = 1 and c(s) =

γ × s ⇒ c̃(s) = γ × s, ∀s ∈ Z+, where the objective reduces to the minimization of
∑︁q

k=1 s
k × T ∗(Sk).

First, we show that if π(N) ≤ p, then D(n) ⪯ D(n−1) ⪯ · · · ⪯ D(1). Consider a D(q) design, with partition

SD(q) , for any q = 1, · · · , n − 1. Then, ∃k′ ∈ {1, · · · , q} : sk
′

D(q) ≥ 2. We construct a feasible D(q+1) design by

splitting set Sk′

D(q) into mutually exclusive sets, Sk′
1 and Sk′

2 : ∪2
r=1S

k′
r = Sk′

D(q) and ∩2
r=1S

k′
r = ∅. Then:

2∑︂
r=1

sk
′
r × T ∗

D(Sk′
r ) ≤

2∑︂
r=1

sk
′
r × T ∗

D(Sk′

D(q)) = sk
′

D(q) × T ∗
D(Sk′

D(q)),

where the inequality follows because, by construction π(Sk′
r ) ≤ π(Sk′

D(q)), r = 1, 2, and
∑︁2

r=1 s
k′
r = sk

′

D(q) , and

T ∗
D(π(S)) is increasing in π(S) ∈ [0, p] (Property 2). Because this result holds for a feasible D(q+1) design, it must

hold for an optimal D(q+1) design, and we have that D(q+1) ⪯ D(q), ∀q = 1, · · · , n− 1.

We are ready to characterize an optimal design class.

Part 1. Case where π1 ≤ p:

(a) Case where π(N) ≤ p: By Theorem 1, the optimal design class is D(q) for some q = 1, · · · , n. Further, as

shown above, D(n) ⪯ D(n−1) ⪯ · · · ⪯ D(1), hence the optimal design class is D(n).

(b) Case where π(N) > p: By Theorem 1, the optimal design class is either I(1), or D(q) for some q = 2, · · · , n,
or M (q) for some q = 2, · · · , n− 1. From Eq. (7), π1 ≤ p ⇒ πi ≤ p,∀i ∈ N ⇒ T ∗

D({i}) ≤ 1, ∀i ∈ N . Further,

T ∗
D(π(S)) is increasing in π(S) ∈ [0, p], with T ∗

D(p) = 1, hence T ∗
D({i}) ≤ T ∗

D(S),∀i ∈ S, S ⊆ N . Then:

T ∗
D({i}) ≤ min{1, T ∗

D(S)}, ∀i ∈ S, S ⊆ N ⇒
∑︂
i∈S

T ∗
D({i}) ≤ s×min{1, T ∗

D(S)} ≤ s× T ∗
D(S), ∀S ⊆ N, (45)

and the result that D(n) ⪯ D(q), for any q = 1, · · · , n − 1, follows. Also, from Eq. (45), TCD(n) =∑︁
i∈N 1× T ∗

D({i}) ≤ n = TCI(1) . Hence, D(n) ⪯ I(1).

Finally, in an M (q) design, T (Sk′

M(q) , t
k′

M(q) = 1) = 1 for some k′ ∈ {1, · · · , q}, hence, by Eq. (45), D(n) ⪯ M (q),

for any q = 2, · · · , n− 1. Hence, the optimal design class is D(n).

Part 2. Case where πn ≥ p: By Theorem 1, the optimal design class is I(1). Next we show that the total cost of

any individual-testing design I(q), q = 2, · · · , n, is the same:

TCI(q) =

q∑︂
k=1

skI(q) × T (Sk
I(q) , 1) =

q∑︂
k=1

skI(q) = n = n× T (N, 1) = TCI(1) .

Hence any individual-testing design, I(q), q = 1, · · · , n, is optimal.

Part 3. Case where ∃i ∈ N : πi+1 < p < πi: By Theorem 1, the optimal design class is either I(1), or M (q) for

some q = 2, · · · , n − i + 1. Decompose set N into two mutually exclusive and exhaustive sets, S1 = {1, · · · , i}
and S2 = {i + 1, · · · , n}, that is, πj > p,∀j ∈ S1, and πj ≤ p,∀j ∈ S2. Then, by part 2 of this theorem, any

I(q), q = 1, · · · , i, is optimal for set S1 = {1, · · · , i}; and by part 1 of this theorem, D(n−i) is optimal for set

S2 = {i+1, · · · , n}. Because the total cost is additive over assay sets, an optimal design is the combination of the

optimal designs for sets S1 and S2, that is, any M (q) for q = n− i+ 1, · · · , n.

Proof of Theorem 4. Because π(N) ≤ p, by Theorem 1, the optimal design class is D(q), with partition SD(q) for

some q = 1, · · · , n. Because T ∗
D(S) is subadditive in π(S) ∈ [0, p], we have that:

TD(1) = T ∗
D(N) ≤

q∑︂
k=1

T ∗
D(Sk

D(q)), ∀q = 2, · · · , n. (46)

Recall that an optimal pool size t∗(π(S)) depends only on π(S) (Property 2), that is, it does not change with λ;

and T ∗
D(S) denotes the expected tests for set S ⊆ N at the optimal pool size for set S. The proof is three-fold:

First we show that ∃λ(1) ≤ 1 such that D(1)(λ) is optimal if and only if λ ≤ λ
(1)

, then we show that ∃λ(n−1) ≤ 1

such that D(n)(λ) is optimal if and only if λ > max
{︂
λ
(1)

, λ
(n−1)

}︂
; finally we show that ∃λ(q) ≤ 1, q = 2, · · · , n−1,

such that D(r)(λ), for some r = 2, · · · , q, is optimal if and only if λ ∈
(︂
max

{︂
λ
(1)

, λ
(q−1)

}︂
, λ

(q)
]︂
.
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We first prove that ∃λ(1)
: D(1)(λ) ⪯ D(q)(λ),∀q = 2, · · · , n ⇔ λ ≤ λ

(1)
.

(a) We first show that, if for some λ, D(1)(λ) ⪯ D(q)(λ),∀q = 2, · · · , n, then D(1)(λ− ϵ) ⪯ D(q)(λ− ϵ),∀ϵ ∈ [0, λ]:

D(1)(λ) ⪯ D(q)(λ),∀q = 2, · · · , n

⇔ c̃(n)× T ∗
D(N) ≤

q∑︂
k=1

c̃(skD(q))× T ∗
D(Sk

D(q)), ∀q = 2, · · · , n

⇔ [λ c(n) + 1− λ]× T ∗
D(N) ≤

q∑︂
k=1

[λ c(skD(q)) + 1− λ]× T ∗
D(Sk

D(q)), ∀q = 2, · · · , n. (47)

There are two possible cases:

(i) Case where c(n)× T ∗
D(N) ≤

∑︁q
k=1 c(s

k
D(q))× T ∗

D(Sk
D(q)),∀q = 2, · · · , n: Then, the result trivially follows by

(46) and the condition stated for this case, because we have, ∀q = 2, · · · , n, and any ϵ ∈ [0, λ]:

(λ− ϵ) c(n)× T ∗
D(N) ≤ (λ− ϵ)

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)), and [1− (λ− ϵ)]× T ∗
D(N) ≤ [1− (λ− ϵ)]×

q∑︂
k=1

T ∗
D(Sk

D(q))

⇒ TCD(1)(λ− ϵ) ≤ TCD(q)(λ− ϵ).

(ii) Case where c(n)×T ∗
D(N) >

∑︁q
k=1 c(s

k
D(q))×T ∗

D(Sk
D(q)), for some q = 2, · · · , n: It is sufficient to show that,

−ϵ c(n)× T ∗
D(N) + ϵ× T ∗

D(N) ≤ −ϵ

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)) + ϵ

q∑︂
k=1

T ∗
D(Sk

D(q)),

which holds, because by (46) and the condition stated for this case, we have that, for any ϵ ∈ [0, λ]:

− ϵ c(n)× T ∗
D(N) < −ϵ

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)), and ϵ× T ∗
D(N) ≤ ϵ

q∑︂
k=1

T ∗
D(Sk

D(q)) ⇒ TCD(1)(λ− ϵ) ≤ TCD(q)(λ− ϵ).

Thus, in both cases, D(1)(λ− ϵ) ⪯ D(q)(λ− ϵ),∀q = 2, · · · , n,∀ϵ ∈ [0, λ].

(b) To complete the proof, we now show that, if for some λ, D(q)(λ) ⪯ D(1)(λ), for some q = 2, · · · , n, thenD(q)(λ+

ϵ) ⪯ D(1)(λ+ ϵ),∀ϵ ∈ [0, 1− λ]. It is sufficient to show that,

ϵ c(n)× T ∗
D(N)− ϵ× T ∗

D(N) ≥ ϵ

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q))− ϵ

q∑︂
k=1

T ∗
D(Sk

D(q)).

Because D(q)(λ) ⪯ D(1)(λ) and by the inequality in (46), it must be true that,

c(n)× T ∗
D(N) ≥

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)).

Then, for any ϵ ∈ [0, 1− λ]:

ϵ

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)) ≤ ϵ c(n)× T ∗
D(N), and − ϵ

q∑︂
k=1

T ∗
D(Sk

D(q)) ≤ −ϵ× T ∗
D(N) ⇒ TCD(q)(λ+ ϵ) ≤ TCD(1)(λ+ ϵ).

That is, D(q)(λ+ ϵ) ⪯ D(1)(λ+ ϵ),∀ϵ ∈ [0, 1− λ], and the result follows.

Next, we prove that ∃λ(n−1)
: D(n) ⪯ D(q),∀q = 1, · · · , n− 1 ⇔ λ > max

{︂
λ
(1)

, λ
(n−1)

}︂
.

(a) We first show that, if for some λ, D(q)(λ) ⪯ D(n)(λ), for some q = 1, · · · , n− 1, then D(q)(λ− ϵ) ⪯ D(n)(λ−
ϵ),∀ϵ ∈ [0, λ]:

D(q)(λ) ⪯ D(n)(λ)

⇔
q∑︂

k=1

c̃(skD(q))× T ∗
D(Sk

D(q)) ≤
n∑︂

k=1

c̃(1)× T ∗
D({k})

⇔
q∑︂

k=1

[λ c(skD(q)) + 1− λ]× T ∗
D(Sk

D(q)) ≤
n∑︂

k=1

[λ c(1) + 1− λ]× T ∗
D({k}). (48)

There are two possible cases:

(i) Case where
∑︁q

k=1 c(s
k
D(q)) × T ∗

D(Sk
D(q)) ≤

∑︁n
k=1 c(1) × T ∗

D({k}): Then, the result trivially follows by (46)
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and the condition stated for this case, because for any ϵ ∈ [0, λ]:

(λ− ϵ)

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)) ≤ (λ− ϵ)

n∑︂
k=1

c(1)× T ∗
D({k}), and (1− (λ− ϵ))

q∑︂
k=1

T ∗
D(Sk

D(q)) ≤ (1− (λ− ϵ))

n∑︂
k=1

T ∗
D({k})

⇒ TCD(q)(λ− ϵ) ≤ TCD(n)(λ− ϵ).

(ii) Case where
∑︁q

k=1 c(s
k
D(q))× T ∗

D(Sk
D(q)) >

∑︁n
k=1 c(1)× T ∗

D({k}): It is sufficient to show that,

−ϵ

n∑︂
k=1

c(1)× T ∗
D({k}) + ϵ

n∑︂
k=1

T ∗
D({k}) ≤ −ϵ

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)) + ϵ

q∑︂
k=1

T ∗
D(Sk

D(q)),

which holds, because by (46) and the condition stated for this case, we have that, for any ϵ ∈ [0, λ]:

− ϵ

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)) < −ϵ

n∑︂
k=1

c(1)× T ∗
D({k}), and ϵ

q∑︂
k=1

T ∗
D(Sk

D(q)) ≤ ϵ

n∑︂
k=1

T ∗
D({k})

⇒ TCD(q)(λ− ϵ) ≤ TCD(n)(λ− ϵ).

Thus, in both cases, D(q)(λ− ϵ) ⪯ D(n)(λ− ϵ),∀ϵ ∈ [0, λ].

(b) To complete the proof, we now show that, if for some λ, D(n)(λ) ⪯ D(q)(λ),∀q = 1, · · · , n−1, thenD(n)(λ+ϵ) ⪯
D(q)(λ+ ϵ),∀ϵ ∈ [0, 1− λ]. It is sufficient to show that,

ϵ

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q))− ϵ

q∑︂
k=1

T ∗
D(Sk

D(q)) ≥ ϵ

n∑︂
k=1

c(1)× T ∗
D({k})− ϵ

n∑︂
k=1

T ∗
D({k}).

Because of the optimality of D(n)(λ) and the inequality in (46), it must be true that,
n∑︂

k=1

c(1)× T ∗
D({k}) ≤

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)).

Then, for any ϵ ∈ [0, 1− λ]:

ϵ

n∑︂
k=1

c(1)× T ∗
D({k}) ≤ ϵ

q∑︂
k=1

c(skD(q))× T ∗
D(Sk

D(q)), and − ϵ

n∑︂
k=1

T ∗
D({k}) ≤ −ϵ

q∑︂
k=1

T ∗
D(Sk

D(q))

⇒ TCD(n)(λ+ ϵ) ≤ TCD(q)(λ+ ϵ).

That is, D(n)(λ+ ϵ) ⪯ D(q)(λ+ ϵ), q = 1, · · · , n− 1,∀ϵ ∈ [0, 1− λ], and the result follows.

Finally, we show that ∃λ(q) ≤ 1, q = 2, · · · , n − 1, such that if λ ∈
(︂
max

{︂
λ
(1)

, λ
(q−1)

}︂
, λ

(q)
]︂
, then the optimal

solution is D(r)(λ), for some r = 2, · · · , q. To this end, we first show that ∃λq ≤ 1, q = 3, · · · , n, such that

D(q−1)(λ) ⪯ D(q)(λ),∀λ ≤ λq.

Consider any D(q) design for q ≥ 2. We construct a feasible D(q−1) design by combining any two assay sets,

k1, k2 ∈ {1, · · · , q} : k1 ̸= k2, in the D(q) design, while keeping all remaining assays intact. We show that, if for

some λ, D(q−1)(λ) ⪯ D(q)(λ), then D(q−1)(λ− ϵ) ⪯ D(q)(λ− ϵ),∀ϵ ∈ [0, λ]. Because all assays other than k1 and

k2 remain the same, it is sufficient to show that, given:

[λ c(sk1 + sk2) + 1− λ]× T ∗
D(π(Sk1 ∪ Sk2)) ≤

2∑︂
r=1

[λ c(skr ) + 1− λ] × T ∗
D(π(Skr )), (49)

the following inequality holds:

[(λ− ϵ) c(sk1 + sk2) + 1− (λ− ϵ)]× T ∗
D(π(Sk1 ∪ Sk2)) ≤

2∑︂
r=1

[(λ− ϵ) c(skr ) + 1− (λ− ϵ)]× T ∗
D(π(Skr )), (50)
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equivalently, the following inequality holds:

(︁
ϵc(sk1 + sk2)− ϵ

)︁
× T ∗

D(π(Sk1 ∪ Sk2)) ≥
2∑︂

r=1

(︁
ϵc(skr )− ϵ

)︁
× T ∗

D(π(Skr )). (51)

Because T ∗
D(π(S)) is subadditive in π(S), and π(S) is subadditive in set S (Property A.1), for any k1, k2 ∈

{1, · · · , q} : k1 ̸= k2:

π(Sk1) + π(Sk2) ≥ π(Sk1 ∪ Sk2), and (52)
2∑︂

r=1

T ∗
D(π(Skr )) ≥ T ∗

D(

2∑︂
r=1

π(Skr )) ≥ T ∗
D(π(Sk1 ∪ Sk2)). (53)

There are two possible cases:

(i) Case where c(sk1 + sk2)× T ∗
D(π(Sk1 ∪ Sk2)) ≥

∑︁2
r=1 c(s

kr )× T ∗
D(π(Skr )): Then, for any ϵ > 0:

ϵ c(sk1 + sk2)× T ∗
D(π(Sk1 ∪ Sk2)) ≥ ϵ

2∑︂
r=1

c(skr )× T ∗
D(π(Skr )), (54)

and from Eq. (53),

−ϵ T ∗
D(π(Sk1 ∪ Sk2)) ≥ −ϵ

2∑︂
r=1

T ∗
D(π(Skr )), (55)

hence adding (54) and (55) leads to:(︂
ϵc(sk1 + sk2)− ϵ

)︂
× T ∗

D(π(Sk1 ∪ Sk2)) ≥
2∑︂

r=1

(︂
ϵc(skr )− ϵ

)︂
× T ∗

D(π(Skr )), (56)

that is, (51) is satisfied, and this feasible D(q−1) design dominates the optimal D(q) design, and this result

continues to hold for the optimal D(q−1) design, that is, D(q−1)(λ− ϵ) ⪯ D(q)(λ− ϵ),∀ϵ ∈ [0, λ].

(ii) Case where c(sk1 + sk2)× T ∗
D(π(Sk1 ∪ Sk2)) <

∑︁2
r=1 c(s

kr )× T ∗
D(π(Skr )): Then, we have that

(︂
λc(sk1 + sk2) + 1− λ

)︂
× T ∗

D(π(Sk1 ∪ Sk2)) <

2∑︂
r=1

(︂
λc(skr ) + 1− λ

)︂
× T ∗

D(π(Skr )), ∀λ ∈ [0, 1], (57)

that is, D(q−1)(λ) ⪯ D(q)(λ),∀λ ∈ [0, 1].

Then, it follows that ∃λq ≤ 1, q = 3, · · · , n, such that D(q−1) ⪯ D(q),∀λ ≤ λq. Therefore, the result follows by

setting λ
(q−1)

= mink=q,··· ,n{λk}, for q = 3, · · · , n.
Note that only the existence of the D(1) optimal-region, λ ∈ [0, λ

(1)
], is guaranteed. In other words, D(n)-optimal

region may be empty if max
{︂
λ
(1)

, λ
(n−1)

}︂
= 1 ⇒

(︂
max

{︂
λ
(1)

, λ
(n−1)

}︂
, 1
]︂
= ∅; and the region where D(r), for

some r = 1, · · · , q, is optimal may be empty if λ
(q) ≤ λ

(1) ⇒
(︂
max

{︂
λ
(1)

, λ
(q−1)

}︂
, λ

(q)
]︂
= ∅.

Proof of Lemma 1. From Theorem 4, D(n) ⪯ D(q),∀q = 1, · · · , n− 1 ⇔ λ > max
{︂
λ
(1)

, λ
(n−1)

}︂
, equivalently,

n∑︂
k=1

c̃(1, λ)× T ∗
D

(︁
π({k};p)

)︁
≤

q∑︂
k=1

c̃(skD(q) , λ)× T ∗
D

(︁
π(Sk

D(q) ;p)
)︁
, ∀q = 1, · · · , n− 1 ⇔ λ > max

{︂
λ
(1)

, λ
(n−1)

}︂
. (58)

By Definition 6, for any p′ that is more correlated than p, π(S;p′) ≤ π(S;p),∀S ⊆ N : s ≥ 2, and π(S;p′) =

π(S;p),∀S ⊆ N : s = 1, and T ∗
D(π(S)) is increasing in π(S) ∈ [0, p] (Property 2), that is, as p becomes more

correlated, for each given λ, the LHS of (58) remains the same, while the RHS is non-increasing. Therefore, the

range of λ values for which the condition in (58) is satisfied either remains the same or shrinks. Then due to the

D(n)-optimality region delineated in Theorem 4, λ
(n−1)

must be non-decreasing as p gets more correlated.

Proof of Theorem 5.

Part 1. We first prove the result for the Dorfman design class.
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(a) Independent diseases case: Consider that the prevalences of the diseases in set N are mutually independent.

Consider any assay S ⊆ N , and swap any two diseases i ∈ S, j ∈ N\S. The difference between the prevalences of

the new assay S\{i} ∪ {j}, and the original assay S, can be expressed as follows:

π(S\{i} ∪ {j})− π(S) =
(πj − πi)[1− π(S)]

1− πi
= (πj − πi)

∏︂
r∈S\{i}

(1− πr). (59)

Consider any unordered partition S = (S1, S2), where S1 = {i1, · · · , is1} and S2 = {j1, · · · , js2}, with cardinality

vector s = (s1, s2), where the diseases in each set Sk, k = 1, 2, are arranged following a non-increasing order of

disease prevalences, that is, πi1 ≥ πi2 ≥ · · · ≥ πis1
and πj1 ≥ πj2 ≥ · · · ≥ πjs2

. Because S is not an ordered

partition, we must have that, either πi1 > πj1 > πis1
, or πj1 > πi1 > πjs2

, and in both cases, it follows that:

πi1 > πj
s2

and πj1 > πi
s1
. (60)

For each disease r ∈ N , define two dummy diseases, r(ϵ) and r(−ϵ), with respective prevalences, πr(ϵ) = πr + ϵ and

πr(−ϵ) = πr − ϵ, for any ϵ > 0 such that πr(ϵ) , πr(−ϵ) ∈ [0, 1]. Then, from Eq. (59), we have that:

π(S1\{is1} ∪ {is1
(ϵ)})− π(S1) = ϵ

∏︂
r∈S1\{i

s1
}

(1− πr) ≤ ϵ
∏︂

r∈S1\{i1}

(1− πr) = π(S1)− π(S1\{i1} ∪ {i1(−ϵ)}), (61)

and a similar inequality can be derived for set S2.

In the following, we show that swapping diseases between sets S1 and S2, as many times as needed so that

set S1 ends up containing either the s1 highest prevalence diseases, or the s1 lowest prevalence diseases in set N

(depending on the cost structure), and hence S2 ends up containing the remaining diseases, either reduces, or does

not change, the total cost. Thus we conclude that there exists an optimal partition that is ordered. There are two

possible cases:

(i) Case where Condition (C1) holds, where

Condition (C1): c̃(s1)× [T ∗
D(S1\{is1} ∪ {is1

(ϵ)})− T ∗
D(S1)] ≥ c̃(s2)× [T ∗

D(S2)− T ∗
D(S2\{j1} ∪ {j1(−ϵ)})].

Then, by Eq. (61), because T ∗
D(S) is concave increasing in any πr, r ∈ S (Property A.2), we have that:

T ∗
D(S1\{is1} ∪ {is1

(ϵ)})− T ∗
D(S1) ≤ T ∗

D(S1)− T ∗
D(S1\{i1} ∪ {i1(−ϵ)}). (62)

Similarly,

T ∗
D(S2\{js2} ∪ {js2

(ϵ)})− T ∗
D(S2) ≤ T ∗

D(S2)− T ∗
D(S2\{j1} ∪ {j1(−ϵ)}). (63)

Then, Condition (C1) and Eqs. (62)-(63) lead to:

c̃(s1)× [T ∗
D(S1)− T ∗

D(S1\{i1} ∪ {i1(−ϵ)})] ≥c̃(s1)× [T ∗
D(S1\{is1} ∪ {is1

(ϵ)})− T ∗
D(S1)]

≥c̃(s2)× [T ∗
D(S2)− T ∗

D(S2\{j1} ∪ {j1(−ϵ)})]

≥c̃(s2)× [T ∗
D(S2\{js2} ∪ {js2

(ϵ)})− T ∗
D(S2)]

⇔ c̃(s1)× T ∗
D(S1) + c̃(s2)× T ∗

D(S2) ≥c̃(s1)× T ∗
D(S1\{i1} ∪ {i1(−ϵ)}) + c̃(s2)× T ∗

D(S2\{js2} ∪ {js2
(ϵ)}),

and letting ϵ = πi1 − πjs2
(> 0) yields a partition S′ = (S1′ , S2′), where S1′ = S1\{i1} ∪ {js2} and S2′ =

S2\{js2} ∪ {i1}, and TC(S′, t∗(S′)) ≤ TC(S, t∗(S)).

Observe that by Eqs. (59)-(60), we have that:

π(S1′)− π(S1) = π(S1\{i1} ∪ {js2})− π(S1) = (πj
s2

− πi1)
[1− π(S1)]

1− πi1

< 0 ⇔ π(S1′) < π(S1), and (64)

π(S2′)− π(S2) = π(S2\{js2} ∪ {i1})− π(S2) = (πi1 − πj
s2
)
[1− π(S2)]

1− πj
s2

> 0 ⇔ π(S2′) > π(S2). (65)

Then, it is sufficient to show that if the new S′ = (S1′ , S2′) is not an ordered partition, then Condition (C1) is still

satisfied, and hence, starting with the new unordered partition S′, one can swap the highest prevalence disease in

set S1′ with the lowest prevalence disease in set S2′ , in order to either reduce or keep the same total cost. Then

one can repeat this argument to swap as many times as needed so that the revised set S1 contains the s1 lowest

prevalence diseases, hence the revised set S2 contains the s2 highest prevalence diseases, resulting in an ordered
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partition that is optimal.

To this end, we wish to show that:

c̃(s1)× [T ∗
D(S1′\{is1} ∪ {is1

(ϵ)})− T ∗
D(S1′)] ≥ c̃(s2)× [T ∗

D(S2′)− T ∗
D(S2′\{j1} ∪ {j1(−ϵ)})],

that is, Condition (C1) continues to be satisfied by the new partition S′ = (S1′ , S2′).

By Eqs. (59), (64), and (65), we have that:

π(S1\{is1} ∪ {is1
(ϵ)}) = ϵ[1− π(S1)]

1− πi
s1

<
ϵ[1− π(S1′)]

1− πi
s1

= π(S1′\{is1} ∪ {is1
(ϵ)}), and (66)

π(S2)− π(S2\{j1} ∪ {j1(−ϵ)}) = ϵ[1− π(S2)]

1− πj1

>
ϵ[1− π(S2′)]

1− πj1

= π(S2′ − π(S2′\{j1} ∪ {j1(−ϵ)}). (67)

By Eqs. (66)-(67), and because T ∗
D(S) is concave increasing in any πr, r ∈ S (Property A.2), we can write:

T ∗
D(S1′\{is1} ∪ {is1

(ϵ)})− T ∗
D(S1′) ≥ T ∗

D(S1\{is1} ∪ {is1
(ϵ)})− T ∗

D(S1), and (68)

T ∗
D(S2)− T ∗

D(S2\{j1} ∪ {j1(−ϵ)}) ≥ T ∗
D(S2′)− T ∗

D(S2′\{j1} ∪ {j1(−ϵ)}), (69)

and we have that:

c̃(s1)× [T ∗
D(S1′\{is1} ∪ {is1

(ϵ)})− T ∗
D(S1′)] ≥c̃(s1)× [T ∗

D(S1\{is1} ∪ {is1
(ϵ)})− T ∗

D(S1)]

≥c̃(s2)× [T ∗
D(S2)− T ∗

D(S2\{j1} ∪ {j1(−ϵ)})]

≥c̃(s2)× [T ∗
D(S2′)− T ∗

D(S2′\{j1} ∪ {j1(−ϵ)})],

where the first and third inequalities follow by Eqs. (68)-(69), and the second inequality follows by Condition

(C1). That is, Condition (C1) continues to hold for partition S′ = (S1′ , S2′).

Hence, if S′ is an ordered partition, then we have attained an ordered partition S′ for which TC(S′, t∗(S′)) ≤
TC(S, t∗(S)); and if S′ is not an ordered partition, then we can repeat the same process by swapping the highest

prevalence disease in set S1′ with the lowest prevalence in set S2′ , thus either reducing or keeping the same total

cost until an ordered partition in which the revised set S1 contains the s1 lowest prevalence diseases and the revised

set S2 contains the s2 highest prevalence diseases is attained, establishing the desired result.

(ii) Case where Condition (C1) does not hold, that is,

c̃(s1)× [T ∗
D(S1\{is1} ∪ {is1

(ϵ)})− T ∗
D(S1)] < c̃(s2)× [T ∗

D(S2)− T ∗
D(S2\{j1} ∪ {j1(−ϵ)})]

The proof of this case follows similarly to the proof of Case 1, by repeatedly swapping the lowest prevalence disease

in set S1 with the highest prevalence disease in set S2 (i.e., starting with swapping is1 ∈ S1 with j1 ∈ S2) until

an ordered partition in which the revised set S1 contains the s1 highest prevalence diseases and the revised set

S2 contains the s2 lowest prevalence diseases is attained, and it can be shown that this ordered partition incurs a

total cost that is less than or equal to the cost of the original partition.

(b) No co-infections case: Consider that the prevalences of the diseases in set N are mutually exclusive. Then,

π(S) =
∑︁

i∈S πi,∀S ⊆ N (Eq. (4)). Consider any D(q) design, q = 2, · · · , n, with partition S = (Sk)k=1,··· ,q, and

a fixed cardinality vector s = (sk)k=1,··· ,q. Because the size of each assay, sk, k = 1, · · · , q, is fixed for all possible

partitions, c̃(sk) becomes a constant, hence c̃(sk)× T ∗
D(Sk) is concave increasing in π(Sk : |Sk| = sk), k = 1, · · · , q

(Property 2), that is, considering all sets Sk with cardinality |Sk| = sk. Hence, the total cost, TCD(q)(S : |S| = s),

is minimized by an ordered q-partition [3, 21].

Part 2. We next prove the result for the mixed-testing design class. Consider any M (q) design, q = 2, · · · , n, and
let N I and ND respectively denote the set of diseases that are tested (in any number of assays) individually, and

via pooling, with respective cardinalities, nI , nD ∈ Z+ : nI + nD = n. Then, N I ∪ ND = N and N I ∩ ND = ∅.
By Theorem 4, M (q) contains one assay, comprised of all diseases in set N I , that is individually tested, and q − 1

assays (i.e., subsets of set ND) that are pooled.
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Next, we turn our attention to those diseases that are tested via pooling, i.e., set ND, and study the optimal

partition of set ND, which, by definition of M (q), needs to be a q− 1-partition, with each assay using pooling. Let

S(ND) = (Sk(ND))k=1,··· ,q−1 denote any q − 1-partition of set ND. Then, by Eq. (19), we have that

TC(S(ND), t∗D(S(ND))) =

q−1∑︂
k=1

c̃(sk(ND))× T ∗
D(Sk(ND)) =

q−1∑︂
k=1

c̃(sk(ND))×
[︃

1

t∗D(Sk(ND))
+ 1−

(︁
1− π(Sk(ND))

)︁t∗D(Sk(ND))
]︃
.

First, we show that there exists an optimal M (q) design in which set N I contains the nI highest prevalence

diseases in set N . Assume, to the contrary, that this is not the case. Then, ∃i1 ∈ N I , i2 ∈ ND : πi1 < πi2 . Assume,

without loss of generality, that i2 ∈ Sk′
(ND) ⊆ ND, for some k′ = 1, · · · , q− 1. Then, swapping diseases i1 and i2

will not affect the total cost of individual testing, because TC(N I , t = 1) = TC(N I ∪{i2} \ {i1}, 1) = c̃(nI), but it

will alter the total cost of pooled testing by TC(S(ND∪{i1}\{i2}))−TC(S(ND)) = c̃(sk
′
(ND))×T ∗

D(Sk′
(ND)∪

{i1} \ {i2}))− c̃(sk
′
(ND))×T ∗

D(Sk′
(ND)) < 0, where the inequality follows because T ∗

D(S) is strictly increasing in

π(S) (Property 2); and for both the independent diseases and no co-infections cases, π(S) is linear increasing in πi,

∀i ∈ S (Eqs. (15)-(16)), hence, π(Sk′
(ND)) > π(Sk′

(ND)∪ {i1} \ {i2}), that is, we have identified a q-partitioned

mixed-testing design with a lower total cost. Thus, there exists an optimal mixed-testing design in which set N I

contains {1, · · · , nI}. The second part of the result, that the diseases in set ND are tested via pooling following

an ordered q − 1-partition, follows directly from part 1 of this theorem, completing the proof.

Proof of Corollary 1.

Part 1. The reduction, of the problem of finding an optimal partition of set N , to a Shortest Path Problem

follows from Theorem 5, which states the existence of an optimal design that uses an ordered partition under the

assumptions stated in this corollary, in light of Lemma 1 in [21].

Part 2. The construction of graph G(V (N), E(N)) requires the computation of all edge weights, wi,j = c̃(s, λ) ×
T ∗(S), where S = {i, i + 1, · · · , j − 1}, ∀i, j ∈ V (N) : i < j. Hence, n + 1 − i computations are needed for each

wi,j , i < j ≤ n + 1, i ∈ N , for a total of
∑︁n

i=1(n + 1 − i) = 1
2n(n + 1) computations, leading to polynomial

complexity in the order of O(n2). Solving the Shortest Path Problem by a topological sorting algorithm also has

polynomial complexity, O(n2) [26], establishing the desired result.

B Case Study: Details and Supporting Results
Assay cost function: Based on [76], which reports the per test cost for 2-plex and 20-plex PCR respiratory

assays as $42 and $114.8, respectively, we explore various concave cost functions that satisfy, 21 ≤ c(1) ≤ 42 and

c(20) = 114.8. We consider a functional form that has a fixed cost per assay, and a variable cost per disease bundled.

For the two extreme values for c(1) (along with the given value of c(20)), at c(1) = 21, c(s) = 16.06 + 4.94 × s;

and at c(1) = 42, c(s) = 38.17 + 3.83 × s. In §6, we provide the results for the c(s) = 25.54 + 4.46 × s function,

yielding c(1) = 30; sensitivity analysis on cost parameters indicate similar qualitative findings.

CI for R-TD: For each year in the study period, we use the 52 weekly prevalence data for each disease to construct

a 95% CI for each Πi, i ∈ N, based on the Wald’s method, e.g., [65], which utilizes the normal distribution

approximation invoked by the Central Limit Theorem: π̂i ± z×σ̂i√
52

, where π̂i and σ̂i respectively represent the

average and standard deviation for the 52 weeks, and z is the corresponding standard normal CDF.

Price of robustness ratio (PoR) (%): [TCR-TD∗(λ)−TCTD∗(λ)]
TCTD∗(λ)

× 100.

Table B.1: PoR for 2018 and 2021 perfect-information R-TD designs, based on 2018 and 2021 data, resp.

λ range 0.00-0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

2018-PoR (%) 0.000 0.232 0.020 0.022 0.024 0.026 0.037 1.600 2.395 1.203
2021-PoR (%) 0.000 0.000 0.000 -2.392 0.000 0.030 0.000 0.000 0.000 0.000
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Table B.2: V oJ for 2018 TD designs (with and without seasonality) based on 2018 data - without COVID-19 testing

λ range 0-0.15 0.20-0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

V oJ(λ) (%) - Without seasonality 0.0 0.0 0.4 1.0 1.6 2.4 3.9 5.5 7.0 8.5 10.2 13.4 16.7 20.5
V oJ(λ) (%) - With seasonality 5.3 5.2 5.4 6.2 7.2 8.3 9.7 11.3 13.0 14.6 16.7 19.4 22.2 25.2

Table B.3: The metrics for 2018 TD and R-TD designs based on 2019-2021 data - without COVID-19 testing

Model Range of Testing Cost Number of Tests
(n = 17) λ Values Mean (Min-Max) Mean (Min-Max)

TD 0.00-0.40 1.00 (1.00-1.00) 1.00 (1.00-1.00)
0.45-0.55 0.93 (0.93-0.93) 1.05 (1.05-1.06)
0.60-0.80 0.88 (0.83-1.07) 1.21 (1.11-1.62)

0.85 0.86 (0.82-1.03) 1.25 (1.17-1.57)
0.90 0.81 (0.74-0.94) 1.39 (1.26-1.63)

0.95-1.00 0.79 (0.69-0.97) 1.56 (1.34-1.93)

R-TD 0.00-0.40 1.00 (1.00-1.00) 1.00 (1.00-1.00)
0.45-0.55 0.93 (0.93-0.93) 1.05 (1.05-1.06)
0.60-0.80 0.88 (0.83-1.06) 1.21 (1.11-1.59)

0.85 0.86 (0.82-1.02) 1.25 (1.17-1.55)
0.90 0.84 (0.79-0.98) 1.32 (1.22-1.63)

0.95-1.00 0.82 (0.72-0.99) 1.54 (1.34-1.90)

Table B.4: The metrics for modified 2018 TD and R-TD designs based on 2021 data

Modified 2018 design 2021 perfect-information design
Model Range of Testing Cost Number of Tests Range of Testing Cost Number of Tests

(n = 17) λ Values Mean (Min-Max) Mean (Min-Max) λ Values Mean (Min-Max) Mean (Min-Max)

Without COVID-19 Testing

TD 0.00-0.40 0.76 (0.42-0.94) 0.76 (0.42-0.94) 0.00-0.35 0.76 (0.42-0.94) 0.76 (0.42-0.94)
0.45-0.60 0.68 (0.37-1.03) 0.91 (0.49-1.60) 0.40-0.75 0.62 (0.36-0.77) 0.83 (0.49-1.02)
0.65-0.85 0.63 (0.35-0.91) 0.94 (0.54-1.42) 0.80 0.60 (0.35-0.75) 0.90 (0.53-1.12)
0.90-0.95 0.60 (0.36-0.93) 1.16 (0.69-1.89) 0.85-0.90 0.56 (0.34-0.75) 1.10 (0.67-1.47)

1.00 0.60 (0.36-0.94) 1.35 (0.81-2.13) 0.95-1.00 0.56 (0.34-0.74) 1.12 (0.69-1.47)

R-TD 0.00-0.35 0.76 (0.42-0.94) 0.76 (0.42-0.94) 0.00-0.30 0.76 (0.42-0.94) 0.76 (0.42-0.94)
0.40-0.55 0.68 (0.37-1.02) 0.90 (0.49-1.57) 0.35-0.70 0.62 (0.36-0.77) 0.83 (0.49-1.02)
0.60-0.80 0.63 (0.36-0.90) 0.94 (0.54-1.40) 0.75 0.60 (0.35-0.75) 0.90 (0.53-1.12)

0.85 0.62 (0.37-0.87) 0.98 (0.58-1.38) 0.80 0.57 (0.34-0.78) 1.07 (0.65-1.49)
0.90 0.60 (0.36-0.92) 1.16 (0.69-1.87) 0.85 0.56 (0.34-0.75) 1.10 (0.67-1.47)
0.95 0.59 (0.36-0.86) 1.25 (0.76-1.75) 0.90-1.00 0.56 (0.34-0.74) 1.12 (0.69-1.47)
1.00 0.61 (0.37-0.93) 1.38 (0.85-2.13)

With COVID-19 Testing

TD 0.00-0.35 0.86 (0.59-1.02) 0.86 (0.59-1.02) 0.00-0.30 0.86 (0.59-1.02) 0.86 (0.59-1.02)
0.40-0.55 0.77 (0.51-1.11) 1.01 (0.65-1.70) 0.35-0.70 0.71 (0.49-0.84) 0.93 (0.66-1.10)
0.60-0.80 0.70 (0.48-0.98) 1.05 (0.72-1.53) 0.75 0.68 (0.48-0.82) 1.00 (0.71-1.21)

0.85 0.66 (0.47-0.98) 1.27 (0.88-2.01) 0.80 0.63 (0.45-0.81) 1.21 (0.87-1.57)
0.90 0.66 (0.46-0.97) 1.36 (0.93-2.02) 0.85-1.00 0.62 (0.45-0.80) 1.23 (0.89-1.57)
0.95 0.65 (0.46-0.92) 1.36 (0.97-1.89)
1.00 0.66 (0.46-0.99) 1.46 (1.01-2.25)

R-TD 0.00-0.35 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.00-0.30 0.86 (0.59-1.02) 0.86 (0.59-1.02)
0.40-0.55 0.90 (0.86-1.12) 1.16 (1.06-1.70) 0.35-0.65 0.71 (0.49-0.84) 0.93 (0.66-1.10)
0.60-0.85 0.81 (0.77-0.99) 1.20 (1.13-1.54) 0.70-0.75 0.68 (0.48-0.82) 1.00 (0.71-1.21)

0.90 0.81 (0.76-1.04) 1.36 (1.24-1.93) 0.80-1.00 0.62 (0.45-0.80) 1.23 (0.89-1.57)
0.95 0.65 (0.46-0.91) 1.36 (0.97-1.87)
1.00 0.66 (0.46-0.98) 1.49 (1.05-2.25)
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