friried applied
e sciences

Article

A Framework for Attribute-Based Access Control in Processing
Big Data with Multiple Sensitivities

Anne M. Tall 12* and Cliff C. Zou 3

check for
updates

Citation: Tall, A.M.; Zou, C.C. A
Framework for Attribute-Based
Access Control in Processing Big
Data with Multiple Sensitivities. Appl.
Sci. 2023, 13,1183. https:/ /doi.org/
10.3390/app13021183

Academic Editors: Marek Pawlicki
and Rafatl Kozik

Received: 19 December 2022
Revised: 12 January 2023
Accepted: 13 January 2023
Published: 16 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
The MITRE Corporation, Orlando, FL 32817, USA

Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA

* Correspondence: annetall@mitre.org; Tel.: +407-902-3404

W ON =

Featured Application: Controlling access to a large set of medical and social media data processed
in a cloud environment using open-source Hadoop storage and Spark parallel processing.

Abstract: There is an increasing demand for processing large volumes of unstructured data for a wide
variety of applications. However, protection measures for these big data sets are still in their infancy,
which could lead to significant security and privacy issues. Attribute-based access control (ABAC)
provides a dynamic and flexible solution that is effective for mediating access. We analyzed and
implemented a prototype application of ABAC to large dataset processing in Amazon Web Services,
using open-source versions of Apache Hadoop, Ranger, and Atlas. The Hadoop ecosystem is one of
the most popular frameworks for large dataset processing and storage and is adopted by major cloud
service providers. We conducted a rigorous analysis of cybersecurity in implementing ABAC policies
in Hadoop, including developing a synthetic dataset of information at multiple sensitivity levels
that realistically represents healthcare and connected social media data. We then developed Apache
Spark programs that extract, connect, and transform data in a manner representative of a realistic use
case. Our result is a framework for securing big data. Applying this framework ensures that serious
cybersecurity concerns are addressed. We provide details of our analysis and experimentation code
in a GitHub repository for further research by the community.

Keywords: attribute-based access control; big data security; database security; parallel processing security

1. Introduction

Distributed computing and storage are being applied to gain new insights from large
datasets that contain information from multiple domains. This type of combined big dataset
processing (BDP) supports a variety of applications, such as new medical discoveries,
analyses of economic trends, and marketing opportunities. Clusters of interconnected
commodity cloud-based systems enable this type of modern data processing. Apache™
Hadoop® is a leading open-source framework for this capability. Hadoop-based services
are hosted by cloud service providers such as Amazon, Google, and Microsoft.

In order to realize the analytical advantages, the data security requirements must be
addressed while dealing with the velocity, volume, variety, veracity, and value (5-Vs) of
big data. A major characteristic of big data is the security risk of a loss of privacy due
to reidentification based on compilations of data from many sources. Large datasets are
vulnerable to attacks because they may contain highly sensitive data that are otherwise
inaccessible from individual data sources.

A framework that provides an approach to protect large datasets is needed. In this
paper, we describe our proposed framework approach for BDP security analysis and
development. This framework consists of a specific attribute, policy configurations to
achieve attribute-based access control (ABAC), and general, system-wide architecture

Appl. Sci. 2023, 13,1183, https:/ /doi.org/10.3390/app13021183

https://www.mdpi.com/journal/applsci

Appl. Sci. 2023,13,1183

2 of 28

requirements. Our proposed framework for achieving BDP security consists of three key
component actions:

1. Analysis of standards as the fundamental basis for security architecture design. For
example, specifically for ABAC, we analyzed Extensible Access Control Markup
Language (XACML).

2. Experimentation with a realistic prototype, which we configured using Apache
Hadoop (https://hadoop.apache.org/ accessed on 14 January 2023) on Amazon
Web Services (AWS).

3. Design of capabilities to ensure operations at an objective secure state, which we
identified as including the mandatory use of a secure data analysts’ notebook, a data
security service layer, and a central management console.

4. We believe our work presents the first framework for a more comprehensive analysis
of security for BDP, focusing on the ABAC issues for large datasets with multiple
sensitives. Other research on security in BDP has covered a wide variety of specific
issues, including homomorphic encryption [1] and developing secure applications
that can quickly become operational (DevSecOps) [2]. These advances depend on
reliable access control (AC). A variety of alternative approaches to AC are being
researched [3], and ABAC is the leading contender. It differs from other methods
of access control, such as list-based, in which permission decisions depend upon
assigning users to groups or operating system file permissions which designate a file
owner, group, and others. Attributes are assigned to users (subject), objects (data files),
and data analysis programs. These three types of entity help enable high-fidelity AC.

Our analysis and experiments provide the following contributions:

1. We present specific examples of cybersecurity attacks focusing on access control,
which underlies most security services in BDP environments such as Hadoop.

2. We detail the installation and configuration of Hadoop on AWS Elastic Cloud Com-
pute (EC2) instances for security-related analysis and experiments.

3. We provide the results of using a generated representative multiple-sensitivity health-
care and social media dataset in an Apache Spark parallel-processing privacy-preserving
data lifecycle.

4. We detail specific BDP configuration recommendations to achieve attribute-based
access control (ABAC) in Hadoop using Apache Ranger (https:/ /ranger.apache.org/
accessed on 14 January 2023) and Atlas (https://atlas.apache.org/ accessed on 14
January 2023).

To protect data in BDP environments, system security managers and administrators
need to consider and test each component of the ecosystem and the collective environment.
Many security features have been added to BDP systems, such as identification using
Kerberos and encryption of the data at rest, but the comprehensive perspective of system
security needs to be considered along with these individual capabilities. Our framework
provides a more wholistic approach. Attackers take advantage of any open port, protocol,
and service in the computation, storage, and communication environment to gain a foothold
to introduce malware or exfiltrate data. Confidentiality, integrity, and availability need to
be applied in a consistent, well-integrated, and layered manner across the environment.

1.1. Motivation

The security of cloud-based BDP, such as AWS Elastic Map Reduce (EMR) (https://aws.
amazon.com/emr/ accessed on 14 January 2023), Google Cloud Platform (https://cloud.
google.com/dataproc accessed on 14 January 2023), and Microsoft Azure (https://azure.
microsoft.com/en-us/services/hdinsight/ accessed on 14 January 2023), is largely based
on “castle wall” strategies. It is assumed that everyone with access to distributed cluster
computing has full access to all data. Fine-grained access controls that separate data access
based on authorizations, roles, and/or data sensitivity is not configured by default in automated
cloud-based clusters. Moreover, there is no mechanism to verify that security features have

Appl. Sci. 2023, 13,1183

3 0f28

been implemented and configured and can provide the necessary separation of duty-related
protections. This limits the use of clusters to a small number of highly trusted individuals.
Ideally, we want to make the data lake available to a wide variety of users with different
requirements for analytical processing.

A more wholistic, framework-based approach to security is needed. This includes ana-
lyzing standards as the fundamental basis for the design, developing a realistic prototype
for experimentation, and then ensuring key capabilities are integrated into the operational
system for layered security.

For example, Kerberos has in the past been viewed as the “solution” to Hadoop secu-
rity. However, with Kerberos, the service ticket issued after authentication (authentication
service) by the ticket-granting server (TGS) is valid for a certain period. Hijacking creden-
tials to generate “golden” tickets in Kerberos that never expire is an attack vector that has
been exploited in publicly disclosed attacks, such as the Sony attack [4,5]. The threat of this
type of attack needs to be carefully assessed, and it should not be assumed that attackers
cannot move beyond the perimeter [6,7]. We, therefore, propose our more comprehensive
framework approach.

1.2. Big Data Distributed Compute and Storage

The core components of Apache Hadoop and their interactions are shown in Figure 1.
The Name Node tracks the location of files stored across multiple Data Nodes and stores
their location in the File System Image (FSImage) file. The Resource Manager tracks the
execution of data processing through distributed Node Managers. The Resource Manager
is a component of the Hadoop Yet Another Resource Negotiator (YARN), introduced in
Hadoop version 2. Each Node Manager launches Application Masters (AppMasters) that
allocate containers of the Java Virtual Machine (JVM) for parallel process execution. The
Job History server and Application Manager oversee job execution across clusters. This
architecture enables distributed processing and storage on commodity machines by using
programming models such as MapReduce (which is part of the core Hadoop distribution),
Apache Spark, and other independently developed open-source tools.

L1111 11111 11111
— s d = - = =4 Resource Manager =
= econdary — = Name Node f== == job History Server ™
— Name Node — — —
— —‘ L . FSimage I Application __
— FSImage L 4 N Manager -
o ™ [L1111
ITTTT / T1 [Fiadoop |-
4 Client |~
/' 7 | SSH HDFS CLI,|_
L1111y~ __L4 11110 —| HTTPHTTPS [~
1 DataNode - ,/.4/ Data Node \ Data Node! TTTTT

Node Manager Node Manager

_‘Container AppMaster | w| Container | AppMaster

rrrri rrrri TTTT1

Node Manager
Container | |AppMaster

L
l—
—
l—

L1111
R

Figure 1. HDFS, YARN, and the Hadoop client component interfaces. Solid lines indicate data and
job exchanges during program execution and dashed lines indicate FSImage information exchange.

During a read or write on the Hadoop Distributed File System (HDEFS), the Hadoop
client interfaces to the core Hadoop components by using the Secure Shell (SSH) and HDFS
command-line interface (CLI), a web browser using HTTP/HTTPS, or some other custom
TCP interface such as Java Database Connectivity (JDBC). The Name Node that provides
the client with the location for reading or writing is assigned the location for writing data
blocks that comprise the data file. The client then interfaces directly with each Data Node to
read and write the data blocks of the file. Since the client applications used by data-analysts

Appl. Sci. 2023,13,1183

4 of 28

interface with all Data Nodes, Name Nodes, and Resource Managers, there is potential for
a wide attack surface for unauthorized actions.

Applications such as MapReduce and Spark programs are submitted by Hadoop
clients to the Resource Manager for execution. Rather than interfacing with each Data Node
for program execution, the Resource Manager coordinates execution on behalf of the client.
For each client request, it interfaces with each Node Manager co-located with the Data
Nodes to initiate an Application Master (AppMaster), which then coordinates the resources
of the Data Node (e.g., memory and processors) in JVM containers across the cluster.

The design involves Hadoop clients communicating with every component in the core
architecture of Hadoop except for the Secondary Name Node. This node has a limited
role in that it periodically executes a checkpoint to synchronize the File System Image
(FSImage) and changes captured in edit logs (editLogs) with the Name Node. This enables
the capability to restore the cluster if the Name Node FSImage file is corrupted.

From the perspective of cybersecurity, the ability to interface with every Data Node,
the Name Node, and the Resource Manager provide Hadoop clients with a large access
surface that can cause a significant problem if appropriate access controls are not in place.

New and more reliable Hadoop configurations, such as the Name Node Federation and
high-availability configurations, further expand client access to the component interfaces.
Multiple copies of files and multiple methods for submitting jobs to the ecosystem further
complicate the security of these more advanced Hadoop configurations.

The flexibility of the Hadoop framework, such as exposed application programming
interfaces (APIs) that enable multiple types of communication links in the architecture, has
enabled the development of a wide variety of independently developed open-source ecosys-
tem software projects. Several of them enable the structured query language (SQL) and
SQL-like interfaces, data-ingesting services, job scheduling, provisioning, and management.
These capabilities offer easy entry points for data analysts.

A variety of international organizations have contributed to and used the open-source
Apache Hadoop ecosystem, including universities, social media companies (Facebook),
and cloud service providers (RackSpace, Amazon). Cloudera is a commercial company that
is a leading provider of Hadoop support (https://cwiki.apache.org/confluence/display/
HADOOP2 /PoweredBy accessed on 14 January 2023).

1.3. Attribute-Based Access Control Approach

The overall approach for ABAC is defined in the National Institute of Standards Spe-
cial Publication (NIST SP) 800-162 as th ABAC trust chain [8]. For the BDP ecosystem,
attributes, such as data processing lineage and environmental conditions, are added as part
of the AC trust chain, as depicted in Figure 2. When datasets are processed to anonymize
sensitive data elements, attributes are updated. Instead of binary, i.e., yes or no, access
decisions, a user can be granted access to data after the processing conditions or obliga-
tions are met, such as executing an anonymization program and assigning a lower data
sensitivity attribute.

The AC trust chain depicts the decision process as a subject, i.e., user or process,
requesting access to an object, i.e., the target data or file the subject wants to read, write,
or execute. The first step of the trust chain is authenticating the subject based on identity
credentials and network access permissions. The AC decision is then initiated based on the
attributes of the subject and the authentication rules. We propose that, in addition to the
object attributes, the next step of the AC trust chain includes the environmental attributes.
In this step, data (object) attributes are used, i.e., metadata or tags, specifically including
those that indicate the data lineage, provenance, and privacy-preserving data mining
(PPDM) algorithms executed on the data. The rules that define access permissions to data
(objects) must include the decision process based upon metadata, i.e., tags. Traditional
approaches where users (subjects) are assigned to groups or roles can be incorporated
into an ABAC model. The attributes are assigned to the subject roles or groups. The

Appl. Sci. 2023,13,1183

5o0f28

access permission policies are enforced using the subject, object, and ecosystem, as well as
attribute tags, in the final step of the trust chain.

Identity Subject Object
Credential Attributes Attributes

Proper Credential Authoritative Subject Authoritative Object
Issuance Altribute Stores Attributes
Credential Validation Attribute Provisioning ggﬁmﬁ;&:ﬁ%my
Strength of Credential Common Subiect))
Protection Attribute Taxonomy Attribute Integrity

Attribute Inegrity

Subject Authentication Access Control Access ControlH Object

Decision Enforcement

Environment, Condition
Attributes

Network Authentication

. Palicy Interpretation
Physical Access [Network Credential
Condition, Service, Task
Digital Identity Rule Management | Attributes

Provisioning

Ecosystem
Attributes

** Added for AC in
big data systems

Network
Access

Figure 2. Modified NIST SP 800-162 ABAC trust chain with BDP ecosystem attributes.

As with other security services, AC requires a defense-in-depth approach. Researchers
have proposed the application of AC at various points in big data ecosystems based on
standard approaches. XACML (http:/ /docs.oasis-open.org/xacml/ accessed on 14 January
2023) is the predominant and de-facto standard for AC. It defines the policy language,
request/response scheme, and architecture. Originally published in 2001, XACML is an OA-
SIS standard and is currently at version 3.0. The more recently developed next-generation
access control (NGAC) standards address additional areas in securing distributed, multi-
owner big datasets. The International Committee for Information Technology Standards
maintains NGAC [9].

Although XACML and NGAC policy language standards are widely referenced, they
are not implemented in Apache Hadoop ecosystem open-source security projects, e.g.,
Apache Ranger and Atlas. The reference architectures concepts are basically followed.
The XACML and NGAC reference architectures define the necessary functionality and
interactions to enforce AC policies. Both architectures specify a four-layer functional
decomposition: enforcement, decision, access control data, and administration. The policy
enforcement point (PEP) handles user/application requests and interacts with the policy
decision point (PDP). The PDP interacts with administrative components, such as the
identity provider and policy management components, defined as a policy information
point (PIP) and policy access point (PAP). NGAC differs in terms of the interactions of the
PIP and PAP with the PDP in the administration of information used to provide additional
context for arriving at a decision, such as environmental conditions and obligations.

The standard AC architecture components are shown in Figure 3. Implementation
with the retrieval of electronic heath record (EHR) data in the Apache Hadoop environment
is highlighted. The sequence of steps that occur when a user requests access to data, e.g.,
EHR data, is provided as an example. Based upon the user identification (UID), AC policies,
and data object attributes, a decision is made to enable a user to view the EHR data. The
ecosystem components provide policy enforcement at the boundary using an Apache Knox
(https:/ /knox.apache.org/ accessed on 14 January 2023) gateway. Directory services such
as lightweight directory access protocol (LDAP) support users/subject AC, and the Hadoop

Appl. Sci. 2023,13,1183

6 of 28

file system (HDFS) supports AC to data/objects. AC to a process execution can be achieved
by controlling access to the Hadoop YARN resource management queue. The administra-
tion and management of policy information are achieved using the Apache Ranger and
Apache Atlas Hadoop ecosystem components. The sequence of AC enforcement steps
and placement of functionality in Hadoop ecosystem components is highlighted in the
shaded boxes.

8:. View data, e.g., EHR Data Store
' and Compute
: 6. View EHR _lll“_é
Knox Proxy -> Directory, i _data 3 rHHH . ‘
LDAP -> Hadoop, HDFS PEP - — e Enforcement Policy Enforcement Point
2. Can user (UID) 5. Permit. user
view EHR data? can view data
3. Evaluate policies | PDP Decision Policy Decision Point
Ranger, Atlas
g “ Access Control Data Policy Information Point
4. Retrieve . I . .
PAP | additional attributes Administration Policy Administration Point

TrTT

s122z| = Storage Poincy@ Data
Storage

Figure 3. A standard architecture includes multiple points that contribute to the AC process.

There is a lack of consensus on ABAC details, which makes consistent, interoperable
implementation a challenge to achieve. For example, a careful design of the rules and
definition of the attributes is critical to ensure a clear interpretation of the rules and avoid an
explosion in the number of the attributes, i.e., where a large number of attributes are defined
and applied to the extent at which they become unmanageable. Alternative locations for
implementing AC services in an architecture and avoiding bypasses, and consistent and
synchronized implementation are challenging areas explored by researchers. As a result,
we believe the first step in designing and implementing a secure BDP is the analysis of the
architecture based on standard reference models. An audit of the design should ensure
coverage of key functions.

2. Materials and Methods

To verify the recommendations for ABAC in BDP, we designed and conducted a
test using a large dataset of messages generated at multiple sensitivity levels. The data
are processed in parallel through a series of analytic and privacy-preserving programs
to represent a data processing lifecycle. This was hosted on a cloud service provider,
i.e.,, Amazon Web Services (AWS), using storage and computer platforms, Elastic Cloud
Compute (EC2), Simple Server Storage (S3), and Infrastructure as a Services (IaaS). This
configuration represents a hypothetical yet realistic data analysis environment that may be
accessed by users with different permission levels.

Industry and government are investing significant resources into gathering, extracting,
transforming, and analyzing large datasets. Without thoroughly tested and trusted BDP
security, these types of data lakes are available to only a small group of highly trusted users.
The lack of broad use represents a significant potential loss in this investment.

Appl. Sci. 2023,13,1183

7 of 28

Cloud service providers are helping to enable access to tools to wrangle these large
data sets with services such as the AWS Elastic Map Reduce (EMR). Such services provide
an operational configuration of BDP frameworks based on open-source software from
the Hadoop ecosystem. The current default security configuration is primarily based on
security firewalls, proxy servers, and/or virtual private networks at the cluster boundary.
These services have only recently integrated fine-grain security services. Service providers
are enhancing cloud BDP security based on open-source systems, such as Apache Ranger
and Atlas. More complete, robust, and layered security is the operational goal. Currently,
the design and configuration of this type of layered security for applications deployed in
the cloud currently remain the responsibility of the cloud users.

To further understand the challenges associated with the security of BDP applications
running in the cloud, we built an Apache Hadoop cluster with Spark parallel processing,
allowing us full access to configuration and log files to achieve a deeper understanding of
the security and performance implications. The focus of the experiments the ABAC services
for data stored in Hadoop and processed in parallel through Spark applications. This
prototype is the second key component of our framework: an experiment that realistically
represents a dataset and data processing program with complex security challenges.

2.1. Implementation Strategy

Three technical areas must be specified to implement BDP ABAC: policies, attribute
models, and data provenance. Policies are challenging because translating legal, human-
language-based, nuanced AC policies into computer programs is complicated. Because
ABAC policies are rules based upon relationships between attributes, a consistent attribute
definition and management across the big data ecosystem is critical for rule implementation.
A variety of attribute models have been proposed by researchers to logically organize and
manage attributes in a manner that avoids an explosion of attributes. Data provenance can
be considered a specialized, dynamic attribute that tracks data processing over time. In the
following subsections, research in these areas is reviewed and summarized.

For each of these three areas, a healthcare use case is considered to further explain
and expand upon such challenges. This is provided to illustrate the concept of achieving a
fine-grain, dynamic AC. The proposed use case includes a large dataset of mixed EHRs, and
social media messages that are accessed by researchers, medical staff, insurance providers,
and a large population of patients who are social media users. In this use case, the combined
dataset is analyzed for various issues, such as detecting disease spread by using indicators
in social media messages. This use case is a representation of a hypothetical “wellness
program” that an insurance company might sponsor to improve healthcare outcomes.
Figure 4 illustrates the data exchanges between roles in this use case.

Users, Patients Medical Staff,
Doctors

I)
Wellness

Social Media Program - | | Electronic Health
Data Combined || Records (EHR)

! 4 —p Data g
=

Researchers Insurance
Provider
(%)

3 v

Legend

= Data, the color red indicates
sensitive data and green indicates
public data, that may contain Pl

Figure 4. A multi-tenant, multi-level “wellness program” use-case for analyzing BDP security.

Appl. Sci. 2023,13,1183

8 of 28

2.1.1. AC Policies

The first step in analyzing approaches to AC is considering the representation and
implementation of the policies. AC policies are comprised of rules that are typically
organized in a hierarchical relationship. The rules define what data users are permitted
to access and what actions they are allowed to execute. Privacy requirements based upon
Federal laws such as the Health Insurance Portability and Accountability Act (HIPAA)
(https:/ /www.hhs.gov/hipaa accessed on 14 January 2023) and industry regulations,
such as the California Consumer Privacy Act (CCPA) (https://oag.ca.gov/privacy/ccpa
accessed on 14 January 2023) drive the rules at the top of the hierarchy. For example,
data that is considered PII or Protected Health Information (PHI) are subject to such legal
requirements. Data providers or users, i.e., the data consumer or data owner, also have
expectations of data protection and privacy that are translated into rules. The AC rule
hierarchy levels are generally as follows:

1. Government regulations;

2. Industry-specified directives (e.g., conflicts of interest);
3. Consumer (data owner) specified directives;

4. Consumer-proxy specified directives.

Translating human-language-based data governance policies into digital language
can be a significant implementation challenge for complex, dynamic AC policies. Sen
et al. describe the development of LEGALEASE and GROK for building and operating a
system to automate governance policy definitions [10]. Human-language privacy policies
are implemented in a MapReduce-like big data system. How user data flow among the
systems is tracked. Bringing together teams that might not directly interact to define how
legal policies are implemented in computer code can be time-consuming. Adding to this
cost is the periodic check auditors need to perform to ensure the code continues to comply
with the policies. The proposed framework helps automate and speed up the process of
defining the data attributes used to control where the data are stored, who can access the
data, and for what purpose. Lawyers and privacy personnel encode their policies using
the LEGALEASE logic language and then using the GROK mapper, identify the code that
might be affected by the privacy policies. Privacy managers can then work with developers,
for example, to update only the portion of the code that is affected. This enables more
focused updates on the code and data flows to ensure compliance with security policies.
The prototype was implemented at a limited scale, and thus there is a need to test the
expansion to large complex policies implemented on systems of multiple data-sensitivity
classification levels.

Zhioua et al. define a framework for verification of the security guidelines [11].
This covers the software development lifecycle, including the secure coding practices of
the Open Web Application Security Process (OWASP) (https://owasp.org/www-project-
secure-coding-practices-quick-reference-guide/ accessed on 14 January 2023). In support
of AC, the data processing lifecycle is managed using labels and verification checks.

Considering the healthcare use case, requirements for challenging dynamic fine-grain
AC policies could present a variety of issues. Fine-grain AC is the ability to control
individual subject access to objects, where subjects have different levels of privileges and
objects are at multiple classification or sensitivity levels. Fine-grain AC enables more precise
control over who has access to which data under dynamic environmental circumstances.
In the healthcare use case, policies for emergency situations would allow for AC model
flexibility in defining the subject, object, and environment policies and attributes. However,
other policies may be more ridged in granting access based on subject role relationships
in the absence of an emergency environmental attribute. This could be based upon the
legitimate relationships among doctors, medical staff, and patients under the care of (patient
of) a provider and/or the hierarchy of medical staff roles where access permissions can be
inherited by doctor-designated specialists for certain conditions.

Appl. Sci. 2023,13,1183

9 of 28

2.1.2. AC Attribute Models

Access security policy rules are expressed and implemented using attributes. There
are various approaches to defining attributes, and as a result, defining compatible rules in
a federated BDP environment can become complex. The research community has analyzed
many approaches to organizing and using attributes in the AC decision process. Their
approaches are differentiated based on the use case scenario influencing the authoritative
source for the attribute, metadata values, and their dynamics during the data lifecycle.
There are overlaps and similarities in attribute schemas that provide the opportunity to
identify optimizations. Recently published research on approaches to attributed-based AC
policy enforcement is summarized in Table 1. NIST provides guidance and considerations
for defining attributes that are reliable, well-informed, and maintainable [12]. The Prove-
nance History Based AC method was the focus of our experiments with the combined

healthcare-social media dataset experiment, as described in the following sections.

Table 1. Analysis of ABAC approaches in BDP.

AC Method (References)

Description

Security
Observations

Use Case
Application

Provenance, History Based
[13-15]

The provenance of the data (meta-data)
is used as part of the access control
decision process.

Supports ensuring execution of
privacy preserving programs

Sanitization required to combine

and process datasets

Resource Based
[16,17]

Permissions are assigned directly to the
data. For hierarchically organized data,
permissions are inherited by sub-folders
from superior folders. Expands upon
current file system permissions through
centralized management and increased
controls on inheritance.

Strengthens previous methods by
adding controls on data
processing resources

Fine grain dataset control

Task—Role Based
[18-20]

Tasks (read, write, execute) are
associated with certain roles. Security
policies are enforced based on the role a
user is assigned and the tasks that role is
authorized to perform. Used in
healthcare when a patient conducts a
medical test and writes data to their
medical record.

Strengthens current methods by
adding controls to tasks

Fine grain user control

Relationship Based
[21-24]

Authorization policies are based upon
relationships. Users grant access to
information based upon relationships,
such as “friends.”

Distributed controls to a broad set
of users leads to inconsistencies

Online social networks

Role Based, Time Bound
[25,26]

Enables temporary, time limited
privileges to be provided to users
assigned to roles. Enables a just-in-time
access model. For example is users
access could be limited to business
hours.

Risk of unauthorized access
constrained by time

Public wifi Access

Object Tagged, Rule Based
[27]

Meta-data tags used as part of the access
control decision process.

Ensuring integrity of attributes
critical to trustworthiness

Dynamic dataset control

Semantic and Ontology
Role Based [28]

Addresses mismatches in attribute
definitions associated with data from
different sources by applying semantics
and ontologies as the basis for the access
control decision

Technically complex, depends
upon accurate inference

Integration of dataset controls
across different systems

Content-Sensitivity Based
[29,30]

The sensitivity score of data is updated
based upon provenance changes. Access
to the data is permitted /denied based
upon users’ access rights to sensitive
data scores.

Technically complex, depends
upon accurate inference

Needs to infer access rights

Identity standards, such as the Security Assertion Markup Language (SAML) de-
veloped by the Security Services Technical Committee of OASIS and implemented in
Shibboleth (https:/ /shibboleth.atlassian.net/wiki/spaces/OSAML/overview accessed

Appl. Sci. 2023, 13,1183

10 of 28

14 January 2023), provides standard attribute definitions [31]. SAML is used to express
authentication and authorization assertions between a user claim and the response of
the contacted system. SAML defines user attributes so that additional information about
the users can be provided as part of the sign-on process, thereby supporting service
provisioning decisions. The “name” attribute, for example, is expressed in multiple
forms in SAML. The XML representation, which has a semantic format, is based upon
conventions used in a functional or technical domain or name space, such as X.520,
eduPerson (http:/ /docs.oasis-open.org/security /saml-subject-id-attr /v1.0/csprd02 /saml-
subject-id-attr-v1.0-csprd02.html#eduPerson accessed 14 January 2023), and the National
Identity Exchange Federation (NIEF) (https://nief.org/attribute-registry/ accessed 14
January 2023).

Using the healthcare use case as an example, SAML v2.0 for healthcare-defined at-
tributes [32,33] are input to the AC policy decision process. This is illustrated for a big data
Hadoop ecosystem in Figure 5.

Users, Patients Medical Staff|| Insurance Researchers
Doctors Provider
UID = Name/ Role = Doctor]| Role = UID = Name/ID Number

Purpose of Use = Research
Clearance = HIPAA, Secret

Identification Number |[Medical Staff
Role = User/Patient

Insurance

Access Security Policy (examples)

- Users can only access their own data ‘)

- Doctor's can only access EHR data Access Control - Patient/Medical Staff/
where they are in a Legitmate Policy Implementation Doctgrs Legltlmate
Relationship with the Patients (e.g.. Ranger) Relaponshnps

- Insurance Providers can access data - Patient Opt-In Status
from only for Opt-In Users/Patients

- Researchers can only access data after
it is Sanitized or Anonymized

Data Attribute
Attribute Tags (examples) Management
Record/Message ID = UID Name/ID Number (e.g., Atlas)

Security Classification* = Restricted, HIPAA
Obligation = Sanitized, Anonymized

* The HL7 Healthcare Privacy and Security Classification
System (HCS) defines five security label fields

Figure 5. Attributes assigned and managed for AC policy decisions in the healthcare use case. The
shades of the color red indicates sensitive data, shades of green indicates public data that may contain
PII, and yellow indicates data where sensitive information has been removed.

Encryption provides strong enforcement of AC policies. Attribute-based encryption
is a primary research area. Applying encryption in the file system and through proxy
gateways are the leading methods. In file system attribute-based encryption (ABE), object
data are encrypted with the key associated with a set of attributes. Only subjects, users, or
processes requesting access with matching attribute sets have access to the key. Combina-
tions of hierarchical relationships between subjects, objects, and their associated attributes

Appl. Sci. 2023,13,1183

11 0f 28

have been investigated to meet various objectives. The various research projects analyze
the efficiency, methods of proof, and alternatives to organize attributes and associated keys.
ABE is a security service subsequent to the AC decision process that further protects the
data. This area is covered in additional detail in Refs. [34-36].

2.1.3. Data Provenance

Metadata, tags, and attributes that track data provenance are critical to big data
systems. Data provenance is defined as the record of the source, processing, and overall
lineage of the data. Traditionally, data provenance is associated with audit logs and
debugging; however, we propose that it provides an important role in AC. Data provenance
can be expressed using a data model, business vocabulary, or other directed acyclic graphic
terms. Making big datasets available for analytics requires tracking when processes are
executed that reduce the data sensitivity and then updating the data provenance attribute
in a trustworthy manner. Research has been published that describes using metadata tags
to track processing provenance in this manner (e.g., sanitization history) [37].

Hellerstein et al. [38] introduce three key sources for metadata, which they titled
“A-B-C’s of data context,” i.e.,

A = application or programs run against the data;
B = data source and usage over time (who used it);
C = changes and version history.

Several techniques to protect and reduce data sensitivity have been identified as
Privacy-Preserving Data Mining (PPDM) techniques in the ABAC process. Privacy-
preserving data protections are integral to AC services and enable linear performance
scaling. This implies distributed AC policy decision points (PDP) and the execution of
distributed PPDM algorithms [39-41].

Attributes (metadata tags) track application privacy-preserving algorithms on sensitive
datasets. The attributes can be used to ensure processing only on authorized computers in
the cluster. For example, some policies may require sensitive data storage and processing
only in private computing systems, whereas other non-sensitive data in the dataset can
be stored and processed in a public cloud service. This type of tag, along with Hadoop
rack awareness features and data locality controls, can be used to further control access.
This is achieved by incorporating designated data zone considerations, e.g., raw data,
private/classified subsets, sanitized subsets, and summary reports, into metadata tags.
Saralavedi et al. provide an example of the flexibility that is possible when incorporating
metadata tags into big data AC [42].

2.2. Cybersecurity Vulnerability Evaluation

In formulating the prototype experiment as part of our framework, we identified
cybersecurity vulnerabilities in BDP technologies specific to Apache Hadoop. This informs
residual attack surface evaluation.

Techniques used to attack AC systems are identified using the Adversarial Tactics,
Techniques, and Common Knowledge (ATT&CK™) (https:/ /attack.mitre.org/ accessed
14 January 2023) knowledge base, as listed in Table 2. These tactics are based upon actual
computer and network attacks documented by the industry and confirmed by MITRE. The
Cloud Security Alliance also reports on attack strategies for big data systems and proposes
mitigation techniques. Big data set breaches have been reported in several news sources
and are anticipated to continue [43-45].

Appl. Sci. 2023,13,1183

12 of 28

Table 2. Summary of Threats to AC Systems.

. ATT&CK™
Title Summary Reference ID
Bypass User Account Control, T1088
Accessing data through underlying operating systems or Credentials in Registry, T1214
Bvpass interfacing applications, bypassing the data storage AC. Credentials in Files, T1081
yp Elevation of privileges by injecting or taking over Credential Dumping, T1003
privileged processes or a trusted connection. Hooking, T1179
Account Manipulation T1098
. Leveragmg access permissions using a relat10n§h1p with Trusted Relationship
Collusion a third party, exploiting an existing connection or
. . T1199
authorized access by an unauthorized user/process.
Analyzing legitimately obtained data to obtain
Inference unauthorized knowledge based upon characteristics of Related to Data Obfuscation, T1001

groups or instances

Unauthorized use of Valid Accounts

Unauthorized use of valid compromised credentials Valid Accounts, T1078
Mitigations include creating an alert and audit log entry Logon Scripts, T1037
of all critical trusted actions and periodically reviewing Pass the Hash, T1075

the logs. Pass the Ticket, T1097

Discovering and using an unauthorized account before

Timing or Synchronization Attacks the account status is propagated and synchronized across Related to Account Discovery, T1087

all the systems in the environment.

Attribute Proliferation and
Assurance

Poor maintenance of or overly complex attributes and
metadata tags can lead to errors hard to detect and lead Related to File Deletion, T1107
to unauthorized access.

Denial of Service

Locking out a valid user account or causing excessive
process or memory/storage utilization resulting in the
disabling of normal operations.

Related to Jamming or Denial of Service
MOB-T1067

Approximately twelve Common Vulnerabilities and Exposures (CVEs) (https:/ /hadoop.
apache.org/cve_list.html accessed 14 January 2023) are identified on the Apache Hadoop site.
The total number on the CVE (https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=hadoop
accessed 14 January 2023) site is approximately 45. The number of CVEs is higher because this
list also includes items that are closed and not actively being addressed. The list provides a
detailed description of attack paths that could be taken to compromise the system, such as
the location of sensitive information in temporary files, privilege escalation, security values
handling issues, and command injection. Most corrections to address the CVEs require
upgrading to a later version of Hadoop.

Security vulnerabilities for all the ecosystem components are also contained in the
Hadoop issues tracking system, JIRA. A search for security-related issues in just HDFS and
YARN results in over 500 open items. These technical details provide significant insights
for specific potential attack paths.

Although there are several security standards to guide the implementation of AC,
ABAC, and other related authorization security services, few are implemented in the
Apache Hadoop ecosystem components. Kerberos and SASL are used for identification, and
SSL can be invoked on HTTP and RPC connections. However, neither XACML nor NGAC
are addressed in Apache Ranger (https://issues.apache.org/jira/browse/RANGER-1973
accessed 14 January 2023) or other Hadoop components. This could indicate that there is
a lack of maturity in the open-source project to support sophisticated AC methods such
as ABAC.

A summary of the analyzed potential attacks is listed in Table 3, and further explained
in the subsequent subsections. The vulnerabilities represent paths of entry into the system
and include unsecured communication protocols, open connections, and configurations that
can be exploited. Cybersecurity attacks are an example of attacker actions and campaigns
that have exploited these vulnerabilities. The attack campaigns are known frameworks
and libraries of exploitation tools, such as Metasploit, Cobalt Strike, and others detailed on

Appl. Sci. 2023,13,1183

13 of 28

the ATT&CK website in the techniques and software sections. Researchers have published
reports identifying these vulnerabilities in thousands of online Hadoop systems [46—49].

Table 3. Hadoop AC areas, vulnerabilities in the attack path, and patterns of threats posed by attacks.

Access Control (AC)
Areas

Vulnerabilities

Threats

Hadoop File System (HDFS)

File system ACs are turned off by default and
can be configured in multiple ways

Unauthorized reading and writing to HDFS
folders

SSL/TLS protections on the HDFS WebUI are
not enabled by default and can be configured
as optional

Man-in-the-middle observation of file system
file/folder names, contents, and permissions

Operating System (OS) and Directory Services

OS, Directory, and Hadoop AC configured and
managed independently

Misconfigured AC can lead to overly
permissive or restrictive access

Disabled host firewalls and SELinux

Reconnaissance scanning by using NMap,
OpenVAS, and other port scanners identifies
open ports, protocols, and services leading to
unauthorized connections and malware or
beacon implants

Resource Management, YARN

Optional configuration of AC lists on job
scheduling queues/pools allows all to submit
jobs and consume processing resources

Unauthorized job submissions that hijack
cluster resources, such as cryptocurrency
miner implants and DemonBot

Proxy servers reuse superuser accounts to
prioritize job execution

Submitting malicious jobs, such as
ransomware, that encrypt and delete files

Service-level Authorizations

Externally exposed wide port range for RPC
and HTTP protocols

Web application attacks, such as cross-site
scripting

Reverse shell implants through open
unauthorized ports, protocols, and services

Unauthenticated SQL interfaces to the data
storage (JDBC)

SQL injection attacks that corrupt or delete
data

Management Controls

Different management consoles to multiple
ecosystem tools using various ports and login
credentials

Multiple configuration and log files
distributed throughout the cluster that contain
sensitive information, such as privileged
accounts and passwords.

Attacks are undetected owing to insufficient
visibility of the management of system
configuration and analysis of logs

2.2.1. Access Control for Hadoop Distributed File System

The HDFS stores data in files and folders by breaking them into blocks and tracking
the location of the storage block in the FSImage and editLogs files. The default size of a
data block is 128 MB, and this is configurable. These blocks are replicated, typically three
times, to avoid data loss and support high availability.

The permission settings for files and folders in HDFS are based on the POSIX model.
However, there are certain differences because there is no concept of executable files,
i.e., program files are stored outside the HDFS. If the HDFS is configured to conduct
permissions, check for a file or directory accessed by a client process, and the traditional,
owner, group, and other permissions are checked. If a file permissions check fails, the client
operation fails regardless of whether it is a simple command-line interface request or a
job execution.

If the property in the core-site.xml file is not set to check authorizations, only the
account under which Hadoop is run, i.e., the Hadoop superuser account, can access the
files and directories. In this situation, proxy servers are typically used to map all permitted
users to the privileged superuser.

The contents of the file system and the status of block replication in the Data Nodes are
displayed through a web browser-based graphical user interface (WebUI). This interface,
as well as all HDFS files, reads, and writes, can be executed over the Secure Socket Layer
(SSL)/Transport Layer Security (TLS) if configured. By default, Hadoop exchanges data in

Appl. Sci. 2023,13,1183

14 of 28

clear text. This exposes the data exchanges to man-in—the-middle attacks. A wide variety
of unauthorized data reads and writes can occur if the security settings are not enabled.

Although the basic capabilities for managing and controlling the HDFS are in place
and are based on the familiar POSIX format, they are not enabled by default. The lack of
default security configurations can result in many mistakes in AC.

2.2.2. Operating System and Directory Access Control

User authentication and AC in Apache Hadoop can occur at the level of the operating
system (OS) (Linux) or over the network by a directory server by using the Lightweight
Directory Access Protocol (LDAP) if configured. This is not configured by default and can
result in AC errors.

Another area of concern for OS security is that the installation recommendations for
Hadoop can disable the Linux firewall (IP tables for IP versions 4 and 6) and kernel security
(SELinux). These powerful Linux security tools have a strong evaluative heritage and level
of trust. A primary function of these tools is to tightly control the ports, protocols, and
services that are externally focused and the programs that are authorized to run at a given
level on a host. Correctly configuring these services requires a complete understanding of
the executing software.

When the host-based firewalls are disabled, hosts can be subject to reconnaissance
scanning by open-source tools such as Network Mapper (NMap) and OpenVAS. Reconnais-
sance provides attackers with indicators of what is enabled. They can then derive potential
weaknesses in the hosted software for further attacks, e.g., Christmas Tree attacks. Flooding
listening ports with active protocols can also lead to a denial-of-service scenario.

SELinux also requires a strong understating of the hosted software and the privileges
needed; for example, controlling the ability to read and write critical files and activate and
deactivate critical OS processes. SELinux can help prevent the introduction of unauthorized
programs that exhibit unacceptable behaviors, such as privilege escalation attacks, to
activate ports/protocols to communicate with a remote system, e.g., in beaconing attacks.
The fact that many mature Linux distributions, such as Red Hat and CentOS, have SELinux
enabled is a testament to its value.

2.2.3. Resource Management and YARN Access Controls

The Resource Manager was introduced in Hadoop 2.0 as a component of YARN.
It oversees the division of processing load on Data Nodes by using the Node Manager,
Application Masters, and JVM container daemons.

YARN obeys the file permissions settings of the HDFS and uses the identity of the user
(by default) to interact with the file system. YARN considers only the files that the user owns
to execute the YARN program and does not perform any privileged action. It is possible,
however, to specify a different user such that the YARN Resource Loader interacts with
HDEFS using their rights. When Hadoop is accessed by multiple users, separate instances
of the Resource Loader should be created (one per user) instead of assigning additional
permissions or groups to one user. This ensures that ACs in the HDFS is applied per user.
However, if impersonation is used with a proxy server, the Resource Loader might (and
will typically) return restricted files that should not be seen by the user.

To control permissions to submit jobs to YARN, ACs can be configured in the context
of queues and pools for job submission schedule. For example, when Spark users submit
their jobs, they are added to the job scheduler after authentication and AC-related decisions.
YARN has three types of schedulers: a capacity scheduler (default), first-in-first-out (FIFO),
and a fair scheduler. By default, the permissions to submit jobs in the yarn-site.xml
configuration file are open (e.g., set to all using an asterisk).

A more user-friendly and flexible approach to managing job scheduling ACs, rather
than configuring XML files, is for the system administrators to use Apache Ranger. There
are Apache Ranger YARN plugins that can manage policies on users that are allowed to
submit jobs to YARN. These policies enforce rules on who can submit to the YARN queue.

Appl. Sci. 2023,13,1183

15 of 28

When the AC of the YARN scheduler is not configured, the cluster can be subject to
a wide variety of unauthorized job submissions. Several unauthorized cryptocurrency
mining programs have been detected in Hadoop clusters, such as DemonBot. A more de-
structive threat is ransomware which can destroy a large-scale cluster dataset by encrypting
the data and withholding the decryption key [50,51].

2.2.4. Service-Level Authorizations

Client services need to incorporate identification, authentication, access control, and
data confidentiality (i.e., encryption) into BDP environments. This applies to all actions,
including submitting jobs (Apache Spark and MapReduce), reading and writing files, and
interacting with the web-based graphical user interfaces (Web GUIs). TCP/IP protocols
encase the remote procedure calls (RPCs) that contain the client-to-server (Name Node,
Resource Manager, and Data Node) and server-to-server communications. For example,
Data Nodes send heartbeats to report their health status to the Name Node and use an
additional TCP/IP data transfer protocol to exchange data blocks [52].

Client applications for the Hadoop ecosystem include Apache HUE (https://gethue.
com/ accessed 14 January 2023), Zeppelin (https:/ /zeppelin.apache.org/ accessed 14 Jan-
uary 2023), and HDFS CLI, which can incorporate security services. If configured, Kerberos
enforces client authentications (identification). Data Nodes use the Simple Authentication
and Security Layer (SASL) (https://www.rfc-editor.org/rfc/rfc4422 accessed 14 January
2023) to negotiate authentication (e.g., Kerberos) when using the data transfer protocol to
exchange data blocks.

Authorizations are defined based on access control lists (ACLs) contained in the
hadoop-policy.xml configuration file or as defined in a component of the ecosystem external
to the core Hadoop components, e.g., Apache Ranger, as described below.

If configured, the SSL/TLS secure information exchanges. For Hadoop clients and
servers, this protects the RPCs. SSL/TLS also protects the web interface used by servers to
expose their status in that it can be configured with HTTPS. This includes, for example, the
Web GUI for the Name Node and the Resource Manager.

In addition to ACLs, Hadoop components that provide a JDBC-SQL interface, e.g.,
Apache Hive, have authorization services that must be configured. For example, executions
of the GRANT and REVOKE commands and SQL standard authorizations were added to
later versions of Hive.

The ACs for these various protocols that are used by different components are man-
aged through several configuration files. They can be very complex and difficult to translate
to modern AC models, such as ABAC. The use of a management console such as Apache
Ranger helps centralize this configuration and ensure consistency. This is instrumental for
achieving security-related objectives.

Eternally exposed protocols such as HTTP, RPC, and JDBC-SQL can be subject to
a wide variety of attacks if not secured, even when running on a high port range. For
example, web application attacks include SQL command injections, cross-site scripting
(XSS), web shell implants, and injections of brute force commands.

2.2.5. Management Consoles

The complexity of integrating different components of the BDP ecosystem is handled
by management consoles such as Apache Ambari (https://ambari.apache.org/ accessed
14 January 2023). However, they largely do not directly address security configurations.
Most Hadoop consoles focus on performance-related statistics. Separate and independent
management interfaces, such as Apache Ranger, have been developed to fulfill this role.
Without a central view of the security status of Hadoop, the system’s security managers
can be blind to attacks. Unauthorized actions may only be detected after a review of
complex log files. Amazon has recently announced that EMR will be integrated with
Apache Ranger [53].

Appl. Sci. 2023, 13,1183

16 of 28

A commonly documented weakness (CWE-778; https:/ /cwe.mitre.org/data/definitions/
778.html accessed 14 January 2023) is that when security-critical events are not logged properly,
detecting and hindering malicious behavior becomes much more difficult and may hinder
forensic analysis once an attack succeeds.

Figure 6 shows the use of Apache Ranger and Apache Atlas to enforce and manage
security policies through the core Hadoop components. The interconnection of a directory
server to manage user authentication and AC is included here.

Resource Manager

Name Node

L1l
T

[LDAP |[Ranger| Atias LDAP |[Ranger | Atias
Eﬂ Plugin Hook Client|| Plugin | Hook
LN LN BB E
: :
D —— .
LLUL1 e
L1111 —

: Core
. i fka
Directory User || Policy Ka |
- Sync Messaging||| Ingest| | Meta
o y Server ging Export Data
Tag Based [Type . Store |
Policies ystem| | | |ndex

Admin Ul ||| Graph]|| | Store
Engine| - J

rrnri Frrrnri
Apache Rang'er\ / Apache Atlas

LDAP Server
and
Kerberos KDC

Figure 6. Apache Ranger and Atlas interfaces to HDFS Name Node and YARN Resource Manager.
Directory information exchanges indicated by black dashed lines, Ranger policy information ex-
changes are indicated by solid black lines, Atlas attribute tag information exchanges are indicated
by dashed red lines, and synchronizations between the directory, Ranger and Atlas are indicated by
double headed arrows.

The actions and information exchanges in the HDFS environment are depicted in the
sequence diagram shown in Figure 7. Attributes managed by Atlas are used by Ranger in
managing ABAC policies. These policies are enforced in the Name Node and Data Nodes.
When jobs are submitted, tasks executed, and tasks and jobs completed, the ABAC policies
are enforced by each component. Attribute updates for generated HDFS files are then sent
from Atlas to Ranger. Subsequent sections highlight the key capabilities of these projects in
supporting security management.

Hadoop Apache Hadoop Hadoop Hadoop Hadoop Apache
) Secondary Resource
Client Ranger Name Node Data Nodes Atlas
Name Node Manager
Subject and Object Attributes
ABAC Policies
ABAC Policies
File System Ima,
Spark Job Submit
Task Execution
Task Completion|
Job Completion
Attribute Updates

Figure 7. The sequence of attribute information exchange in job execution.

Appl. Sci. 2023,13,1183

17 of 28

Apache Ranger

The Apache Ranger framework is a collection of software components that can be
flexibly configured to monitor and manage data security. It includes a WebUI to administer
security settings, including fine-grained authorizations (AC) in such Hadoop components
as Hive, HDFS, and YARN. It helps with centralized audit tracking for each user action.
The components of Ranger include an administrative portal, policy storage (in MySQL or
another database), audit log storage (in Solr, HDEFS, or another database), synchronization
with user accounts in a directory (User Sync), synchronization with metadata tags in
Apache Atlas (Tag Sync), and plugins for components of the Hadoop ecosystem.

Plugins are lightweight Java programs installed on components of Hadoop (Hive
Server, HDFS Name Node, and YARN Resource Manager) to periodically pull policies from
the central Ranger server and store them locally using a REST API. When a user request
comes to any Hadoop component, the plugin intercepts it and evaluates it against the
security policy to decide whether the user request should be authorized.

The advantages of using Apache Ranger with Hadoop are primarily associated with
centralizing the security administration of many security settings and tasks through a single
WebUI. Some areas, such as OS security settings, are important for cluster security but are
not managed by Ranger. This helps provide consistent AC across all Hadoop components
through Ranger plugins. The use of User Sync and Tag Sync is instrumental to fine-grained
AC and facilitates ABAC-style security.

Apache Atlas

Apache Atlas provides a framework for managing metadata associated with data
and processes. Software program hooks are installed on components of the ecosystem,
e.g., the HDFS Name Node and YARN Resource Manager, to communicate information
on the data to Atlas so that the metadata can be organized and stored based on the given
relationships and types. These metadata can then be used by Ranger to define and enforce
tag-based security policies. The definition and management of the metadata are necessary
for tracking data provenance.

Atlas is designed to be extensible. Thus, if a hook does not exist for a new component
of the Hadoop ecosystem, it can be developed. Hooks are lightweight programs (e.g., script
cURL commands) written to interface the tracked object types (e.g., data, databases, and
programs) to the repository of Atlas metadata through a REST API.

In addition to using pre-defined types, new metadata types can be defined, including
complex types that inherit attributes from other types of metadata. The metadata can be
classified with attributes to indicate their sensitivity, e.g., PII, and the classification can be
propagated from metadata on the process input to those on the output. The lineage of an
entity, an instance of a type of metadata, can be tracked by using this feature of propagation
as the data are processed through a lifecycle.

When we install Apache Atlas, we select H-Base to store the metadata and Solar to
store the index, where this is the default configuration. Other core components include the
graph engine that supports the relationships between entities. For example, the relations
of columns and databases and files and folders are managed by the graph engine. The
ingest/export features capture messages from the sources of metadata, create entities, and
update events.

A challenge in Apache Atlas is that nothing is performed automatically. One needs
to launch the hooks, i.e., cURL commands, in scripts that run regularly on the component
systems to crawl through the data store. Some hooks are available from the Apache Atlas
repository for installation and configuration on the core components. For other data sources,
one has to write hooks by using the cURL calls to register and tag the entities.

In Figure 8, we show a simple entity (instance) of an HDFS file type (class) created
in our experiment with a small number of attributes used as a basis for policies. Addi-
tional more complex examples of JSON files used to create entities and types in Atlas are

Appl. Sci. 2023, 13,1183 18 of 28

posted at our open data repository (https://github.com/AnneMT/SEHadoop/tree/main/
SEHadoop/atlas/atlas-files accessed 14 January 2023).

“entity”: {

“typeName”: “hdfs_folder”,

“attributes”: {

“owner”: “hdfs”,

“createTime”: 1619297668000,

“qualifiedName”: “DataSet]l_patientsDFData@sehadoop”,
“displayName”: “patientsDFData folder”,

“name”: “patientsDFData”,

“description”: “patients data filtered and in DataFrame format”
!

!

!

Figure 8. Example Atlas entity for HDFS folders with attributes.

3. Results

To analyze ABAC security in BDP, we installed and configured Apache Hadoop on
AWS EC2 instances. We have posted our detailed system configuration, programs, and
data on GitHub (https://github.com/AnneMT/SEHadoop accessed 14 January 2023) to
allow other users to replicate our results and continue developing security-related insights.
The subsequent sections provide an overview of the configuration of the experiment as
well as our analysis and recommendations. The configuration is shown in Figure 9.

. AWS Cloud

ey vec 192.168.0.0/20

a iy Security and py Boundary and e 01
Qi PEChe Fado0R Lo SIRmet: Iy Management Subnet = Access Control y v
Uoraiin e 192.168.10.024 192,168 5.0124 R
Name Node Secondary NN : : " l
Ono oY Apache Ranger FreelPA =
(NN) History (LDAP) o N

{::E {::} {:} {:} Access Management Internet
3 Data Nodes Apache Atlas [:] [
Hadoop Client &« :
{:} {:} Landing Pad I @ I _

e -..
YARN Performance {::} AWS Mansgement o
Resource Manager Analysis Tools P AL Console M(:::te;rs
and Spark g
Amazon Simple Amazon Route 53
Storage Service (S3) (DNS Route Tables)

Figure 9. AWS EC2 instances for the security analysis of Apache Hadoop.

3.1. Software and AWS EC2 Instances

The BDP representation for the experiment was built on AWS EC2 instances by using
the CentOS 7 Amazon Machine Image (AMI). The following open-source Apache software

Appl. Sci. 2023,13,1183

19 of 28

was included: Hadoop version 2.7.3, Spark version 3.1.2, Ranger version 2.1.0, and Atlas
version 2.1.0. We used seven EC2 instances to install the Hadoop Name Node, secondary
Name Node, YARN Resource Manager with Spark, and three Data Nodes. Two more
instances were used for Apache Ranger and Atlas. FreeIPA was used for directory services
(i.e., LDAP) on another EC2 instance for a total of 10 EC2 instances. This configuration
allowed us to isolate potential performance-related issues and independently manage the
configurations of components of the Hadoop ecosystem. Additional EC2 instances were
configured to run the system management tools and the boundary security services of
Apache Knox. Although we did not fully investigate the security services of the bound-
ary proxy server of Apache Knox, it was identified as an important part of a layered
security architecture.

3.2. Datasets

Two synthetically generated datasets were incorporated into the experiment: data
on electronic healthcare records (EHR) generated by Synthea™ (https://github.com/
synthetichealth/synthea/wiki accessed 14 January 2023) and representative messages
from Twitter generated by SynSocial (https://github.com/AnneMT/SynSocial accessed 14
January 2023). This combined dataset realistically represented a connected dataset with
multiple sensitivities. Synthea generated HL? files that represented the medical histories
of patients, and SynSocial generated Twitter messages based on the medical conditions
in the HL7 patient files. We thus created a large dataset with varying levels of sensitive
information such that challenges to BDP-specific performance could be analyzed [54]. Our
dataset represented 1000 users/patients, had a size of 14 GB and was configured with the
block replication set to three.

3.3. Data Processing Lifecycle

Apache Spark programs were developed to process the data in a representative data
processing lifecycle, as depicted in Figure 10. The BDP lifecycle represented consisted of
six PySpark programs that processed the data sequentially. Starting with two datasets
from synthetic data generators, the data were filtered, joined, and protected with a privacy-
preserving hash and encryption and were finally analyzed to output the aggregated results.
This data processing sequence represents a realistic yet simplified set of steps that require
security for the data. We executed the programs with different levels of permission checking
for users. The process generated data with attribute metadata tags that reflected changes in
the security classification of the data (sensitivity). We started with two datasets and different
levels and generated datasets with lower sensitivity such that the final set contained hashed
or encrypted personally identifiable information (PII) as well as data from the Heath
Insurance Portability and Accountability Act (HIPAA).

Social Media
Data

-

EHR
Data

11111

11111

; DataSet
i . Privacy
Filter DataSet 1
N Iﬁjaotlgggt Preserving | Hashed Data for
E |, Initial Hash and Research
- L. Join Encrypt :
» Filter 3 DataSet | [| 8
Ty = Encrypted__ Analysis
B : = | Final Attribute Tags
= - ~ | Security Classification =
' U tricted
Initial Attribute Tags nrestricte

Updated Attribute Tags Obligation = none
DataSet Hashed - Security

Classification = Low

Obligation = Randomize

DataSet Encrypted - Security

Classification = Unrestricted

Obligation = none

Security Classification =
Restricted, PII, HIPAA
Obligation = Hash and
Randomize, Encrypt

Figure 10. Lifecycle of data processing for security experiments.

Appl. Sci. 2023,13,1183

20 of 28

3.4. Analysis and Observations

The major challenge for distributed data processing is that the security-related issues
that previously plagued a computer system now occur across a network of computers with
applications and data in multiple locations. In addition to observations of AC security
services for the components described above, we observed several issues in the system-
wide approach to security. We also captured performance-related information under
different security configurations and found negligible impact. Apache Hadoop delivers
impressive performance, and further security enhancements will increase its popularity.
Application of our framework to the design and configuration will enable multi-tenant and
multi-sensitivity data analysis.

3.4.1. ABAC Support

The primary goal of our experiment was to examine the ability to support fine-grained
ABAC. The results indicate that this is feasible, but this requires significant software
configurations, including writing scripts to connect the metadata to the policy enforcement
program. There was a high risk of incorrect configuration.

ABAC could be achieved by using policies of Apache Ranger that bring together
attributes from three sources, as depicted in Figure 11. Such user information as group
assignments could be provided by the directory service over LDAP by using Apache
Ranger’s User Sync. Ranger plugins for the HDFS and YARN were used to enable the
configuring of policies on file permissions and job scheduling (e.g., capacity scheduler
queues). The Tag Sync capability of Atlas allowed the metadata for the HDFS and YARN to
be used as a basis for these security policies. Thus, for example, data could be tagged or
classified as PII or HIPAA in Atlas, and these tags were then used as the basis for security
policies that allowed certain users or groups to access the files. YARN policies could
likewise be configured to permit or deny users access to submit jobs to queues based on
tags from Atlas. This same strategy could be used with Apache Hive and other components.
The classification tags from Atlas and policies created in Ranger provided the capabilities to
achieve ABAC, but there were limitations associated with flexibility in assigning attributes
to users. Users could be managed locally in Ranger or externally through a directory service
and assigned to groups that could be mapped to the concept of attributes for policy-related
decisions. Assigning users to multiple groups and then using these groups as part of the
process of policy decision provided the concept of attribute-based control, but this might
not have provided the flexibility of key—value pair attribute-based controls described in the
reference implementations [55].

Users (Subjects)
in LDAP
Assigned to Groups

Ranger Polices
Based upon
User Sync with LDAP
And Tag Sync with

’) . Atlas Managed
Data (Objects) in Meta Datg Users submitting

| HDFS with \ / Jobs to YARN
[Owner/Group/Other | ! Assigned AC
| Read/Write Permissions | — \ And Priorities

Figure 11. Implementation of ABAC using the HDFS, LDAP, YARN, Ranger, and Atlas.

Appl. Sci. 2023,13,1183

21 of 28

3.4.2. Multiple Management Consoles

Although several management frameworks are available for Apache Hadoop, such
as Apache Ambari and the Cloudera Manager, a single management console that fully
integrates across the ecosystem is not available. Interfaces for system security management,
such as the Apache Ranger Admin WebU], are separate from other system management
consoles, such as Apache Ambari.

A limitation of the Apache Ambari and Cloudera Manager is that they must be used
to set up the cluster that they manage. One cannot add these managers to clusters that are
already set up. These tools are designed to tightly couple with their Hadoop configuration.

From a security perspective, these management tools help configure or “turn on”
security components but do not confirm whether the system is fully secure. Validating
the enforcement of the security policy requires interfacing to separate consoles, including
directory systems and the Ranger Admin WebUL Confirming that the system is correctly
configured and reviewing its security status requires examining multiple interfaces and
files. Automating the collection of this status-related information requires significant
development of custom scripts that push logs to a central location.

3.4.3. Verification of Security Software

Software that provides security functionality should be subject to rigorous and in-
dependent evaluation. An example of this is the Common Criteria Evaluated Assurance
Levels and Target Profiles of Protection, applied to operating systems to test their security
services. Governments and businesses prefer the Red Hat version of Linux because of its
independent certification (https:/ /www.redhat.com/en/about/press-releases/red-hat-
adds-common-criteria-certification-red-hat-enterprise-linux-8 accessed 14 January 2023).

Independently writing security software and hooks to interface with critical security
services, such as the Kerberos Key Distribution Center (KDC), can help circumvent this
type of rigorous testing. Exposure to flawed error handling, buffer overflows, brute force
attacks and poor audit logging are all areas that require independent verification [56].

Veracode’s State of Software Security Report found that more than three-quarters
(75.2%) of applications have security flaws [57]. It is a large software manufacturer that
did not include small glue code rapidly developed under business pressures to obtain
investment in BDP.

In the analysis, we noted several security issues in the software components. Many of
the configuration files contained administrator passwords in clear text. Log files, which
can contain sensitive information such as Kerberos service tickets, were stored in multiple
potentially unprotected locations. 3DES and R4 are the data encryption algorithms used
in Apache Hadoop and are relatively weak [58]. Additional configuration is required to
incorporate the AES. Rigorous security testing can help identify design flaws that can then
be remedied.

3.4.4. Performance

We analyzed the performance of Apache Hadoop under different security configura-
tions. We measured the elapsed execution time for each sequential job. The workflow of
data inputs, PySpark programs, and outputs was assigned attributes and tags by using
Apache Atlas, as shown in Figure 12.

The elapsed execution time was recorded from the Hadoop Resource Manager’s web
GUI under different security configurations, as listed in Table 4 and shown in Figure 13.
The configurations were as follows: execution with the Ranger plugins disabled, execution
as a local privileged user of Hadoop, execution with resource-based AC by using policies
of Apache Ranger, and execution with tag-based AC that uses both the polices of Apache
Ranger and the metadata of Apache Atlas. The fourth configuration corresponds to an
ABAC approach. The performance analysis did not yield any significant differences in
terms of executing the sequence of data processing programs (PySpark programs) in the
use case for the lifecycle of the data. Overall, we noted similar program execution times in

Appl. Sci. 2023,13,1183 22 of 28

all three configurations. This indicates that AC security services had a very limited impact
on the performance of the system.

patients

social-media-users Filter-Job-SynSoc... social-media-user... analysis-encrypt
()
&

KEY

Filter-Job-Synthe... patientsDFData
. . Join-Job.py oiiIdDFData Privacyflob.py encryptedDFData Anal_\'s1s—Job€ ner... .

analysis-encrypt-..

analysis-hash-sta...

hashedDFData Ana.lysxs-]oyﬁ Hash... l

\\ analysis-hash

Figure 12. Configuration of data processing and propagation of attribute classification in Atlas.

Table 4. Impact of AC security on program execution time.

Elapsed Times (s) (Average of 15 Executions)

PySpark - A
Description Ranger Plugins Local Resource-Based
Program Disabled Privileged User AC Tag-Based AC
1—Filter-Job- Filters JSON data from the Twitter dataset
SynSocial.py and puts it into Spark DataFrames 62.50 61.20 61.93 64.00
2—Filter-Job- Filters HL7 JSON data from a healthcare
Synthea.py dataset and puts it into Spark DataFrames 142.73 139.13 133.93 129.67
Joins the social media and healthcare
. datasets based on the social media
3—Join-Job.py messages and healthcare condition for 5347 5087 5307 53.07
each patient
4—Privacy-Job.py Hashes and encrypts PII and HIPAA data 334.80 357.27 330.80 317.33

5—Analysis-Job-
Hash.py

Analyzes hashed data from the private job
to produce the number of messages per 58.00 60.33 61.07 62.73
medical condition

6—Analysis-Job-
Encrypt.py

Analyzes the encrypted data from the
private job to generate the number of 95.20 95.20 91.67 89.40
messages per medical condition

400.00
350.00
= 300.00 M
S 250.00
& 200.00
¢ 150.00
£ 100.00 II ‘
= 50.00 II H
[
= 1 2 3 4 5 6
PySpark Program (listed in Table 2)
B Ranger Disabled ¥ Local Privileged User
' Resource Based AC @ Tag Based AC

Figure 13. Elapsed times for executions of the PySpark program under different configurations.

Appl. Sci. 2023,13,1183

23 of 28

Although at least minor differences in performance were expected when executing
the lifecycle of the data under different security configurations, we needed to scale out
significantly to observe such impacts on performance according to performance analyses
reported in the industry (https:/ /privacera.com/blog/immuta-vs-apache-ranger-a-failed-
benchmark/ accessed 14 January 2023). We estimated that we needed to scale up from 14
GB to over 1 TB of data, which would require six or more Data Nodes for the observation
of a minor (under 10%) impact on performance.

As the size of the dataset and the complexity of the processing lifecycle were scaled
out, the impact of performance could have been identified by the increase in the elapsed
time. However, the overhead due to AC services provided by Apache Ranger was expected
to be minimal. The encryption of the data and Kerberos led to a more significant increase
in the elapsed time.

We considered the performance analysis that was conducted by other researchers,
such as Gupta et al. [59]. In their experiment, a remote ABAC policy enforcement approach
was used with MongoDB (another open-source large data set framework), and performance
impacts were not detected until they scaled out to over 500 policies and 20 attributes per
entity. This large number of policies seems impractical in that it would become extremely
difficult to manage. Most operational implementations would have far fewer policies and
attributes per entity. Using the Ranger and Atlas framework for ABAC, the overhead
processing impact is additionally minimized because policies are enforced by a local
Ranger plugin API rather than remotely. Therefore, we believe that the performance of our
approach would be significantly better and not impact a parallel processing environment
with large datasets. We did not detect a significant overhead in scaling out the Tag-based
AC approach with Ranger and Atlas. However, additional experiments with increasingly
larger data sets and complex programs could identify upper limits.

The Transaction Processing Performance Council (TPC) has several benchmarks for big
dataset analysis for Hadoop ecosystems. The TPC Benchmark™HS (TPCx-HS) benchmark
workload is based on the Hadoop TeraSort program, for example (https://www.tpc.org/tpcx-
hs/ accessed 14 January 2023). These benchmarks provide insights into acquiring hardware
for a Hadoop cluster but do not address the security-specific impacts on performance, such
as encryption.

Additional tools are available to monitor the performance of a large-scale Hadoop
cluster. The AWS EC2 interface also provides statistics on the processor, memory, storage,
and network bandwidth usage. Several server- and network-monitoring tools, although
not specific to Hadoop, are open-source, or a free version of them is available for use,
such as Ganglia (http://ganglia.sourceforge.net/ accessed 14 January 2023) and Nagios
(https:/ /exchangenagios.org/ accessed 14 January 2023). A feature of many of these
management tools is that the areas monitored and the reports generated are customizable.
Areas that are a focus for troubleshooting can be displayed on a GUI. Hadoop-specific tools,
such as Apache Ambari and Cloudera Manager, must be used to install all components of
the Hadoop ecosystems and cannot be added to an installed cluster. These tools provide
Hadoop-specific statistics, such as the status of data block replication and YARN job
schedule management.

3.5. Limitations

The experiment we conducted had some limitations. Specifically, because our config-
uration used open-source software, we were not able to discover to what extent default
configurations of commercial BDP software address our security findings. These types
of commercial configurations most likely would include more status monitoring and log-
ging capabilities to detect misconfigurations and security issues. However, these types of
management interfaces could also obscure security issues in the system-to-system cluster
computing communication links. Also, the extent to which standards are met to enable
the interoperability of security features in independently developed systems was not
thoroughly examined.

Appl. Sci. 2023,13,1183

24 of 28

4. Discussion

Our approach to BDP security, i.e., our recommended framework, includes implemen-
tation considerations as the third area. Specifically, the following areas should be advanced
and incorporated into the design and implementation of a secure BDP configuration:

1. Exclusive use of a data analyst notebook that provides a secure interface cluster,

2. A data security service layer that is integrated into all components of the BDP system.

3. A complete central management system that provides a single console to show the
status of all components of the system.

Without these fundamental controls, more advanced security services such as ABAC
will be difficult to achieve in a complete and integrated manner. Table 5 below summa-
rizes the approach to these implementation requirements. These enhancements help to
address Common Weaknesses and Exploits (CWE) (https://cwe.mitre.org/ accessed 14
January 2023). We believe these can largely be based upon integrating and expanding
current capabilities. Therefore, we rate the development difficulty as a medium. Notebook
development would be easier based on previous work, and the security service layer would
be harder due to the complexity and diversity of the Hadoop ecosystem.

Table 5. Implementation considerations were identified in the prototype experiment.

Recommended Weaknesses Potential Development Development
Enhancement Addressed Strategy Difficulty
Secure Data Analysts Improper Input, SQL Injection Develop from Apache HUE, Medium-Eas
Notebook (CWE-79 and 89) Zeppelin or Jupyter Notebooks y
Improper Authentication Build upon Ranger plugins and
Data Security Service Layer (CWE-287) Missing Hadoop Secure Mode capabilities Medium-Hard
Authorizations (CWE-862) (in later versions)

Management Console

Improper Restriction of
Operations (CWE-119)
Concurrent Execution, Race
Condition (CWE-362)

Integrate Hadoop Ambari, Ranger,
and computer-network Medium
security-performance analysis tools

A commercial and managed distribution, which addresses these areas, is required
if Apache Hadoop is used in business applications. This should be used to provide the
add-ons and integration glue code necessary for logging, security services, and command
and control of the management center. A professional, team-based approach is needed
to handle the increasingly complex environment when larger and more diverse tools are
used to meet the requirements of analysis. System security managers and administrators
face significant challenges in understanding and addressing the security of all the different
ports, protocols, and services that are externally accessible within each component.

4.1. Secure Data Analyst Notebook

An easy-to-use, consistent, and secure tool that provides the sole data analyst interface
for the cluster is needed. This can help ensure that the security settings are consistently
enforced by users with multiple authorizations. Examples of currently used data analyst
notebooks include Apache HUE and Zeppelin. These notebooks allow flexibility in exe-
cuting a variety of searches and analytical programs by using the selected ecosystem tools.
Areas for enhancement in this domain include ensuring that the tools of analysis are under
configuration control and that the security policies are enforced in a verifiable manner. A
challenge in current configurations of the Hadoop ecosystem, such as Apache Atlas, is a
lack of security enforcement.

Tools that can be configured to use SSL, HTTPS over REST API interfaces to protect
data in transit, and Kerberos and LDAP for authentication and authorizations should be
used. For example, Jupyter notebooks depend on a gateway-enabled notebook server,
such as Apache Knox or Spark Magic with Livy, to support Kerberos. User impersonation

Appl. Sci. 2023,13,1183

25 of 28

is used to submit jobs to the cluster, resulting in complicated individual accountability.
Unintentional damage can occur when users can take on the credentials of the superuser.

4.2. Data Security Service Layer

The Hadoop ecosystem is based on a group of independently developed projects
that are connected through open protocols rather than built from the ground up with an
integrated security service layer. This results in the wide use of access through accounts
with root-level privileges to overcome software-related problems. A significant challenge
in setting up a BDP ecosystem is that all the software components have different schedules
of version updates, and not all versions are compatible with one another. Enforcing a
common security service layer that needs to be invoked to interoperate would help ensure
that security services are not disabled or bypassed as software versions change.

The status of the security features of Apache Hadoop is that they are added on rather
than considered as invoked security services that are fully integrated through standard
interfaces as part of compliance with ecosystem integration. Examples of security service
layers include the Oracle Platform Security Services (https:/ /docs.oracle.com/cd/E21764_0
1/core.1111/e10043 /underjps.htm#JISEC1827 accessed 14 January 2023) for data processing
systems and the Generic Security Standard Application Programming Interface (GSS-API)
for software development (https:/ /docs.oracle.com/cd/E19683-01/816-1331/overview-6/
index.html accessed 14 January 2023).

Apache Ranger is a correct step in this direction, but the developers’ goals of flexibility
and extensibility can undermine consistency in security services for components. Each
capability can be optionally implemented to result in fractured security. Apache Ranger
needs to be developed further into a complete and integrated central security service
that applies standard interfaces, such as XACML. Such an integrated and comprehensive
security service can provide an underlying plan that is invoked consistently by all BDP
system services.

4.3. Perspective of Central Management

Given the importance of BDP, system security managers and administrators need to
think and operate similar to cybersecurity attackers. A perspective of central management
is needed that supports this philosophy and provides complete information on the status
of security. This would be the result of active and continuous testing of each component
of the ecosystem as well as the collective environment. Such testing needs to be carried
out across the cybersecurity lifecycle. Penetration scanning that attempts to exploit open
ports, protocols, and services to gain a foothold in the system can be provided by using
such tools as Nmap and OpenVAS. The exposure to exploits that exfiltrate or corrupt data
by establishing command and control through campaign kits such as Metasploit needs to
be well understood. Any SQL input should be subject to SQL injection testing in a manner
that informs the security team.

Information on audit logs needs to be centrally accessible so that behaviors can be
correlated together and correspond to user and process actions. A much stronger confir-
mation of policy enforcement can be provided when the results of log analysis are pulled
from all components of the ecosystem, including the underlying operating systems and the
components of network security.

Traffic analysis by using, for example, firewalls and intrusion detection should also be
available to the security manager so that attempts to maintain or reestablish a presence (of
unauthorized software) on BDP systems can be detected. On the whole, the principle of
least privilege needs to be applied by ensuring individual accountability and restricting the
shared use of superuser accounts.

5. Conclusions

With the availability of next-generation BDP tools such as Apache Hadoop and cloud-
based Hadoop-like ecosystems, organizations are beginning to recognize the potential

Appl. Sci. 2023,13,1183 26 of 28

for the storage and processing of larger volumes of different types of data. This includes
sensitive data that need to be protected not only to meet compliance regulations but also to
protect investments in high-integrity data that inform business decisions. Our analysis of
the security of Apache Hadoop here, which focused on ABAC, identified an approach to
analyzing vulnerabilities and potential attacks. We identified several security issues based
on our experimental environment. We have also made our results available to support
additional related research. An overall security goal of BDP is to achieve fine-grained AC
through ABAC. In this analysis, we defined a framework that provides a strong foundation
to achieve BDP security. This framework consists of three key actions: analysis of standards
and fundamental reference architectures, realistic prototype testing, and implementation
considerations. XACML and NGAC were identified as the standard references for ABAC.
By using components of the open-source Apache Hadoop ecosystem, we analyzed the
security-related features in detail. Commercial versions can hide the security features in
compiled code. A detailed analysis of potential vulnerabilities supports rigorous testing
and new innovative approaches to security. Finally, we identified three main areas that
need to be pursued to attain operational security: the mandatory use of a secure data
analysts’ notebook, a data security service layer, and a central management console. These
capabilities are partially met today and require enhancements through continued research
on BDP security to attain their ultimate objective.

Author Contributions: Both authors contributed substantially to this research work and paper
reporting the results. All authors have read and agreed to the published version of the manuscript.

Funding: This research was sponsored by the U.S. National Science Foundation (NSF) under
Grant 1915780.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data generator used to create a representative healthcare data
set is available at: https://github.com/synthetichealth/synthea/wiki accessed 14 January 2023;
the data generator used to create social media data based upon the healthcare dataset is available
at: https:/ /github.com/AnneMT/SynSocial accessed 14 January 2023. Example datasets, PySpark
programs, data generation tools, and details on Hadoop, Ranger, and Atlas configurations are
available at https://github.com/AnneMT/SEHadoop accessed 14 January 2023.

Acknowledgments: MITRE Approved for Public Release; Distribution Unlimited. Public Release
Case Number 22-0810 and 22-1549. The author’s affiliation with The MITRE Corporation is provided
for identification purposes only and is not intended to convey or imply MITRE’s concurrence with or
support for the positions, opinions, or viewpoints expressed by the author.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

*® NG

Chandrakar, I.; Hulipalled, V.R. Privacy Preserving Big Data mining using Pseudonymization and Homomorphic Encryption. In
Proceedings of the 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 1-3 October 2021.
Sellami, R.; Zalila, F.; Nuttinck, A.; Dupont, S.; Deprez,].-C.; Mouton, S. FADI-A Deployment Framework for Big Data Manage-
ment and Analytics. In Proceedings of the 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Bayonne, France, 10-13 September 2020.

Colombo, P; Ferrari, E. Access Control in the Era of Big Data: State of the Art and Research Directions. In Proceedings of the 23nd
ACM on Symposium on Access Control Models and Technologies (SACMAT’18), Indianapolis, IN, USA, 13-15 June 2018.
Horton, N.; DeSimone, A. Sony’s Nightmare before Christmas: The 2014 North Korean Cyber Attack on Sony and Lessons for US
Government Actions in Cyberspace; Defense Technical Information Center: Laurel, MD, USA, 2018.

Saleem, H.; Naveed, M. SoK: Anatomy of data breaches. Proc. Priv. Enhancing Technol. 2020, 4, 53—-174. [CrossRef]

Hart, M. Kerberos Attacks: What You Need to Know; Cyberark: Newton, MA, USA, 2015.

George, L. User Name Handling in Hadoop; OpenCore: Wedel, Germany, 2016.

Hu, V.; Ferraiolo, D.; Kunn, R.; Schnitzer, A.; Sandlin, K.; Miller, R.; Scarfone, K. Guide to Attribute Based Access Control (ABAC)
Definition and Considerations SP 800-162; NIST: Gaithersburg, MD, USA, 2014.

Appl. Sci. 2023,13,1183 27 of 28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

International National Committee for Information Technology Standards (INCITS). Information Technology—Next Generation Access
Control—Implementation Requirements, Protocols and API Definitions (NGAC-IRPAD); InterNational Committee for Information
Technology Standards: Washington, DC, USA, 2018; Volume 525, pp. 1-44.

Sen, S.; Guha, S.; Datta, A.; Rajamani, S.; Tsai, J.; Wing, J. Bootstrapping Privacy Compliance in Big Data Systems. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18-21 May 2014.

Zhioua, Z.; Ameur-Boulifa, R. Framework for the Formal Specification and Verification of Security Guidelines. Adv. Sci. Technol.
Eng. Syst. (ASTES)]. 2018, 3, 38-48. [CrossRef]

Hu, V,; Ferraiolo, D.; Kuhn, R. Attribute Considerations for Access Control Systems; National Institute of Standards and Technology
(NIST): Gaithersburg, MD, USA, 2019.

Nguyen, D. Provenance-Based Access Control Models. Ph.D Thesis, Department of Computer Science, University of Texas at San
Antonio, San Antonio, TX, USA, 2014.

Liao, C.; Squicciarini, A. Towards Provenance-Based Anomaly Detection in MapReduce. In Proceedings of the IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID), Shenzhen, China, 4-7 May 2015; IEEE: Shenzhen,
China, 2015.

Sun, L.; Park, J.; Nguyen, D.; Sandhu, R. A Provenance-Aware Access Control Framework with Typed Provenance. IEEE Trans.
Dependable Secur. Comput. 2016, 13, 411-423. [CrossRef]

Won, H.; Nguyen, M.C.; Gil, M.-S.; Moon, Y.-S. Advanced Resource Management with Access Control for Multitenant Hadoop. J.
Commun. Netw. 2015, 17, 592-601. [CrossRef]

Solanki, N.; Huang, Y.; Yen, I.-L.; Bastani, F; Zhan, Y. Resource and Role Hierarchy Based Access Control for Resourceful Systems.
In Proceedings of the 2018 IEEE 42nd Annual Computer Softwae and Applications Conference (COMPSAC), Tokyo, Japan, 23-27
July 2018.

Yu, Y.; Chen, Y.; Wen, Y. Task-role based access control model in logistics management system. In Proceedings of the 2013 IEEE
International Conference on Service Operations and Logistics, and Informatics, Dongguan, China, 28-30 July 2013.
Alshammari, S.; Albeshri, A.; Alsubhi, K. Integrating a High-Reliability Multicriteria Trust Evaluation Model with Task Role-Based
Access Control for Cloud Services. Symmetry 2021, 3, 492. [CrossRef]

Wang, P,; Jiang, L. Task-role-based Access Control Model in Smart Health-care System. In Proceedings of the MATEC Web of
Conferences International Conference on Engineering Technology and Application (ICETA 2015), Nagoya, Japan, 29-30 May
2015.

Ma, L.; Tao, L.; Zhong, Y.; Gai, K. RuleSN: Research and Application of Social Network Access Control Model. In Proceedings of
the 2016 IEEE 2nd International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on
High Performance and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS),
New York, NY, USA, 9-10 April 2016.

Cheng, Y.; Park, J.; Sandhu, R. An Access Control Model for Online Social Networks Using User-to-User Relationships. IEEE
Trans. Dependable Secur. Comput. 2016, 13, 424-436. [CrossRef]

Rizvi, S.Z.R.; Fong, PW.; Crampton, J.; Sellwood, J. Relationship-Based Access Control for an Open-Source Medical Records
System. In Proceedings of the SACMAT’15: 20th ACM Symposium on Access Control Models and Technologies, Vienna, Austria,
1-3 June 2015.

Ma, L; Tao, L.; Gai, K.; Zhong, Y. A novel social network access control model using logical authorization language in cloud
computing. Concurr. Comput. Pract. Exp. 2016, 9, 1-17. [CrossRef]

Zhang, R.; Liu, L.; Xue, R. Role-based and time-bound access and management of EHR data. Secur. Commun. Netw. 2014, 7,
994-1015. [CrossRef]

Yang, K.; Liu, Z,; Jia, X.; Shen, X.S. Time-Domain Attribute-Based Access Control for Cloud-Based Video Content Sharing: A
Cryptographic Approach. IEEE Trans. Multimed. 2016, 18, 940-950. [CrossRef]

Gupta, M.; Patwa, F; Sandhu, R. Object-Tagged RBAC Model for the Hadoop Ecosystem. In Proceedings of the IFIP Annual
Conference on Data and Applications Security and Privacy DBSEC 2017, Philadelphia, PA, USA, 19-21 July 2017.

Kayes, A.; Han, J.; Colman, A. An ontological framework for situation-aware access control of software services. Inf. Syst. 2015,
53, 253-277. [CrossRef]

Kumar, T.A,; Liu, H.; Thomas, J.P.; Hou, X. Content sensitivity based access control framework for Hadoop. Digit. Commun. Netw.
2017, 3, 213-225. [CrossRef]

Zeng, W.; Yang, Y.; Luo, B. Access control for big data using data content. In Proceedings of the 2013 IEEE International Conference
on Big Data, Silicon Valley, CA, USA, 27 June-2 July 2013.

Morgan, R.L.; Cantor, S.; Carmody, S.; Hoehn, W.; Klingenstein, K. Federated Security: The Shibboleth Approach. EDUCASE Q.
2004, 27,12-17.

OASIS. Cross-Enterprise Security and Privacy Authorization (XSPA) Profile of SAML v2.0 for Healthcare, Version 2.0, Committee
Specification 01; OASIS: Burlington, MA, USA, 2019.

HL7 International. HL7 Healthcare Privacy and Security Classification System (HCS), Release 1, Ann; HL7 International: Arbor, MI,
USA, 2014.

Fu, X;; Nie, X.; Wu, T.; Li, F. Large universe attribute based access control with efficient decryption in cloud storage system. J. Syst.
Softw. 2018, 135, 157-164. [CrossRef]

Appl. Sci. 2023,13,1183 28 of 28

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

Li, J.; Zhang, Y.;; Ning, J.; Huang, X; Poh, G.S.; Wang, D. Attribute Based Encryption with Privacy Protection and Accountability
for CloudIoT. IEEE Trans. Cloud Comput. (Early Access) 2020, 10, 762-773. [CrossRef]

Teng, W.; Yang, G.; Xiang, Y.; Zhang, T.; Wang, D. Attribute-Based Access Control with Constant-Size Ciphertext in Cloud
Computing. IEEE Trans. Cloud Comput. 2017, 5, 617-627. [CrossRef]

Wang, J.; Crawl, D.; Purawat, S.; Nguyen, M.; Altintas, I. Big data provenance: Challenges, state of the art and opportunities. In
Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, CA, USA, 29 October—1 November 2015.
Hellerstein, J.; Sreekanti, V.; Gonzalez, J.; Dalton, J.; Dey, A.; Nag, S.; Ramachandran, K.; Arora, S.; Bhattacharyya, A.; Das, S.; et al.
A Data Context Service. In Proceedings of the CIDR 2017, Chaminade, CA, USA, 8-11 January 2017.

Sowmy, Y.; Nagaratna, M.; Shoba Bindu, C. M-SANIT: A Framework for Effective Big Data. J. Theor. Appl. Inf. Technol. 2018, 96,
1596-1605.

Nagajothi, S.; Raj Kumar, N. Data Anonymization Technique for Privacy Preservation Using MapReduce Framework. Int. J. Adv.
Res. Comput. Commun. Eng. 2016, 5, 1012-1018.

Zhang, X.; Yang, L.; Liu, C.; Chen, J. A Scalable Two-Phase Top-Down Specialization Approach for Data Anonymization Using
MapReduce on Cloud. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 363-373. [CrossRef]

Saraladevi, B.; Pazhaniraja, N.; Victer Paul, P.; Saleem Basha, M.; Dhavachelvan, P. Big Data and Hadoop-a Study in Security
Perspective. Procedia Comput. Sci. 2015, 50, 596-601. [CrossRef]

Cloud Security Alliance; Top Threats Working Group. Top threats to Cloud Computing: Egregious Eleven; Cloud Security Alliance:
Seattle, WA, USA, 2019.

Khandelwal, S. Insecure Hadoop Clusters Expose Over 5,000 Terabytes of Data; The Hacker News: New York, NY, USA, 2017.
Bhathal, G.S.; Singh, A. Big Data: Hadoop framework vulnerabilities, security issues and attacks. Array 2019, 1-2, 1-8. [CrossRef]
Fu, X.; Gao, Y.; Luo, B.; Du, X.; Guizani, M. Security Threats to Hadoop: Data Leakage Attacks and Investigation. IEEE Netw.
2017, 31, 67-71. [CrossRef]

Mondal, P. Thousands of Unauthenticated Databases Exposed on the Internet; RedHunt Labs: London, UK, 2021.

Kolesnikov, O.; Parashar, H. Detecting Persistent Cloud Infrastructure/Hadoop/YARN Attacks Using Security Analytics: Moanacroner,
XBash, and Others; Securonix Threat Research: Jersey City, NJ, USA, 2019.

Sinha, S.; Gupta, S.; Kumar, A. Emerging Data Security Solutions in HADOOP based Systems: Vulnerabilities and Their
Countermeasures. In Proceedings of the 2019 International Conference on Computing, Communication, and Intelligent Systems
(ICCCIS), Greater Noida, India, 18-19 October 2019.

Cheng, L.; Shen, Q.; Dong, C. Invader Job: A Kind of Malicious Failure Job on Hadoop YARN; IEEE: Kansas City, MO, USA, 2018.
Geenens, P. Hadoop YARN: An Assessment of the Attack Surface and Its Exploits; Radware: Mahwah, NJ, USA, 2018.

Antony, B. Secure Communication in Hadoop without Hurting Performance; Ebay: San Jose, CA, USA, 2016.

Bhamidimarri, V.R. Introducing Amazon EMR Integration with Apache Ranger; AWS: Washington, DC, USA, 2021.

Tall, A.; Zou, C.; Wang, J. Generating Connected Synthetic Electronic Health Records and Social Media Data for Modeling and
Simulation. In Proceedings of the Interservice/Industry Training, Simulation and Education Conference (I/ITSEC), Orlando, FL,
USA, 1-3 December 2020.

Bhatt, S.; Patwa, F; Sandhu, R. ABAC with Group Attributes and Attribute Hierarchies Utilizing the Policy Machine. In
Proceedings of the 2nd ACM Workshop on Attribute-Based Access Control (ABAC’17), New York, NY, USA, 24 March 2017.
IEEE Computer Society Center for Secure Design. Avoiding the Top 10 Software Security Design Flaws; IEEE: Washington, DC,
USA, 2015.

Veracode. State of Software Security Volume 11; Veracode: Burlington, MA, USA, 2020.

Kapil, G.; Agrawal, A.; Attaallah, A.; Algarni, A.; Kumar, R.; Kahn, R.A. Attribute based honey encryption algorithm for securing
big data: Hadoop distributed file system perspective. Peer] Comput. Sci. 2020, 6, €259. [CrossRef] [PubMed]

Gupta, E; Sural, S.; Vaidya, J.; Atluri, V. Enabling Attribute-based Access Control in NoSQL Databases. IEEE Trans. Emerg. Top.
Comput. 2022, 1-15. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Motivation
	Big Data Distributed Compute and Storage
	Attribute-Based Access Control Approach

	Materials and Methods
	Implementation Strategy
	AC Policies
	AC Attribute Models
	Data Provenance

	Cybersecurity Vulnerability Evaluation
	Access Control for Hadoop Distributed File System
	Operating System and Directory Access Control
	Resource Management and YARN Access Controls
	Service-Level Authorizations
	Management Consoles

	Results
	Software and AWS EC2 Instances
	Datasets
	Data Processing Lifecycle
	Analysis and Observations
	ABAC Support
	Multiple Management Consoles
	Verification of Security Software
	Performance

	Limitations

	Discussion
	Secure Data Analyst Notebook
	Data Security Service Layer
	Perspective of Central Management

	Conclusions
	References

