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Abstract—Models based on the Ornstein-Uhlenbeck process have become standard for the comparative study of
adaptation. Cooper et al. (2016) have cast doubt on this practice by claiming statistical problems with fitting Ornstein—
Uhlenbeck models to comparative data. Specifically, they claim that statistical tests of Brownian motion may have too
high Type I error rates and that such error rates are exacerbated by measurement error. In this note, we argue that these
results have little relevance to the estimation of adaptation with Ornstein-Uhlenbeck models for three reasons. First, we
point out that Cooper et al. (2016) did not consider the detection of distinct optima (e.g. for different environments), and
therefore did not evaluate the standard test for adaptation. Second, we show that consideration of parameter estimates,
and not just statistical significance, will usually lead to correct inferences about evolutionary dynamics. Third, we show
that bias due to measurement error can be corrected for by standard methods. We conclude that Cooper et al. (2016)
have not identified any statistical problems specific to Ornstein-Uhlenbeck models, and that their cautions against their
use in comparative analyses are unfounded and misleading. [adaptation, Ornstein-Uhlenbeck model, phylogenetic

comparative method.]

Based on many comments from editors and review-
ers, we perceive a growing distrust of using Ornstein—
Uhlenbeck models in macroevolutionary studies of
adaptation. The Ornstein-Uhlenbeck process is the
simplest possible stochastic model of trait evolution
around optimal states, capturing a key ingredient at the
core of evolutionary biology: the idea that species have
different trait values due to adaptation to distinctive
niches. We thus find this distrust surprising. Why are
some evolutionary biologists giving these models the
cold shoulder?

The bulk of the distrust seems to derive from Cooper
et al. (2016), which is an increasingly cited (over 250
citations) source for why Ornstein-Uhlenbeck mod-
els should be avoided. Cooper et al. (2016) used
simulations to claim two problems. First, by using
statistical significance as a model-selection criterion,
they claimed that Ornstein-Uhlenbeck models were
chosen too frequently over Brownian motion on data
generated by the latter process. Second, they claimed
that this problem was amplified by measurement error.
They then proposed “best practices” when fitting

Ornstein-Uhlenbeck models to comparative data. Some
of their recommendations are sound and general to any
modeling of empirical data, such as critically interpret-
ing model parameters instead of focusing on model fit,
accounting for measurement error, and assessing the
adequacy of the applied model. We disagree, however,
with Cooper et al.’s (2016) claim to have detected spe-
cific problems with the Ornstein-Uhlenbeck method
and we find their recommendations against the appli-
cation of the method to be unfounded.

The impact of the Cooper et al. (2016) paper is unfor-
tunate, not only because their analyses are irrelevant to
the claims they make but also because their recommen-
dations are likely to dissuade researchers from testing
hypotheses of adaptation with models that are best cut
out for this purpose. This sentiment is compounded by
the peer review process, as indicated by the fact that all
of us (the authors), and likely many others, have had
Cooper et al’s. (2016) recommendations incorrectly
cited in reviews of papers or grant proposals as evi-
dence for statistical problems with the use of Ornstein—
Uhlenbeck models. Thus, we are once again (e.g.,
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Martins 2000) in danger of replacing models designed
for the problem at hand with general approaches that
are harder to interpret and that often make assump-
tions that are inconsistent with the tested hypotheses
(Hansen 2014; Uyeda et al. 2018; Moen et al. 2022). A
formal rebuttal of Cooper et al. (2016) is therefore long
overdue.

THE ORNSTEIN-UHLENBECK MODEL IN PHYLOGENETIC
COMPARATIVE STUDIES

Hansen (1997) introduced the specific use of
Ornstein-Uhlenbeck models to test hypotheses of trait
adaptation to different niches mapped on a phylogeny.
The Ornstein—Uhlenbeck process includes a determin-
istic movement of species trait values toward optimal
states that can vary in accordance with environmental
or ecological variables. Hansen (1997) termed these
states “primary optima” and suggested interpreting
them as the average of local optima (= trait means) for
many species adapting to a given primary niche. The
idea is that “secondary” selective factors (e.g., other,
species-specific niche axes that also affect the trait) aver-
age out across species, leaving a common effect of the
primary niche. Hypotheses about adaptation are tested
by estimating the primary optima for different states of
the environmental or ecological variables and asking if
they differ as predicted by the hypotheses (see Hansen
2014 for a detailed explanation).

Mathematically, a simple Ornstein-Uhlenbeck pro-
cess is described by the stochastic differential equation:

dy = —a(y — 0)dt + odW, 1)

where dy is the change in a given species” mean trait
value, y, over a short time interval d¢, 6 is the primary
optimum, o determines the rate of adaptation toward
the primary optimum, dW represents independent nor-
mally distributed stochastic changes with mean zero
and unit variance over a unit of time, and ¢ is the stan-
dard deviation of these latter changes. The o-parameter
can also be expressed in terms of the stationary variance
of the process, v = 0%/2a, which can be interpreted as
the variance among species within a niche after a long
period of independent evolution. The method has
been implemented to varying degrees in a number
of software packages that allow fixed discrete or con-
tinuously evolving niches on the branches of a phy-
logeny (e.g., OUCH, Butler and King 2004; SLOUCH,
Hansen et al. 2008; MATTICE, Hipp and Escudero 2010;
OUwie, Beaulieu et al. 2012; mvSLOUCH, Bartoszek et
al. 2012; SURFACE, Ingram and Mabhler 2013; phylolm,
Ho and Ané 2014a; bayou, Uyeda and Harmon 2014;
muvMORPH, Clavel et al. 2015; I1ou, Khabbazian et al.
2016; PhylogeneticEM, Bastide et al. 2018; PCMFit, Mitov
et al. 2020). This approach made it possible to investi-
gate biological questions related to whether focal traits
of taxa sharing a given niche tend to be more similar
compared to those of taxa sharing a different niche, as

well as to estimate the level of adaptation and phyloge-
netic inertia in the clade (see Hansen 2014; Mahler and
Ingram 2014; O’Meara and Beaulieu 2014; Moen et al.
2022 for general reviews).

While Cooper et al. (2016) stressed the a-parame-
ter, we focus our discussion on a transformation of
this parameter, the phylogenetic half-life. Calculated
as t12 = In(2) /a, the half-life has units of time and a
more transparent biological meaning. The half-life can
be interpreted as the average time for a trait to evolve
halfway from an ancestral state toward a new optimum.
Thus, it indicates how long it will take before adapta-
tion to a new regime is more influential than constraints
from the ancestral state. Given a phylogeny scaled to
unit height, a half-life of unity would mean that a spe-
cies starting to evolve in a new niche at the root of the
phylogeny would be expected to have traversed half the
original distance to the new primary optimum when it
has reached the tip of the phylogeny. This can usually
be interpreted as strong phylogenetic inertia and slow
adaptation. A shorter half-life would mean faster adap-
tation and a half-life of zero would mean instantaneous
adaptation and thus no phylogenetic correlation in spe-
cies’ trait residuals. Half-lives in excess of phylogeny
height mean that the process is increasingly resembling
Brownian motion, as a—and thus the deterministic
component of Equation (1)—asymptotes toward zero.
A pure Brownian motion has a half-life of infinity.

A CAUTIONARY NOTE ON MODEL RELEVANCE

Throughout their article, Cooper et al. (2016) ana-
lyzed single-optimum Ornstein-Uhlenbeck processes
to reach their conclusions regarding the use of the mod-
els in comparative studies in general. Single-optimum
models are just that—they estimate a single constant
optimum across the phylogeny. Thus, they assume
that all species are adapting toward the same primary
optimum.

However, the main utility of Ornstein—Uhlenbeck
models in comparative analyses is to test adaptive
hypotheses by fitting two or more regime-specific
optima (Hansen 1997; Butler and King 2004; Beaulieu
et al. 2012). Even the simple example in Hansen (1997)
that introduced the method estimated distinct optima
for grazers and browsers to assess the role of diet on
hypsodonty in horses. As Cooper et al. (2016) did not
consider multiple optima, it is unclear how their results
pertain to the main application of the method.

The restriction to single-optimum models limits the
generality of the results presented in Cooper et al. (2016).
First, the estimation accuracy of the a parameter may
differ between models with single and multiple optima.
Shifts among different optima lead to more determin-
istic dynamics and thus more information about the
o parameter. This is particularly true when optima are
well separated and have several origins (Beaulieu et
al. 2012; Boettiger et al. 2012; Ho and Ané 2013, 2014b;
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Cressler et al. 2015; Bartoszek et al. 2022). Second, infer-
ences about adaptation are not based on the a-param-
eter, but on the primary optima, which are estimated
as fixed effects in an ANOVA or regression, and their
estimation accuracy can be substantial even with as few
as ten species (Cressler et al. 2015). For example, Moen
et al. (2022) discuss the advantages of multiple-opti-
mum models and illustrate their utility, even with few
species, using data on thermal physiology from just 12
species of tree frogs. By comparing different hypothe-
ses, they identified an Ornstein—Uhlenbeck model with
two primary optima for critical thermal minimum as
the best explanation for how tropical tree frog species
were able to colonize temperate zones. For multivariate
traits, which require more data, Bartoszek et al. (2022)
provide compelling examples of how rather complex
hypotheses about coadaptation and biological trade-
offs can be distinguished with multiple-optimum mod-
els fitted to data from 100 species or less.

Single-optimum models have two uses in evolution-
ary biology. First, they are used to describe patterns
of evolution in evolutionary time series (e.g., Hunt et
al. 2008; Lo Cascio Seetre et al. 2017; Voje 2020), which
include information on the ancestral state and other
traits that are usually unavailable in analyses based on
comparative data from extant species. Second, they are
used to model phylogenetic signal in residual variation
in comparative studies not involving adaptation (e.g.,
allometry; Grabowski et al. 2016). In such analyses, it is
not uncommon to use relative model fit to distinguish
between trait dynamics described by a single-optimum
Ornstein—Uhlenbeck model and a Brownian-motion
model. Although Cooper et al’s. (2016) results have
some relevance to this practice, investigating per-
formance not only on data generated by a Brownian
motion but also from Ornstein-Uhlenbeck processes
with a range of a-values—as has been done in previous
studies of the method’s performance (e.g., Beaulieu et
al. 2012; Boettiger et al. 2012; Ho and Ané 2013, 2014b;
Cressler et al. 2015; Cornuault 2022)—would have pro-
vided a more relevant contrast.

The phylogenetic half-life is the canonical measure
of phylogenetic signal in the Ornstein-Uhlenbeck
framework and can be informative about the evolution-
ary processes that generated the data. We emphasize,
however, that phylogenetic signal estimated from sin-
gle-optimum models should not be used to select the
evolutionary model for a comparative analysis of adap-
tation. A strong, Brownian-motion-like phylogenetic
signal frequently occurs in data when related species
adapt toward similar niches (Labra et al. 2009; Hansen
2014). Yet, such a pattern does not necessarily indicate
a similar phylogenetic pattern in the residual devia-
tions of species from the estimated optima. It is essen-
tial to understand that only phylogenetic correlations
in model residuals should be accounted for in com-
parative inference (Hansen and Orzack 2005; Labra et
al. 2009; Revell 2010; Hansen 2014). The a-parameters
reported in Table 2 of Cooper et al. (2016) are estimates

of phylogenetic signal in their simulated species data
and thus do not address the idea of testing for system-
atic differences in primary optima for species adapting
to different niches.

REVISITING THE SIMULATIONS AND PARAMETER
INTERPRETATIONS OF SINGLE-OPTIMUM MODELS

To produce their main results, Cooper et al. (2016) first
generated phylogenies of varying size (25-1000 tips) and
simulated the evolution of a single trait on each phy-
logeny under a simple, constant-rate Brownian-motion
model of evolution. They then fitted a single-optimum
Ornstein-Uhlenbeck model and a Brownian-motion
model to the resulting data and compared them with
a likelihood-ratio test. They recorded the proportion of
times the likelihood-ratio test rejected Brownian motion
in favor of the Ornstein—Uhlenbeck model. Cooper et al.
(2016) argued that this proportion, which they termed
the “rejection rate” in their Table 2, was “unacceptably
high” in some circumstances. In consequence, they rec-
ommended that Ornstein—Uhlenbeck models should
not be applied with fewer than 200 tips. They also rec-
ommended considering Bayesian approaches. While
considering Bayesian approaches is reasonable (see
Uyeda and Harmon 2014; Ross et al. 2016; Uyeda et al.
2017; Cornuault 2022), they are not alternatives to mod-
els like the Ornstein—Uhlenbeck process. Instead, they
are simply statistical approaches to fitting the models.
In any case, the key conclusions that Cooper et al. (2016)
used to recommend caution against fitting Ornstein—
Uhlenbeck models are not supported by their results.
There are two main reasons for this.

First, by only simulating Brownian motion and only
considering Type I error rates, Cooper et al. (2016)
neglected to interpret the estimated parameters. Many
cases of Type I error will be associated with best esti-
mates of o corresponding to relatively long half-lives,
and in this situation, the dynamics predicted from the fit-
ted Ornstein—-Uhlenbeck model are similar to Brownian
motions. Indeed, making a sharp distinction between
Ornstein—Uhlenbeck and Brownian-motion processes
unhelpfully discretizes a continuum. Finding instances
of Type I error, in which the Ornstein—-Uhlenbeck model
is preferred over the Brownian-motion model, is not
an argument against using Ornstein—Uhlenbeck mod-
els. Rather, it supports one of the general recommen-
dations Cooper et al. (2016) made but did not heed: a
comparative analysis should include careful interpreta-
tion of parameters. In fact, Cooper et al. (2016) observe
that “scrutiny of the model parameters suggest that
the favored Ornstein—Uhlenbeck model is biologically
indistinguishable from Brownian motion” (p. 67) but
fail to see that this undermines their own criticism of
the method. In other words, a researcher who makes
inferences not exclusively based on significance or
model-selection criteria, but also considers the mean-
ing of the estimated parameters would still conclude
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that evolution is similar to Brownian motion when con-
fronted with parameter estimates showing an Ornstein—
Uhlenbeck model with a long half-life.

This point is underscored by the simulations pre-
sented by Cressler et al. (2015), who showed the inverse
result of Cooper et al. (2016), namely that Brownian
motion could be chosen preferentially over Ornstein—
Uhlenbeck models when data were generated from the
latter with long phylogenetic half-lives. Unsurprisingly,
“errors” are common when choosing between mod-
els that are essentially equivalent. This is especially
true when the choice is conducted at the boundary of
parameter space under the likelihood-ratio test, as in
Cooper et al. (2016). When the null model lies on the
boundary of the parameter space of the alternative
model, the likelihood-ratio test is less reliable because
the regular distributional properties of its statistic (see
below) no longer hold (Self and Liang 1987; see also
Ota et al. 2000; Dominicus et al. 2006). This is not an
issue with the Ornstein-Uhlenbeck process but with the
inferential setup adopted by Cooper et al. (2016), and it
would apply similarly to any of the alternative models
used to measure phylogenetic effects (e.g. Lynch 1991;
Housworth et al. 2004).

Even in situations with long half-lives, there are ben-
efits to estimating parameters with the more general
Ornstein—Uhlenbeck models. In these situations, esti-
mates of optima become inaccurate, but the model can
be reparametrized to estimate regime-specific evolu-
tionary trends (Hansen 1997). In fact, a multi-optimum
Ornstein—Uhlenbeck process does not converge to sim-
ple Brownian motion when the half-life becomes long.
Instead, it converges to Brownian motion with trends
influenced by the regimes. These trends can be accu-
rately estimated even when the conventional o and ¢
parameters are individually uncertain (Hansen 1997;
and see Grabowski et al. 2023 for a recent example).

Second, Cooper et al. (2016) do not, in our opinion,
fully appreciate that the parameters in these models
have units. The unit of «, for example, is the inverse
of time, which can be characterized in years, genera-
tions, or height of the phylogeny. Cooper et al. (2016)
simulated trees conditional on the number of taxa,
which produces trees of different heights. Though
they sometimes imply in their article that they rescaled
trees to unit heights, their published code does not do
so. This means that the variation in their estimated o
values incorporates variation in tree height across their
simulated datasets. In other words, all the tables from
Cooper et al. (2016) reporting the median and 95%
quantiles for a across their simulations (e.g., their Table
2), which appear to show substantial variation in o per
run, are inflated by variation in the height of the phy-
logeny, compromising their interpretation.

Using the available R code from Cooper et al. (2016),
we recreated one of the main results of their study to
investigate how these issues may have influenced their
interpretations. This analysis explored whether the
number of taxa in the phylogeny across varying extinc-
tion rates affects the relative fit of Brownian motion

versus the Ornstein—Uhlenbeck model. We first recon-
structed birth—death trees with varying numbers of tips
(25, 50, 100, 200, 500, 1000) and relative extinction rates
(0%, 25%, 50%, 75%). We simulated these trees with the
function tess.sim.taxa from the R package TESS (H6hna
et al. 2016). This function is the updated version of
the now defunct sim.globalBiDe.taxa that Cooper et al.
(2016) used. The relative extinction rate determines how
branching events are distributed through time. Cooper
et al. (2016) called these “d/b” ratios for death/birth,
and we followed that style here but note that this is also
termed the relative extinction rate, or € (Magallén and
Sanderson 2001). An € = 0 (the Yule model) results in an
exponentially increasing number of branching events
through time. By increasing the relative extinction
rate, the branching events are skewed more toward the
recent part of the phylogeny (“tippy” trees). We scaled
all simulated trees to unit height so that phylogenetic
half-lives from our simulations were comparable and
interpretable as proportional to the total tree height. We
then simulated data following Brownian motion with
a constant rate parameter of 0> = 1, using the sim.char
function from the geiger package. All simulations were
replicated 50 times, producing a total of 1200 simula-
tion replicates (i.e. 6 tree sizes x 4 extinction rates x 50
replicates).

We first estimated parameters following the approach
of Cooper et al. (2016) with the transformPhylo. ML func-
tion from motmot (Thomas and Freckleton 2012). We
next used the same likelihood-ratio test as Cooper et
al. (2016) to determine which model was better sup-
ported. We did this to produce results more directly
comparable to theirs, although as noted above, we rec-
ognize that a proper likelihood-ratio test, in this case,
would follow a procedure more similar to that outlined
by Ota et al. (2000). We used a likelihood ratio (3.84)
that corresponds to the critical value at 5% significance
level under a x* test with one degree of freedom. We
also used the same simulated data to estimate half-lives
using the function slouch.fit from SLOUCH (Hansen et
al. 2008; Kopperud et al. 2020), which allows one to esti-
mate and visualize uncertainty in parameter estimates.
The R code used to run our simulations is available at:
https:/ / github.com /mark-grabowski/C-Reply.

Our results are shown in Table 1. The rejection rate
appears to show some of the same issues espoused by
Cooper et al. (2016). Increasing the number of tips and
decreasing the relative extinction rate generally leads
to a lower rejection rate of Brownian motion. Mirroring
Table 2 in Cooper et al. (2016), our Table 1 includes
median and 95% quantiles, but is presented as phylo-
genetic half-lives, rather than as a-values. The median
half-life for all simulations across all trees is well above
phylogeny height, indicating that Brownian-motion-
like dynamics dominate these results, but the lower
95% quantile includes relatively short phylogenetic
half-life values for the smallest trees, indicating that fast
Ornstein-Uhlenbeck dynamics were preferred in some
cases. The highest rejection rate in our simulations was
for a tree with 25 tips and an extinction rate of 75%,
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TaBLE 1.

Rates of misinferring Ornstein-Uhlenbeck dynamics from data generated under Brownian motion across a range of tree sizes

(number of tips) and birth-death models with varying relative extinction rates (d/b), as in Cooper et al. (2016)*

dlb Tree size Rejection rate Median ¢, , [95% quantiles] Qualitative error rate Uncertain error rate
0 25 12% 1.66 [0.13—0] 4% 2%
0 50 4% 1.60 [0.44—] 0% 2%
0 100 4% 2.85 [0.60—c] 0% 0%
0 200 2% 5.74 [0.87—] 0% 0%
0 500 8% 9.92 [1.18-c] 0% 0%
0 1000 6% o0 [1.40—c0] 0% 0%
0.25 25 12% 1.40 [0.21-o0] 2% 4%
0.25 50 8% 2.13 [0.23—] 4% 0%
0.25 100 4% 1.85 [0.46—o0] 2% 0%
0.25 200 4% 3.79 [0.82—] 0% 2%
0.25 500 10% 8.94 [0.99—<] 0% 2%
0.25 1000 2% 24.89 [1.51-] 0% 0%
0.5 25 8% 1.85 [0.22—00] 2% 4%
0.5 50 10% 1.91 [0.22—c0] 4% 4%
0.5 100 2% 2.33 [0.57—c] 0% 0%
0.5 200 4% 3.65 [0.69—] 0% 2%
0.5 500 4% 4.95 [1.23—c] 0% 0%
0.5 1000 2% 12.39 [1.99-c0] 0% 0%
0.75 25 16% 1.33 [0.14—<0] 2% 10%
0.75 50 14% 1.92 [0.29—] 2% 6%
0.75 100 6% 2.72[0.54—c] 0% 0%
0.75 200 6% 5.13 [0.72—] 0% 0%
0.75 500 8% 72.86 [1.29-c] 0% 0%
0.75 1000 4% 12.40 [1.73—c0] 0% 0%

*The column labeled “Rejection rate” gives the frequency at which Brownian motion is rejected according to the significance test used by
Cooper et al. (2016). In addition, we report the median and 95% quantiles (across simulation replicates) of the estimated half-lives in units of
tree height. The two last columns indicate rates of misinference when considering parameter estimates with uncertainty. The column labeled
“Qualitative error rate” gives the percent of cases when both the best estimate and the upper limit of the 2-unit support interval of the half-life
are less than one. These would be qualitative errors of inference. The column labeled “Uncertain error rate” gives the percent of cases when
the best estimate of half-life is less than one, but the upper limit of the support interval is between one and three. These would be cases where
a wrong model is found but reported to be uncertain. Note that both the qualitative and the uncertain error rates are much lower than the
significance-based error rate. All rates are based on 50 simulation replicates per row.

with a rejection rate of 16% (i.e., Brownian motion was
rejected in eight of fifty simulation replicates).

On the surface, these results seem worrying, but the
picture changes when we examine parameter estimates
and uncertainty in the individual simulation repli-
cates (Table S1). In the eight cases discussed above in
which the Ornstein-Uhlenbeck model was preferred
using motmot, the maximum-likelihood estimate of the
half-life was usually far below tree height. Looking at
these same runs using SLOUCH, however, shows that
in seven of the eight cases, the 2-unit support interval
extended above unity. In other words, these results cor-
rectly tell us that there is limited evidence to support an
Ornstein—Uhlenbeck process that is qualitatively differ-
ent from Brownian motion.

To reinforce this point, we added two new statistics to
the rejection rate of Cooper et al. (2016). The “Qualitative
error rate” shows the frequency at which both the best
estimate and the upper limit of the 2-unit support inter-
val for the half-life are less than unity. This simulates a
situation in which a researcher considering the meaning
and uncertainty of parameter estimates would reach a
qualitatively wrong conclusion. The “Uncertain error
rate” shows the frequency at which the best estimate
of the half-life is less than unity, but the upper limit
of the support interval is between one and three. This
simulates a situation in which the researcher would not
only reject Brownian motion and support meaningfully

different Ornstein-Uhlenbeck models but also report
that the evidence for this conclusion is modest. Our
results in Table 1 show that both rates are always far
below the significance-based rejection rate of Cooper et
al. (2016), and quickly go to zero as the number of spe-
cies increases.

Figure 1 shows the log-likelihood support surfaces
from four individual runs of this “worst-case” simula-
tion. Figure 1a shows the pattern seen in most runs—the
maximum-likelihood estimate for the half-life is around
or substantially greater than tree height, and thus the
best model indicates a pattern similar to Brownian
motion. The other three panels show patterns with
varying degrees of support for an Ornstein—Uhlenbeck
model. Figure 1b, ¢ have maximum-likelihood half-life
values of 31% and 12% of tree height, which indicate
a model qualitatively different from Brownian motion.
The former (Fig. 1b) has a ridge of support running out
toward infinity, however, indicating that the evidence
against Brownian motion is not strong. In the latter (Fig.
1c), the 2-unit support interval extends out to 129% of
tree height, making it a case of the “Uncertain error
rate.” Here, a wrong inference of Ornstein—Uhlenbeck
dynamics would be made, but the possibility of rela-
tively slow dynamics resembling Brownian motion is
not definitely rejected. Figure 1d shows a case of the
“Qualitative error rate” in which strong evidence for
moderately fast Ornstein-Uhlenbeck dynamics would
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FiGure 1. Support (log-likelihood) surfaces for phylogenetic half-lives (f, ,=In(2) /o) and stationary variances (v = 02 /2a) for four replicates.

The trait data were simulated under a Brownian-motion model and fitted as an Ornstein—-Uhlenbeck process on 25-tip trees simulated under a
birth-death model (d/b ratio = 0.75). All trees were scaled to unit height. In each figure, the black dot is the maximum-likelihood estimate. The
distance between the dot and the surrounding line, and the lines relative to each other, is 0.5 log-likelihood units. Run (a) depicts support for
the Brownian-motion model. Runs (b)-(d) show increasing support for the Ornstein-Uhlenbeck model. A half-life above one indicates that the
process is approaching Brownian motion and a half-life of three means that the model is dynamically similar to Brownian motion. The non-
shaded parts of the figure correspond to estimates that were more than two support units worse than the best estimate. The cases a, b, ¢, and d
correspond to simulation replicates 151, 164, 194, and 189, respectively, in Table S1.

be reported. This particular run is responsible for the
2% qualitative error rate result for this simulation (i.e.,
it occurred once in 50 replicates).

None of these results deny that estimates of phy-
logenetic half-lives, and phylogenetic signal more
generally, are often inaccurate for small phyloge-
nies. Reporting uncertainty with support intervals, or
Bayesian posterior distributions, is instrumental. In
cases with high uncertainty, Hansen (1997; Hansen et

al. 2008) recommended a qualitative approach in which
inferences about adaptation, or other main effects, are
reported conditionally on fixed values of half-lives. For
example, a strong inference could be made if a result
were to hold over a range of reasonable half-lives.

One of the general recommendations of Cooper et al.
(2016) was to pay attention to parameter estimates and
their uncertainty to avoid error in analyses. Yet they
misinterpreted their own results by neglecting units,
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scale, meaning, and estimation uncertainty of o. The
main lesson to be drawn from their analyses is not that
there are problems with fitting Ornstein-Uhlenbeck
models, but rather that model-selection and interpreta-
tion should not be based solely on significance testing
(see also Amrhein et al. 2019; Wasserstein et al. 2019).

MISCONCEPTIONS ABOUT MEASUREMENT ERROR

Using a similar setup as above, Cooper et al. (2016)
further simulated the effects of error in the species
values on the rejection rates. In comparative analyses,
“measurement error” usually refers to estimation error
in the species means. The variance of these errors can
be quantified by the (squared) standard error of the
estimate (Hansen & Bartoszek 2012) and includes both
natural variance among individuals and variance in
the measurements of these individuals. For brevity and
consistency with Cooper et al. (2016), we will use “mea-
surement error” as an umbrella term that can refer to
any source of error or error variance in species means.
Cooper et al. (2016) claimed that with as little as 1% of
“measurement error,” the Ornstein—~Uhlenbeck model
was often inappropriately chosen over the Brownian-
motion model and this error frequency increased with
the size of the tree. Based on these results they claimed
that “we cannot conclude anything about the evo-
lutionary process from a single optimum [Ornstein—
Uhlenbeck] model unless error is adequately accounted
for” (p. 69).

Why is the Ornstein—Uhlenbeck model preferred with
increasing error and larger trees? The reason is concep-
tually simple. Measurement error increases among-spe-
cies variance relative to phylogenetic covariance (e.g.,
Lynch 1991; Felsenstein 2008; Hansen and Bartoszek
2012), and this will reduce the phylogenetic signal.
When fitting an Ornstein—-Uhlenbeck model, the reduc-
tion in phylogenetic signal will manifest as a shorter
phylogenetic half-life. If the only choice is between
pure Ornstein—-Uhlenbeck and Brownian-motion mod-
els, lowering the phylogenetic half-life will increase
support for the Ornstein-Uhlenbeck model. Moreover,
with more tips, there is more power to reject Brownian
motion. This is not a flaw of the Ornstein-Uhlenbeck
model, because in models with a single optimum, the
half-life describes the correlation structure in the data.
The same effect will appear with other measures of
phylogenetic signal, such as phylogenetic heritability
(Lynch 1991; Housworth et al. 2004).

The effect of measurement error on parameter esti-
mation in comparative methods is important and has
been extensively discussed (e.g., Martins and Hansen
1997; Ives et al. 2007; Felsenstein 2008; Hansen and
Bartoszek 2012; Garamszegi 2014; Silvestro et al. 2015;
Grabowski et al. 2016). This is not a problem particular
to Ornstein—Uhlenbeck models, however; it applies to
any model-based comparative inference. Furthermore,
many modern applications of phylogenetic comparative

methods, including those based on the Ornstein-
Uhlenbeck model, allow for modeling of measure-
ment error (e.g., Hansen et al. 2008; Bartoszek et al.
2012; Beaulieu et al. 2012; Ho and Ané 2014b; Uyeda
and Harmon 2014). Indeed, many of these applications
were available at the time of Cooper et al.’s (2016) anal-
yses, but they did not take the opportunity to investi-
gate the performance of approaches that accommodate
measurement error. To reinforce our point, we have
included a relatively simple example in the supplemen-
tary material where we simulate traits under Brownian
motion and inferred the half-life under a range of con-
ditions—varying tree size, measurement error, and
whether the model accounted for measurement error.
Our results show that not considering observation error
can lead to incorrect inferences, but more importantly
that accounting for error variance in the model allevi-
ates the problem (see Supplementary Text S1).

CONCLUSIONS

Investigating parameter identifiability, goodness
of fit, and other properties of phylogenetic compara-
tive models are all valuable efforts (Pennell et al. 2015;
Uyeda et al. 2018). Yet, we emphasize that Cooper etal.’s
(2016) note has little relevance to the use of Ornstein—
Uhlenbeck models, due to three fundamental misinter-
pretations. First, by only considering single-optimum
models, they provided no evidence of problems rele-
vant to the macroevolutionary analysis of adaptation,
which is the key application of the Ornstein—Uhlenbeck
model in comparative analyses. Second, by neglect-
ing parameter interpretation and uncertainty, they
provided no evidence for problems in using the sin-
gle-optimum Ornstein—-Uhlenbeck model to estimate
phylogenetic signal. Third, by not considering mea-
sures of estimation uncertainty, methods to incorporate
error, and previous studies of the subject, they provided
no new insights into the effects of measurement error in
comparative analyses.

We reiterate a point that may be lost on researchers
who are not specialists in phylogenetic comparative
methods: the Ornstein—Uhlenbeck process is a con-
tinuum of models, moving from instantaneous adap-
tation to Brownian motion. Thus, the debate about
the Ornstein—-Uhlenbeck process versus Brownian
motion is largely fictitious. If adaptation has been
slow, data will conform to a pattern of Brownian
motion, although possibly including trends. More
often the converse may hold. Fast adaptation will
erase phylogenetic signal in the model residuals, and
the Ornstein-Uhlenbeck model will converge on stan-
dard non-phylogenetic regression or ANOVA. Hence,
simply assuming a particular phylogenetic effect a
priori—equivalent to drawing a qualitative conclusion
when the data allow a quantitative estimate—robs the
data of their ability to tell a more nuanced, interesting,
and biologically realistic story (e.g. see Bartoszek et al.
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(2022) for a timely example of how the multivariate
Ornstein—-Uhlenbeck process provides new insights
to coadaptation and evolutionary trade-offs). Another
point worth repeating is the importance of fitting
models appropriate to the hypothesis under investi-
gation. Brownian motion may be more tractable, but
tractability matters little if a model is inappropriate for
answering our research question. What is the point of
estimating parameters if the parameters cannot tell us
what we want to know?

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http:/ /dx.doi.org/10.5061/dryad.jwstqgjqcl.
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