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Abstract.—Models based on the Ornstein–Uhlenbeck process have become standard for the comparative study of 
adaptation. Cooper et al. (2016) have cast doubt on this practice by claiming statistical problems with fitting Ornstein–
Uhlenbeck models to comparative data. Specifically, they claim that statistical tests of Brownian motion may have too 
high Type I error rates and that such error rates are exacerbated by measurement error. In this note, we argue that these 
results have little relevance to the estimation of adaptation with Ornstein–Uhlenbeck models for three reasons. First, we 
point out that Cooper et al. (2016) did not consider the detection of distinct optima (e.g. for different environments), and 
therefore did not evaluate the standard test for adaptation. Second, we show that consideration of parameter estimates, 
and not just statistical significance, will usually lead to correct inferences about evolutionary dynamics. Third, we show 
that bias due to measurement error can be corrected for by standard methods. We conclude that Cooper et al. (2016) 
have not identified any statistical problems specific to Ornstein–Uhlenbeck models, and that their cautions against their 
use in comparative analyses are unfounded and misleading. [adaptation, Ornstein–Uhlenbeck model, phylogenetic 
comparative method.]

Based on many comments from editors and review-
ers, we perceive a growing distrust of using Ornstein–
Uhlenbeck models in macroevolutionary studies of 
adaptation. The Ornstein–Uhlenbeck process is the 
simplest possible stochastic model of trait evolution 
around optimal states, capturing a key ingredient at the 
core of evolutionary biology: the idea that species have 
different trait values due to adaptation to distinctive 
niches. We thus find this distrust surprising. Why are 
some evolutionary biologists giving these models the 
cold shoulder?

The bulk of the distrust seems to derive from Cooper 
et al. (2016), which is an increasingly cited (over 250 
citations) source for why Ornstein–Uhlenbeck mod-
els should be avoided. Cooper et al. (2016) used 
simulations to claim two problems. First, by using 
statistical significance as a model-selection criterion, 
they claimed that Ornstein–Uhlenbeck models were 
chosen too frequently over Brownian motion on data 
generated by the latter process. Second, they claimed 
that this problem was amplified by measurement error. 
They then proposed “best practices” when fitting 

Ornstein–Uhlenbeck models to comparative data. Some 
of their recommendations are sound and general to any 
modeling of empirical data, such as critically interpret-
ing model parameters instead of focusing on model fit, 
accounting for measurement error, and assessing the 
adequacy of the applied model. We disagree, however, 
with Cooper et al.’s (2016) claim to have detected spe-
cific problems with the Ornstein–Uhlenbeck method 
and we find their recommendations against the appli-
cation of the method to be unfounded.

The impact of the Cooper et al. (2016) paper is unfor-
tunate, not only because their analyses are irrelevant to 
the claims they make but also because their recommen-
dations are likely to dissuade researchers from testing 
hypotheses of adaptation with models that are best cut 
out for this purpose. This sentiment is compounded by 
the peer review process, as indicated by the fact that all 
of us (the authors), and likely many others, have had 
Cooper et al.’s. (2016) recommendations incorrectly 
cited in reviews of papers or grant proposals as evi-
dence for statistical problems with the use of Ornstein–
Uhlenbeck models. Thus, we are once again (e.g., 

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/4/955/7179891 by Florida International U

niversity user on 24 January 2024

https://creativecommons.org/licenses/by/4.0/
mailto:m.w.grabowski@ljmu.ac.uk?subject=


SYSTEMATIC BIOLOGY956

Martins 2000) in danger of replacing models designed 
for the problem at hand with general approaches that 
are harder to interpret and that often make assump-
tions that are inconsistent with the tested hypotheses 
(Hansen 2014; Uyeda et al. 2018; Moen et al. 2022). A 
formal rebuttal of Cooper et al. (2016) is therefore long 
overdue.

The Ornstein–Uhlenbeck model in phylogenetic 
comparative studies

Hansen (1997) introduced the specific use of 
Ornstein–Uhlenbeck models to test hypotheses of trait 
adaptation to different niches mapped on a phylogeny. 
The Ornstein–Uhlenbeck process includes a determin-
istic movement of species trait values toward optimal 
states that can vary in accordance with environmental 
or ecological variables. Hansen (1997) termed these 
states “primary optima” and suggested interpreting 
them as the average of local optima (≈ trait means) for 
many species adapting to a given primary niche. The 
idea is that “secondary” selective factors (e.g., other, 
species-specific niche axes that also affect the trait) aver-
age out across species, leaving a common effect of the 
primary niche. Hypotheses about adaptation are tested 
by estimating the primary optima for different states of 
the environmental or ecological variables and asking if 
they differ as predicted by the hypotheses (see Hansen 
2014 for a detailed explanation).

Mathematically, a simple Ornstein–Uhlenbeck pro-
cess is described by the stochastic differential equation:

dy = −α(y− θ)dt+ σdW, (1)
where dy is the change in a given species’ mean trait 

value, y, over a short time interval dt, θ is the primary 
optimum, α determines the rate of adaptation toward 
the primary optimum, dW represents independent nor-
mally distributed stochastic changes with mean zero 
and unit variance over a unit of time, and σ is the stan-
dard deviation of these latter changes. The σ-parameter 
can also be expressed in terms of the stationary variance 
of the process, v = σ2/2α, which can be interpreted as 
the variance among species within a niche after a long 
period of independent evolution. The method has 
been implemented to varying degrees in a number 
of software packages that allow fixed discrete or con-
tinuously evolving niches on the branches of a phy-
logeny (e.g., OUCH, Butler and King 2004; SLOUCH, 
Hansen et al. 2008; MATTICE, Hipp and Escudero 2010; 
OUwie, Beaulieu et al. 2012; mvSLOUCH, Bartoszek et 
al. 2012; SURFACE, Ingram and Mahler 2013; phylolm, 
Ho and Ané 2014a; bayou, Uyeda and Harmon 2014; 
mvMORPH, Clavel et al. 2015; l1ou, Khabbazian et al. 
2016; PhylogeneticEM, Bastide et al. 2018; PCMFit, Mitov 
et al. 2020). This approach made it possible to investi-
gate biological questions related to whether focal traits 
of taxa sharing a given niche tend to be more similar 
compared to those of taxa sharing a different niche, as 

well as to estimate the level of adaptation and phyloge-
netic inertia in the clade (see Hansen 2014; Mahler and 
Ingram 2014; O’Meara and Beaulieu 2014; Moen et al. 
2022 for general reviews).

While Cooper et al. (2016) stressed the α-parame-
ter, we focus our discussion on a transformation of 
this parameter, the phylogenetic half-life. Calculated 
as t1/2 = ln (2) /α, the half-life has units of time and a 
more transparent biological meaning. The half-life can 
be interpreted as the average time for a trait to evolve 
halfway from an ancestral state toward a new optimum. 
Thus, it indicates how long it will take before adapta-
tion to a new regime is more influential than constraints 
from the ancestral state. Given a phylogeny scaled to 
unit height, a half-life of unity would mean that a spe-
cies starting to evolve in a new niche at the root of the 
phylogeny would be expected to have traversed half the 
original distance to the new primary optimum when it 
has reached the tip of the phylogeny. This can usually 
be interpreted as strong phylogenetic inertia and slow 
adaptation. A shorter half-life would mean faster adap-
tation and a half-life of zero would mean instantaneous 
adaptation and thus no phylogenetic correlation in spe-
cies’ trait residuals. Half-lives in excess of phylogeny 
height mean that the process is increasingly resembling 
Brownian motion, as α—and thus the deterministic 
component of Equation (1)—asymptotes toward zero. 
A pure Brownian motion has a half-life of infinity.

A cautionary note on model relevance
Throughout their article, Cooper et al. (2016) ana-

lyzed single-optimum Ornstein–Uhlenbeck processes 
to reach their conclusions regarding the use of the mod-
els in comparative studies in general. Single-optimum 
models are just that—they estimate a single constant 
optimum across the phylogeny. Thus, they assume 
that all species are adapting toward the same primary 
optimum.

However, the main utility of Ornstein–Uhlenbeck 
models in comparative analyses is to test adaptive 
hypotheses by fitting two or more regime-specific 
optima (Hansen 1997; Butler and King 2004; Beaulieu 
et al. 2012). Even the simple example in Hansen (1997) 
that introduced the method estimated distinct optima 
for grazers and browsers to assess the role of diet on 
hypsodonty in horses. As Cooper et al. (2016) did not 
consider multiple optima, it is unclear how their results 
pertain to the main application of the method.

The restriction to single-optimum models limits the 
generality of the results presented in Cooper et al. (2016). 
First, the estimation accuracy of the α parameter may 
differ between models with single and multiple optima. 
Shifts among different optima lead to more determin-
istic dynamics and thus more information about the  
α parameter. This is particularly true when optima are 
well separated and have several origins (Beaulieu et 
al. 2012; Boettiger et al. 2012; Ho and Ané 2013, 2014b; 
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Cressler et al. 2015; Bartoszek et al. 2022). Second, infer-
ences about adaptation are not based on the α-param-
eter, but on the primary optima, which are estimated 
as fixed effects in an ANOVA or regression, and their 
estimation accuracy can be substantial even with as few 
as ten species (Cressler et al. 2015). For example, Moen 
et al. (2022) discuss the advantages of multiple-opti-
mum models and illustrate their utility, even with few 
species, using data on thermal physiology from just 12 
species of tree frogs. By comparing different hypothe-
ses, they identified an Ornstein–Uhlenbeck model with 
two primary optima for critical thermal minimum as 
the best explanation for how tropical tree frog species 
were able to colonize temperate zones. For multivariate 
traits, which require more data, Bartoszek et al. (2022) 
provide compelling examples of how rather complex 
hypotheses about coadaptation and biological trade-
offs can be distinguished with multiple-optimum mod-
els fitted to data from 100 species or less.

Single-optimum models have two uses in evolution-
ary biology. First, they are used to describe patterns 
of evolution in evolutionary time series (e.g., Hunt et 
al. 2008; Lo Cascio Sætre et al. 2017; Voje 2020), which 
include information on the ancestral state and other 
traits that are usually unavailable in analyses based on 
comparative data from extant species. Second, they are 
used to model phylogenetic signal in residual variation 
in comparative studies not involving adaptation (e.g., 
allometry; Grabowski et al. 2016). In such analyses, it is 
not uncommon to use relative model fit to distinguish 
between trait dynamics described by a single-optimum 
Ornstein–Uhlenbeck model and a Brownian-motion 
model. Although Cooper et al.’s. (2016) results have 
some relevance to this practice, investigating per-
formance not only on data generated by a Brownian 
motion but also from Ornstein–Uhlenbeck processes 
with a range of α-values—as has been done in previous 
studies of the method’s performance (e.g., Beaulieu et 
al. 2012; Boettiger et al. 2012; Ho and Ané 2013, 2014b; 
Cressler et al. 2015; Cornuault 2022)—would have pro-
vided a more relevant contrast.

The phylogenetic half-life is the canonical measure 
of phylogenetic signal in the Ornstein–Uhlenbeck 
framework and can be informative about the evolution-
ary processes that generated the data. We emphasize, 
however, that phylogenetic signal estimated from sin-
gle-optimum models should not be used to select the 
evolutionary model for a comparative analysis of adap-
tation. A strong, Brownian-motion-like phylogenetic 
signal frequently occurs in data when related species 
adapt toward similar niches (Labra et al. 2009; Hansen 
2014). Yet, such a pattern does not necessarily indicate 
a similar phylogenetic pattern in the residual devia-
tions of species from the estimated optima. It is essen-
tial to understand that only phylogenetic correlations 
in model residuals should be accounted for in com-
parative inference (Hansen and Orzack 2005; Labra et 
al. 2009; Revell 2010; Hansen 2014). The α-parameters 
reported in Table 2 of Cooper et al. (2016) are estimates 

of phylogenetic signal in their simulated species data 
and thus do not address the idea of testing for system-
atic differences in primary optima for species adapting 
to different niches.

Revisiting the simulations and parameter 
interpretations of single-optimum models

To produce their main results, Cooper et al. (2016) first 
generated phylogenies of varying size (25–1000 tips) and 
simulated the evolution of a single trait on each phy-
logeny under a simple, constant-rate Brownian-motion 
model of evolution. They then fitted a single-optimum 
Ornstein–Uhlenbeck model and a Brownian-motion 
model to the resulting data and compared them with 
a likelihood-ratio test. They recorded the proportion of 
times the likelihood-ratio test rejected Brownian motion 
in favor of the Ornstein–Uhlenbeck model. Cooper et al. 
(2016) argued that this proportion, which they termed 
the “rejection rate” in their Table 2, was “unacceptably 
high” in some circumstances. In consequence, they rec-
ommended that Ornstein–Uhlenbeck models should 
not be applied with fewer than 200 tips. They also rec-
ommended considering Bayesian approaches. While 
considering Bayesian approaches is reasonable (see 
Uyeda and Harmon 2014; Ross et al. 2016; Uyeda et al. 
2017; Cornuault 2022), they are not alternatives to mod-
els like the Ornstein–Uhlenbeck process. Instead, they 
are simply statistical approaches to fitting the models. 
In any case, the key conclusions that Cooper et al. (2016) 
used to recommend caution against fitting Ornstein–
Uhlenbeck models are not supported by their results. 
There are two main reasons for this.

First, by only simulating Brownian motion and only 
considering Type I error rates, Cooper et al. (2016) 
neglected to interpret the estimated parameters. Many 
cases of Type I error will be associated with best esti-
mates of α corresponding to relatively long half-lives, 
and in this situation, the dynamics predicted from the fit-
ted Ornstein–Uhlenbeck model are similar to Brownian 
motions. Indeed, making a sharp distinction between 
Ornstein–Uhlenbeck and Brownian-motion processes 
unhelpfully discretizes a continuum. Finding instances 
of Type I error, in which the Ornstein–Uhlenbeck model 
is preferred over the Brownian-motion model, is not 
an argument against using Ornstein–Uhlenbeck mod-
els. Rather, it supports one of the general recommen-
dations Cooper et al. (2016) made but did not heed: a 
comparative analysis should include careful interpreta-
tion of parameters. In fact, Cooper et al. (2016) observe 
that “scrutiny of the model parameters suggest that 
the favored Ornstein–Uhlenbeck model is biologically 
indistinguishable from Brownian motion” (p. 67) but 
fail to see that this undermines their own criticism of 
the method. In other words, a researcher who makes 
inferences not exclusively based on significance or 
model-selection criteria, but also considers the mean-
ing of the estimated parameters would still conclude 
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that evolution is similar to Brownian motion when con-
fronted with parameter estimates showing an Ornstein–
Uhlenbeck model with a long half-life.

This point is underscored by the simulations pre-
sented by Cressler et al. (2015), who showed the inverse 
result of Cooper et al. (2016), namely that Brownian 
motion could be chosen preferentially over Ornstein–
Uhlenbeck models when data were generated from the 
latter with long phylogenetic half-lives. Unsurprisingly, 
“errors” are common when choosing between mod-
els that are essentially equivalent. This is especially 
true when the choice is conducted at the boundary of 
parameter space under the likelihood-ratio test, as in 
Cooper et al. (2016). When the null model lies on the 
boundary of the parameter space of the alternative 
model, the likelihood-ratio test is less reliable because 
the regular distributional properties of its statistic (see 
below) no longer hold (Self and Liang 1987; see also 
Ota et al. 2000; Dominicus et al. 2006). This is not an 
issue with the Ornstein–Uhlenbeck process but with the 
inferential setup adopted by Cooper et al. (2016), and it 
would apply similarly to any of the alternative models 
used to measure phylogenetic effects (e.g. Lynch 1991; 
Housworth et al. 2004).

Even in situations with long half-lives, there are ben-
efits to estimating parameters with the more general 
Ornstein–Uhlenbeck models. In these situations, esti-
mates of optima become inaccurate, but the model can 
be reparametrized to estimate regime-specific evolu-
tionary trends (Hansen 1997). In fact, a multi-optimum 
Ornstein–Uhlenbeck process does not converge to sim-
ple Brownian motion when the half-life becomes long. 
Instead, it converges to Brownian motion with trends 
influenced by the regimes. These trends can be accu-
rately estimated even when the conventional α and θ 
parameters are individually uncertain (Hansen 1997; 
and see Grabowski et al. 2023 for a recent example).

Second, Cooper et al. (2016) do not, in our opinion, 
fully appreciate that the parameters in these models 
have units. The unit of α, for example, is the inverse 
of time, which can be characterized in years, genera-
tions, or height of the phylogeny. Cooper et al. (2016) 
simulated trees conditional on the number of taxa, 
which produces trees of different heights. Though 
they sometimes imply in their article that they rescaled 
trees to unit heights, their published code does not do 
so. This means that the variation in their estimated α 
values incorporates variation in tree height across their 
simulated datasets. In other words, all the tables from 
Cooper et al. (2016) reporting the median and 95% 
quantiles for α across their simulations (e.g., their Table 
2), which appear to show substantial variation in α per 
run, are inflated by variation in the height of the phy-
logeny, compromising their interpretation.

Using the available R code from Cooper et al. (2016), 
we recreated one of the main results of their study to 
investigate how these issues may have influenced their 
interpretations. This analysis explored whether the 
number of taxa in the phylogeny across varying extinc-
tion rates affects the relative fit of Brownian motion 

versus the Ornstein–Uhlenbeck model. We first recon-
structed birth–death trees with varying numbers of tips 
(25, 50, 100, 200, 500, 1000) and relative extinction rates 
(0%, 25%, 50%, 75%). We simulated these trees with the 
function tess.sim.taxa from the R package TESS (Höhna 
et al. 2016). This function is the updated version of 
the now defunct sim.globalBiDe.taxa that Cooper et al. 
(2016) used. The relative extinction rate determines how 
branching events are distributed through time. Cooper 
et al. (2016) called these “d/b” ratios for death/birth, 
and we followed that style here but note that this is also 
termed the relative extinction rate, or ϵ (Magallón and 
Sanderson 2001). An ϵ = 0 (the Yule model) results in an 
exponentially increasing number of branching events 
through time. By increasing the relative extinction 
rate, the branching events are skewed more toward the 
recent part of the phylogeny (“tippy” trees). We scaled 
all simulated trees to unit height so that phylogenetic 
half-lives from our simulations were comparable and 
interpretable as proportional to the total tree height. We 
then simulated data following Brownian motion with 
a constant rate parameter of σ2 = 1, using the sim.char 
function from the geiger package. All simulations were 
replicated 50 times, producing a total of 1200 simula-
tion replicates (i.e. 6 tree sizes × 4 extinction rates × 50 
replicates).

We first estimated parameters following the approach 
of Cooper et al. (2016) with the transformPhylo.ML func-
tion from motmot (Thomas and Freckleton 2012). We 
next used the same likelihood-ratio test as Cooper et 
al. (2016) to determine which model was better sup-
ported. We did this to produce results more directly 
comparable to theirs, although as noted above, we rec-
ognize that a proper likelihood-ratio test, in this case, 
would follow a procedure more similar to that outlined 
by Ota et al. (2000). We used a likelihood ratio (3.84) 
that corresponds to the critical value at 5% significance 
level under a χ2 test with one degree of freedom. We 
also used the same simulated data to estimate half-lives 
using the function slouch.fit from SLOUCH (Hansen et 
al. 2008; Kopperud et al. 2020), which allows one to esti-
mate and visualize uncertainty in parameter estimates. 
The R code used to run our simulations is available at: 
https://github.com/mark-grabowski/C-Reply.

Our results are shown in Table 1. The rejection rate 
appears to show some of the same issues espoused by 
Cooper et al. (2016). Increasing the number of tips and 
decreasing the relative extinction rate generally leads 
to a lower rejection rate of Brownian motion. Mirroring 
Table 2 in Cooper et al. (2016), our Table 1 includes 
median and 95% quantiles, but is presented as phylo-
genetic half-lives, rather than as α-values. The median 
half-life for all simulations across all trees is well above 
phylogeny height, indicating that Brownian-motion-
like dynamics dominate these results, but the lower 
95% quantile includes relatively short phylogenetic 
half-life values for the smallest trees, indicating that fast 
Ornstein–Uhlenbeck dynamics were preferred in some 
cases. The highest rejection rate in our simulations was 
for a tree with 25 tips and an extinction rate of 75%, 
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with a rejection rate of 16% (i.e., Brownian motion was 
rejected in eight of fifty simulation replicates).

On the surface, these results seem worrying, but the 
picture changes when we examine parameter estimates 
and uncertainty in the individual simulation repli-
cates (Table S1). In the eight cases discussed above in 
which the Ornstein–Uhlenbeck model was preferred 
using motmot, the maximum-likelihood estimate of the 
half-life was usually far below tree height. Looking at 
these same runs using SLOUCH, however, shows that 
in seven of the eight cases, the 2-unit support interval 
extended above unity. In other words, these results cor-
rectly tell us that there is limited evidence to support an 
Ornstein–Uhlenbeck process that is qualitatively differ-
ent from Brownian motion.

To reinforce this point, we added two new statistics to 
the rejection rate of Cooper et al. (2016). The “Qualitative 
error rate” shows the frequency at which both the best 
estimate and the upper limit of the 2-unit support inter-
val for the half-life are less than unity. This simulates a 
situation in which a researcher considering the meaning 
and uncertainty of parameter estimates would reach a 
qualitatively wrong conclusion. The “Uncertain error 
rate” shows the frequency at which the best estimate 
of the half-life is less than unity, but the upper limit 
of the support interval is between one and three. This 
simulates a situation in which the researcher would not 
only reject Brownian motion and support meaningfully 

different Ornstein–Uhlenbeck models but also report 
that the evidence for this conclusion is modest. Our 
results in Table 1 show that both rates are always far 
below the significance-based rejection rate of Cooper et 
al. (2016), and quickly go to zero as the number of spe-
cies increases.

Figure 1 shows the log-likelihood support surfaces 
from four individual runs of this “worst-case” simula-
tion. Figure 1a shows the pattern seen in most runs—the 
maximum-likelihood estimate for the half-life is around 
or substantially greater than tree height, and thus the 
best model indicates a pattern similar to Brownian 
motion. The other three panels show patterns with 
varying degrees of support for an Ornstein–Uhlenbeck 
model. Figure 1b, c have maximum-likelihood half-life 
values of 31% and 12% of tree height, which indicate 
a model qualitatively different from Brownian motion. 
The former (Fig. 1b) has a ridge of support running out 
toward infinity, however, indicating that the evidence 
against Brownian motion is not strong. In the latter (Fig. 
1c), the 2-unit support interval extends out to 129% of 
tree height, making it a case of the “Uncertain error 
rate.” Here, a wrong inference of Ornstein–Uhlenbeck 
dynamics would be made, but the possibility of rela-
tively slow dynamics resembling Brownian motion is 
not definitely rejected. Figure 1d shows a case of the 
“Qualitative error rate” in which strong evidence for 
moderately fast Ornstein–Uhlenbeck dynamics would 

Table 1. Rates of misinferring Ornstein–Uhlenbeck dynamics from data generated under Brownian motion across a range of tree sizes 
(number of tips) and birth–death models with varying relative extinction rates (d/b), as in Cooper et al. (2016)a

d/b Tree size Rejection rate Median t1/2 [95% quantiles] Qualitative error rate Uncertain error rate 

0 25 12% 1.66 [0.13–∞] 4% 2%
0 50 4% 1.60 [0.44–∞] 0% 2%
0 100 4% 2.85 [0.60–∞] 0% 0%
0 200 2% 5.74 [0.87–∞] 0% 0%
0 500 8% 9.92 [1.18–∞] 0% 0%
0 1000 6% ∞ [1.40–∞] 0% 0%
0.25 25 12% 1.40 [0.21–∞] 2% 4%
0.25 50 8% 2.13 [0.23–∞] 4% 0%
0.25 100 4% 1.85 [0.46–∞] 2% 0%
0.25 200 4% 3.79 [0.82–∞] 0% 2%
0.25 500 10% 8.94 [0.99–∞] 0% 2%
0.25 1000 2% 24.89 [1.51–∞] 0% 0%
0.5 25 8% 1.85 [0.22–∞] 2% 4%
0.5 50 10% 1.91 [0.22–∞] 4% 4%
0.5 100 2% 2.33 [0.57–∞] 0% 0%
0.5 200 4% 3.65 [0.69–∞] 0% 2%
0.5 500 4% 4.95 [1.23–∞] 0% 0%
0.5 1000 2% 12.39 [1.99–∞] 0% 0%
0.75 25 16% 1.33 [0.14–∞] 2% 10%
0.75 50 14% 1.92 [0.29–∞] 2% 6%
0.75 100 6% 2.72 [0.54–∞] 0% 0%
0.75 200 6% 5.13 [0.72–∞] 0% 0%
0.75 500 8% 72.86 [1.29–∞] 0% 0%
0.75 1000 4% 12.40 [1.73–∞] 0% 0%

aThe column labeled “Rejection rate” gives the frequency at which Brownian motion is rejected according to the significance test used by 
Cooper et al. (2016). In addition, we report the median and 95% quantiles (across simulation replicates) of the estimated half-lives in units of 
tree height. The two last columns indicate rates of misinference when considering parameter estimates with uncertainty. The column labeled 
“Qualitative error rate” gives the percent of cases when both the best estimate and the upper limit of the 2-unit support interval of the half-life 
are less than one. These would be qualitative errors of inference. The column labeled “Uncertain error rate” gives the percent of cases when 
the best estimate of half-life is less than one, but the upper limit of the support interval is between one and three. These would be cases where 
a wrong model is found but reported to be uncertain. Note that both the qualitative and the uncertain error rates are much lower than the 
significance-based error rate. All rates are based on 50 simulation replicates per row.
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be reported. This particular run is responsible for the 
2% qualitative error rate result for this simulation (i.e., 
it occurred once in 50 replicates).

None of these results deny that estimates of phy-
logenetic half-lives, and phylogenetic signal more 
generally, are often inaccurate for small phyloge-
nies. Reporting uncertainty with support intervals, or 
Bayesian posterior distributions, is instrumental. In 
cases with high uncertainty, Hansen (1997; Hansen et 

al. 2008) recommended a qualitative approach in which 
inferences about adaptation, or other main effects, are 
reported conditionally on fixed values of half-lives. For 
example, a strong inference could be made if a result 
were to hold over a range of reasonable half-lives.

One of the general recommendations of Cooper et al. 
(2016) was to pay attention to parameter estimates and 
their uncertainty to avoid error in analyses. Yet they 
misinterpreted their own results by neglecting units, 

Figure 1. Support (log-likelihood) surfaces for phylogenetic half-lives (t1/2 = ln(2)/α) and stationary variances (v = σ2/2α) for four replicates. 
The trait data were simulated under a Brownian-motion model and fitted as an Ornstein–Uhlenbeck process on 25-tip trees simulated under a 
birth–death model (d/b ratio = 0.75). All trees were scaled to unit height. In each figure, the black dot is the maximum-likelihood estimate. The 
distance between the dot and the surrounding line, and the lines relative to each other, is 0.5 log-likelihood units. Run (a) depicts support for 
the Brownian-motion model. Runs (b)–(d) show increasing support for the Ornstein–Uhlenbeck model. A half-life above one indicates that the 
process is approaching Brownian motion and a half-life of three means that the model is dynamically similar to Brownian motion. The non-
shaded parts of the figure correspond to estimates that were more than two support units worse than the best estimate. The cases a, b, c, and d 
correspond to simulation replicates 151, 164, 194, and 189, respectively, in Table S1.
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scale, meaning, and estimation uncertainty of α. The 
main lesson to be drawn from their analyses is not that 
there are problems with fitting Ornstein–Uhlenbeck 
models, but rather that model-selection and interpreta-
tion should not be based solely on significance testing 
(see also Amrhein et al. 2019; Wasserstein et al. 2019).

Misconceptions about measurement error
Using a similar setup as above, Cooper et al. (2016) 

further simulated the effects of error in the species 
values on the rejection rates. In comparative analyses, 
“measurement error” usually refers to estimation error 
in the species means. The variance of these errors can 
be quantified by the (squared) standard error of the 
estimate (Hansen & Bartoszek 2012) and includes both 
natural variance among individuals and variance in 
the measurements of these individuals. For brevity and 
consistency with Cooper et al. (2016), we will use “mea-
surement error” as an umbrella term that can refer to 
any source of error or error variance in species means. 
Cooper et al. (2016) claimed that with as little as 1% of 
“measurement error,” the Ornstein–Uhlenbeck model 
was often inappropriately chosen over the Brownian-
motion model and this error frequency increased with 
the size of the tree. Based on these results they claimed 
that “we cannot conclude anything about the evo-
lutionary process from a single optimum [Ornstein–
Uhlenbeck] model unless error is adequately accounted 
for” (p. 69).

Why is the Ornstein–Uhlenbeck model preferred with 
increasing error and larger trees? The reason is concep-
tually simple. Measurement error increases among-spe-
cies variance relative to phylogenetic covariance (e.g., 
Lynch 1991; Felsenstein 2008; Hansen and Bartoszek 
2012), and this will reduce the phylogenetic signal. 
When fitting an Ornstein–Uhlenbeck model, the reduc-
tion in phylogenetic signal will manifest as a shorter 
phylogenetic half-life. If the only choice is between 
pure Ornstein–Uhlenbeck and Brownian-motion mod-
els, lowering the phylogenetic half-life will increase 
support for the Ornstein–Uhlenbeck model. Moreover, 
with more tips, there is more power to reject Brownian 
motion. This is not a flaw of the Ornstein–Uhlenbeck 
model, because in models with a single optimum, the 
half-life describes the correlation structure in the data. 
The same effect will appear with other measures of 
phylogenetic signal, such as phylogenetic heritability 
(Lynch 1991; Housworth et al. 2004).

The effect of measurement error on parameter esti-
mation in comparative methods is important and has 
been extensively discussed (e.g., Martins and Hansen 
1997; Ives et al. 2007; Felsenstein 2008; Hansen and 
Bartoszek 2012; Garamszegi 2014; Silvestro et al. 2015; 
Grabowski et al. 2016). This is not a problem particular 
to Ornstein–Uhlenbeck models, however; it applies to 
any model-based comparative inference. Furthermore, 
many modern applications of phylogenetic comparative 

methods, including those based on the Ornstein–
Uhlenbeck model, allow for modeling of measure-
ment error (e.g., Hansen et al. 2008; Bartoszek et al. 
2012; Beaulieu et al. 2012; Ho and Ané 2014b; Uyeda 
and Harmon 2014). Indeed, many of these applications 
were available at the time of Cooper et al.’s (2016) anal-
yses, but they did not take the opportunity to investi-
gate the performance of approaches that accommodate 
measurement error. To reinforce our point, we have 
included a relatively simple example in the supplemen-
tary material where we simulate traits under Brownian 
motion and inferred the half-life under a range of con-
ditions—varying tree size, measurement error, and 
whether the model accounted for measurement error. 
Our results show that not considering observation error 
can lead to incorrect inferences, but more importantly 
that accounting for error variance in the model allevi-
ates the problem (see Supplementary Text S1).

Conclusions
Investigating parameter identifiability, goodness 

of fit, and other properties of phylogenetic compara-
tive models are all valuable efforts (Pennell et al. 2015; 
Uyeda et al. 2018). Yet, we emphasize that Cooper et al.’s 
(2016) note has little relevance to the use of Ornstein–
Uhlenbeck models, due to three fundamental misinter-
pretations. First, by only considering single-optimum 
models, they provided no evidence of problems rele-
vant to the macroevolutionary analysis of adaptation, 
which is the key application of the Ornstein–Uhlenbeck 
model in comparative analyses. Second, by neglect-
ing parameter interpretation and uncertainty, they 
provided no evidence for problems in using the sin-
gle-optimum Ornstein–Uhlenbeck model to estimate 
phylogenetic signal. Third, by not considering mea-
sures of estimation uncertainty, methods to incorporate 
error, and previous studies of the subject, they provided 
no new insights into the effects of measurement error in 
comparative analyses.

We reiterate a point that may be lost on researchers 
who are not specialists in phylogenetic comparative 
methods: the Ornstein–Uhlenbeck process is a con-
tinuum of models, moving from instantaneous adap-
tation to Brownian motion. Thus, the debate about 
the Ornstein–Uhlenbeck process versus Brownian 
motion is largely fictitious. If adaptation has been 
slow, data will conform to a pattern of Brownian 
motion, although possibly including trends. More 
often the converse may hold. Fast adaptation will 
erase phylogenetic signal in the model residuals, and 
the Ornstein–Uhlenbeck model will converge on stan-
dard non-phylogenetic regression or ANOVA. Hence, 
simply assuming a particular phylogenetic effect a 
priori—equivalent to drawing a qualitative conclusion 
when the data allow a quantitative estimate—robs the 
data of their ability to tell a more nuanced, interesting, 
and biologically realistic story (e.g. see Bartoszek et al. 
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(2022) for a timely example of how the multivariate 
Ornstein–Uhlenbeck process provides new insights 
to coadaptation and evolutionary trade-offs). Another 
point worth repeating is the importance of fitting 
models appropriate to the hypothesis under investi-
gation. Brownian motion may be more tractable, but 
tractability matters little if a model is inappropriate for 
answering our research question. What is the point of 
estimating parameters if the parameters cannot tell us 
what we want to know?
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Data available from the Dryad Digital Repository: 
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