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Abstract. This paper explores the difficulties in solving partial differential equations
(PDEs) using physics-informed neural networks (PINNs). PINNs use physics as a reg-
ularization term in the objective function. However, a drawback of this approach is the
requirement for manual hyperparameter tuning, making it impractical in the absence
of validation data or prior knowledge of the solution. Our investigations of the loss
landscapes and backpropagated gradients in the presence of physics reveal that exist-
ing methods produce non-convex loss landscapes that are hard to navigate. Our find-
ings demonstrate that high-order PDEs contaminate backpropagated gradients and
hinder convergence. To address these challenges, we introduce a novel method that
bypasses the calculation of high-order derivative operators and mitigates the contam-
ination of backpropagated gradients. Consequently, we reduce the dimension of the
search space and make learning PDEs with non-smooth solutions feasible. Our method
also provides a mechanism to focus on complex regions of the domain. Besides, we
present a dual unconstrained formulation based on Lagrange multiplier method to en-
force equality constraints on the model’s prediction, with adaptive and independent
learning rates inspired by adaptive subgradient methods. We apply our approach to
solve various linear and non-linear PDEs.

Key words: constrained optimization, Lagrangian multiplier method, Stokes equation, convec-
tion equation, convection-dominated convection-diffusion equation, heat transfer in composite
medium, Lid-driven cavity problem

1 Introduction

A wide range of physical phenomena can be explained with partial differential equations
(PDEs), including sound propagation, heat and mass transfer, fluid flow, and elasticity.
The most common methods (i.e., finite difference, finite volume, finite element, spectral
element) for solving problems involving PDEs rely on domain discretization. Thus, the
quality of the mesh heavily influences the solution error. Moreover, mesh generation
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can be tedious and time-consuming for complex geometries or problems with moving
boundaries. While these numerical methods are efficient for solving forward problems,
they are not well-suited for solving inverse problems, particularly data-driven modeling.
In this regard, neural networks can be viewed as an alternative meshless approach to
solving PDEs.

Dissanayake and Phan-Thien [1] introduced neural networks as an alternative ap-
proach to solving PDEs. The authors formulated a composite objective function that ag-
gregated the residuals of the governing PDE with its boundary condition to train a neural
network model. Independent from work presented in [1], van Milligen et al. [2] also pro-
posed a similar approach for the solution of a two-dimensional magnetohydrodynamic
plasma equilibrium problem. Several other researchers adopted the work in [1, 2] for the
solution of nonlinear Schrodinger equation [3], Burgers equation [4], self-gravitating N
body problems [5], and chemical reactor problem [6]. Unlike earlier works, Lagaris et al.
[7] proposed to create trial functions for the solution of PDEs that satisfied the boundary
conditions by construction. However, their approach is not suitable for problems with
complex geometries. It is possible to create many trial functions for a particular problem.
But to choose an optimal trial function is a challenging task, particularly for PDEs.

Recently, the idea of formulating a composite objective function to train a neural net-
work model following the approach in [1, 2] has found a resurgent interest thanks to the
works in[8, 9, 10]. This particular way of learning the solution to strong forms of PDEs is
commonly referred to as physics-informed neural networks (PINNs) [9]. PINNs employ
physics as a regularizing term in their objective function. However, this approach brings
forth the challenge of manually adjusting the corresponding hyperparameters. Further-
more, the absence of validation data or prior knowledge of the solution to the Partial
Differential Equation (PDE) can render PINNs impracticable. The deep Ritz method has
been proposed to solve variational problems arising from PDEs [8]. This method enforces
boundary conditions through a hyperparameter that cannot be tuned without validation
data or prior knowledge of the solution. Thus, it is not well-suited for solving forward
problems.There is a growing interest in using neural networks to learn the solution to
PDEs [11, 12, 13, 14, 15, 16, 17, 18]. Despite the great promise of PINNs for the solu-
tion of PDEs, several technical issues remained a challenge, which we discuss further
in section 2.2. Different from the earlier approaches [1, 2, 6, 9], we recently proposed
physics and equality constrained artificial neural networks (PECANNs) that are based on con-
strained optimization techniques. Furthermore, we used a maximum likelihood estima-
tion approach to seamlessly integrate noisy measurement data and physics while strictly
satisfying the boundary conditions. In section 4, we discuss our proposed formulation,
constrained optimization problem, and unconstrained dual problem.

Our contribution is summarized as follows:

• We demonstrate and investigate failure modes in physics-informed neural networks
for the solution of partial differential equations by comparing its learning process
to a purely data-driven baseline model.
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• We conduct a sensitivity analysis of backpropagated gradients in the presence of
physics and show that high-order PDEs contaminate the backpropagate gradients
by amplifying the inherent noise in the predictions of a neural network model, par-
ticularly during the early stages of training.

• We propose to precondition high-order PDEs by introducing auxiliary variables.
We then learn the solution to the primary and auxiliary variables using a single
neural network model to promote learning shared hidden representations and mit-
igate the risk of overfitting.

• We propose an unconstrained dual formulation by adapting the Lagrange multi-
plier method following the ideas from adaptive subgradient methods. Our formu-
lation is meshless, geometry invariant, and tightly enforces boundary conditions
and conservation laws without manual tuning.

• We solve several benchmark problems and demonstrate several orders of magni-
tude improvements over existing physics-informed neural network approaches.

2 Technical Background

This section aims to highlight and discuss the technical ingredients of physics-based neu-
ral networks. Let us start by considering a partial differential equation of the form

D(x;
∂u
∂x

,
∂2u
∂x2 ,··· ,ν)=0, ∀x∈Ω, (2.1)

where D is a differential operator, ν is a vector of parameters, and u(x) denotes the so-
lution. Moreover, Ω is a subset of Rd. Our goal is to learn u(x) given the boundary
conditions for discrete locations on the boundary as follows

u(x)= g(x), ∀x∈∂Ω, (2.2)

where g(x) is a known function. To begin with, let us discuss supervised machine learn-
ing.

2.1 Supervised Machine Learning

In this section, we discuss supervised machine learning mainly for two reasons. First, su-
pervised learning models are simpler and easier to understand than their physics-based
counterparts. Therefore, we create a baseline data-driven regression model to train in
a supervised learning fashion. Second, we aim to highlight the effect of scale disparity
on learning when the domain objective is replaced with physics. Supervised machine
learning is finding a parametric model function that maps the input data to its corre-
sponding supervised labels [19]. The model is trained until it can extract the embedded
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patterns and relationships between the pair of input-label data. The model is expected
to yield accurate predictions when presented with never-before-seen data during testing.
Supervised learning of the solution u(x) given a set of training data {x(i),u(i)}i=NΩ

i=1 in the
domain Ω and a set of training data {x(i),g(i)}i=N∂Ω

i=1 on the boundary ∂Ω, can be achieved
by training a neural network model parameterized by θ on the following objective func-
tion

L(θ)=LΩ(θ)+L∂Ω(θ), (2.3)

where LΩ(θ) is the objective function in the domain Ω

LΩ(θ)=
1

NΩ

NΩ

∑
i=1
‖u(x(i);θ)−u(x(i))‖2

2, (2.4)

L∂Ω(θ) is the objective function on the boundary ∂Ω

L∂Ω(θ)=
1

N∂Ω

N∂Ω

∑
i=1
‖u(x(i);θ)−g(x(i))‖2

2, (2.5)

and ‖·‖2 is the Euclidean norm. We deliberately formulated separate objective functions
for the domain and the boundary in (2.3). Later, we only change our domain objec-
tive function for our physics-informed neural network model. Hence, we encourage the
readers to keep in mind this particular objective function (2.3) while reading later sec-
tions. We emphasize that a vital requirement of the supervised learning method is its
dependency on a vast amount of training data which may not be affordable to gather
in scientific applications. Moreover, data-driven regression models are physics agnostic
and cannot extrapolate. Next, we discuss a scenario where training data is unavailable,
and we leverage governing equations to learn the solution u(x).

2.2 Physics-informed Neural Networks

In this section, we elaborate on the technical aspects of learning the solution u(x) given a
governing equation instead of training pairs of input-label data. Following the approach
in [1, 2, 6, 11], we formulate a composite objective function similar to (2.3). Particularly,
we replace the domain loss in (2.4) with the residuals approximated on the PDE as given
in (2.1). The final objective function reads

L(θ)= 1
NΩ

NΩ

∑
i=1
‖D(x(i);ν)‖2

2+
1

N∂Ω

N∂Ω

∑
i=1
‖u(x(i);θ)−g(x(i))‖2

2, (2.6)

where NΩ is the number of collocation points in the domain Ω and N∂Ω is the number
of training points on the boundary. Here, we note that the strong form of the governing
equation is used in formulating the objective function (2.6), which cannot allow learning
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of problems with non-smooth solutions. A key observation in (2.6) is that the objec-
tive functions for the boundary and the domain have different physical scales. It is not
advisable to sum objective functions with different scales to form a mono-objective opti-
mization equation [20]. In [21], we showed that scale discrepancy in a physics-informed
multi-objective loss function severely impedes and may even prevent learning. A com-
mon remedy to tackle this issue is to minimize a weighted sum of multiple objective
functions balanced with multiplicative weighting coefficients or hyperparameters to bal-
ance the interplay between each objective term. A weighted multi-objective function of
(2.6) can be written as follows

L(θ)= λΩ

NΩ

NΩ

∑
i=1
‖D(x(i);ν)‖2

2+
λ∂Ω

N∂Ω

N∂Ω

∑
i=1
‖u(x(i);θ)−g(x(i))‖2

2, (2.7)

where λΩ and λ∂Ω are hyperparameters that are not known a priori. Proper selection
of these hyperparameters is problem-specific and significantly impacts the accuracy of
model predictions. A validation dataset is used for tuning hyperparameters for conven-
tional machine-learning applications. However, when solving PDEs, the solution is the
desired outcome, and no corresponding dataset is available for tuning purposes. Hence,
the lack of a validation dataset and prior knowledge of the solution renders PINNs im-
practical for the solution of PDEs. Several heuristic methods have been proposed to bal-
ance the interplay between the objective terms in the loss function [22, 24, 25, 26]. How-
ever, the solution of well-posed partial differential equations requires strict satisfaction
of the boundary or initial condition and the governing PDE. In our previous work, we
proposed physics & equality-constrained artificial neural networks (PECANNs) that em-
ploy the augmented Lagrangian method to constrain noiseless boundary conditions or
any high fidelity data on the strong form of the governing PDE [16].

3 Investigation of Failure Modes

In the previous section, we illustrated the technical aspects of learning a target function
with a supervised learning approach given a set of input-label pairs. Similarly, we dis-
cussed physics-based learning approaches that leverage the governing equations when
labeled training data is unavailable. Here, we aim to demonstrate and investigate failures
of existing physics-based neural network approaches in learning the solution of PDEs.
Our workflow for this investigation is as follows: To begin with, we generate a set of
input-target data to train a neural network model in a supervised fashion. We generate
the targets from the exact solution. The key purpose for creating a data-driven model is
threefold. First, we demonstrate that our neural network can represent the target func-
tion. Second, we create a baseline model to compare our physics-based models with.
Third, we demonstrate that learning is successful when there is no scale disparity be-
tween the boundary and the domain objectives. We then train the same neural network
on physics using PINN and PECANN frameworks separately. To reliably evaluate our
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models, we consider a problem with an exact solution. Thus, we consider a convection-
diffusion equation that has been challenging the learn its solution with physics-based
machine learning approaches. In one space dimension, the equation reads as

du(x)
dx

+α
d2u(x)

dx2 =0,x∈ (0,1), (3.1)

along with Dirichlet boundary conditions u(0)=0.5 and u(1)=−0.5, where u(x) denotes
the target solution and α is the diffusivity coefficient. This example problem is impor-
tant because decreasing α can result in a boundary layer in which the solution behaves
drastically differently. Analytical solution of the above problem [24] reads as

u(x)=
e−

x
α

1−e−
1
α

− 1
2

, x∈ (0,1). (3.2)

van der Meer et al. [24] studied this problem and reported that neither PINN nor their
proposed methods produced acceptable results for α≤ 10−3 with adaptive collocation
sampling. We want to emphasize that in this work, we make the problem even more
challenging by setting α = 10−6. We use a four-hidden layer feed-forward neural net-
work architecture with 20 neurons per layer which is the same architecture as in [24]. We
generate our collocation points on a uniform mesh to ensure that our models are trained
on identical data across the domain for fair comparison purposes. After our models are
trained, we visualize their loss landscapes to gain further insight into the failures of our
models. We also study the impact of the choice of first-order and second-order optimizers
on learning the target solution. Hence, we train our models separately with Adam[29]
optimizer and L-BFGS[30] optimizer. The initial learning rate for our Adam optimizer is
set to 10−2, and the line search function for our L-BFGS optimizer is strong Wolfe, which
is built in PyTorch [31]. We generate 2048 collocation points in the domain along with the
boundary conditions only once before training. For our data-driven regression model,
we obtain exact labels from our exact solution as in (3.2). We train our models for 5000
epochs. We present the predictions from our models in Figure 1.

Results in Figure 1(a) show that our baseline regression model accurately learned the
underlying solution regardless of the optimizer’s choice. That means our neural network
architecture is capable of representing the target function. However, from Figure 1(b),
our PINN model failed to learn the underlying target solution. We know that this fail-
ure is not due to insufficient expressivity of our neural network architecture. The only
change we made to our regression objective function (2.3) was replacing the domain loss
with physics (2.6). Consequently, our loss function was imbalanced due to scale dispar-
ity, which impeded the convergence of our optimizers (2.6). Similarly, from Figure 1(c),
our PECANN model accurately captured the boundary conditions but failed to learn the
underlying solution. Again this failure is not due to the low expressivity of our neu-
ral network model. We also know that PECANNs properly balance each objective term,
unlike PINNs. Thus far, we demonstrated failures of our physics-based models in learn-
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(a) (b) (c)

Figure 1: Convection-dominated convection diffusion equation: predictions obtained
from models trained with L-BFGS and Adam optimizer separately. The solid (red) line
represents the exact solution. In contrast, the dashed(cyan) represents the predicted so-
lution obtained by training our model with L-BFGS optimizer, and the dashed (blue)
represents the predicted solution obtained by training our model with Adam optimizer.
(a) data-driven model, (a) PINN model, (c) PECANN model

ing the solution of (3.1). To gain further insight, we visualize the loss landscapes of our
trained models in the next section.

3.1 Visualizing the Loss Landscapes

In the previous section, we demonstrated that failures of our physics-based models were
not due to the insufficient expressivity of our neural network architecture. Moreover,
the choice of an optimizer did not impact the predictions of our physics-based models
in learning the solution of (3.1). In this section, we visualize the loss landscapes of our
trained models to help understand why our models failed to learn the underlying target
solution when trained on physics instead of labeled data. The loss landscape provides
insights into the geometry of the optimization problem, including the presence of saddle
points, the number of local minima, and the geometric shape of the valleys that repre-
sent solutions. These insights can help to explain why some optimization algorithms
converge to reasonable solutions while others get stuck in poor local minima. Li et al.
[32] demonstrated that simple visualization methods could fail to capture the local ge-
ometry of loss function minimizers, leading to a poor understanding of the optimization
problem. To address this issue, the authors proposed a filter normalization technique
that better illustrates the relationship between the sharpness of minima and the model’s
generalization error. We should be cautious that non-convexity in a reduced dimensional
plot implies that non-convexity exists in the full-dimensional surface. However, the ap-
pearance of convexity in a low-dimensional representation does not guarantee that the
high-dimensional function is convex [32]. In this work, we use the ’filtered normaliza-
tion’ technique to visualize our loss landscapes. Hence, we choose a center θ∗ and two
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filter-wise normalized random vectors ζ and γ [32]. We then plot a function of the form

f (ε1,ε2)=L(θ∗+ε1ζ+ε2γ) (3.3)

in log scale, where L is the objective function of our respective neural network model
(i.e., regression model, PINN or PECANN model), ε1∈ [−1,1] and ε2∈ [−1,1] are steps in
the direction of each random vectors respectively. It is worth noting that θ∗ is the state of
our trained models. Now, let us visualize the loss landscapes of our trained models.

(a) (b) (c)

(d) (e) (f)

Figure 2: Loss landscapes of different models trained with Adam and L-BFGS optimizers.
Top row: Models trained with Adam optimizer. (a) data-driven model,(b) PINN model,
(c) PECANN model. Bottom row: models trained with L-BFGS optimizer. (d) data-driven
model, (e) PINN model, (f) PECANN model.

From Figure 2(a), we observe that our baseline regression model produced smooth
landscapes and converged to a good local minimum when trained with Adam optimizer.
Nevertheless, the two-dimensional loss landscapes exhibit a rough and uneven terrain,
with a distinct minimum that our model converges to when trained with L-BFGS opti-
mizer, as illustrated in Figure 2(d). That is because L-BFGS optimizer incorporates the
curvature information of the objective function into the training process. To this end, we
have seen that regardless of the choice of the optimizer, our purely data-driven regres-
sion model accurately learned the underlying solution and converged to a good local
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minimum. In contrast to the baseline regression model, our PINN model converged to a
saddle point with a flat region around it when trained with Adam optimizer, as depicted
in Figure 2(b). Similarly, in Figure 2(e), we observe that the low dimensional landscape
of our PINN model is non-convex when trained with L-BFGS optimizer. Similarly, our
PECANN model converged to a flat basin of attraction when trained with Adam opti-
mizer, as shown in Figure 2(c). Finally, our PECANN model produces highly uneven
loss landscapes when trained with L-BFGS optimizer as shown in Figure 2(f). So far, we
have observed and characterized the difficulty of navigating loss landscapes produced by
training a neural network model on physics. Contrary to our expectations, L-BFGS op-
timizer failed to effectively traverse the loss landscapes generated by our physics-based
neural network models, despite utilizing the curvature information of the objective func-
tion during optimization. We aim to answer why existing physics-based models pro-
duced highly complex and non-convex loss landscapes.

3.2 Sensitivity Analysis of Backpropagated Gradients in the Presence of Physics

In the previous section, we visualized the loss landscapes of our trained models and
observed that models trained on physics can get stuck in bad local minimums regard-
less of the choice of an optimizer. We re-emphasize that two-dimensional slices of loss
landscapes could be misleading and unintuitive. In this section, we explore an alterna-
tive approach to find why existing physics-based neural network models produce highly
complex loss landscapes. In particular, we demonstrate how a differential operator pol-
lutes the back-propagated gradients, the backbone of training artificial neural networks.

Neural networks are initialized randomly before training[33, 34]. As a result, pre-
dictions obtained from a neural network model are random and extremely noisy, par-
ticularly during the early stages of training. Therefore, a differential operator applied
to noisy predictions leads to incorrect derivatives. As a result, physics loss becomes
extremely noisy or incorrect. Taking the gradient of this noisy physics loss results in
highly incorrect backpropagated gradients. Essentially, severely contaminated gradients
produce undesirable consequences during training since backpropagated gradients are
the backbone of training artificial neural networks. This issue becomes severe for high-
order differential operators. We also conjecture that pre-training and transfer learning
are effective because the model is initialized from a better state that produces less noisy
predictions from a neural network model, particularly during the early stages of train-
ing. We leave that discussion to our future work as it is beyond the scope of the current
paper. To quantify the impact of a differential operator in corrupting the backpropagated
gradients, we pursue the following approach. First, we record the current state of our
model (i.e., parameters and gradient of parameters). We then slightly perturb the state of
our model as follows,

N (x; θ̃)=N (x;θ∗+ε1ζ+ε2γ), (3.4)

where N is our neural network model, θ∗ is the undisturbed state of the model, θ̃ is the
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perturbed state of our model, ζ and γ are filter-normalized random vectors[32] and ε is a
small positive number. Next, we make predictions from our model at the perturbed state
N (x; θ̃) and calculate our loss. Finally, we calculate the gradients of our parameters with
respect to our loss. The key point is that we can compare the backpropagated gradients
before and after the perturbation. The result of our analysis for our PINN model trained
with L-BFGS optimizer is reported in Figure 3.

(a) (b) (c)

(d) (e) (f)

Figure 3: effect of a differential operator in training our PINN model with L-BFGS opti-
mizer: (a) distribution of parameters of the network before perturbation, (b) distribution
of gradients of the parameters of the network before perturbation, (c) distribution of pa-
rameters of the network at the perturbed state, (d) distribution of gradients of the param-
eters of the network at the perturbed state, (e) prediction before and after perturbation (f)
predicted derivative before and after perturbation

From Figures 3(a)-(c), we observe that perturbations are small since the distribu-
tion of the parameters before and after perturbations are similar. However, backprop-
agated gradients have increased by almost five orders of magnitude, as can be seen
from Figures 3(b)-(d). We also observe the impact of perturbations in predictions of our
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PINN model in Figure 3(e). However, a small perturbation in the prediction produced
an entirely different derivative, as seen in Figure 3(f). A similar analysis of our PINN
model trained with Adam optimizer is provided in the appendix A. Similarly, we report
the summary of our sensitivity analysis of backpropagated gradients for our PECANN
model trained with L-BFGS optimizer in Figure 4.

(a) (b) (c)

(d) (e) (f)

Figure 4: effect of a differential operator in training our PECANN model with L-BFGS
optimizer:(a) distribution of parameters of the network before perturbation, (b) distribu-
tion of gradients of the parameters of the network before perturbation, (c) distribution of
parameters of the network at the perturbed state, (d) distribution of gradients of the pa-
rameters of the network at the perturbed state,(e) prediction before and after perturbation
(f) predicted derivative before and after perturbation

The perturbation injected in our PECANN model is small, as can be seen from the
distribution of the undisturbed and perturbed parameters before and after perturbations
are similar in Figures 4(a)-(c). However, this small perturbation severely contaminated
the backpropagated gradients, as can be seen in Figures 4(b)-(d). The consequence of this
perturbation on the prediction and the derivative is markedly visible in Figures 4(e)-(f).
A similar analysis of our PECANN model trained with Adam optimizer is provided in
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appendix A. In a nutshell, we observed that differential operators amplify the embedded
noise in the predictions of a physics-based neural network model. This issue becomes
severe for high-order differential operators. As a consequence, backpropagated gradients
get contaminated, which prevents convergence. This is why we propose preconditioning
differential operators by introducing auxiliary variables. Next, we discuss our proposed
formulation, constrained optimization problem, and our unconstrained dual problem.

4 Proposed Method

In this section, we illustrate the key ingredients of our proposed method. Without loss of
generality, let us start considering Stokes’s equation,

∇·u(x)=0, in Ω (4.1a)
1

Re
∆u(x)+∇p(x)= f (x), in Ω (4.1b)

u(x)=0, on ∂Ω (4.1c)

where p is the pressure, u is the velocity vector, f is the body force vector, ∆ is the Lapla-
cian operator, and Re is the Reynolds number. Stokes equation has many applications
in engineering and physics. Stokes operator is the primary ingredient of Navier–Stokes
equations that can describe the physics of various phenomena in science and engineer-
ing. Bo-Nan and Chang [35] proposed a least-squares finite element method based on
a first-order velocity-pressure-vorticity formulation that can handle multi-dimensional
and incompressible problems Navier-Stokes equations. In this work, we adopt the ap-
proach in [35] and introduce an auxiliary vorticity variable ω=∇×u to reduce the above
problem to a system of first-order differential equations written in its residual form as
follows

C(x)=∇·u(x), in Ω (4.2a)

D(x)=
1

Re
∇×ω(x)+∇p(x)− f (x), in Ω (4.2b)

F (x)=ω(x)−∇×u(x), in Ω (4.2c)
B(x)=u(x)−0, on ∂Ω. (4.2d)

The critical point here is that by reducing the order of a partial differential equation,
we bypass the need to calculate high-order derivatives. This reduces the search space
of our solution and facilitates learning problems with non-smooth solutions that we will
show in our numerical experiments. Moreover, first-order differential equations are eas-
ier to learn than high-order differential operators due to several issues we discussed in
previous sections. Introducing an auxiliary vorticity variable is not the only way to re-
duce the order of a partial differential equation. We can also introduce other variables
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(i.e., auxiliary flux variable) to reduce the order of a given problem, as we will show in
our numerical experiments. It is worth keeping in mind that our method is meshless and
geometry invariant. Next, we discuss our constrained optimization formulation.

4.1 Constrained Optimization Problem Formulation

Here, we discuss the key ingredients of our constrained optimization formulation. The
objective is to learn the underlying solution u(x) , p(x) and ω(x) for the problem given
in (4.2). Therefore, we create a neural network model N (x;θ) : x→ [u(x),p(x),ω(x)] that
takes x as inputs and predicts u(x),p(x) and ω(x). It is worth noting that we use a
single neural network architecture to predict our primary variables and our auxiliary
variable instead of two separate neural network architectures. That is to reduce the risk
of overfitting and to encourage learning common hidden representations for our primary
and auxiliary variables. Given a set of collocation points {x(i)}NΩ

i=1 sampled in the domain
Ω, and a set of boundary points {x(i)}N∂Ω

i=1 sampled on the boundary ∂Ω, we minimize

min
θ

JD(θ)=
NΩ

∑
i=1
‖D(x(i),θ)‖2

2 (4.3)

subject to the following constraints

−ε≤B(x(i);θ)≤ε, ∀i=1,··· ,N∂Ω, (4.4a)

−ε≤C(x(i);θ)≤ε, ∀i=1,··· ,NΩ, (4.4b)

−ε≤F (x(i);θ)≤ε, ∀i=1,··· ,NΩ, (4.4c)

Where ε> 0 is a small positive number. We want our constraint interval to be small
to ensure the errors are as small as possible. It is also important to note that we strictly
enforce the boundary conditions B. Moreover, we strictly enforce the compatibility equa-
tion between our primary variable u and our auxiliary variable ω as given in F . In ad-
dition, we precisely enforce our primary variable u to be divergence-free as given in C.
As a result of our constraints, our model locally conserves the laws and the boundary
conditions.

One can make the argument to aggregate the loss on F , C, and D since they are all
first-order differential equations. However, these equations have different scales which
cannot be aggregated together. Another important point is that constraining F and C
allows our model to focus on challenging regions to learn adaptively. Let us simplify our
constraints by introducing a convex distance function φ∈ [0,∞)(i.e., quadratic function)
and setting ε=0. We do this step because we only care about the magnitude of the error,
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not the sign of it. Therefore, we rewrite our constraints as follows

φ(B(x(i);θ))=0, ∀i=1,··· ,N∂Ω, (4.5a)

φ(C(x(i);θ))=0, ∀i=1,··· ,NΩ, (4.5b)

φ(F (x(i);θ))=0, ∀i=1,··· ,NΩ. (4.5c)

It is worth noting that noisy measurement data can be seamlessly incorporated into our
objective function by minimizing the log-likelihood of the predictions obtained from a
neural network model conditioned on the observations [16]. Next, we formulate a dual
optimization problem that can be used as an objective function for training our neural
network model.

4.2 Unconstrained Optimization Problem Formulation

In this section, we formulate a dual unconstrained optimization problem using Lagrange
multiplier methods as follows

min
θ

max
λF ,λB ,λC

L(θ;λC ,λB ,λN )=JD(θ)+JF (λF ,θ)+JC(λC ,θ)+JB(λB ,θ) (4.6a)

JF (λF ,θ)=
NΩ

∑
i=1

λ
(i)
F φ(F (x(i);θ)), (4.6b)

JC(λC ,θ)=
NΩ

∑
i=1

λ
(i)
C φ(C(x(i);θ)), (4.6c)

JB(λB ,θ)=
NΩ

∑
i=1

λ
(i)
B φ(B(x(i);θ)). (4.6d)

We can swap the order of the minimum and the maximum by using the following mini-
max inequality concept or weak duality

max
λF ,λB ,λC

min
θ
L(θ;λF ,λB ,λC)≤min

θ
max

λF ,λB ,λC
L(θ;λF ,λB ,λC). (4.7a)

Therefore, our final dual problem is given as follows

max
λF ,λB ,λC

min
θ
L(θ;λF ,λB ,λC). (4.8)

We observe that the inner part of (4.8) is the dual objective function which is concave
even though JF , JB , and JC can be non-convex. The minimization can be performed
using any gradient descent-type optimizer that updates the parameters θ as follows

θ← θ−α(H(θ))−1∇θL(θ;λF ,λB ,λC) (4.9)
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where α is the learning rate and H is the hessian matrix. Similarly, we can use the gradient
ascent rule to update our Lagrange multipliers to perform the maximization as follows

λ
(i)
B ←λ

(i)
B +ηφ(B(x(i);θ)),∀i=1,··· ,N∂Ω, (4.10a)

λ
(i)
F ←λ

(i)
F +ηφ(F (x(i);θ)),∀i=1,··· ,NΩ, (4.10b)

λ
(i)
C ←λ

(i)
C +ηφ(C(x(i);θ)),∀i=1,··· ,NΩ, (4.10c)

where←− indicates an optimization step and η>0 is a small learning rate. To accelerate
the convergence of our dual problem, we adapt the learning rate to Lagrange multipli-
ers following the idea from adaptive subgradient methods[36]. We should note that it
is possible to adapt the learning rate η following the approach in Adam [29]. However,
since Lagrange multipliers’ gradients do not oscillate, there is no need to employ mo-
mentum acceleration. Therefore, we chose to adapt learning rate η following the idea
of RMSprop, which divides the learning rate by an exponentially decaying average of
squared gradients as follows,

E[b2(x(i))]←βE[b2(x(i))]+(1−β)[φ(B(x(i);θ))]2,∀i=1,··· ,N∂Ω, (4.11a)

E[ f 2(x(i))]←βE[ f 2(x(i))]+(1−β)[φ(F (x(i);θ))]2,∀i=1,··· ,NΩ (4.11b)

E[c2(x(i))]←βE[c2(x(i))]+(1−β)[φ(C(x(i);θ))]2,∀i=1,··· ,NΩ (4.11c)

where E[·] denotes the average operator, β∈ (0,1) indicates how important the current
observation is, and ε is the smoothing term that avoids division by zero, which is set to
10−10 unless specified otherwise. In this work we set β=0.9 and η=10−2 unless specified
otherwise. Having calculated the exponentially decaying average of squared gradients,
we can update our Lagrange multipliers using the following update rule

λ
(i)
B ←λ

(i)
B +

η√
E[b2(x(i))]+ε

φ(B(x(i);θ)),∀i=1,··· ,N∂Ω, (4.12a)

λ
(i)
F ←λ

(i)
F +

η√
E[ f 2(x(i))]+ε

φ(F (x(i);θ)),∀i=1,··· ,NΩ (4.12b)

λ
(i)
C ←λ

(i)
C +

η√
E[c2(x(i))]+ε

φ(C(x(i);θ)),∀i=1,··· ,NΩ. (4.12c)

We note that the magnitude of a Lagrange multiplier for a particular constraint indicates
our optimizer’s challenge in enforcing that constraint. Therefore, our constraints (i.e., F
and C) in the domain help our model focus on regions that are complex to learn. We will
demonstrate this in our numerical experiments. Our dual unconstrained optimization
formulation adaptively enforces boundary conditions, flux, or any user-defined equality
constraints on the model prediction, eliminating the need for manual tuning or estima-
tion. We note that our unconstrained optimization formulation is a general approach that
can handle constrained optimization problems involving PDEs, as we demonstrate in a
numerical example in A.1.



16

5 Numerical Experiments

We adopt the following metrics for evaluating the prediction of our models. Given an
n-dimensional vector of predictions û∈Rn and an n-dimensional vector of exact values
u∈Rn, we define a relative Euclidean or L2 norm

Er(û,u)=
‖û−u‖2

‖u‖2
, E∞(û,u)=‖û−u‖∞, MAE=

1
n

n

∑
i=1

(û(i)−u(i))2 (5.1)

where ‖·‖2 denotes the Euclidean norm and ‖·‖∞ denotes the maximum norm. All the
codes accompanying this manuscript are open-sourced at [37].

5.1 Convection-dominated Convection Diffusion Equation

In this section, we aim to learn the solution for a convection-dominate convection-diffusion
equation given in (3.1) along with its boundary conditions. In section 3, we have shown
that previous physics-based methods failed, which we investigated in detail. To pro-
ceed, let us first introduce an auxiliary flux parameter σ(x)=−αux(x) to reduce (3.1) to
a system of first-order partial differential equations as follows

D(x)=
du(x)

dx
+

dσ(x)
dx

,x∈ (0,1), (5.2a)

F (x)=σ(x)+α
du(x)

dx
,x∈ (0,1) (5.2b)

whereD is the residual form of our differential equation andF is the flux constraint along
with Dirichlet boundary conditions u(0)=0.5 and u(1)=−0.5. As mentioned in section
3, we use a fully connected feed-forward neural network with four hidden layers and 20
neurons for this problem. Our network employs tangent hyperbolic non-linearity and
has one input and two outputs corresponding to u and σ. We adopt L-BFGS optimizer
with its default parameters, built-in PyTorch framework [31] and train our network for
5000 epochs. We generate 2048 number of collocation points in the domain only once
before training. To investigate the accuracy of our model, we present the results of our
numerical experiment in Figure 5.

Our model successfully learned the underlying solution as shown in Figure 5(a).
From Figure 5(b), we observe that our proposed model adaptively focused on regions in
which flux constraint was challenging to enforce. Moreover, from Figure 5(c), we observe
that our proposed approach produces smooth loss landscapes with a visible minimum
that our optimizer was able to find.

5.2 Unsteady Heat Transfer in Composite Medium

In this section, We study a typical heat transfer in a composite material where temper-
ature and heat fluxes are matched across the interface [38]. Consider a time-dependent
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(a) (b) (c)

Figure 5: Convection-dominated convection-diffusion equation with α= 10−6: (a) exact
vs. predicted solution with Er=3.11×10−5 and E∞=4.75×10−5, (b) Lagrange multipliers
for enforcing the auxiliary flux equation, (c) loss landscapes of our trained model.

heat equation in a composite medium,

∂T(x,t)
∂t

=
∂

∂x
[a(x,t)

∂T(x,t)
∂x

]+ f (x,t), (x,t)∈Ω×[0,τ] (5.3)

along with the Dirichlet boundary condition

T(x,t)= g(x,t), (x,t)∈∂Ω×(0,τ], (5.4)

and initial condition

T(x,0)=h(x), x∈Ω (5.5)

where T is the temperature, f is a heat source function, a is thermal conductivity, g and h
are source functions respectively. For non-smooth T(x,t) and a(x,t), we cannot directly
apply (5.3) due to the stringent smoothness requirement of our differential equation. For
this reason, we relax the stringent smoothness requirement by introducing an auxiliary
flux parameter σ(x,t)=−a(x,t) ∂T(x,t)

∂x to obtain a system of first-order partial differential
equation that reads

D(x,t)=
∂T(x,t)

∂t
− ∂σ(x,t)

∂x
+ f (x,t),∈Ω×[0,τ], (5.6a)

F (x,t)=σ(x,t)+a(x,t)
∂T(x,t)

∂x
,∈Ω×[0,τ], (5.6b)

B(x,t)=T(x,t)−g(x,t),∈∂Ω×(0,τ], (5.6c)
I(x,t)=T(x,0)−h(x),∈Ω,t=0, (5.6d)
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whereD is our differential equation,F is our flux constraint, B is our boundary condition
constraint, and I is our initial condition constraint. We perform a numerical experiment
in a composite medium of two non-overlapping sub-domains where Ω = Ω1∪Ω2. We
consider the thermal conductivity of the medium to vary as follows

a(x,t)=

{
1, (x,t)∈Ω1×[0,2]
3π, (x,t)∈Ω2×[0,2]

(5.7)

where Ω1={x|−1≤x<0} and Ω2={x|0<x≤1}. To accurately evaluate our model, we
consider an exact solution of the form

T(x,t)=

{
sin(3πx)t, x∈Ω1×[0,2]
tx, x∈Ω2×[0,2].

(5.8)

The corresponding source functions f (x,t), g(x,t), and h(x,t) can be calculated ex-
actly using (5.8). We use a fully connected neural network architecture consisting of four
hidden layers with 20 neurons and tangent hyperbolic activation functions. We generate
NΩ=2028 collocation points from the interior part of the domain, N∂Ω=2×512 on bound-
aries, and NI=512 for approximating the initial conditions only once before training. We
use L-BFGS optimizer [30] with its default parameters and strong Wolfe line search func-
tion that is built in PyTorch framework [31]. We train our network for 10000 epochs.

The result of the experiment is summarized in Figure 6. We observe that our neural
network model has successfully learned the underlying solution as shown in Figures 6(a)-
(b)-(c). Similarly, our model successfully learned to predict the flux distribution, as can
be seen in Figures 6(d)-(e)-(f).

5.3 Convection Equation

In this section, we study the transport of a physical quantity dissolved or suspended in
an inviscid fluid with a constant velocity. Numerical solutions of inviscid flows often
exhibit a viscous or diffusive behavior owing to numerical dispersion. Let us consider a
convection equation of the form

∂ξ

∂t
+u

∂ξ

∂x
=0, ∀(x,t)∈Ω×[0,1], (5.9)

satisfying the following boundary condition

ξ(0,t)= ξ(2π,t) ∀t∈ [0,1] (5.10)

and initial condition

ξ(x,0)=h(x), ∀x∈∂Ω. (5.11)
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(a) (b) (c)

(d) (e) (f)

Figure 6: Composite medium heat: Top row: Er =4.223×10−3 (a) predicted solution, (b)
exact solution (c) exact vs. predicted solution over the line. Bottom row: Er=1.536×10−3

(d) predicted flux, (e) exact flux (f) exact vs. predicted flux over line

where ξ is any physical quantity to be convected with the velocity u, Ω={x | 0<x<2π}
and ∂Ω is its boundary. Eq.(5.9) is inviscid, so it lacks viscosity or diffusivity. For this
problem, we consider u = 40 and h(x) = sin(x). The analytical solution for the above
problem is given as follows [23]

ξ(x,t)=F−1(F(h(x))e−iukt), (5.12)

where F is the Fourier transform, k is the frequency in the Fourier domain and i=
√
−1.

Since the PDE is already first-order, there is no need to introduce any auxiliary parame-
ters. Following is the residual form of the PDE used to formulate our objective function,

D(x,t)=
∂ξ(x,t)

∂t
+u

∂ξ(x,t)
∂x

, (5.13a)

B(t)= ξ(0,t)−ξ(2π,t), (5.13b)
I(x)= ξ(x,0)−sin(x), (5.13c)

where D is the residual form of our differential equation, B and I are our boundary
condition and initial condition constraints. As we discussed in section 2.2, [23] proposed



20

curriculum learning for the solution of (5.9). For this particular problem, the complexity
of learning the solution ξ(x,t) increases with increasing u. However, we re-emphasize
that for a general PDE, it is known a priori what factors control the complexity of the
solution.

For this problem, we use a fully connected neural network architecture consisting
of four hidden layers with 50 neurons and tangent hyperbolic activation functions. We
generate NΩ=2048 collocation points from the interior part of the domain, N∂Ω=512 from
each boundary, and NI = 512 for approximating the initial conditions only once before
training. We use L-BFGS optimizer [30] with its default parameters and strong Wolfe line
search function that is built in PyTorch framework [31]. We train our network for 10000
epochs. We present the prediction of our neural network in Figure 7. We observe that
our neural network model has successfully learned the underlying solution as shown in
Figures 7(b)-(c).

(a) (b) (c)

Figure 7: Convection equation: (a) exact solution, (b) predicted solution, (c) absolute
point-wise error

Table 1: Convection equation: summary of the Er and MAE errors for training a fixed
neural network architecture with different methods along

Models Er(ξ, ξ̂) MAE

Curriculum Learning [23] 5.33×10−2 2.69×10−2

Proposed method 5.787×10−5 4.656×10−5

We also present a summary of the error norms from our approach and state-of-the-
art results given in [23] in Table 1. We observe that our method achieves a relative Er =
5.787×10−5, which is three orders of magnitude better than 5.33×10−2 obtained by the
method presented in Krishnapriyan et al. [23].
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5.4 Stokes Equation

The Stokes problem applies to many branches of physics and engineering. Stokes op-
erators are fundamental to more complicated models of physical phenomena such as
Navier-Stokes equations. In this numerical example, we consider a two-dimensional
Stokes equation. Following the approach in section 4, we transform our partial differ-
ential equation into a system of first-order PDE as follows

Dx =
∂p
∂x

+
1

Re
∂ω

∂y
− fx, (5.14a)

Dy =
∂p
∂y
− 1

Re
∂ω

∂x
− fy, (5.14b)

F=
∂v
∂x
− ∂u

∂y
−ω, (5.14c)

C= ∂u
∂x

+
∂v
∂y

(5.14d)

where ω is the vorticity, Re is the Reynolds number, (u,v) is the velocity vector, p is the
pressure, and ( fx, fy) is the body force vector. D= (Dx,Dy) is the residual form of our
differential equation, F is our vorticity constraint, and C is our divergence constraint.
We consider a model problem Re=1 studied by Oden and Jacquotte[39] that corresponds
to the divergence-free velocity field

u(x,y)= x2(1−x)(2y−6y2+4y3), v(x,y)=y2(1−y)2(−2x+6x2−4x3), (5.15)

the pressure field

p(x,y)= x2−y2, (5.16)

the vorticity field

ω(x,y)=−x2(1−x)2(2−12y+12y2)+y2(1−y)2(−2+12x−12x2), (5.17)

and the following boundary conditions

u(x,y)=0,v(x,y)=0 ∈{(x,y)| x=0, 0≤y≤1}, (5.18a)
u(x,y)=0,v(x,y)=0 ∈{(x,y)|x=1, 0≤y≤1}, (5.18b)
u(x,y)=0,v(x,y)=0 ∈{(x,y)|0≤ x≤1, y=0}, (5.18c)

u(x,y)=0,p(x,y)= x2−1 ∈{(x,y)|0≤ x≤1, y=1}, (5.18d)

We use a fully connected neural network architecture consisting of four hidden layers
with 50 neurons and tangent hyperbolic activation functions for this problem. We gener-
ate NΩ=2048 collocation points from the interior part of the domain, N∂Ω=512 from each
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Stokes equation: Top row: velocity with Er(u,û)=1.050×10−3. (a) exact velocity
field, (b) predicted velocity field, and (c) absolute point-wise error between predicted
and exact speed. Middle row: pressure with Er(p, p̂) = 9.952×10−4. (d) exact pressure
distribution, (e) predicted pressure distribution and (f) absolute point-wise error between
the exact and the predicted pressure. Bottom row: vorticity with Er(ω,ω̂)=4.052×10−3.
(g) exact vorticity field, (h) predicted vorticity field, (i) absolute point-wise error between
predicted and exact vorticity

boundary face only once before training. We choose L-BFGS optimizer [30] with its de-
fault parameters and strong Wolfe line search function that is built in PyTorch framework
[31]. Finally, we train our network for 10000 epochs.

Results from our numerical experiments are summarized in Figure 8. Our model suc-
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cessfully learned the underlying solution accurately, as shown in Figures 8(b)-(c). Simi-
larly, we observe excellent agreement of the predicted pressure with the exact pressure
field as depicted in Figures 8(e)-(f). In addition, the predicted vorticity field from our
model perfectly matches the exact vorticity field as illustrated in Figures 8(g)-(h)-(i) Next,
we conduct a benchmark numerical experiment using the incompressible Navier-Stokes
Equation.

5.5 Incompressible Navier-Stokes Equation

In this section, we study a classical benchmark problem in computational fluid dynamics,
the steady-state flow in a two-dimensional lid-driven cavity. The system is governed by
the incompressible Navier-Stokes equations, which can be written in a non-dimensional
form as

∂u
∂x

+
∂v
∂y

=0, (x,y)∈Ω (5.19a)

u
∂u
∂x

+v
∂u
∂y

+
∂p
∂x
− 1

Re
(

∂2u
∂x2 +

∂2u
∂y2 )= fx, (x,y)∈Ω (5.19b)

u
∂v
∂x

+v
∂v
∂y

+
∂p
∂y
− 1

Re
(

∂2v
∂x2 +

∂2v
∂y2 )= fy, (x,y)∈Ω (5.19c)

where (u,v) is the velocity vector, ( fx, fy) is the body force vector, Re=100 is the Reynolds
number and p is the pressure. We aim to solve the above equation on Ω= {(x,y) | 0≤
x≤ 1,0≤ y≤ 1} with its boundary ∂Ω. Our top wall moves at a velocity of u(x,1)= 1 in
the x direction. The other three walls are applied as no-slip conditions. Because we have
a closed system at a steady state with no inlets or outlets in which the pressure level is
defined, we provide a reference level for the pressure p(0,0)=0. The main challenge here
is to solve the above problem using the velocity-pressure formulation.

Wang et al. [22] reported that their method failed to learn the underlying solution
using pressure-velocity formulation. Jagtap et al. [40] used 12 networks and 2500×16
number of collocation points with more than a thousand boundary points to learn the
underlying solution. In this work, we use only 2500 collocation points, and only one of
the networks in [40] to learn the underlying solution accurately. The proposed method
presented in section 4 can be generalized to transform (5.19) into a system of first-order
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velocity-pressure-vorticity formulation,

C(x,y)=
∂u
∂x

+
∂v
∂y

, (x,y)∈Ω (5.20a)

Dx(x,y)=u
∂u
∂x

+v
∂u
∂y

+
∂p
∂x

+
1

Re
∂ω

∂y
− fx, (x,y)∈Ω (5.20b)

Dy(x,y)=u
∂v
∂x

+v
∂v
∂y

+
∂p
∂y
− 1

Re
∂ω

∂x
− fy, (x,y)∈Ω (5.20c)

F (x,y)=
∂v
∂x
− ∂u

∂y
−ω, (x,y)∈Ω (5.20d)

Where ω is the vorticity field, D = (Dx,Dy) is the residual form of our differential
equation, F is our vorticity constraint, and C is our divergence constraint. We use a fully
connected neural network architecture of six hidden layers with 20 neurons and tangent
hyperbolic activation functions. We generate NΩ = 2500 collocation points uniformly
from the interior part of the domain, N∂Ω = 4×128 number of points on the boundaries
only once before training. In addition, we constrain our pressure at the corner (0,0). We
choose L-BFGS optimizer [30] with its default parameters and strong Wolfe line search
function that is built in PyTorch framework [31]. We train our network for 20000 epochs.
We present the prediction of our neural network along with benchmark results [41] in
Figure 9. From Figures 9(b)-(c), we observe that the predictions of our neural network

(a) (b) (c)

Figure 9: Navier-Stokes equation: (a) predicted solution, (b) predicted horizontal velocity
over line compared with the benchmark result by, (c) predicted vertical velocity over line
compared with the benchmark result by

model are in excellent agreement with the benchmark results reported in [41].
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6 Conclusion

In this paper, we explored the limitations of using physics-informed neural networks
(PINNs) for solving partial differential equations (PDEs). We highlighted that the ab-
sence of prior knowledge of the solution or validation data makes it difficult to adjust
the hyperparameters, thereby rendering using PINNs impracticable for solving forward
problems. We found that existing methods struggle with high-order PDEs and pro-
duce complex loss landscapes that are difficult to optimize. We also showed that back-
propagated gradients are contaminated by high-order differential operators, resulting in
unpredictable training. Furthermore, the strong form of governing PDEs may hinder
learning PDEs with non-smooth solutions. To overcome these challenges, we proposed
a novel method that reduces the order of a given PDE via auxiliary variables and for-
mulated an unconstrained optimization problem using Lagrange multiplier method. We
learned our primary and auxiliary variables using a single neural network model to pro-
mote learning shared hidden features and to reduce the risk of overfitting. We applied
our method to solve several benchmark problems, including a convection-dominated
convection-diffusion, convection equation, and incompressible Navier-Stokes equation.
We demonstrated marked improvements over existing neural network-based methods.
In future research, our method will be applied to tackle three-dimensional fluid flows
with high Reynolds numbers. We plan to further investigate the impact of physics on
contaminating backpropagated gradients to develop improved initialization schemes for
enhancing the trainability of neural networks on physics.

A Sensitivity Analysis of Backpropagated Gradients in Presence
of Physics

In section 3.2, we discussed how differential operators amplify the embedded noise in
the output of a neural network model trained with L-BFGS optimizer. In this section,
we investigate the contamination of backpropagated gradients during training a PINN
model for the solution of (3.1) with Adam optimizer. From Figures 10(a)-(c), we observe
that perturbations are acceptable since the distribution of the parameters before and after
perturbations are similar. However, backpropagated gradients have increased by almost
several orders of magnitude, as can be seen from Figures 10(b)-(d). We also observe the
impact of perturbations in predictions of our PINN model in Figures 10(e). Similarly, we
present the results of our numerical experiment by training a PECANN model for the
solution of (3.1) with Adam optimizer. From Figures 11(a)-(c), we observe that pertur-
bations are acceptable since the distribution of the parameters before and after perturba-
tions are similar. However, backpropagated gradients have increased by several orders
of magnitude, as can be seen from Figures 10(b)-(d).
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(a) (b) (c)

(d) (e)

Figure 10: effect of a differential operator in training our PINN model with Adam opti-
mizer:(a) distribution of parameters of the network before perturbation, (b) distribution
of gradients of the parameters of the network before perturbation, (c) distribution of pa-
rameters of the network at the perturbed state, (d) distribution of gradients of the param-
eters of the network at the perturbed state, (e) prediction before and after perturbation

A.1 Helmholtz Equation

In this section, we aim to demonstrate our proposed unconstrained formulation as pre-
sented in section 4.2 for the solution of Helmholtz equation, which appears in various
applications in physics and science [42, 43, 44, 45]. In two dimensions, our partial differ-
ential equation reads

∆u(x,y)+k2u(x,y)=q(x,y), ∀(x,y)∈Ω, (A.1)

along with Dirichlet boundary conditions

u(x,y)=0, ∀(x,y)∈∂Ω, (A.2)

where k=1, Ω={(x,y) | −1≤x≤1,−1≤y≤1} and ∂Ω is its boundary. It can be verified
that (A.1) and its boundary conditions as given in (A.2) can be solved with the following
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(a) (b) (c)

(d) (e)

Figure 11: effect of a differential operator in training our PECANN model with Adam
optimizer:(a) distribution of parameters of the network before perturbation, (b) distribu-
tion of gradients of the parameters of the network before perturbation, (c) distribution
of parameters of the network at the perturbed state, (d) distribution of gradients of the
parameters of the network at the perturbed state, (e) prediction before and after pertur-
bation

function
u(x,y)=sin(πx)sin(4πy), ∀(x,y)∈Ω. (A.3)

This problem has been studied in [22, 26]. For this problem, we use a fully connected neu-
ral network architecture as in [22], which consists of three hidden layers with 30 neurons
per layer and the tangent hyperbolic activation function. We note that [22] is generating
their data at every epoch, which amounts to NΩ =5.12×106 and N∂Ω =20.48×106. Sim-
ilarly [26] generates NΩ =100×103 number of collocation points and N∂Ω =400. On the
other hand, we use the Sobol sequence to uniformly generate NΩ = 500 residual points
from the interior part of the domain and N∂Ω=256 from the boundaries only once before
training. We note that our collocation points amount to only 0.5% of the data generated in
[26] and to 0.01% of the data generated in [22]. Our optimizer is L-BFGS [30] with its de-
fault parameters and strong wolfe line search function that is built in PyTorch framework
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[31]. We train our network for 5000 epochs. The results of our numerical experiment
are presented in Figure 12, which shows that the prediction obtained from our model is
indistinguishable from the exact solution.

(a) (b) (c)

Figure 12: Helmholtz equation: (a) exact solution ,(b) predicted solution, (c) absolute
point-wise error

Table 2: Helmholtz equation: the average and the standard deviations of the error norms
over ten independent trials with the number of collocation points NΩ and the number of
boundary points N∂Ω

Models Er(u,û) E∞(u,û) NΩ N∂Ω

Ref. [22] 4.31×10−2±1.68×10−2 - 128×40000 4×128×40000
Proposed Method 2.77×10−4±9.15×10−5 9.04×10−4±3.77×10−4 500 4×64

Furthermore, we report the summary of the error norms obtained from our approach
with state-of-the-art results presented in [22] averaged over ten independent trials with
random Xavier initialization scheme[33] in Table 2, which shows that our method out-
performs the method presented in Wang et al. [22] by two orders of magnitude in error
levels with just 0.01% of their generated collocation points.
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