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ABSTRACT

Ehrlichia chaffeensis is a tick-borne disease transmitted by ticks to
dogs. Few studies have mathematical modelled such tick-borne dis-
ease in dogs, and none have developed models that incorporate
different ticks’ developmental stages (discrete variable) as well as the
duration of infection (continuous variable). In this study, we develop
and analyze a model that considers these two structural variables
using integrated semigroups theory. We address the well-posedness
of the model and investigate the existence of steady states. The
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model exhibits a disease-free equilibrium and an endemic equilib- ?S;Eg’::;ﬁg;gama
rium. We calculate the reproduction number (7p). We establish a 92-10: 92030

necessary and sufficient condition for the bifurcation of an endemic
equilibrium. Specifically, we demonstrate that a bifurcation, either
backward or forward, can occur at 7o = 1, leading to the existence, or
not, of an endemic equilibrium even when 7y < 1. Finally, numerical
simulations are employed to illustrate these theoretical findings.

1. Introduction

Ehrlichiosis are tick-borne diseases caused by obligate intracellular rickettsia bacteria
in the genera Ehrlichia [1-5]. These bacteria are classified within the group of the «-
proteobacteria, order Rickettsiales, family Anaplasmataceae, genus Ehrlichia [3,6]. This
genus consists of obligate intracellular Gram-negative bacteria [1,4,6] that mainly infect
leukocytes (such as monocytes, macrophages, granulocytes and neutrophils), and endothe-
lial cells in mammals, and salivary glands, intestinal epithelium, and hemolymph cells of
ticks [1,7-12]. The genus Ehrlichia comprises of six recognized tick-transmitted species:
E. canis, E. muris, E. chaffeensis, E. ewingii, E. minasensis, and E. ruminantium [3,11], and
in recent times, other Ehrlichia species have been reported [7,8,11]. Going by our current
knowledge, a large number of Ehrlichia species might not have been described [11].

The reservoir hosts for Ehrlichia species include numerous wild animals, as well as
some domesticated species and livestock [6]. Some of these Ehrlichia species affect ani-
mals including pets such as cats and dogs [6,13], and a limited number have been know
to infect humans [2,4,6,13-16]. Specifically, Ehrlichia canis, E. chaffeensis, E. ewingii, E.

CONTACT Folashade B. Agusto @ fbagusto@gmail.com @ Department of Ecology and Evolutionary Biology,
University of Kansas, Lawrence KS 66045 USA

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creative
commons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided
the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a
repository by the author(s) or with their consent.



2 (& F.B.AGUSTOETAL.

muris, and E. ruminantium are members of the genus Ehrlichia known to naturally infect
various mammalian hosts such as cats, dogs, ruminants, and mice, and are responsible for
emerging zoonoses in humans [7,8,10,17].

Ehrlichia are tick-borne diseases transmitted by ticks in the family Ixodidae. Rhipi-
cephalus sanguineus (brown dog tick) and Ixodes ricinus are vectors for Ehrlichia canis
[5,6]. E. canis can also be transmitted by Amblyomma cajennense, and experimentally
by Dermacentor variabilis (American dog tick) [6]. In North America A. americanum
(Lone Star tick) is the primary vector for both E. chaffeensis and E. ewingii [4,6,18,19].
‘Outside North America, E. chaffeensis has been found in ticks in the genera Ambly-
omma, Haemaphysalis, Dermacentor, and Ixodes in Asia, in R. sanguineus in Cameroon,
and in A. parvum in Argentina’ [6]. Haemaphysalis flava and Ixodes persulcatus com-
plex ticks transmits E. muris [6]. E. ruminantium is the only known Ehrlichia species
that infects cattle and it is found on the continent of Africa and a couple of Caribbean
islands [8].

Ticks life-cycle span between 2-to-3 years depending on the species [20,21]. They go
through four life stages namely egg, six-legged larva, eight-legged nymph, and adult. To
survive each life stage after hatching from eggs, the ticks must take a blood meal from a
host; but, most ticks will die if they are unable to find a host [20]. Ticks feed once on a
host, then fall off and develop into the next stage. This feeding pattern creates pathways for
diseases to be transmitted from hosts to hosts [22]. Ixodes scapularis (black-legged tick) life
cycle generally lasts two years, while the life cycle of Amblyomma americanum (the lone
star tick) is around three years long [21]. Some species like Rhipicephalus sanguineus (the
brown dog tick) whose primary host is the domestic dog, prefer to feed on the same host
during all its life stages [20,22]. Since R. sanguineus are endophilic, they are found inside
houses and dog kennels [22].

Dogs are susceptible to infection with multiple Ehrlichia spp., including E. chaffeensis,
E. ewingii, and E. canis [2,12,19,23,24]. In 2019, over 200,000 dogs tested positive for anti-
bodies against Ehrlichia spp. within the United States out of 7,056,709 dogs tested, while
over 1000 dogs tested positive out of 168,216 dogs tested in Canada [25]. According to
Gettings et al. [25] the distribution of infected dogs follows the distribution of the related
tick vectors. For instance, Amblyomma americanum is commonly found on dogs and peo-
ple in the southeastern and southcentral United States [2]. In Beall et al. [2] the overall
seroprevalence of E. canis, E. chaffeensis, and E. ewingii across the United States in 2012
was 0.8%, 2.8%, and 5.1%, respectively. The highest E. canis seroprevalence of 2.3% was
found in Arkansas, Louisiana, Oklahoma, Tennessee, and Texas. E. chaffeensis seroreactiv-
ity was 6.6% in Arkansas, Kansas, Missouri, and Oklahoma (the central region), and 4.6%
in Georgia, Maryland, North Carolina, South Carolina, Tennessee and Virginia (the south-
east region). Seroreactivity of E. ewingii was highest in the central region with 14.6% value
while the southeast region had a seroreactivity value of 5.9%.

Ehrlichia in dogs was discovered in the 1970s when military dogs were returning from
the Vietnam war. They found this disease to be extremely severe in German Shepards,
Doberman Pinschers, Belgium Malinois, and Siberian Huskies. Several studies including
experimental researches and serological surveys have been carried out to understand Ehrli-
chiosis transmission in canine including Ehrlichia Chaffeensis [1,15,26-28]. We only found
two quantitative studies modelling Ehrlichiosis in human [29,30]. Thus, in this study, we
developed a mathematical model for Amblyomma americanum in the Great Plains and dogs
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infected with Ehrlichia Chaffeensis with the aim of understanding the quantitative proper-
ties of the model including the asymptotic dynamics of the disease in dogs across the Plains.

The rest of the paper is organized as follows: Section 2 gives the description of the model
including the interactions between the ticks and dogs; Section 3 describes the results of the
study. These results include the existence and uniqueness of solutions, the disease invasion
process, and the bifurcation analysis. More precisely, we show that, depending on the sign
of a constant Cpjs — referred to as the bifurcation parameter — which depends on model’s
parameters, a bifurcation occurs at 7y = 1 that is either a forward or backward bifurca-
tion. In a forward bifurcation, which occurs when Cpis < 0, there exists a unique endemic
equilibrium if and only if 7y > 1. However, in a backward bifurcation, which occurs when
Chif > 0, no endemic equilibrium exists for 7y < 1 small enough; a unique endemic equi-
librium exists if 7y > 1 while multiple equilibria exist when 0 < 7y < 1 close enough to
1. Finally in Section 4 we numerically illustrate such bifurcation results.

2. Model formulation

The transmission model of Ehrlichia Chaffeensis incorporates two subgroups: dogs and
ticks. At any time t, the dog population is divided into susceptible Sp(t), infected ip(t, a),
and chronically infected cp(t, a), recovered Rp(t). Here, the variable a represents the time
since infection. Thus, the total number of dogs at time ¢ is quantified by

o0

Np(t) = Sp(t) + f ip(t,a) da + / cp(t,a) da + Rp(t).
0 0

The ticks population is structured into several stages: eggs (E), larva (L), nymph (N), and
adult (A). We denote by S = {E, L, N, A} the set of ticks stages. Let S7(¢) be the number
of susceptible ticks of stage K € S at time . We also denote by i7k(¢,a) the number of
infected ticks of stage K € & \ {E} at time t and which are infected since time a. The model
proposed assumes that there are no infected eggs. Therefore the total number of ticks of
stage k € S\ {E} at time ¢ is given by

Nie(t) = Spi(t) + fo ine(t, @) da. (1)

The dogs-ticks infection life cycle is shown in Figure 1.

Dogs’ population dynamic. At any time t, infected ticks (which are infected since time
a) induce an infection within the dogs’ population through the force of infection Ar(t, a),
such that

rr(ta) = pr(a) Y in(ta), (2)

KeS\{E}

where S denotes the infectivity of infected ticks. Therefore, newly infected dogs are given
by I‘E,DD—(('?) OOO Ar(t,a) daand € % fooo Ar(t,a) da, where € is constant parameter account-

ing for the relative disease transmission to previously recovered dogs. Note that € can be
considered age-dependent (¢ = €(a)) with no more difficulties in the analysis proposed
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here. Thus, the dogs population dynamic is then described by the below system

dSp(1) _0 Sp(t) [

D Ar(t,a)da — upSp(t),

dt ~ Np( Jo
Sp(t) + €Rp(t) [
ip(t,0) = D )NZ(et) p(®) A Ar(t,a) da,

dip(t, dip(t,
lDa(t a) ’Da(t a) = —(up + y(a) + 8p(a) + vp(a))ip(t,a),
4 acD(tt, a) BCD(af, a) <
+ = —(up + éc(a))cep(t, a)

ot - da
cp(t,0) = f vp(a)ip(t,a) da,
0
dR 00 R 00
(I;t(t) = /0 y(a)ip(t,a) da — € Niig A Ar(t,a) da — upRp(t).

In the above model, susceptible dogs are recruited at rate 6p and all dogs die naturally at
rate up. Infected and chronically infected dogs have a disease-induced mortality rate p
and 6¢. Infected dogs progress to a chronic infection at rate vp. Finally, only non-chronic
infections are assumed to recover from the infection at rate y .

Ticks’ population dynamic. At time ¢, infected dogs (chronic or not) induce an infection
within the ticks population through the force of infection Ap(t), such that

Ap(?) =/0 [Bp(@)ip(t, @) + Bp(a)ep(t, )] da,

where ,853 (a) denotes the infectivity of infected and chronically infected dogs a-time post
infection. Therefore, newly infected ticks of stage k € S \ {E} are given by Sl 1 (1). The

Np(D)
ticks population dynamic is then described by the system below ’
dSte(t STe(t
Sh;( ) rE (1 - T[i( )> Nra(t) — (@ + 1E)STE(D),
dSr(t Str(t
SLt( !~ asSta(o) - NT;Et; Ap(t) — (aL + p)StL(b),
dStn (t Stn(t
Yéli( ) — s - ;DN((t)) Ap(t) — (an + uN)STN (D),
1 dSa(t Sta(t *
P — anSt() = 3 Do) ~ waS1a(h) ?
and for k € S\ {E},
_ St (1)
t’ 0 = )\. t >
ik(t,0) = A
dirp(t,a) | dirk(t,a ;
TIB( 4 YTk ) _ —(uk + aw)itk(t, a)
t da

with @4 = 0. In the above system of the ticks dynamic, the eggs’ production rate at time ¢
is rg(1 — %)NTA(O, where 7 is the number of eggs produced by adult ticks N4, and
the parameter K is the eggs’ carrying capacity. Parameters «y.,s are ticks progression rates
from the eggs’ to adult’ stage. The death rate of ticks at each k-stage is 1x. The notations of
all variables and parameters are summarized in Table 1.
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o0
Sp(t) [) r(t,a)da

Nplt)

#p +dp(a)

A HD

o + d¢c(a)

Str(t)
A%(z) AD(’L) .
L
............ 1
St (t
Sl Ap(E)
i

Sralt)
o 0 ()

Sta(t)+ /:O iralt,a)da

Figure 1. Flow chart of the model.

3. Main results

Eggs

This section is devoted to the main results of this paper. Overall, our results are based on
the following assumption on the parameters of system (3)-(4). More precisely, we assume

that
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Table 1. State variables and parameters used for simulations.

Category Description Value (Unit) [Ref]

Variables

t Time day

a Time since infection day

State Variables

Sp(t) Susceptible Dogs

ip(t,a) Infected Dogs

cp(t,a) Chronically infected Dogs

Rp(t) Recovered Dogs

Ste(t) Number of Eggs

Stk (t) Susceptible ticks at stage k

k e {L,N,A} L for Larva, N for Nymph, and A for Adult

itk (t, a) Infected ticks at stage k

k e {L,N,A} L for Larva, N for Nymph, and A for Adult

Parameters

Op Birth rate of dogs 70,000 (day~") [31]

up Death rate of dogs 0.00027397 (day™") [32]

€ Rate of reinfection in dogs 0.00444444 (day™") [33]

y(a) Rate of infected to recovered dogs 0.04761905 (day™") [34]

vp(a) Rate of acute to chronic infection in dogs 0.04761905 (day~") [34]

dp(a) Acute infection death rate in dogs Variable (day~")

Sc(a) Chronic infection death rate in dogs Variable (day~")

ﬂ},(a) Disease transmission probability from Variable (No Unit)
infected dogs to ticks

ﬁf)(a) Disease transmission probability from Variable (No Unit)
chronically infected dogs to ticks

Br(a) Disease transmission probability from ticks to dogs Variable (No Unit)

e Ticks egg laying rate Variable (day~")

K Ticks carrying capacity 1,000,000 (day~") [Assumed]

oF Maturation rate from tick eggs to larvae 0.0243902 (day~") [35]

o Maturation rate from tick larvae to nymphs 0.00273973 (day™") [35]

an Maturation rate from tick nymphs to adult 0.0037037 (day~") [35]

WE Death rate of eggs 0.008 (day~") [36]

Lk Death rate of ticks at stage k 0.003 (day~") [Assumed]

k € {L,N,A} L for Larva, N for Nymph, and A for Adult

Assumption 3.1: (1) The recruitment rate Op of susceptible dogs and the natural death rate
Up are positive constants. The ticks’ stage transition rates ak,s and death rates [ig,s
are positive constants. The parameter €, rg and the carrying capacity K are positive

constants;

(2) Parameters y,d8p,vp,dc and the transmission rates ﬁT,,BIIS, k=1, 2, belong in
LE((0, +00), R) \ {01 };

(3) The initial condition is such that Sp(0) = Spp > 0, Rp(0) = Rpy > 0, ip(0,-) =
ipo € LY ((0,400),R), ¢p(0,-) = cpo € L} ((0,+00),R), S10(0) = Stx0 > 0, and
ik(0,) = itko € LL ((0,+00),R) fork € S.

3.1. Existence and uniqueness of nonnegative solution

In this section, we state the results concerning the existence of a globally defined nonneg-
ative solution to system (3)-(4).

In order to state our main results, we will rewrite the system in a more appropriate equiv-
alent form. To do this, denote by ey, k € {1, 2,3} and v, k € {1, 2} the canonical basis of R>
and R?, respectively. Thus, we can consider the states variables in a vector form by setting
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foreveryt > 0anda > 0

St(t) = Str(t)er + Stn(t)ex + Sta(t)es,
ir(t,a) = i (t, a)e; + irn(t, a)ex + ita(t, a)es,
ip(t,a) = ip(t,a)vi + cp(t, a)va.
Moreover, we define the vector B (a) of transmission rates with components S 11)(61) and
B3(a), ie.
Bp(a) = Bp(a)vi + Bp(a)va,

and define the vector 1 = e; + e, + e3. Let M be ticks stage progression matrix from the
larval stage to the adult stage, i.e.

nr +ar 0 0
M:=| —a pun+an 0 |]. (5)

0 —QaN KA

Therefore, using the notation (-, -) to denotes the inner product in R? and R? and setting
foralla >0

ba) (y(a>+sp(a>+w><a) 0 )

0 5c(a) (©)

Model (3)-(4) takes the following form
dSp(® _, _ Sp(®)

./0 Br(a) (Lir(t,a)) da — upSp(t),

dt D Np ()
Poih) L oD (up + 0(@in(t,a),
ot da
Vint,0) = SD(”NZZ?D(” /O Br(a) (Lir(t,a)) dav,

+ / vp(@) (V1. ip(t, @) da va,
0

dR 00 R >

(’;t(t) - /0 y (@) (vi, ip(t,a)) da — ¢ NZ((g /0 Br(@) (L ir(t,)) da — upRp(d),

(7)
and

ds S >

Zb;(t) — (1 _ TE(t)) ((ST(t),e3> +/0 (ir(t,a), e3) da) — (o + np)StE(?),
ds S *

10— arsrae — M1~ 10 [ Bp(@nintt ) da
dir(ta)  dir(ta)

Py + % = —Mir(t,a),

Sr(t) [

in(t,0) = %(t)) [ (@, i) da,

(8)
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subject to the initial condition Sp(0) = Spo > 0, ip(0,-) = ipo € L}F((O,-FOO),RZ),
Rp(0) = Rpo € Ry, S7r(0) = Stpo € Ry, ip(0,-) = ipy € LL((0,+00),R?), S7(0) =
Sto € ]Ri, and i7(0,-) = irg € L#((O, +00), R%). The following result then concerns the
existence and uniqueness of nonnegative solutions to (7)-(8).

Theorem 3.2: Let Assumption 3.1 be satisfied. Then there exists a unique continuous globally
defined integrated solution to (7)-(8). Moreover, if we set

MH(a,1):=¢ f:(“D"'o(l))dl, Ya>1t1 > 0. (9)
then the solution satisfies, for allt > 0 and a > 0,

dSp(t) o — Sp(t)
a P Np(

dRp () =f y(a)ip(t,a)da — €
0

/0 Br(a) (1,ir(t,a)) da — upSp(t),

Rp(?)

Np(t)
dS(TiEt(t) =rp (1 —~ STIE;” ) ((sT(t),e3> + /0 (ir(t, a), e3) da) — (o + 1p)Ste(D),

dsgt) = apStE(H)er — MST(1) — ISVIT)((?) OOO
H(a,a — t)ipgla —t), if a>t
Sp(t — a) + €Rp(t — a)
ip(t,a) = 1 Np(t — a)

d f IBT(a) <1> ir(t, a)) da — MDRD(t)a
t 0

(Bp(a),ip(t,a))da,

/oo Br(a) (L, ir(t — a, 7)) drI(a, 0)v;
0

L —|—/ vp(T) (vi,ip(t —a, 7)) dtI(a,0)v,, if a <t
0

and

e Mtjro(a—1t) ifa>t
ir(t,a) = _ma STt —a) [

7),ip(t —a,7))dr ifa <t
N ), Bo(@in—aD)
Moreover, the total population of Dogs, Np(t), at time t is the unique solution to

dNp(t)
dt

= 60p — upNp(t) — / dp(a)ip(t,a) da — / dc(a)ep(t,a)da, t>0
0 0

o0
Np(0) = Stro + St10 + STNO + STAO + / litzo(a) + itno(a) + itao(a)] da.
0
(10)
Proof: The existence and positiveness of solutions of system (3)-(4) can be addressed

using an integrated semigroup approach and Volterra integral formulation. More precisely,
a similar approach as in [37] can be applied for detailed proof of Theorem 3.2. However,
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here we give a brief sketch of such an approach. For all t € R, let us set
u(t) = (Sp(t), Rp(t), Oz, ip(t, -), Ste(), ST(1), Og3, iT(t,-)) € V),
where ) is the space
Y =R xR xR?xL((0,00), R?) x R*® x R® x R? x L'((0, 00), R?).

Such a Banach space ) is endow with the usual product norm || - ||y.
Let M : D(M) C Y —> ) the linear operator defined by

D(M) =R x R x {0g2} x WH((0,00),R?) x R? x R? x {0gs} x W"1((0,00), R?),

and

( Sp ( —upSp \
Rp —upRp
Og2 —ip(0)
M ip() | _ —ip — (up + 0)ip
STE —(ag 4+ np)Ste |’
St —MST
Ogs —ir(0)
\ir0) i Mir

as well as the map F : ) — Y such that

S o0
( bp — / Br(a) (1,ir(a)) da )
D Jo

o0 R o0
f y(a) (vi,ip(a)) da — eN—D / Br(a) (1,ir(a)) da
S 0 D Jo
(20

S R 0 o0
(IfD %DED / Br(a) (L,ir(a)) davy + f vp(a) (v1,ip(a)) da v,
R2 0 0
. 0
£ [ioO) | _ 0
Srv e (1 - S%) <<ST,e3> + / <iT<a>,e3>da)
T 0
O3 S o0
kiTﬂz{-)/ apSTE€] — N_IT)./o (Bp(@),ip(a))da
S 0
N_;./(; (Bp(a),ip(a))da

\ 0 /

Observe that the nonlinear map F is not well defined on D(M) due to the term Np and
is then not locally Lipschitz continuous. Furthermore, for any ¢ > 0, let us introduce the
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space
Ve ={ue DIM) : k(u) > ¢} C D(M),
where k : ) — ) is the operator defined by

o

k(1) :SD—l—f iD(a)da—l—/ cp(a) da + Rp.
0 0

We can now define the nonlinear operator F; : J; — ) by F, = F. Therefore, sys-
tem (7)-(8) can be rewritten as the following non-densely defined abstract Cauchy
problem:

%u(t) = Mu(t) + Fr(u(t)), t>0, u0) eV, NY,. (11)

We then address the existence and uniqueness of bounded solutions to (11) in a manner
similar to the approach in [37]. [ |

3.2. Disease invasion process

System (7)-(8) exhibits two disease-free equilibria. More precisely, in an infection-free
environment, we have a disease-free equilibrium either in the presence of dogs and ticks
or only in the presence of dogs. But, only the former is interesting within this context
because the disease is transmitted from dogs to ticks and vice versa. Such an equilibrium is
named after the disease-free equilibrium of system (3)-(4). Let us introduce the following
threshold parameter

rE o (0%} or, oN 1
Ryr=—1] =rg —. (12)
MAkesak+Mk o + UWE QL + UL N + UN KA

233}
> apt+UE
is the fraction of

The parameter R accounts for the ticks” reproduction number and is such that
oL
oLt+UL
is the fraction of nymph that progress to

represents the fraction of eggs that progress to the larval stage,

aN
ON+UN

the adult stage, MLA is the life expectancy of adult ticks and rg is the ticks egg laying rate.

larval that progress to the nymphal stage,

Furthermore, when R(S)T > 1, the disease-free equilibrium of system (3)-(4) is given by

8() = (SD, OLI((O,—FOO),RZ)’ 0, S‘TE, ST, OLI((0,+OO),R3)) 5 (13)
where
- 0
Sp= 2,
MD
S K(1 !
TE = - = |-
Rer (14)
N S
ST = OlESTE €y i , withag=1, az =0.
;; Jl_! it ey

In the last equality, the correspondence L <— 1, N <— 2, and A < 3 is used to facilitate the
notations. See Section 6 for a detailed computation of &.
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Next, we introduce the following threshold
76 — 76D—>T x /]E)T—>D, (15)

where %D_’T quantifies the transmission capability from dogs to ticks and ’TOT_’D the
transmission capability from ticks to dogs. More precisely, we have

TOD—>T _ / ﬂ]l)(a)”D(“) da +/ ﬁlz)(a)nc(a) da/ vp(a)mp(a) da,
0 0 0

Transmission from infected dogs to ticks ~ Transmission from chronically infected dogs to ticks

and

koo 2jeS\(E) S
—_— ——

Proportion ticks of stage k

where ’ZB{"D denotes the vectorial capacity of ticks population of stage k and is explicitly
given by

71D = ZJGS\{E} f B a) aek> da, a”)

TleS/ Dogs ratio  Transmission from ticks at stage k to Dogs
with

p(a) = e = Jo (up+p()+vp()) dl _ — TI(a,0)vy,

18
wc(a) = e Jo o+ dl — 11(g, 0)v,. (18)

The map a — mp(a) (resp. a — mc(a)) describes the probability to still be infected (resp.
chronically infected) a-time post-infection. Based on the above notations, we now state the
invasion dynamics in terms of the threshold 7 defined in (15).

Theorem 3.3: Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ reproduc-
tion number satisfies Ry > 1. Then the following properties hold true:

(i) If7y < 1 then the disease-free equilibrium &, is locally asymptotically stable.
(i) If7y > 1 then the disease-free equilibrium & is unstable.

The proof of Theorem 3.3 is given in Section 7.

3.3. Existence of an endemic equilibrium and bifurcation

In this section, we state our main result concerning necessary and sufficient conditions for
the existence of an endemic equilibrium to system (7)-(8) and forward (resp. backward)
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bifurcation at 7y = 1. Denote by £* an endemic equilibrium to system (7)-(8) that is a
time-independent solution to system (7)-(8).

with

E* = (S5 St i1 Shy ip, RD) (19)

oo
Np = S§E+/ (1,i7(a))da + (1, 87) + Sp
0
oo oo
+/ (vl,i}“)(a))da+/ (v2,if(a))da + R, (20)
0 0

0=0p — upNj — /0 3p(a) (vi,ijy(a))da — /0 3c(a) (v, ip(a)) da

such that Sk, > 0, 8% € int(R3), i # 071 ((0,400).R*> S > 0, iy # 0L1((0,400)R2)> and
R}, > 0. By means of scaling and a suitable change of variables, we prove in Section 8 that
the existence of an endemic equilibrium £* can be reduced to the existence of a positive
solution of one equation with one unknown. More precisely, we prove that there exists an
endemic equilibrium £* if and only if there exists K > 0 satisfying

with

A(7y,K) =1
1 —1%(7o,K) — (1 — €)R% (T, K) 1
A(Ty,K) = —22 TS D2 KT 5o

The maps K — N},(K), K — R} (7o, K), and K — Ij)(7p, K) are given by

P,

R%(%,K) = /ZE)T—>D

)

[ N3(K) = 5

up + T 7 PK (3 $p(a)mp(a) da + / Sc(a)mc(a) da)
KN3(K) &
eK7of (K7p) + upNj(K) Jo

y(a)mp(a) da

o0 o0 0
I3(79,K) = K’]BT_’Df np(a) da + K%T_)D/ vp(a)mp(a) daf nc(a)da
0 0

0

and the function x — f(x) is defined by

3 k

6p Mj+ o Sk T—D
fw=—=3 (]I =T

with 7,7~ P (resp. ’ZB{"D ) is the vectorial (K’s ticks stage vectorial) capacity given in (16)
(resp. in (17)). Recall that in the above sum, we have used the notations L «<— 1, N < 2,
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and A < 3 with o3 = 0. Furthermore, if we consider the bifurcation parameter

1 0 00
b_1f1 = _%T—>D (/0 Sp(a)mtp(a) da + /0 Scla)mc(a) da)

MD
S'k T—D
3 T
-2 Z (Y R L
T—D
o o Wit 1,

-1~ e) T“D / h y(@)7p(a) da
0

00 o0 o
_ 76T—>Df 7p(a) da — %T*D/ vp(a)mp(a) daf nc(a) da
0 0 0

then we have the following results whose proof is given in Section 8.

Theorem 3.4: Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ reproduc-
tion number satisfies R9y > 1. Then the following properties hold true

(i) IfCui¢ > 0then wehave a backward bifurcation at Ty = 1, that is there exists an endemic
equilibrium for Ty < 1 close to 1;

(ii) IfCpi < O then we have a forward bifurcation at Ty = 1, that is there exists an endemic
equilibrium for Ty > 1 close to 1 and no endemic equilibrium for Ty < 1 close to 1.

4, Numerical simulations

In this section, we present numerical simulations to illustrate the forward and backward
bifurcation results of Model (3)-(4). These simulations were conducted using finite vol-
ume numerical schemes implemented with the R software (http://www.r-project.org/).
The values of the parameters used are given in Table 1. In all the figures, we have
used the initial conditions Sp(0) = 10, ip(0,a) = 0.03a max(0, 100 — a), c¢p(0,a) =
0.01a max(0, 100 — a), Rp(0) =0, Ste(0) =1, S7r(0) = 10, Stn(0) =0, S74(0) = 2,
it (0,a) = 0.01, i7N(0,a) = 0.3, i74(0, a) = 1. Given the parameter values in Table 1, the
ticks’ reproduction number R, ~ 66.193.

A forward bifurcation occurs at 7y = 1 (Theorem 3.4), which means that whenever
Ty < 1, then the disease-free equilibrium & is locally asymptotically stable (Theorem 3.3)
and no endemic equilibrium exists. Asymptotically, the disease go extinct (Figure 2(b),
where 7y ~ 0.992). However, if 7y > 1, then & is unstable (Theorem 3.3) and an endemic
equilibrium exists if Cpif < 0 (Theorem 3.4). The disease is asymptotically persistent and
the solution converges to the endemic equilibrium (Figure 2(a), where 7y ~ 1.103 and
Chir & —9.4 x 107%).

A backward bifurcation occurs at 7y = 1. This means that whenever 7y > 1, the
disease-free equilibrium is unstable and there exists a unique endemic equilibrium.
In such a situation, the solutions converge asymptotically to this endemic equilibrium
(Figures 3(a)), where 7y ~ 1.318). By contrast to the forward bifurcation (Figures 2
and 4(a)), when 7y < 1 and Cpir & 5.21 x 10~* > 0 there exists an endemic equilibrium
(Theorem 3.4). Furthermore, there exists a threshold 7* ~ 0.422 < 1 such that (i) for
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Figure 2. Forward bifurcation diagram with convergence either to (a) the endemic equilibrium when
To ~ 1.103 > 1; (b) the disease-free equilibrium when 7y ~ 0.992 < 1.Hererr = 1,8p(a) = 1.735 x
1074, 8c(a) = 3.47 x 1074, B3(a) = 0.038, Br(a) = 0.15504, and Cpjr = —9.4 x 10~* are fixed. The

probability of infection B} (a) is considered constant with: (a) Bj(a) = 0.076 and (b) B}, (a) = 0.0506.
The other parameters are given by Table 1.

7o < 1, there is no endemic equilibrium and the solutions converge to the disease-free
equilibrium (Figures 3(b) and 4(b), where 7y ~ 0.415 < 7;*) and (ii) for 7" < 7y < 1,
there exist an endemic equilibrium such that, depending on the initial condition, the solu-
tion can converge to this endemic equilibrium (Figures 3(c) and 4(b), where 7;* < 7y ~
0.843).

5. Discussion and conclusions
5.1. Discussion

In this work, we have developed a novel partial differential equation (PDE) model that
extends classical epidemiological models proposed for tick-borne diseases (see [29,30]).
The model proposed here incorporates the ability to accurately account for the different
ticks” developmental stages (discrete variable) as well as the variations in infectiousness
over the course of infection (continuous variable). In our study, we established the mathe-
matical well-posedness of the model using the integrated semigroups theory. However, the
presence of singularity in the force of infection whenever the total dogs’ population is zero
introduces a complication to the analysis. Note that this is a mathematical construct, since
without dogs the model would not hold nor make sense.

We derived an explicit formula for the reproduction number 7j, extending the classical
formula. We identified two possible behaviours around 7y = 1. The first scenario involves
a forward bifurcation, indicating that an epidemic can only occur if 7y > 1. In the sec-
ond scenario, a backward bifurcation is observed, where an epidemic can arise if 7y < 1,
provided that 7 is sufficiently close to 1. These findings have significant epidemiological
implications, especially in an endemic region where controlling the epidemic is of impor-
tance. In the forward bifurcation case, simply reducing the reproduction number 7 below
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Figure 3. Backward bifurcation diagram with convergence either to (a) the endemic equilibrium when
7o ~ 1.318 > 1; (b) the disease-free equilibrium when 7y ~ 0.415 < 7,* < 1; () the endemic equi-

librium when 7* < 7o ~ 0.843 < 1. Here rg = 1, 8p(a) = 0.1735, 6c(a) = 0.347, ﬂé(a) = 0.608,
Br(a) = 0.15504, and Cpir = 5.21 x 10~*are fixed. The probability of infection ﬂg)(a) is considered con-

stant with: (a) B (a) = 0.76, (b) B (a) = 0.304,and (c) B (a) = 0.456. The other parameters are given
by Table 1.

1 is sufficient to halt the epidemic. However, in the backward bifurcation scenario, the
number must be reduced below a second threshold, denoted as 7*.

The epidemiological implication of the backward bifurcation phenomenon is that
the classical requirement of having the basic reproduction number (Rg) less than one
is no longer sufficient to ensure effective disease eradication or elimination [38]. This
implies that disease can invade to a relatively high endemic level once the reproduction
number Ry is more than one; decreasing /Ry below one do not necessarily make the
disease disappear, see Figure 3(b) and Figure 2 in [38]. Backward bifurcation has been
shown to occur in several vector-borne disease models [37,39-45]. For instance Garba
et al. [44] showed for a dengue model the possibility of backward bifurcation where
a locally stable disease-free equilibrium coexists with a locally stable endemic equilib-
rium. Also, the age-structure malaria and Chikungunya models in [37,39,42,43] were
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Figure 4. Forward and backward bifurcation diagram. (a) Forward bifurcation diagram with Cyf =
—9.4 x 10~ where all the parameters are the same as in Figure 2. (b) Backward bifurcation diagram
with Cpif = 5.21 x 10~% and the parameters are the same as in Figure 3. Note that Cpir does not depend
on the parameter B;).

shown to exhibit backward bifurcation when R is less than one. This phenomenon
is equally possible in the absence of any age-structure [39,42,43]. Backward bifurcation
in these vector-borne disease models is induced by disease induced mortality. Further-
more, backward bifurcation can equally be induced by several other factors like vaccina-
tion [46-49], exogenous re-infection which are known to occur in tuberculosis models
[50-52], and cross-immunity for instance in a two strain influenza transmission model
[53]. Other epidemiological mechanism like differential susceptibility in risk-structured
models could also cause backward bifurcation in disease transmission models [38]. We
should note that the age-structured Ehrlichia chaffeensis model (3)-(4) include disease
induce death (6p and 8¢) in the dog population and hence the source of the backward
bifurcation.

5.2. Conclusion

In conclusion, we have developed a novel partial differential equation model of Ehrlichia
chaffeensis transmission dynamics in dogs. The model incorporates the different develop-
mental life stages of ticks (discrete variable) as well as the duration of infection (continuous
variable). The following results were obtained from our theoretical analysis and numerical
simulations:

(i) The developed model is well-posed;
(ii) The model always exhibits a disease-free equilibrium along with an endemic equilib-
rium;
(iii) The model has a reproduction number, denoted as Zp;
(iii) A necessary and sufficient condition for the bifurcation of an endemic equilibrium
was established using semigroup approach;
(iv) A bifurcation (forward or backward), can occur at 7y = 1.
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6. The disease-free equilibrium of (3)-(4)

The dynamic of ticks in the absence of infection is governed by the following system of
equations

dSte(®) _ (1 _ Ste(®)
-

dSt(t +
() = agSTE(!) — (UL + or)STL(?)
dt -

) Sta(t) — (Ug + ap)STE(Y)

d
Sjgll\t](t) = arSTr(t) — (UN + an)STN (D)
dec"lAt(t) — anSTN(t) — waSTA(E)

with initial condition S7g(0) = Stgg > 0, S77(0) = S0 > 0, STN(0) = STNo > 0, and
S1a(0) = STa0 > 0. It is easy to see that {0} x Ri is invariant with respect to the ordinary
differential equation so that if Stgop = 0 then the larval, nymphal, and adult stages expo-
nentially goes to 0. From this, we have that a necessary condition for the ticks to persist
is STEo > 0. Moreover, by straightforward computations, we find that (21) has a unique
positive stationary solution if and only if the ticks reproduction number RY;. defined
by (12) satisfies R); > 1. By straightforward computations, we have that the equilibrium
of system (21) is given by

: or — 1
Ste=K R
ST
- O[E —
Stp = STE,
) ML + of, (22)

- aL OlE -

Sty = STES
UN + N UL +af

= N or (292 =

Sta = — STE
HA UN + N UL +of

Note that in accordance with the compact formulation (7)-(8), the above expressions of
RgT and S7x, with k € S, can be rewritten as

FEQE

RO = M_lel,e3 ’ (23)
ST op + /‘LE< >
and

S = K <1 ! )

TE — - _0 >
RST
; 3 L (24)
- _ oi_
STzaESTEZekl_[ i1 , withag=1, az =0,
o e T

and using the correspondence L <— 1, N <— 2,and A <« 3.
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7. Threshold and proof of Theorem 3.3

In order to obtain the threshold of (7)-(8) that determine disease invasion dynamics in a
completely susceptible population of ticks and dogs, we consider the linearized equation
to (7)-(8) at the disease-free equilibrium &j. More precisely, we linearize the infective
compartments of (7)-(8) around & to obtain the following system

31'Da(t, a) dip(t,a) _ _(MD —|—0(a))iD(t> a)
t da

ip(t,0) =/ Br(a) (1,ir(t, a)) da v, (25)
0

+ / vp(a) (v1,ip(t,a)) da v,
0

and
al‘Ta(;,ﬂ) + al’]"a(;,a) — _MiT(t, a)
ST 00 (26)
ir(t,0) = _—/ (Bp(@),ip(t,a))da
Sp Jo

whose initial conditions satisfy ip(0, -) € L!((0,4+00), R?) and ip(0, -) € L!((0, +00), R?).
In order to define the threshold and study the local asymptotic stability of the disease-free
equilibrium, we will make use of the semigroup approach by reformulating (25) and (26)
as an abstract Cauchy problem. For this purpose, we consider the Banach spaces X :=
R? x L'((0, +00),R?), Y = R x L1((0, 4+00), R?), Xg := {0g2} x L'((0, +00),[R?) and
Yo := {Og3} x L'((0, +00),R%). Let Ap : D(Ap) C X9 — X and A7 : D(Ar) C Yy —
Y be the linear operators defined by

gz —(0) O\ _ [ —¢(0)
AD( ¢ ) - (—w’ — (up +0D<->go>) and - Ar ( ¢ ) = (—qs’ - M¢>

with
D(Ap) = {0g2} x W™ ((0, +00), R?) and D(A7) = {Ops} x WH1((0, +00), R?).

Let A: D(A) C Yy x Xg — Y x X with

B ¢\ _(Abple]
D(A) = D(Ap) x D(Ar) and A (4,) = (AT[d)]) |

Let B: Xy X Yo — X x Y be the bounded linear operator defined by

(VIPT[¢] +W QD[‘P])

3 <¢> _ 0L1((0,+00),R2)
¢ 5 ( Wple] >

50 \OL1((0,400),R?)

(27)
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ORZ) € Xp

where we have set for each ¢ = ( )

Wole] := fo (B0(@), ¢()) da

1 Pole] = /0 Y (@) V1, 0(@)) da

Ople] = /0 vp(@) (v, 9(@)) da

and each ¢ = (Of) €Yy
Wrlg] = /0 (e5, (@) da

Pri¢l :=/0 Br(a) (1, ¢(a)) da.

Hence, setting for all £ > 0

#plt) = (iDO(Ei,Z -)) and 9r() = (iTo(ﬂf -))

and

L O]Rz L 0R3
Ppo ‘= (ID(O, )) and ¢T0 T (IT(O, ))

the system (25)-(26) can be rewritten as the following abstract Cauchy problem
d t t t
a @p(t) —A @p() B @p() =0
dt \ (1) () 0]
0
¢p(0)) _ (¢po € Xo X Yo.
¢1(0) P10
In order to define the threshold that determines the local asymptotic stability of the disease-
free equilibrium, we need first to prove the following lemma. Before proceeding, let us

set X4 := R% x L'((0,+00),R?), Y, := R% x L'((0,400), R?), Xo+ := X1 N Xo, and
Y()+ = Y+ N Y().

(28)

Lemma 7.1: Let Assumption 3.1 be satisfied. Then the following properties hold true

(i) A is resolvent positive i.e. (. — A)~! maps Xy x Yy into itself for all large A in the
resolvent set p(A) of A;
(i) The spectral bound s(A) i.e.

S(A) = sup {R(X) : A € o (A)} (29)
satisfies S(A) < 0 and (S(A),+00) C p(Ap) N p(Ar).
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Proof: In order to obtain the conclusion of the lemma, we first prove that A is resolvent
positive. To do this, let us note thatif A € p(Ap) N p(Ar) then A € p(A) and

1 (9 (A — Ap)~'[@]
A A (‘/’) _ ( ¢
= 6) T o - anig)
so that the resolvent of A is obtained by determining the resolvent of Ap and Ar. By
standard computations, we have for each A € p(Ap) and ¢ = (2 ey

o ()-(%)
¢ ¢ . (30)

< ¢(a) = e *II(a,0)x —l—/ e "I (g, 1)g(t)dr, a>0
0

(where II(a, 0) is defined in (9)) while for each A € p(Ar) and (;5 = (

e ()-(3)
¢ o) (31)

— ¢(a) = e M May 4 / e D ME—D g1y dr, a > 0.
0

€ X we have

ASSE]

Next, recalling the definition of M and 0 (a) respectively in (5) and (6) it follows that if

{?» > —min(up + o, UN + an, pa) =: —p1,— <0 (32)

and A > —up — min(essinfg+61;(a), essinfr+022(a)) =: —puy— < 0

then 2 € p(Ap) N p(Ar). Next, recalling from [54,55] if A is resolvent positive then

s(A) =inf {1 € p(A): A — A1 (XL x Y4) © Xy x Y3)} (33)
(8(A), +00) € p(A)
and we infer from (30) to (33) that S(A) < 0. The proof is completed. [

Thanks to Lemma 7.1 and the positiveness of the bounded linear operator  (i.e. it maps
Xo+ X Yot into X4 x Y ), one can use the theory developed in [56] to define a threshold
which determines the sign of S(A + B) i.e. the spectral bound of A + B given by

S(A+ B) =sup{N(1): 2 € o (A + B)}.
More precisely, we set
To = r(B(=A)™ (34)

where r(B(—.A)7!) is the spectral radius of the bounded linear operator B(—iél)_l. The
following lemma will allow us to obtain the relationship between the sign of 7y — 1 and
the growth bound of the Co-semigroup generated by (A + B)y i.e. the part of A + B in
Xo % Yp. Note that the latter threshold 7y does not exhibit explicitly the parameters of the
model but this will be resolved after proving the local stability properties.
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Lemma 7.2: Let Assumption 3.1 be satisfied. Then s(A + B) and ’j\() — 1 have the same
sign. Moreover, we have the following properties

(i) s((A+ B)y) =s(A+ B) = wy((A+ B)g) with wo((A + B)o) the growth bound of
the Cy-semigroup generated by (A + B)o

(i) woess((A+ B)o) < wo(Ao) = s(Ag) = S(A) with wgess((A+ B)o) the essential
growth bound of the Cy-semigroup generated by (A + B)o and Ay is the part of A in
XO X Y().

Proof: We first note that X x Y is an AL-space [56, Theorem 3.14] with positive cone
X4 x Yy that is normal and generating (see [56]) so that

S(Ag) = wo(Ap) and S((A+ B)o) = wo((A+ B)o) (35)

with wg(Ap) the growth bound of the Cy-semigroup generated by .A. The first assertion
of the lemma is a direct application of [56, Theorem 3.5]. Next, we prove properties (i)
and (ii). Since p(A) = p(Ap) and p(A + B) = p((A + B)g) (see [57]) it follows that
S(Ap) = s(A) and s((A + B)o) = S(A + B). This proves (i) and the equality wo(Ag) =
s(Ap) = s(A). Next, note that B is compact since B(Xy x Yp) is a finite-dimensional
space. Therefore, we infer from [58, Theorem 1.2] that wyess((A 4+ B)o) < wo(Ap) and
the proof is completed. |

Lemma 7.3: Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ reproduction
nuﬁber satisfies RgT > 1/.\Then the disease-free equilibrium is locally asymptotically stable
if 7y < 1 and unstable if Ty > 1.

Proof: 1t ’ff) < 1 then by Lemma 7.3 we have wo((A + B)o) < 0 resulting to the local
asymptotic stability of the disease-free. If ’Tf) > 1 then wyo((A+ B)g) > 0 and since
@0,e5s((A + B)g) < 0 it follows that wg ess((A + B)o) < wo((A + B)o). Therefore, using
[58, Theorem 3.2.] one knows that (A + B)¢ has an isolated positive eigenvalue. Thus we
refer to [57, Proposition 5.7.4]) that the disease-free equilibrium is unstable. [

The threshold ’fb defined in (34) is somehow abstract and does not allow the inter-
pretation of the stability of the disease-free to be made in terms of the parameters of the
model. Therefore, we will give in the following and equivalent threshold which incor-
porate explicitly the parameters of the model. To this end, we first make a remark that
allows us to simplify the determination of 7. Let us set Y1 = R? x L!((0, +00), R?),
and X; = R3 x L'((0, +00), R?). Next, we observe that Y; x X is finite-dimensional and
B(Yy x Xq) € Y1 x X so that the spectral bound of B(—.A) ™! coincides with the spectral
bound of B(—.A) |_Y11 «x,- The advantage of considering B(—A) |_Y11 «x, is that we can obtain
the spectral radius by solving an eigenvalue problem of a matrix.
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Proposition 7.4: Let Assumption 3.1 be satisfied. Assume in addition that the ticks’ repro-
duction number satisfies RgT > 1 and set

1 (,¢] _ (,¢]
To = — f Br(a) <1,e_MaST> da |:/ ﬁ})(a)m)(a) da
Sp Jo 0
+ f vp(a)7p(a) da / ﬁé(a)m:(a)] : (36)
0 0
Then To — 1 and Ty — 1 have the same sign.

Proof: We first give the explicit form of the linear operator B(—.4) &11 «y;- Let( gi ) € X x

. . X Y .
Y} be given with @1 := 01, z2,) and @; := (0,1 (0 ooy ) )* Then using the resolvent

formula of Ap and A7 respectively in (30) and (31) we obtain

_ Op2
(—Ap) ey = <n(.ﬂj{0)x) = @ (37)

and

(—An ' gy] = (e‘_)%*f.y) =: dbo. (38)

Hence using the explicit form of B in (27) it comes

(VIPT[¢0] + v QD[‘PO])

071 2
Bl—A)-! (q)1> _3 (goo) _ o ((0,4-00),R2) 39
A g,) =P gy 51 ( Wolel ) )

Sp \0L1((0,400),R3)

with

viPrlgol + v2Qplegl =vi [y~ Br(a) (1,e™M3y)da + v; [~ vp(a) (vi, (4, 0)x) da
Whle,l = [;° (Bp(a), I(a,0)x) da

so that the spectral radius of B(—.A) ! is given by the spectral radius of the linear operator
C:R?> x R? - R? x R? given by

Vlf ,BT(a)<1,€_May>da+V2/ vp(a) (vi, (a, 0)x) da
o-[Frmt e

¥ 2L [ (Bp(a), T(a,0)x)da
Sp Jo

Since C is a positive linear operator of finite-dimensional spaces, its spectral radius 7y is
an eigenvalue. Moreover, let (;) € R? x R? be a non zero vector such that C( ?) = ’]6(;() .
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Then we have the following system of equations

vi f pr(a) (1,e ™My} da + v, f vp(a) (vi, T(a,0)x) da = Tox
0 0

_ (40)
St [ ~
— [ (Bp(a),M(a,0)x)da = Toy
Sp Jo
from where we obtain the equality
1 8r [
y= r_—T/ (ﬂD(a), I(a, 0)X> da. (41)
7o Sp Jo

Hence, plugging (41) into the first equation of (40) gives

VIT_— / ,BT(a) MQST> da f (Bp(@), (a,0)x)da
7o Sp 0
+ Vz/ vp(a) (vi,II(a,0)x) da = ’j\f)x.
0

Thus, setting x = x;v; +x,v, and recalling that (Bp(a), II(a,0)v;) = ﬂll)(a)nD(a),

(Bp(a), (a,0)v,) = ,Bé(a)rrc(a), and (v, II(a,0)v;) = mp(a) we obtain by identifica-
tion

1 o0 _ o0 —
< [ @ (L) da [ apb@ma + xph@rc@] da = T
Sp Jo 0
X1 foo vp(@)mp(a) da = Toxs

0

so that

f ﬁT(a) M“ST da [aq / Bh(@)mp(a) da

+ ?xl f vp(a)mp(a) da / Bh(a)mc(a) da] T (42)
0

0

From the above computations, we see that (y) is the null vector if and only if x; = 0
Therefore, the spectral radius of C satisfies

~ 1
17 = ?75,2 + To3 (43)
0

with
1 o0 _ o0
To = — / ﬂT(a)<1,e_M“ST>da f BL(a)7p(a) da
Sp Jo 0

1 (0,@) _ (0, 0) 0
Tos = — / ,BT(a)<1,e_M“ST>da / vp(@)mp(a) da f B2 (a)7c(a) da.
Sp Jo 0 0
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Next, observe that 7 defined in (15) is also given by 7y = 7y, + 7o,3. Moreover, by similar
computations, one obtains that the non-zero eigenvalues of C satisfy

= Too + AT 3. (44)

To prove that To — 1 and 7y — 1 have the same sign, we will make use of (43) and (44).

Indeed if ’]6 = 1 then (43) implies that 7y = 1. If 7y = 1 then (44) becomes 1> = (1 —
To3) + 27y 3 with 1 — 73 > 0 so that the non-zero solution of (44) have modulus less
than one. This proves that 75 = 1 whenever 7g = 1. To complete the proof, we observe that
if 7o > 1 then (43) implies that 1 < 77 = %%,2 + To3 < 7oz + To3 = Ro. Similarly if
7o < 1then Ry < 1. [

8. Proof of Theorem 3.4

In order to determine the endemic equilibrium of the model (7)-(8), we proceed in several
steps. In the first step, we give an equivalent system to (45), the second step is concerned
with the solvability of (46), and the last step concerns the bifurcation properties. In this
section, we will always suppose that Assumption 3.1 is satisfied and RgT > 1. Let us
note that using the notation (18) together with Theorem 3.2, one knows that an endemic
equilibrium £* defined in (19) satisfies

S* o0
0=rg (1 — %) (( ¥ e3) —I—/O (i*}(a),%)da) — (@ + 1e)She

1 o0
i@ = f (Bo(@), iy (@) da eMas; (45)
D J0
1 o0
Ops = apShg €1 — Ff (Bp(@),i}(a))da S} — MS;
D J0
and
0=06p— —/ Br(a) (1,i(a))da — upS;
S¥ + €R
in(a) = D—ED/ Br(a) (L, #5(a)) da wp(a) vi

P+ f vp(7) (vi,ip(a))da mc(a) v, (46)
0

0= fo y(a><vl,i;‘3<a))da—e— f Br(a) (1, i5(@) da — pupR}

0 =6p — upNj}, — fo Sp(a) (vi,ify(a))da — /0 Sc(a) (v ipy(a)) da

On the stationary states of ticks: Let us first prove the following lemma which describes the
stationary states of the eggs.
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Lemma 8.1: The total number of eggs remains unchanged at the endemic and the disease-
free equilibrium i.e. S}, = Stp. Moreover, we always have

oo
* + /0 i*(a)da = Sr. (47)
Proof: Note that, using the third equation of (45) we have

1 oo

Ops = apStp M le; — F/ (Bp(a), ify(a))da M ™S} — S (48)
D J0

Next, integrating the second equation of (45) it follows that

e¢]

/oo ir(a)da = L* /oo <'3D(a),if)(a)>da / e_M“S’}da
0 Np Jo 0

1
_N]’S

o0
/0 (Bp(a),if(a))da M'S. (49)
Thus, by combining (48) and (49) we obtain
o0 S* _
/ it (a)da + St = apSi, M le; = LES;. (50)
0 StE

Therefore, plugging (50) in the first equation of (53) we obtain the following equality

Sk St -
0=rg (1 - %) Sﬂ (S, e3) — (e + 1p)Sie (51)
TE
or equivalently
Sk - -
0=rg <1 - %) (St e3) — (g + we)StE. (52)

The right-hand side of (52) is a decreasing function of S7;, so that the unique solution to
(51) is S} = Stg. The equality (47) now follows from (50). [

Thanks to Lemma 8.1 the system of equations (45) is equivalent to

1 x
i*(a) = N f (Bp(a), i}y (a))da e M8,
b 0 1 o0 (53)
Ogs = apSTE €] — e / (Bp(a),ify(a)) da S — MS}.
D J0

Note that for each nonnegative constant o > 0 the matrix M + nol3 (where I3 is the
identity operator on R3) is invertible with inverse (M + 1oI3) ! satisfying

3
oi—
M+l ler =Y |[]———— |ex withao=1, a5=0, (54)
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and where the correspondence L <— 1, N < 2, and A < 3 is used. Therefore, using (53)
together with (54), for o = N—l* fooo (Bp(a),if(a))da, it follows that
D

Niai_q
S DY%j— 55
T = OF TEX_;e"E Np(wj+aj) + [5 (Bp(@), ip(a))da )

with «p = 1 and a3 = 0. Thus, recalling the expression of St in (24) we obtain

St = 23: (Sr. ex) ex ﬁ N}S(Mgo + aj) (56)
k=1 =1 Np(uj + o) + Jo (Bp(a),ify(a))da

and the system of equations (53) becomes equivalent to

3

-+ _
Z l_[ (i) ‘,:‘Ljaj)ji w3, (S exex (57a)
k=1 \j=1

it(a) = W5 e Mg (57b)
WB=/OOO <ﬂD( ), lD(a)) a. (57¢)

D

From the above comments, it follows that $7. and #;. are entirely determined by the variables
W}, and Ii,—%.

On the stationary states of dogs: In order to obtain an equivalent formulation to (46) we
introduce the new variables

ok >k R*
i2(a) = @ 82 = S—E and RS = -2 (58)
N3, N3, N,
Next, we set
0
P} = / Br(a)(1,i7(a)) da, (59)
0
and
o0
P} :=f y(a) (vl,i%(a)>da
0
(0,0)
Q= f vp(a) (v1,i%(a)) da,
< 0 (60)

Up :=/ p(a) (v1,if(a))da
0

Ug == / c(a) (va,ip(a))da
0
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With these new variables, system (46) becomes

0=0p— SgPﬂ% — MDNBS%

Npip(a) = (Sp + €RY) P wp(a) vi + NLQp me(a) va 1)
1

0= N3P — RGPS — jpNBRS

0=0p — ,LLDNB — NBUB — Nl*)Ug

which is equivalent to

£ _ Op
DT p + UG+ UG

o p
SD = N* + P*
MDINp T
| . (62)
o NDPD
RD = px *
€ T + MDND
. S? + €R%:
it(a) = 2

N—BDP? mp(a) vi + QP wc(a) va.

Next, we show the relationship between P} and W}, defined respectively in (57¢) and (59).
To do so, we integrate (57b) to obtain

T=Wh fo Br(a) <1,e‘M“S>}>da (63)

and by using the expression of S} defined in (57a) we obtain the following more explicit
formula

3 k 5
Wi + o Sk <
T D 0k D>
; E (j+a) +Wp | Yicsvn Si

with 7&"—>D the k’s stage vectorial capacity defined in (17).

In the following, we determine the equations for the variables P}, Qp, Up, Ug and W

defined in (60). To this end, recalling that B, (a) = B 11) (a)yvi + B Iz)(a)vl , we use successively
the equation of i}, (a) in (62) to obtain

S<> +€RO . o0
WP = % P / B (a)mp(a) da (65a)
D 0
o0
Qg / B2 (@)mc(a) da (65b)
0
Py — S} + €R}

. D P foo y(a)wp(a) da (65¢)
Np 0
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S<> +ER<> o0

%—l)*D?/ﬁw@m@M
S% + €RS, 0

Up = D—*DP”}/ Sp(a)mp(a) da
SO + GRQ o0

Ug = DN—I*)DP?_/(; dc(a)mc(a) da.

Note that, plugging (65d) into (65a) gives the following equality
S% + €R%, o0

=2 _—Dpr [/ Bh(a)wp(a) da
00 ND 0

+ f vp(a)mp(a) da f ,Blz)(a)nc(a)da].
0

0

Wp

Let us now define the function

3 [k _
i + % Sk T—Dg
f(Wp) = o Y
kg; Jl] (j + ) + Wp >jes\(B) Si

and observe that the vectorial capacity 7,/ =P is given by

TT—)D — J@
0 SD

so that

0 (0, 0]
To = JQ U Bh(a)wp(a) da
Sp 0

+/ vD(a)nD(a)da/ ,Blz)(a)rrc(a)da].
0 0

In the following, we rewrite our system of equations by using the variable
Ko S+ €R}),  Pr.
NB %T_)D ’

To do so, we first observe that (66) and (64) take respectively the following form

WS =K7y and Ph= Wf(W$) = KTof (KTp)
while (65a) is now given by

S + €R%,
WB:—DN* Dp
D

% / Bh(@)mp(a) da
0
+%L B3 (@)mc(a) da
Py = K’][)T_’D /00 y(a)mp(a)da
0

o0
Q) =KT, 7P / vp(a)p(a)da
0

(65d)

(65e)

(65f)

(66)

(67)

(68)

(69)

(70)

(71)

(72a)

(72b)

(72¢)

(72d)
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o
Up = KTOT_’D/ Sp(a)mp(a) da (72e)
0

o0
Ug = K%T_)Df Sc(a)mc(a)da. (72f)
0

Hence, using the first equation of (62) together with (72e), and (72f) we obtain the
following necessary conditions

Op
up + KT 7P ([ dp(a)np(a) da + [¢° Sc(a)mc(a) da)’

Ni(K) = (73)

Furthermore, the second, third and fourth equation of (62) together with (71), (72c)
and (72d) provide

KN3(K) 00
eK7of (KTp) + upNj(K) Jo
fp

S%(7Zo, K) := b
oK)= K + KT (KTo) (74b)

RY(To,K) =T, P

y(a)mp(a) da (74a)

o0
in(a) := K Z)T_)D apla) vi + K’]BT_’Df vp(a)mp(a) da wc(a) v,. (74¢)
0

Moreover, from the equality P¥. = K7,f(K7p) and (70) it comes that for K > 0 we must
have the following equality

| ST K) + Ry (1o, K) f(KT)

NB(K) 7:)T—>D % (75)

Recalling that we have the necessary condition S}, + R}, + fooo (1,i}(a))da = 1, we con-
sider the following equation

with
1—(1— ° (7o, K) — I%(7o, K
A(To, K) = ( e)RD(*o ) —In(1o )f(I;ZBgTo 76)
Np(K) Ty
and

o0 o0 0
I}(70,K) == K’]?)T_)D/ np(a) da + K?E,T_)D/ vp(a)wp(a) daf c(a) da.
0 0 0
(77)

Lemma 8.2: There exists an endemic equilibrium to (7)-(8) if and only if there exists K> 0
such that A(7y,K) = 1.

Proof: The necessity of the lemma follows from the preceding arguments. Next, we prove
the sufficiency. To this end, assume that there exists K > 0 such that A(7y,K) = 1. Let
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N}, be given by the right-hand side of (73). Let R}, and i}, be given respectively by the
right-hand side of (74a) and (74c). Observe that with these definitions we have

o.¢]
I(7o, K) = f (1,i})da (78)
0
so that setting
9 :=1— R — I3 (T, K) (79)

it comes from (76)

S, R%, (KT
1=nF¢ Df(T )% (80)
Note that setting W, = K7, P§. = WRf(WP), with f defined in (67), and multiplying (80)
by K it follows that

_SpterRp  Pp
NB 76T—>D

S+ €R},  Pr

K Nl*) 76T—>D

and Wp = T. (81)

Therefore, our definition of R}, and i}, respectively in (74a) and (74c) together with (81)
give us

S + €RY N* 00

=" P, f y(@)7p(a) da

Np €Pr + upNp Jo
. S% + €RS, S + €RS 00
i%(a) = 2—"L ptap(a) vy + 2—L pr f vp(a)p(a) da we(a) va.
Np Np 0
(82)
Moreover, using (81) one also note that our definition of N7, in (73) leads to
o0
upNp, = 6p — (Sp + €Rp) Pt f Sp(a)mp(a) da
0
e}
— (Sp+€Rp) P1 / Sc(a)mc(a) da. (83)
0

Next, we observe that the R},-equation in (82) is equivalent to

o0
upNpHRY = —ePTR}, + (S + ER%)P?/ y(a)mp(a) da. (84)
0
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Note that from the above formulas of R}, and i3, in (82) we have the following identities

f vp(a) (v, i%(a)) da = SD:,—ERDP* / vp(@)7p (@) da
0 D 0
0 S<> _|_ R o0
/ y (@) {v1,ip(a))da = % P; / y(a)p(a) da
0 D 0
‘/ dp(a) <V1,1D(a)) wP*/‘ Sp(a)mp(a) da (85)
0 N 0
/ Sc(a) (vz,iB(a))da = SD:]—:RD P’%/ vp(a)mp(a) da
0 D 0

X /00 Sc(a)mc(a) da
0

from where we can rewrite (83), (84) and the i})-equation in (82) as follow
o0 0
upNp = 0p — NB/ 8p(a) (vi,ip(a))da — N};/ Sc(a) (v2,i%(a)) da
0 0

0
{ upNj Ry, = —€PR}) + N}'}/ y(a) (v1,i%(a)) da (86)
0

S} + €R} o0 )
P P (@ v+ | vot@ (@) da et v
0

Lif)(a) =
Next, observe that

in(a)’ = —(up + 0(a))ip(a)

S + €RY,

00 (87)
N D ptvi + f vp(a) (vi,iH(@)) da v,
0

ip(0) =

so that by integrating (87) from 0 to 400 we obtain

S<> _|_ R o0 o0
N—E Prvi — f vp(a) (vi,ip(a))dav, = —/ (1tp + 0(a))ip(a) da
D 0 0

and by using (85) it follows that

MDf (1,i%(a)) da % Pr — / (v (@) + 8p(a)) (v1,i}(a)) da
0 D 0

- /0 Sc(a) (va, iy (a)) da. (88)

Next, multiply (89) by N and use the first equation of (86) to obtain

9]

MDngfo (1,i%(a))da = (S}, + €R}) Py — Op + upNp, — N}Sfo y(a) (vi,ip(a))da
(89)
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Hence, summing (89) and the second equation of (86) it follows that

o0
B} — 0+ uoNp = uoNp [ {Lip(@)da + uoNp Ry
0

= upNp(1 — Sp) (90)
that is
0 = 0p — SHPr — upN;SH & Sp = G—D. (91)
upNy, + P,

Finally, we infer from the i})-equation of (86), the equality (91) together with our definition
of R}, and N7 that (62) is satisfied. The proof is completed by using the fact that we have
set Ph. = WRf(Wp) with Wp, = K7, and f given by (67). [ |

Thanks to Lemma 8.2, the existence of positive equilibrium to (7)-(8) is subjected to
the existence of K > 0 such that

A(To,K) =1 (92)

where A (7, K) is given by (76) and (77). Before studying the existence of solution to (92),
we first observe that from (73), (74a) and (77) we have

Nj(0) =2 =35
D( ) “D D (93)
R$(To,0) = I(75,0) = 0, ¥Tp = 0.

We also note that for each 7y > 0 we have

: <o _ : < —
Kll)l}:oo R{(7p,K) =1>0 and KEToo I5(7y,K) = 00 (94)
with
1 Op [, v (@)mp(a)da

l:

- €T P [T 8p(a)mp(a) da+ [y° Sc(a)mc(a) da’

Therefore, using the equality 7,/ 70 = f-s(—g) it follows from (93) and (76) that

A(7y,0) =7y and lim A(7y,K) = —o0. (95)
K—+o00

It is now clear from (95) that for each 7y > 0 there exists K := K(7;) > 0 such that
A(Ty,K) = 0.Inparticular, if 7y > 1then there exists Ky € (0, K) such that A(7p, Ko) = 1
leading to the existence of an endemic equilibrium.

On the forward and backward bifurcations: In the following, we deal with the existence
of forward and backward bifurcation at 7y = 1. Roughly speaking, we have to prove that
there exists a positive map Ky defined in some right neighbourhood (forward bifurcation)
or left neighbourhood (backward bifurcation) of 7y = 1 such that A(7Zy, Ko(Zp)) = 1 and
Ky(1) = 0. Since A(1,0) = 1, one can prove the existence of forward and backward bifur-
cations using implicit function theorem which is reduced here to the study of dx A(1,0).
This motivates the following lemma.
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Lemma 8.3: The following property is satisfied
0 A(70,0) =1, V75 >0 (96)

and

Ok A(1,0) = L’]BT_)D (/ Sp(a)mp(a) da +f Sc(a)mc(a) da)
IAD 0 0

3 K Sk TT—)D

_ 1 Yies\n S Ok
Z Z T—D
7y

o o T

(- gTop f y (@)7p(a) da
D 0

00 o0 o0
_ TOT—>D/ 7p(a) da — %T—’D/ vp(a)mp(a) da/ mc(a) da.
0 0 0

Proof: Since A(7y,0) = Ty for each 7y > 0 the first equality of the lemma follows. To
compute dx A(1, 0), it is enough to take the derivative of A(1, K) with respectto K at K = 0.
To do so let us first note that by using (76) we have

J&K)

T—D
1,

J&K)

T—D"
1,

N (K)A(LK) = — [(1 — ORY(1,K) + I3(1,K)]

Recalling that A(1,0) =1, Nj(0) = 3—113) = Sp, R$(1,0) = I3(1,0) = 0 and taking the
derivative of N},(K)A(1, K) with respect to K at K = 0 it follows that

dNp(0) n f(0)

SDBKA(I,O) = — T TT=D
0

— Spl(1 — €)axRH(1,0) + x5 (1,0)].

By straightforward computations, we obtain from (73) and (77) that

dNp(0) _ _S_D'ZBT—)D (/ Sp(a)mp(a) da +/ Sc(a)mc(a) da)
dK J755) 0 0

and

0 o0 0
axI5(1,0) = T, 7P / np(a)da + T, P / vp(a)mc(a) da/ c(a)da.
0 0 0

To complete the proof it remains to compute dxR(1,0) and f'(0). We first compute
dx R} (1,0). To this end, we compute the derivative of R, (1, K) from (74a) with respect
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to K and set K = 0 to obtain
1 o0
OkR(1,0) = —T,T P f y (@)7p(a) da.
D 0

To compute f”(0) recall that

3

Mj + Sk T—Dg
f(Wp) == —Tor S
kXZ: ]1_! (W +a) +Wp | 3icsun Si

so that setting

Mt
(uj + o)) + W3

fwp) =lgWs), k=123 gW) =
j=1

we obtain

3
fWD) = ka(W,%)—TT*D
k=1 ZJGS\{E}

Therefore, computing the derivative of ln(f‘k(WB)) one obtains

&i ( D)
JiWE) = fe(Wp) Z WD)
j=1 & D
and since fk(O) = gx(0) = 1 it follows that
. S
0 =) &) =
Z ) ; PL] + 0[]
that is
3 k 1 gk
f1(0) =— = Tor~PSp. (97)
; ; Hit o | 3 sy S
The proof is completed. |

Thanks to Lemma 8.3 one knows that if dgA(1,0) = Cb_ifl # 0 then by the implicit
function theorem there exists & € (0, 1) and a smoothmap Ky : (1 —&,1+ &) — R such
that

A(To,Ko(T9)) =1, VIpe(1—§,1+&) and Ko(1) =0. (98)

Thus, up to reduce &, it follows that the sign of Ky on (1 — &, 1 + &) is given by the sign of
chf—q(BTO) at 79 = 1. Differentiating (98) with respect to 7y and using Lemma 8.3 we obtain

dKo() 35, A(1L0)
d7, 9xA(1,0)

—Cit
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so that

e If Cpir > 0 then, up to reduce &, we have Ko(Zy) > 0 for 7y € (1 — &, 1) which corre-
sponds to a backward bifurcation ;

e If Cpir < 0 then, up to reduce &, Ko(7y) > 0 for 7y € (1,1 + &) which corresponds to a
forward bifurcation.
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