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Abstract.— The advent of fast computational algorithms for phylogenetic comparative methods allows for considering 
multiple hypotheses concerning the co-adaptation of traits and also for studying if it is possible to distinguish between such 
models based on contemporary species measurements. Here we demonstrate how one can perform a study with multiple 
competing hypotheses using mvSLOUCH by analyzing two data sets, one concerning feeding styles and oral morphology 
in ungulates, and the other concerning fruit evolution in Ferula (Apiaceae). We also perform simulations to determine if 
it is possible to distinguish between various adaptive hypotheses. We find that Akaike’s information criterion corrected 
for small sample size has the ability to distinguish between most pairs of considered models. However, in some cases 
there seems to be bias towards Brownian motion or simpler Ornstein–Uhlenbeck models. We also find that measurement 
error and forcing the sign of the diagonal of the drift matrix for an Ornstein–Uhlenbeck process influences identifiability 
capabilities. It is a cliché that some models, despite being imperfect, are more useful than others. Nonetheless, having 
a much larger repertoire of models will surely lead to a better understanding of the natural world, as it will allow for 
dissecting in what ways they are wrong. [Adaptation; AICc; model selection; multivariate Ornstein–Uhlenbeck process; 
multivariate phylogenetic comparative methods; mvSLOUCH.]

The primary objective of phylogenetic comparative 
methods (PCMs) is to test evolutionary hypotheses 
whilst understanding and controlling for dependencies 
of trait measurements that arise due to shared ances-
try and/or shared environmentally mediated selective 
pressures on macroevolutionary time scales. Evolution 
is a process that can include both deterministic (e.g., 
natural selection) and stochastic (e.g., numerous, small 
unmeasured selective forces and genetic drift) compo-
nents. When the process includes speciation, the traits 
exhibited by extant species will all have spent some pro-
portion of time evolving in common ancestral lineages.

For the past half-century, biologists have employed 
explicit stochastic processes to model trait evolution 
when phylogeny is involved. The generic goal is to use 
trait values measured at the tips of the phylogeny, along 
with estimates of the phylogenetic branching patterns 
to estimate parameters that capture the magnitude of 
the above-mentioned trait dependencies caused by 
these genetic and selective covariances. A Brownian 
motion (BM, Edwards 1970; Felsenstein 1985) was the 
first stochastic process proposed to model the evolution 
of continuously distributed traits on a phylogeny. The 
BM process’ variance, however, increases unboundedly 
with time and the process does not have a stationarity 
distribution. As such, a BM process is not well suited to 

model stabilizing selection around adaptive optima, a 
major mode of adaptive phenotypic evolution, where 
convergence of the variance and process to station-
arity would be expected (Hansen and Orzack 2005). 
This requirement for mathematical models describing 
traits under selection was recognized by Felsenstein 
(1988); subsequently, Hansen (1997) demonstrated 
that by replacing the BM process with an appropriate 
Ornstein–Uhlenbeck (OU) process, the process’ vari-
ance converges. The Markovian, temporal homogene-
ity and mean-reverting properties of the OU process 
(under specific parameter classes) are well suited for 
modeling pervasive modes of natural selection such 
as stabilizing and directional selection. Furthermore, 
because it also satisfies Gaussian assumptions, parame-
ter estimation through well-known techniques such as 
maximum likelihood is facilitated.

Following Hansen’s (1997) formulation, the initial 
focus was predominantly on univariate implementa-
tions of these methods, i.e., the study of single, well-de-
fined traits, exemplified by, R (R Core Team 2019) 
packages such as ape (Paradis 2012), geiger (Harmon 
et al. 2008), or ouch (Ornstein–Uhlenbeck Models for 
Phylogenetic Comparative Hypotheses, Butler and King 
2004). Biological traits, however, do not exist in isolation 
and both their form and function typically depend on 
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interactions with other traits (Walsh and Blows 2009). 
The evolution of one trait cannot therefore be under-
stood properly if one does not consider how other traits 
interact with the focal trait throughout its evolution-
ary history (e.g., Dobzhansky 1956; Chetverikov 1961; 
Frazzetta 1975; Lande and Arnold 1983; Wagner 1988). 
Multivariate extensions of the OU-based methods have 
been developed to analyze such trait interactions (e.g., 
Bartoszek et al. 2012; Beaulieu et al. 2012; Butler and 
King 2004; Clavel et al. 2015; FitzJohn 2010; Goolsby et 
al. 2017; Hansen et al. 2008; Ho and Ané 2014b; Mitov 
et al. 2019, to name a few). The early implementations, 
however, all run into issues with (1) long computational 
running time, (2) parameter identifiability due to large 
sample sizes required for accurate parameter estimation, 
and (3) computational complexity involved in obtaining 
the likelihood. These problems precluded large-scale 
simulation studies concerning model identifiability.

Fortunately, recent years have seen tremendous 
improvements in the computational capabilities of soft-
ware for phylogenetic comparative methods. In particu-
lar, the PCMBase and PCMBaseCpp R packages (Mitov 
et al. 2020) provide a very efficient computational engine 
to obtain the likelihood for a wide class of phylogenetic 
Gaussian models. The Ornstein–Uhlenbeck family of 
models considered by mvSLOUCH (Bartoszek et al. 
2012) is within the above class. Changing the likelihood 
calculation method resulted in massively reduced com-
putational time for mvSLOUCH. This allows for con-
sidering larger sets of species; as our simulation studies 
will demonstrate, a phylogeny with 2000 tips does not 
pose any particular running time challenge. We also 
suspect that the dimensionality (i.e., number of consid-
ered variables) of each species can be much higher now. 
However, we have not run any tests in this direction, 
and the limiting factor will be the efficiency of eigen-
vector decomposition for matrices whose dimension 
equals the number of traits. One has to remember that 
increasing the number of traits induces a (quadratic in 
general) increase of parameters, hence would require 
larger samples. Understanding the number of estimable 
parameters as a function of observed species (and also 
tree height growth) is a topic for further work.

Importantly for the work here, the improvement in 
the algorithm has allowed us to design a large-scale 
simulation study to investigate the identifiability 
properties. In particular, we look at how well Akaike’s 
information criterion corrected for sample size (AICc, 
Hurvich and Tsai 1989) is able to distinguish between 
various multivariate phylogenetic Ornstein–Uhlenbeck 
models, corresponding to different adaptation and 
constraints hypotheses, for both simulated and empir-
ical comparative datasets. We asked, for example, can 
causal claims of one trait driving another be defended 
against a null hypothesis of independent evolution?

To facilitate the reading, we have organized this work 
as follows. We begin with a brief justification of why 
we use the AICc ( “On the use of AICc in model selec-
tion”) as our main model selection tool, then (“Model 

selection for the multivariate Ornstein–Uhlenbeck pro-
cess in mvSLOUCH”) we introduce the multivariate 
Ornstein–Uhlenbeck process with a special focus on the 
possible forms of the drift matrix, A in Eq. (1). In this sec-
tion, we also discuss model selection strategies and look 
into how well various OU setups can be differentiated by 
AICc, and how well mvSLOUCH recovers parameters of 
OU models. We then illustrate how in practise one can for-
mulate and distinguish between competitive hypotheses 
concerning adaptive, evolutionary interactions between 
traits with two empirical studies (“Example analyses”). 
The first example concerns feeding styles and oral mor-
phology in ungulates and the second fruit evolution in the 
genus Ferula (Apiaceae). We end the work with a discus-
sion of the simulation findings in relation to the biologi-
cal meaning inferred from the examples presented here. 
In the online Supplementary Material, we consider mea-
surement error (Appendix SA), then we give more details 
on the possible parametrizations of the OU process’s drift 
matrix, Appendix SB, and in Appendix SC, and Appendix 
SD, we detail the setup and results of our simulation- 
reestimation studies. Finally, in Appendices SE and SF, 
we report parameter estimates and other summary statis-
tics from the ungulates and Ferula analyses. Included in 
mvSLOUCH’s vignette is another exemplary analysis on 
locomotion and forelimb morphology in carnivorans.

On the Use of AICc in Model Selection
It is important, especially for the applied reader, 

who wants to use these tools for making statements 
concerning empirical data, to know that information 
criteria (or in fact any statistical tool) can only reveal 
relationships between the models/hypotheses from a 
predefined set. If the correct model/hypothesis is not in 
this set (i.e., the user did not take it into consideration), 
then information criteria could point to models that are 
overparametrized (overfit). Examples of such situations 
could be errors in the phylogeny (topology or branch 
lengths), assumptions of homogeneity of the evolu-
tionary process or incorrectly mapped shifts in param-
eters on the tree, and incorrect assumptions concerning 
structures of matrix parameters of the models. These 
issues stem from general principles of statistical infer-
ence and manifest in any study in any field that uses 
model selection. The only way that users may guard 
themselves against these issues is to carefully define 
the set of plausible hypotheses (according to subject 
matter knowledge) and to include both a simple “null” 
and a fully parameterized model in this set. Finally, 
information criteria rankings should not be treated as 
absolute truths. Rather they should be treated as guides 
to what level of information is contained in the data. 
Alternative models should also be looked at and their 
plausibility should be interpreted in light of the implied 
biological mechanisms. If information criteria point to 
the simplest, “null” model, then this could mean that 
there is too little information in the data for estimating 
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parameters. On the other hand, the choice of the fully 
parametrized model could suggest that the “truest” 
model is not in the considered set of hypotheses. The 
estimated values under the fully parametrized model 
could be of some guidance. For example, if some esti-
mated values are close to 0 or values for some levels of a 
parameter are very similar, then perhaps a model with, 
e.g. these values set to 0 or with these levels lumped 
together would be better supported by information cri-
teria, and be more interpretable.

In our work here, we focus on the AICc as it takes into 
account the number of observations. PCM studies often 
suffer from small samples, and also phylogenetically 
induced dependencies result in less independent data 
points than observed species (Bartoszek 2016), hence, 
giving some benefit of the doubt to more complex 
models could lead to consideration of more plausible 
hypotheses. One could also do model selection by, e.g., 
AIC or B(ayesian)IC; however, Bartoszek (2016) dis-
cussed that (unless the sample was very small) it is the 
likelihood that outweighed the “correction component” 
in the AICc, hence one should expect similar conclu-
sions to be reached by alternative information criteria. 
However, we emphasize that there is no agreement in 
the literature on what is the most appropriate criterion 
for model selection and that bias toward more complex 
models has been observed in the literature, e.g., Ho and 
Ané (2014a) report that AIC and BIC tend to favor com-
plex, with many shifts, scenarios of ancestral mappings 
of selective optima (levels of θ⃗  in Eq. (1)). We do not 
consider reaching decisions based on R2  values, nor 
likelihood ratio tests, the latter assume nested hypoth-
eses, something that in general will not hold for the 
whole family of considered models.

Model Selection for the Multivariate Ornstein–
Uhlenbeck Process in MVSLOUCH

The multivariate Ornstein–Uhlenbeck process

The multivariate Ornstein–Uhlenbeck process 
describes the evolution of a k-dimensional suite of traits 
y⃗ ∈ Rk over a period of time through the following sto-
chastic differential equation

d⃗y (t) = −A
Ä
y⃗ (t)− θ⃗ (t)

ä
dt+ΣyydW⃗ (t) , (1)

where W⃗(t) is a k-dimensional standard Wiener pro-
cess, A ∈ Rk×k, θ⃗(t) ∈ Rk, and Σyy ∈ Rk×k. Setting A = 0 
reduces the model to a BM one. The OU process is a nor-
mal process, hence the joint distribution of all the traits 
on the phylogeny will be normal. From the biological 
perspective, the A matrix represents rates of adaption 
(if all its eigenvalues have positive real part) of trait 
values towards optimum values, θ⃗ (t) the primary opti-
mum (sensu Hansen 1997) trait values at time t, whereas 
W⃗ (t) and Σyy represent the non-directed stochastic per-
turbations caused by unconsidered selective factors, 
environmental fluctuations or constraints due to, for 

example, developmental correlations. In addition, θ⃗ (t) 
can take the form of a step function representing fixed 
selective regimes painted on phylogeny. The A matrix 
generalizes the “α parameter” of a one-dimensional 
OU process (e.g., Hansen 1997; Butler and King 2004) 
to the multivariate case. In the single-trait case, only 
the rate of adaptation was present but, in the multi-trait 
case, we need to include the interactions between the 
traits on their path to their primary optimum, and these 
interactions are described in A’s eigenvectors.

The possibility to work with a wide class of A matrices 
and to be able to impose various restrictions is highly rel-
evant for evolutionary studies based on the OU process. 
Different setups (e.g., diagonal, symmetric positive defi-
nite, upper, lower triangular) will have different biological 
interpretations concerning causation (i.e, selective covari-
ance patterns, see Bartoszek et al. 2012; Reitan et al. 2012). 
To correctly interpret the various parameterizations of A 
and Σyy, one important distinction must be made: evolu-
tion and adaptation cannot be treated synonymously. The 
observed selection can be either direct, when it is caus-
ally related to the trait under study, or indirect, when it 
acts through other correlated traits. The trait, indirectly 
affected by selection, evolves, but not adaptively. Taking 
into account this remark, the general interpretational 
framework for OU models (with all eigenvalues of A hav-
ing positive real part) here can be as follows:

(a) diagonal A and diagonal Σyy—traits evolve inde-
pendently, for example as belonging to different 
developmental modules,

(b) diagonal A and non-diagonal Σyy—traits are 
related through the Σyy matrix indicating cor-
related evolution due to, for example, devel-
opmental constraints or covariation with other 
unmeasured traits under selection,

(c) non-diagonal A and diagonal Σyy—traits evolve 
adaptively and they may serve as primary optima 
for each other; here, for example, a symmetric A 
may indicate trait-trait adaptive co-evolution.

(d) non-diagonal A and non–diagonal Σyy—in this 
scenario, there is a combination of non-adaptive 
and adaptive trait evolution; here, the interpreta-
tion depends strongly on the tested hypothesis, 
see “Example analysis 2”.

Singular, det (A) = 0, matrices will have a very 
specific meaning—some linear combination of traits 
evolves as a Brownian motion, and there is no tendency 
to move towards an optimum along some directions in 
the trait space. Ancestral effects, in this case, do not dis-
appear with time, leading to non-adaptive evolution (in 
some directions). After the original Brownian motion 
process, the model implemented in the slouch package 
(Hansen et al. 2008) and then generalized to the mul-
tivariate setting by Bartoszek et al. (2012) are the first 
allowing for such a singularity,

dy⃗(t) = −A(⃗yt − (ψ⃗(t) +Qx⃗(t)))dt+ΣyydW⃗y(t)
dx⃗(t) = ΣxxdW⃗x(t), (2)
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W⃗y(t) and W⃗x(t) are independent multivariate Wiener 
processes. We can see that, in the language of Eq. (1), 
we will have

AEq.(1) =

ñ
AEq.(2) −AEq.(2)Q
0 0

ô
, θ⃗ (t) =

ñ
ψ⃗ (t)
0⃗

ô
,

Σ
Eq.(1)
yy =

[
Σ

Eq.(2)
yy 0

0 Σ
Eq.(2)
xx

]
.

Model Selection Strategies

Given the plethora of possible models to consider in 
mvSLOUCH, a methodological approach is necessary to 
choose the model best supported by the data. The statisti-
cally sound approach is to first design a collection of mod-
els informed by biologically plausible hypotheses. They 
are expressed in the mvSLOUCH framework as appro-
priate parametrizations of the A and Σyy matrices, fur-
thermore enhanced by the possibility to fix specific entries 
of these and other parameters to a user provided value. 
For each provided setup, maximum likelihood estimation 
by mvSLOUCH, through the underlying PCMBase com-
putational engine, is performed. Then, the best supported 
model according to the desired criterion is chosen.

The simplest pair of hypotheses to test statistically 
is whether the traits evolve as a Brownian motion (
AEq.(1) = 0

)
 or not 

(
AEq.(1) ̸= 0

)
. This tests whether the 

traits are randomly diffusing through time (due to both 
neutral processes as well as numerous, small unmea-
sured selective forces acting in different directions) or 
adapting (if AEq.(1) ’s eigenvalues all have positive real 
part) to some deterministic optimum. However, there 
are more complex setups to test, if we look at Eq. (1) 
then, as already discussed in the bullet points following 
the equation, imposing different structures on A and Σyy 
will lead to different adaptive hypotheses, described in 
Appendix SB. One has to remember that a wrong model 
can be chosen due to the effect sizes of parameters. For 
example, sometimes a BM model could be favored over 
a true OU process, if the latter has close to 0 values in 
AEq.(1). Looking at the half-lives (ti0.5 = ln 2/λi, where λi 
is an eigenvalue of A, see also Bartoszek et al. (2012), of 
an OU process will tell us if we should expect adaptive 
effects over our observed time-scale, tree height).

Once we have the values of the information criteria 
for a collection of models representing our hypotheses, 
comes the question whether we should only consider 
the best supported model or look also into (some of) the 
alternative ones. Burnham et al. (2011) write that plausible 
models are included within a difference in AICc values 
up to 7 and implausible models will have an AICc value 
greater than about 14. When the difference in AICc values 
is between 7 and 14, then “evidence … is inconclusive and 
value judgments for hypotheses in this region are equiv-
ocal” (caption of Fig. 2 in Burnham et al. (2011)). It has to 
be pointed out that Burnham et al. (2011) did not consider 
phylogenetically structured data, hence their conclusions 

should be treated as suggestions. The effects of a hierarchi-
cal correlation between data points on the AICc still needs 
to be explored and in effect rules of thumb still need to 
be developed for PCMs (or more generally hierarchically 
correlated data). We advocate that a user strikes a balance 
between what the formal statistics says and what biolog-
ical intuition says. Instead of giving a single definitive 
answer, the user should discuss the different possibilities 
and their implications.

Therefore, there is an incentive to explore the impli-
cations of less supported models, but with relative AICc 
values not much larger than the best one. It is a ques-
tion of what is meant by “much larger” for a multivari-
ate PCM setting, as a definite study on this matter is yet 
to be presented. Hence, rules of thumb intuitions, based 
on a single response and independent data, have to be 
cautiously generalized. Most importantly, when decid-
ing on a model’s plausibility, subject matter knowledge 
needs to be taken into consideration. There need to be 
other arguments supporting the consideration of the 
best model and/or alternatives. In particular, this should 
be strong domain-specific knowledge that indicates 
underlying mechanisms and understanding of the mod-
els. One has to very carefully balance what the data is 
saying and what we know/suspect prior to the study; 
automatized decisions either way are not the optimal 
approach. One should look at the estimated parameter 
values themselves, their “effect size” and if they are of 
sensible magnitudes. Extreme values, e.g., nearly 0, 
could indicate that alternative models, where the par-
ticular parameter is, e.g., not present, could be better 
supported by the data. Having decided on a set of plau-
sible models, one can perform a simulation study, as we 
did in our “Example analysis 2” to see if it is possible 
to distinguish between them. Afterward, the conclusions 
about the system should be presented in the light of the 
accepted models, what they agree and disagree on, and 
what models are distinguishable. We cannot forget that 
all conclusions are relative to the set of models consid-
ered by us (each one corresponding to some hypothesis). 
It could very well be that a model (hypothesis) outside 
the considered set would fit (be supported) better to (by) 
the data, i.e., models can be wrong but some will be more 
wrong than others. In summary “hard thinking” (p. 29 
Burnham et al. 2011) is required for comparing between 
models so that “analysts make an informed choice from 
all available strategies, employing each in contexts where 
they are most informative.” (Steidl 2006).

Model Selection Efficiency and Quality of Parameter 
Estimates

Here we perform an extensive simulation study to 
investigate how well the new mvSLOUCH package is able 
to perform model selection. The tree is simulated as a pure 
birth tree using TreeSim::sim.bd.taxa() (Stadler 2009, 2011) 
for a number of tips, n = 32, 64, 128, 256, 512, 1024, 2048. For 
comparison between all the simulations, all the phyloge-
nies are rescaled to height 1. Four dimensional trait data is 
simulated under BM, OUOU (no traits evolve marginally 
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as BMs, A in Eq. (1) is non-singular) and OUBM (some 
traits evolve marginally as BMs, Eq. 2) models and are then 
recovered under various assumptions. AICc was used to 
distinguish among the various models. The simulation-re-
estimation setups considered are presented in Appendix 
SC. Under the OUBM models, the estimation procedure 
is such that the compound, in terms of Eq. (2)’s formula-
tion parameter, B = −AEq.(2)Q is estimated directly in the 
numerical optimization of the likelihood. In the old, slow 
version of mvSLOUCH, this parameter was estimated via 
an iterated GLS, but after experimenting we found that this 
approach’s performance was much poorer both in terms of 
model selection ability and parameter recovery.

In Table S.2 in Appendix SC, we present how 
mvSLOUCH is able to select the correct model. 
For small trees (32, 64 tips), there is some bias of the 
OUOUs2 model (non-diagonal A, diagonal Σyy, see 
Table S.1 for definition of model abbreviations) towards 
simpler models, like BM or OUBM. However, we also 
noted another type of bias. For all tree sizes, the sim-
pler OUOUs1 model (diagonal A, diagonal Σyy) is 
always preferred over the more complicated OUOUs2 
model. The OUBM models perform much better with 
respect to distinguishing between competing hypothe-
ses. For small trees, the simpler OUBMs1 (diagonal A,  
diagonal Σyy) model is preferred over the more com-
plex OUBMs2 (non-diagonal A, diagonal Σyy) one. As 
the tree size grows, this preference diminishes. Model 
selection under the OUBM model is not perfect, but 
one can observe that the tendency is toward the correct 
model. On a coarser classification, BM versus OUOU 
versus OUBM, no problems are noticed. Even for the 
smallest setup, 32 tips, models are correctly classified. 
Sometimes a BM can be misclassified as an OUBM but 
the chances of this decrease with the number of tips.

Following the generally optimistic results concern-
ing mvSLOUCH’s model selection abilities, we take a 
more detailed look into how well it can recover model 
parameters and certain important compound parame-
ters. Recovery of parameters of a phylogenetic OUOU 
process is known to be a difficult problem. Cressler et 
al. (2015) and Ho and Ané (2014a) considered the one 
dimensional phylogenetic OU process, whereas Pienaar 
et al. (2008) and Bartoszek et al. (2012) analyzed the 
phylogenetic OUBM process. To evaluate the quality of 
parameter estimates, the following error formulæ were 
introduced

Euclidean estimation error =
√
(⃗x− ˆ⃗x)

T
(⃗x− ˆ⃗x), (3)

and

Relative estimation error =

…
(⃗x− ̂⃗x)

T Ä
x⃗− ̂⃗x

ä
√
x⃗Tx⃗

,
(4)

where x⃗  and ˆ⃗x  are, respectively, the vectorized ver-
sion of the true value of the given parameter and its 
estimate. The Euclidean distance is for the case when 
the parameters to be estimated equal 0⃗ , these are the 
ancestral states and deterministic optimum values. For 

matrix or vector parameters, we do not compare entry 
by entry, but jointly over all positions. Through such 
an approach, we obtain the possibility to look at the 
matrix/vector parameter as a whole and not entry by 
entry, which could miss potential interactions between 
estimates. This could be especially relevant when the 
given matrix is parametrized through a decomposition 
(e.g., when it is assumed to be eigendecomposable with 
real positive eigenvalues). The optimization is over the 
eigenvalues and eigenvectors and hence one cannot 
expect to have independence between the estimates of 
the actual matrix entries. In Figs. S.1–S.9, we present 
boxplots for different values of the number of tips, n, 
for the most relevant parameters for the given models. 
These include the ancestral state (all models), the deter-
ministic part of the primary optimum (OUOU, OUBM), 
Σyy (all models), Σxx (OUBM), Σ (all models), A with 
eigenvalues and half-lives (OUOU, OUBM), Q (OUBM), 
evolutionary and optimal regressions (OUBM), trait 
regressions and limiting (long-term) trait regressions 
(OUOU), and between traits correlation and stationary 
correlation matrices (OUOUs2 and OUBM).

We can see that for all setups and parameters with 
n the error either decreases or tends to stabilize. No 
systematic increase of error with n is observed. For the 
BM model, the diffusion matrix seems well estimable, 
whereas the ancestral state’s error does not decrease (in 
line with the observation that it cannot be consistently 
estimated, Ané 2008; Sagitov and Bartoszek 2012). For 
the OUOU model, we can see that estimation is much 
better in the OUOUs1 case, i.e., the traits are indepen-
dent. Error in A’s estimation decreases with sample 
size. When moving to the OUOUs2 case—traits depen-
dent through a non-diagonal A—there are many more 
outliers with large estimation error in A (and also its 
eigenvalues and half-lives). The diffusion parameters (
Σyy,Σ

)
 and deterministic optimum (ψ⃗) are much bet-

ter estimated. Parameters that depend on both the drift 
and diffusion (regressions and correlations) exhibit the 
same sort of outliers that the estimator of A does. In 
the OUBM models’ case, we can see similar behavior, 
diffusion parameters are well estimated, the drift ones 
are more difficult. However, Q seems to be well esti-
mated—error surely decreasing with n.

However, we can also observe another trend. As 
the number of tips of the tree increases, errors in esti-
mation procedures become more common (Table S.4), 
especially for the Brownian motion model which has 
closed form formulæ. We take a deeper look at this in 
our “Example analysis 2,” where this becomes more 
dramatic and clear.

Example Analyses

Example Analysis 1: Feeding Styles and Oral Morphology 
in Ungulates

Hypsodonty is a classical feature linked to the study 
of feeding adaptations in mammals (e.g., Van Valen 
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1960; MacFadden 1992; Strömberg 2006). It essentially 
corresponds to a measure of relative crown height that 
reflects the capabilities of the tooth to wear longer for 
processing abrasive material such as grasses with high 
silicophytolith contents, or soil and grit that can be 
ingested during feeding (Mendoza et al. 2002; Damuth 
and Janis 2011; Jardine et al. 2012). Here we show the 
advantages of studying this classical feature under the 
capabilities offered by mvSLOUCH.

The first, most obvious, advantage is the possibil-
ity of testing the adaptive significance of hypsodonty 
in a comparative framework consistent with the pro-
cess of natural selection. When introducing the model 
of adaptive evolution that we extend here, Hansen 
(1997) showed that the comparative study of hypsod-
onty should not be limited to a statistical correction due 
to phylogeny (Pérez–Barbería and Gordon 2001) but 
rather used to account for the selective history of spe-
cies to estimate current adaptation. In this seminal OU 
formulation, Hansen (1997) specified a selective regime 
by mapping the emergence of a new primary optimum 
in the equid tree, distinguishing browsing and grazing 
niches. Further extensions allowed for not only speci-
fying more complex regimes but also for comparing 
their adaptive significance through information criteria 
(Butler and King 2004), as currently implemented by 
mvSLOUCH. This setup allows us to compare brows-
ers and grazers with another niche: the mixed feed-
ers, i.e., those ungulates that both browse and graze 
(Mendoza et al. 2006; Mendoza and Palmqvist 2008; 
Damuth and Janis 2011). The character assignation of 
these three feeding styles was based on Pérez–Barbería 
and Gordon (2001) for the present example.

mvSLOUCH also offers the possibility of studying 
hypsodonty without the need for computing ratios. To 
study trends in molar crown height free of the effects 
of general body size, hypsodonty has often been stud-
ied as a ratio (the hypsodonty index), typically divid-
ing the crown height by some other linear variable 
(Van Valen 1960; Janis 1988; Mendoza and Palmqvist 
2008). However, ratios have been criticized for their 
poor distributional properties and limited useful-
ness as size-adjusted variables (Reist 1985; Albrecht 
et al. 1993; Mendoza et al. 2002), whereas regression 
techniques have been recommended for scaling pur-
poses (Packard and Boardman 1999; Garcìa-Berthou 
2001; Freckleton 2002). In the context of this exam-
ple, a regression setup implies using crown height 
(a numerator of the hypsodonty index) as a response 
variable with molar width (a denominator of the hyp-
sodonty index) as a continuous covariate (an explan-
atory variable). The specification of a continuous 
predictor under the adaptation-inertia framework is 
not as simple as under a regular regression, however, 
because it requires information on both the present 
trait values (at the tips) as well as their past history 
(across the tree). The first way of dealing with this 
problem was to assign fixed covariate values directly 
on tree branches (Hansen 1997). A more elaborate 
and flexible solution, as explained above, models the 

covariate as a Brownian motion (OUBM model) or 
Ornstein–Uhlenbeck (OUOU model) process, with-
out fixing trait values on tree branches (Hansen et al. 
2008; Bartoszek et al. 2012). These models (OUBM and 
OUOU) can be contrasted under the new version of 
mvSLOUCH with an alternative in which the traits 
do not evolve toward an optimum (BM). This compar-
ison was conducted for ungulates using the unworn 
lower third molar crown height (HM3, measured from 
the base of the crown to the tip of the protoconid) 
and width (WM3, measured at the occlusal surface, 
between the outer aspects of the protoconid and the 
entoconid) data presented by Mendoza et al. (2002). 
We used logarithmically transformed variables (orig-
inally measured in cm) for data analysis (Pérez–
Barbería and Gordon 2001).

A final advantage, which lies at the core of 
mvSLOUCH, is its multivariate nature. This is espe-
cially true for a structure such as the skull, which can be 
subject to multiple, often conflicting, selective pressures 
(Porto et al. 2009; Damuth and Janis 2011; Toljagić et al. 
2018). The ungulate feeding apparatus in particular can 
be seen as reflecting the requirements for either pro-
cessing or selectivity of food (Gordon and Illius 1988; 
Janis and Ehrhardt 1988; Pérez–Barbería and Gordon 
2001). Hypsodonty optimizes the former by increasing 
chewing effectiveness, ensuring that the animal can 
process food fast enough to meet its energy demands 
(Pérez–Barbería and Gordon 1988a). A narrow focus 
on hypsodonty can, however, clarify the role of molar 
teeth in food comminution whereas the implications of 
changes in oral morphology for food selectivity remain 
unexplored (Gordon and Illius 1988). We explore these 
implications here by specifying a bivariate model in 
which a variable informative of food selection is used 
as a response along with crown height. We use muz-
zle width (MZW, measured at the outer junction of 
the boundary between the maxilla and premaxilla) 
where narrower muzzles facilitate greater selectivity in 
food foraging (Janis and Ehrhardt 1988; Mendoza and 
Palmqvist 2008). As with the tooth variables, muzzle 
width (originally measured in cm) was obtained from 
Mendoza et al. (2002), and was logarithmically trans-
formed for data analysis.

We used the mammalian tree presented by Hedges et 
al. (2015) after pruning it to only include the 104 ungu-
late species for which we had phenotypic data avail-
able (i.e., for which we had complete information of 
all the variables at the species level). This tree resulted 
from a synthesis of studies in molecular evolution and 
phylogenetics that incorporated a time calibration com-
ponent (Hedges et al. 2006; Hedges and Kumar 2009). 
Diet was assigned as an adaptive regime by ancestral 
state reconstruction under stochastic character map-
ping (Nielsen 2002; Nielsen and Bollback 2003; Bollback 
2006), as implemented in the phytools R package 
(Revell 2012), after identifying the best supported tran-
sition rate model (equal rates, symmetric backward and 
forward rates, all-rates-different). As explained above, 
the full regime specification (OUF) included three diets 
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(browsers, grazers, and mixed feeders). Considering the 
possibility that the craniodental variables may respond 
to simpler selective regimes, we specified two binary 
alternatives by lumping mixed feeders with either 
browsers (OUG) or grazers (OUB). We also ran analyses 
under a single regime for the entire tree for compari-
son (OU1), which would be an indication that diet has 
little adaptive significance for the morphological traits 
under consideration. The compiled dataset (phenotypic 
data and phylogenetic tree) and analysis scripts can be 
found in the accompanying GitHub repository.

For each of these regime specifications, we conducted 
a comprehensive model comparison under the new 
wrapper function of mvSLOUCH, which runs a series 
of multivariate models (BM, OUBM, OUOU) under 
different specifications of the underlying parameters. 
For the OUOU and OUBM models, we ran each setup 
five times from different starting points (however, we 
would encourage users to try more starting points as 
we do in “Example analysis 2”). The model setups 

consisted of all possible combinations of predefined A 
(diagonal, upper or lower triangular, and decompos-
able with positive or real eigenvalues) and Σyy (diago-
nal and upper triangular) classes (with the diagonal of 
A always specified to be positive). Model support was 
assessed through AICc with a difference larger than two 
units providing support to the candidate with lower 
value (Burnham and Anderson 2004).

We found that for all regime specifications (OUF, 
OUG, OUB, and OU1), including those based on the evo-
lutionary history of diet (Fig. 1), OUOU was preferred 
with a model setup consisting of diagonal A and upper 
triangular Σyy. Given that diagonal A OUOU models 
deserve some caution (see “Model selection efficiency 
and quality of parameter estimates”), we also explored 
the best alternative candidates for comparison. The 
best alternatives, for all the regime specifications, were 
OUOU models with upper triangular Σyy and non-di-
agonal A. However, both lower and upper triangular A 
matrices were equally supported in all cases, providing 
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Figure 1. Ungulate phylogeny with feeding preferences (B = browser; G = grazer; and M = mixed feeder) reconstructed under 500 stochastic 
character mappings with a symmetric transition matrix (Appendix SE1). Character state transitions were assigned to those branches where the 
highest posterior probability shifted from one diet category to another. Branch lengths are scaled and thus informative of relative time (scale 
provided at the bottom left). Full species names are provided in a higher resolution color phylogeny in Fig. S.19 in Appendix SE1.
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no clear preference for any alternative model (see Table 
S.9 in Appendix SE2). This lack of consistency, combined 
with the lower support for these alternative models (all 
of them were more than four AICc units higher than the 
preferred models), suggest that the off-diagonals of A 
are not highlighting any relevant trend in the data. As 
a result, the diagonal A parametrization, rather than 
a statistical artifact linked to bias, can be considered 
appropriate for this dataset. There is substantial sup-
port for models describing feeding adaptations, partic-
ularly the full regime specification (Table 1). This result 
holds true for both the best (diagonal A) and alterna-
tive (non-diagonal A) candidates of the model set (see 
Table S.9 in Appendix SE2), providing stronger support 
for the full regime hypothesis. The preferred model 
highlighted a positive association between the mor-
phological variables (Table 2), with browsers showing 
the lowest primary optima in all cases, and grazers the 
highest (Fig. 2). The optima can be more clearly differ-
entiated for crown height and muzzle width, especially 
the former, with browsers showing distinguishably 
lower primary optima. This explains why the regime 
that keeps this feeding style in a separate niche (OUB) 
is much closer in support to the preferred model (OUF,  
∆AICc = 3.66) than the alternative lumped regime 
(OUG, ∆AICc = 23.62). It needs to be pointed out that 
for reproducibility the analyses were run with a specific 
random seed set.

All things considered, the preference for a full regime 
specification (OUF) for the ungulate dataset reflects 
the adaptive significance of feeding style on oral mor-
phology. The only alternative plausible hypothesis 
(∆AICc < 4) is the regime distinguishing browsers 

from the rest (OUB), which still reflects the importance 
of diet as a selective factor. Importantly, a closer inspec-
tion of the optima shows that browsers exhibit a consis-
tent trend across models (Table S.13) and that, despite 
less differentiated, grazers and mixed feeders constitute 
distinctive niches (Fig. 2). From this comprehensive 
point of view, the plausible support for OUB (Burnham 
et al. 2011) does not preclude the relevance of mixed 
feeders and grazers as separate niches, but highlights 
the resemblance of their oral morphologies relative to 
browsers. The strong support for the OUOU model 
highlights the role of stabilizing selection on each of 
the variables considered. Despite the large influence 
of selection on the pattern, adaptation is not instan-
taneous, with all half-lives surpassing 20% of total 
tree height. This confirms slow evolution that might 
result from morphological constraints acting on ungu-
late craniodental attributes (Janis and Ehrhardt 1988; 
Damuth and Janis 2011; Toljagić et al. 2018).

Given that the data set is influenced by the effects of 
both adaptation and inertia, neither approaches ignor-
ing phylogeny nor those that simply assume that phy-
logenetic inertia is present (such as BM) are appropriate 
for analyzing it (Table 1). For example, Pérez–Barbería 
and Gordon (2001) analyzed differences in body size 
and oral morphology between ungulates with differ-
ent feeding styles, using comparative methods focused 
on controlling for phylogenetic effects. Muzzle width 
(as well as other oral traits) showed differences when 
phylogeny was ignored, whereas only hypsodonty 
attributes and body mass showed differences when 
comparative methods were used. It is not surprising 
that the feeding associations hinted by the non-phylo-
genetic analyses were deemed non-existent by the com-
parative methods, given that approaches focused on 
controlling for phylogeny can remove the adaptive sig-
nal of patterns in which the traits and the environment 
share some history (Hansen 2014). Hypsodonty might 
have been an exception due to a strong association with 
feeding styles, which makes sense considering how 
well crown height differentiates feeding optima (Fig. 2). 
Nevertheless, they concluded that feeding adaptations 
for most oral traits (including muzzle width) were sub-
sumed by the effects of body mass and shared ancestry.

Our results suggest, however, that scaling effects 
and shared ancestry in ungulates are not inconsistent 
with feeding adaptations in oral morphology. All traits 
covary positively (Table 2) with optima that exhibit a 
similar trend (Fig. 2) possibly reflecting scaling effects. 
The conditional correlation of crown height and muz-
zle width is weaker than the general correlations (Table 
2) suggesting that, as expected for dental measures, 
the explanatory variable can work effectively as a scal-
ing factor (Gordon and Illius 1988; Shipley et al. 1994; 
Damuth and Janis 2011). Under the preferred OUOU 
model, an adaptive pattern dominated by the scaling 
factor would be corroborated through a non-diagonal 
A (in particular, an upper triangular matrix with vari-
ables ordered as in Appendix SE3, Table S.11). And yet, 

Table 1 Comparison of the best candidates under each model 
type showing statistics of model support (AICc and R2) and phylo-
genetic half-lives (reported as percentage of tree height in the eigen-
vector directions, e⃗i). The full regime specification (OUF) is the best 
supported model with lowest AICc and highest R2. Other parameter 
estimates for these models are shown in Appendix SE3.

   Half-lives (%)

Model AICc R2 e⃗1 e⃗2 e⃗3 

BM 96.65 0.07 – – –
OU1 91.59 0.01 34.25 36.05 189.11
OUF 57.52 0.19 23.28 31.13 38.92
OUG 81.14 0.07 26.76 33.57 69.25
OUB 61.18 0.15 29.15 35.26 47.70

Table 2 Observed correlations between traits and evolutionary 
regression coefficients with 95% parametric bootstrap (1000 bootstrap 
replicates) confidence intervals (CI, within parenthesis), which in all 
cases are significantly positive (intervals exclude zero). However, 
the correlation between the responses (HM3 and MZW) conditional 
on the covariate (WM3) is weaker (0.24) and non-significant (CI 
−0.04, 0.655).

Trait Correlations Regression 

MZW WM3 WM3

HM3 0.64 (0.009, 0.749) 0.65 (0.003, 0.748) 0.73 (0.003, 1.003)

MZW —— 0.81 (0.007, 0.871) 0.9 (0.007, 1.374)
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the preferred model has a diagonal A matrix, suggest-
ing that all traits are adapting independently to feeding 
preferences. This result is more consistent with the idea 
of allometric patterns arising from natural selection on 
more than one trait (Lande 1979), than with the idea of 
feeding adaptations subsumed by the effects of body 
size (Pérez–Barbería and Gordon 2001).

In our results, where general phylogenetic effects are 
not removed from the adaptive pattern, both crown 
height and muzzle width are important components of 
feeding preferences in ungulates (Janis 1988; Janis and 
Ehrhardt 1988; Mendoza and Palmqvist 2008). Feeding 
differences obtained from crown height alone would 
downplay the interspecific relevance of food selection 
(linked to muzzle width) compared with food process-
ing (Pérez–Barbería and Gordon 2001). Also, because 
hypsodonty is not strictly associated with obligate 
grazing, focusing on relative crown height alone sug-
gests that the evolution of oral morphology in ungu-
lates involves adaptations for broadening the feeding 
niche (Feranec 2003). That both traits adapt to primary 
optima, however, is more indicative of a functional 
trade-off reflected by a consistent opposing trend in the 
distribution of oral trait optima across feeding types 
(Fig. 2). Hypsodonty is particularly advantageous 
when exhibiting a broad multiridged surface that facil-
itates processing flat blades of grass during mastica-
tion (Pérez–Barbería and Gordon 1988a, 1988b). But a 
relatively flat occlusal surface is not advantageous for 

cutting material of different physical properties (e.g., 
dicotyledonous leaves or twigs), and then suboptimal 
for browsing (Damuth and Janis 2011). Similarly, a 
broad muzzle is advantageous for grazers by enabling 
them to take large bites of food that is usually of low 
nutritional value (i.e., grass), and therefore requires a 
high intake rate for meeting energy demands (Janis 
1988; Janis and Ehrhardt 1988; Feranec 2003). It is not 
so advantageous, however, for animals such as brows-
ers that benefit from picking out certain plants or plant 
parts, as well as reaching areas concealed by struc-
tures such as thorns and spines (Gordon and Illius 
1988; Janis and Ehrhardt 1988; Mendoza and Palmqvist 
2008). Therefore, the attributes exhibited by browsers 
that optimize food selection (small size, low-crowned 
teeth, narrow muzzles) can be seen as traits maintained 
by stabilizing selection (Hansen 1997) that are no less 
adaptive than the attributes that optimize food pro-
cessing (Feranec 2003). The latter (i.e., attributes opti-
mizing food processing), exhibited by grazers, follow 
exactly the opposite trend (large size, high-crowned 
teeth, broad muzzles) reflecting conflicting functional 
demands that result in well-adapted forms for each 
feeding type (Gordon and Illius 1988; Damuth and Janis 
2011). The mixed feeders show intermediate optima for 
all traits making them, more than transitional grazers, 
forms that optimize both functions (Fig. 2: CI overlap 
in crown height with grazers and in muzzle width with 
browsers, even when browsers and grazers themselves 
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Figure 2. Optima (with 95% CIs estimated by GLS conditional on A and diffusion matrix parameters) for lower third molar crown height 
(HM3), muzzle width (MZW), and lower third molar crown width (WM3) under the best supported model (after logarithmic transformation). 
This model corresponds to an OUOU with three feeding strategies specified as selective regime (B = browser; M = mixed feeder; G = grazer). 
Note that the only feeding style showing no overlap in CI is browsing under HM3. Nevertheless, the optimum estimates of both grazers and 
mixed feeders are excluded from each other’s CI except for WM3 (where no optimum estimate is clearly differentiated), indicating that they 
are differentiable, albeit not as distinctively as browsers. For numerical outputs, as well as estimates under other models, see Appendix SE3.
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show no overlap in either trait) without specializing for 
either. Given that mixed feeders experience resource 
fluctuations over the seasons (Gordon and Illius 1988; 
Mendoza et al. 2006; Damuth and Janis 2011), special-
ization in either way (processing or selectivity) could 
be disadvantageous for this feeding style. As explained 
earlier, however, our results show a stronger resem-
blance between mixed feeders and grazers, suggesting 
that the oral morphology of the former is better adapted 
to intake rate than to food selection.

Example Analysis 2: Fruit Evolution in Ferula (Apiaceae)

Seed size is a trait that has been known to affect mul-
tiple aspects of plant ecological strategies (Moles 2018). 
Selection for a particular seed size often requires the 
coordinated evolution of seed or fruit traits facilitat-
ing a particular ecological strategy. For example, the 
intensity of seed predation may increase with changes 
in seed size driving selection for higher investment in 
seed or fruit defensive traits (Fricke and Wright 2016). 
Similarly, there is a strong allometric relationship 
between seed/fruit size, area, shape as well as mass of 
dispersal appendages such as wings, pappus or kapok 
that directly influence terminal velocity (Niklas 1994; 
Greene and Quesada 2005). In extreme cases, when 
seed size exceeds a certain threshold, the mode of 
seed dispersal may change, triggering the evolution of 
novel seed dispersal appendages. Anemochory (wind 
dispersal), for instance, is almost invariably limited to 
cases where the seed mass is less than approximately 
1 g, whereas zoochory (animal dispersal) characterizes 
large-seeded species (Tackenberg et al. 2003; Greene 
and Quesada 2005). These observations have led many 
authors to conclude that the structural properties of 
fruit and seed are subject to strong selective pressures 
and have been shaped by a trade-off among three 
primary functions: seed provision, seed protection, 
and seed dispersal. However, the evolutionary conse-
quences of this statement concerning changes in fruit 
and seed structure have not been tested in a phyloge-
netic framework.

To test the evolutionary consequences of potentially 
conflicting selection pressures on three primary func-
tions (dispersal, protection, and provision) of seeds, we 
examine fruit variation in the umbellifer species-rich 
genus Ferula (including Dorema and Leutea, Kurzyna-
Młynik et al. 2008). In Apiaceae, the fruits are dry 
schizocarps and the dispersal units are single-seeded 
mericarps. The mericarp is usually tightly connated 
with the seed taking over the protective role of the seed 
coat and determining the mode of dispersal. The fruit 
anatomy in the family is structured according to a com-
mon plan (Fig. S.20), although a wide array of modifi-
cations can be encountered (Wojewódzka et al. 2019). 
In the genus Ferula, fruits are dorsally compressed with 
marginal ribs developed into wings suggesting wind as 
a main dispersal agent (Fig. S.20). The degree of wing 
development varies among species indicating poten-
tial correlation with fruit size (Fig. S.20). Protective 

characters, such as the periderm (fruit wall) thickness 
and the number and arrangement of oil ducts (vallec-
ular vittae), also change considerably among species 
making the genus Ferula an interesting model system 
for studying fruit evolution. For the purpose of this 
study, we measured five characters on fruits for Ferula 
species. The periderm thickness and the proportion of 
oil ducts covering the space between median and lateral 
ribs were assigned to protective functions, wing thick-
ness, and wing area to dispersal functions, whereas fruit 
mass was used as a proxy of seed provision (Fig. S.20).

The maximum likelihood phylogenetic tree (depos-
ited in the Supplementary Material) with 78 tips was 
obtained from the recent molecular taxonomic revision 
of the genus (Panahi et al. 2018) and dated using a sec-
ondary calibration point for the root based on Banasiak 
et al.’s (2013) work with mcmctree (Yang 2007). Such a 
small sample size is, to say the least, problematic con-
sidering the dimensionality of the models we want to 
consider. However, our main aim here is to show the 
modeling possibilities that mvSLOUCH has, i.e., that 
one can declare a family of models that corresponds 
to informed biological hypotheses. When analyzing 
the results, we will be able to observe what issues can 
arise given the sample size. For ease of reproduction, 
the analyses were run with very specific random seeds.

We compared eight models with custom setups for 
the A matrix reflecting various degrees of adaptive par-
cellation of three primary functions of fruits (Fig. 3). 
These models may be assigned to the four categories 
described below. Each model was run with Σyy set as 
diagonal or as upper triangular, and with or without 
the measurement error.

1. Functional allometry model (no. 1 in Fig. 3). Here, 
fruit mass affects the primary optima of both 
defensive and dispersal traits. This assumption is 
congruent with the empirical evidence that seed 
size, which directly influences offspring quality, is 
usually the main target of selection, whereas the 
remaining characters, representing other func-
tions, are allometrically related to mass. We also 
assume that within the functional groups, the 
traits are correlated, affecting each other’s optima.

2. Parcellation models (nos. 2–4) with various combi-
nations of parcellation of the three primary func-
tions. In model 2, fruit mass (a proxy for seed size) 
affects only dispersal characters; in model 3, it acts 
only on defensive traits, whereas in model 4, the 
three primary functions do not alter each other’s 
optima.

3. Developmental allometry models (nos. 5 and 6) 
assume that all anatomical traits that measure 
de facto different characteristics of the fruit wall 
evolve together affecting each other’s optima, 
whereas wing area evolves independently from 
wing thickness. Seed provision affects wing area 
model in 5 and fruit wall traits in model 6.

4. This category includes two extreme models, the 
first with all traits evolving independently, i.e., the 
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matrix A was set as diagonal (model 7), and the 
second with all traits affecting each other’s optima 
(model 8). With these setups, we wanted to exam-
ine if there is a bias toward the simplest model as 
suggested by simulations (see “Model selection 
efficiency and quality of parameter estimates”) 
or toward the most parameter-rich model as sug-
gested by Adams and Collyer (2018).

Because of the small sample size (up to 6 mericarp 
measurements per species, but 16.7% and 55.1% species 
had only 1 or 2 replicates respectively) that prevents 
the reliable estimation of measurement variance for 
each species (the square of standard error of the species 
average), we assumed that the within-species variance 
of each variable was identical for all species (see Ives et 
al. 2007; Labra et al. 2009; Grabowski et al. 2016). This 
assumption leads to estimation of the variance for each 
variable as a sample-size-weighted average of the sam-
ple variances of each species, calculated according to 
Eq. (S.1), by setting ΣWi = s2wi, where s2wi is the sample 
variance of species i.

Each model was run 1000 times starting from differ-
ent starting points obtained from preliminary analy-
ses in which A was set to “DecomposablePositive.” The 

analyses were then sorted by the AICc values and the 
run with the smallest value was considered as the best 
estimate of model parameters. We also performed a 
simulation study (Appendix SD) to examine the ability 
to distinguish between models by comparing the two 
best models under our Ferula phylogeny, and then we 
checked how the result would change as the number 
of species grows. To do this, we simulated data accord-
ing to the BM, and two best found models on the Ferula 
phylogeny and then on simulated pure-birth trees with 
128, 512, 1024, and 2048 tips. For each model and tree 
setup we simulated 100 datasets. Then, for each dataset 
we re-estimated parameters under BM and the two best 
found models. We considered setups with and without 
measurement error.

Although in both sets of analyses of empirical data, 
with and without measurement error, model 7 (matrix 
A diagonal) was the best, according to AICc, there was 
a difference in the parameterization of Σyy. Without 
measurement error present, the best model was with 
Σyy upper triangular (traits correlated through noise), 
whereas when measurement error was included, 
the model with Σyy diagonal was favored (all traits 
are independent). This implies different biological 

Figure 3. Left: The graphical representation of tested models. “The functional allometry model” is represented by model 1, “parcellation 
models” by models 2, 3, and 4, whereas the developmental allometry models by models 5 and 6. In models 1, 2, 3, and 4, the functional 
modules (dispersal: wing thickness and wing area, protection: periderm thickness and ratio of canals, and provision: fruit mass) are colored. 
Traits within protective and dispersal modules affect each others optima (double-headed arrows). Fruit mass, on the other hand, affects traits 
belonging to other modules (single-headed arrows). In the developmental allometry models, periderm traits are combined into one module. 
Right: Classes of the AEq.(1) matrix considered in the analyses of the Ferula data. Models 7, and 8 are described in Item 4. The numeric value, 0, 
implies that the particular entry is constrained to be 0 in the estimation procedure and +, that it is constrained to be positive. Entries denoted 
by ? are free to vary over the whole real line, they are not constrained to be equal to each other in the matrix. The models are indicated by 
the numbers to the left of the matrices. In model 8, the matrices A are constrained to be “DecomposablePositive.” The rows and columns in the 
matrices correspond to ratio of canals (row/column 1), periderm thickness (2), wing area (3), wing thickness (4), and fruit mass (5).
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interpretations for the best models (see cases a and b in 
“The multivariate Ornstein–Uhlenbeck process”) and 
shows that contrasting results are possible when differ-
ent sources of error are not considered in a study. Here, 
we will examine in greater detail the results from anal-
yses with measurement error as its omission can lead to 
errors in parameter estimation (Hansen and Bartoszek 
2012). However, in addition to model 7, we will also 
consider model 4 as a plausible one for three reasons. 
First, it shows up as the second best model with an 
AICc value greater than the best model’s one by 9.115. 
This difference places these models in the “inconclu-
sive region” (see discussion in “Model selection strat-
egies” concerning the work of Burnham et al. 2011). 
Second, our previously introduced simulation study 
(“Model selection efficiency and quality of parameter 
estimates”) indicated a bias toward simpler models 
with diagonal A. This argument also speaks in favor of 
model 4. Lastly, there is strong domain-specific knowl-
edge in favor of model 4, it is one of the parcellation 
models in which all three primary functions of the fruit 
(i.e., protection, provision, and dispersion) evolve inde-
pendently from each other.

Our performed simulation showed that some model 
pairs are distinguishable even with a small number 
of tip taxa, whereas for others pairs this is difficult, 
even with large trees. With some model pairs, e.g., 
4DmP/4UmP (we use the notation true/competing, 
see Tabs. S.5 and S.6 for explanation of abbreviations) 
there is consistent (but slow) improvement with sam-
ple size. In other cases, e.g., BMm, distinguishability 
of the true model seems to decrease with the number 
of tips. In Table S.7, we can see that numerical errors 
become more and more evident with the increase in tree 
size; however with measurement error included they 
do not take place. Based on the model selection results 
presented in Table 4, we care most about distinguish-
ing model 4U from 7U and 4Dm from 7Dm (in the 78 
tips case). We can see that for the tree and measurement 
error from the Ferula study, model 7 (the simpler one) is 
easily identifiable, whereas model 4 is not (Table 3). As 
the sample size increases, the misclassification rates for 
model 4 decrease (albeit slowly), whereas for model 7 
increase.

The AICc values and simulation study results sug-
gest that models 4 and 7 with diagonal Σyy are plausi-
ble choices. First, we look into model 7 with diagonal 

Σyy. This model implies independent evolution of all 
measured traits irrespective of their functional module 
affiliation. Because it does not describe any particular 
adaptive hypothesis (no predictors), each trait evolves 
around a single central state. In this case, the half-life 
which is interpreted in adaptive scenarios as the time 
to move half the distance from the ancestral state to the 
optimum, can be taken as a measure of overall phylo-
genetic signal (Hansen 2012). The phylogenetic signal 
in the trait can come from two different sources: phy-
logenetic inertia or from the distribution of predictor 
variables on the phylogeny (Labra et al. 2009). Thus, a 
model with a diagonal A and Σyy may serve as a null 
model displaying the overall phylogenetic signal for 
each trait. In model 7, although uncorrelated, the traits 
responsible for fruit protection, i.e., the proportion of 
oil ducts in periderm and periderm thickness, evolve 
the quickest with respective half-lives of 1.32% and 
5.08% given here as percentage of tree height in the 
directions pointed by eigenvectors, which are the same 
as the traits’ directions as A is diagonal. Assuming that 
the root height is approximately 4–5 Ma according to 
molecular dating (Banasiak et al. 2013), the half-life con-
verts to 52–65 ka and 200–250 for each trait respectively. 
Taking into account that all species of Ferula are long-
lived perennials, the phylogenetic effect here is weak as 
it takes no more than several thousands of generations 
to half the effect of the ancestral state. Dispersal traits, 
on the other hand, evolve slower with wing area and 
wing thickness having half-lives of 13.36% and 30.04% 
of tree height, respectively. Fruit mass, the only trait 
representing provision functionality, had a half-life of 
15.45% of tree height.

In model 4, traits within functional modules co-evolve 
adaptively enhancing their functional roles. However, 
this relationship is not symmetrical. For example, in the 
dispersal module, the slope of the evolutionary regres-
sion between wing area and wing thickness equals 
−7.498, whereas the slope of the evolutionary regres-
sion in the opposite direction is −0.001. However, the 
half-lives for this module indicated that only 0.09% of 
tree height is necessary to move half the distance from 
the ancestral state to the primary optimum in the case 
of wing area (1st eigenvector of A, in which wing area 
dominates, see Table 5), whereas over 2000% in the case 
of wing thickness (5th eigenvector, where wing thick-
ness dominates, see Table 5). Although these estimates 

Table 3 Comparison of model identifiability concerning the two pairs of best competing model with measurement error: models 4 and 7 
with diagonal Σyy. This is a subtable from Table S.6. In the row names, we use the notation true/competing model. The D indicates that Σyy is 
constrained to be diagonal, P that A’s diagonal is forced to be positive, and m that measurement error was included. Each fraction is the result 
of successful 100 simulation-reestimation repeats. When n = 78, the tree is constant across all simulations, the same as the Ferula tree; the mea-
surement error is also identical to the one in the Ferula study. For greater n, the trees are simulated as pure birth trees and measurement error 
variance is sampled according to Alg. S.1.

 Number of tips
Model pair 78 128 256 512 1024 2048 

4Dm/7Dm 0.05 0.19 0.37 0.41 0.43 0.5
4Dm P/7Dm P 0.06 0.28 0.28 0.44 0.42 0.53
7Dm/4Dm 0.96 0.78 0.68 0.63 0.57 0.59
7Dm P/4Dm P 0.95 0.75 0.71 0.63 0.54 0.47

VOL. 72

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/2/275/6962281 by Florida International U

niversity user on 24 January 2024



BARTOSZEK ET AL.—MODEL SELECTION PERFORMANCE IN PHYLOGE-NETIC COMPARATIVE METHODS2023 287

should be treated with caution due to numerical prob-
lems (see above), the result suggests a much faster 
adaptation of wing area than wing thickness. In the 
protection module, we can observe a similar pattern of 
slope differences—the proportion of oil ducts in perid-
erm had a stronger effect on periderm thickness than 
vice versa (slope −0.257  vs. slope −0.07). In this case, 
however, the half-lives are longer (12.09%) and simi-
lar based on the two eigenvectors dominated by load-
ings corresponding to traits from this module (3rd and 
4th eigenvectors, see Table 5). Within both protection 
and dispersal modules, we can observe negative rela-
tionships between traits’ optima (negative correlation 
coefficients), which may indicate trade-offs between 
characters. The third, provision module, represented 
here only by fruit mass, showed fast adaptation with 
3.7% of tree height, which converts to 148–185 ka or 
several thousands of generations. Notice, however, in 
Table S.20 that in one case the parametric bootstrap con-
fidence intervals do not cover the estimated value of the 
regression parameter shown here. This can be one of the 
consequences of considering such a high-dimensional 
model with so few observations.

An interesting result from the analyses is also an 
observed high variation in the values of likelihood func-
tion between different runs of the same model. With 
measurement error, the best model 7 with diagonal Σyy, 
had the log-likelihood varying from −1463 to −1169.016.  
Even bigger differences among runs were obtained 
for models without measurement error included. For 
example, for model 7 with diagonal Σyy, the log-like-
lihood varied from −1558198.186 to −291.323. This 

serves as an important reminder that many repetitions 
of the same model using different random seeds and 
starting points are necessary to obtain the best possible 
estimates of model parameters.

In the Section “Model selection efficiency and quality 
of parameter estimates”, we noticed that there is a bias 
towards simpler OU models in analyses. A diagonal A 
model (model 7; Fig. 3) was found to be best by AICc, 
and in simulation results presented in Table 3 a similar 
preference for simpler models, with small sample sizes, 
is visible. However, as the number of tips increases, 
model 4 becomes more identifiable, albeit very slowly. 
On the other hand, with the increase of tips, model 7 
becomes less identifiable. On A’s diagonal for both 
models 4 and 7, we have large values (the trees are 
always scaled to height 1), implying short half-lives/
rapid loss of ancestral signal/fast adaptation to the 
optimum. Hence, as in both cases the tip sample will 
be oscillating around the global optimum, additional 
parameters (with a large sample) can lead to overfitting, 
for which AICc does not penalize sufficiently for.

If one looks in detail at Table S.6, one can see that 
measurement error can have a profound effect on being 
able to distinguish between models. When simulations 
were done without it, the BM model is always correctly 
identifiable. Models 4D and 7D are still hard to distin-
guish between each other. It is usually possible to dis-
tinguish between diagonal and upper triangular Σyy 
matrices, especially with the Ferula tree. It seems also 
possible to distinguish between models 4 and 7 assum-
ing an upper–triangular Σyy matrix. However, what can 
also be seen is that as the number of tips increases, there 

Table 4 The best AICc scores along with the log likelihood (Loglik) and R2 values for eight models analysed with diagonal and upper 
triangular Σyy as well as with and without measurement error included. The best two models discussed in the main text were marked in bold.

Without measurement error

 Σyy  diagonal Σyy  upper triangular
Model Loglik AICc R2 dof Loglik AICc R2 dof 

1 −288.524 626.073 0.0019 23 −210.019 492.360 0.0019 33
2 −277.220 598.957 0.0021 21 −209.727 487.012 0.0019 31
3 −279.100 602.717 0.0023 21 −207.453 482.464 0.0024 31
4 −276.067 592.193 0.0018 19 −205.480 473.808 0.0022 29
5 –255.185 557.134 0.0016 22 –207.125 484.182 0.0023 32
6 –285.483 622.267 0.002 24 –208.809 492.341 0.0021 34
7 –291.323 613.933 0.0016 15 –205.480 464.542 0.0022 25
8 –271.311 619.761 0.001 35 –203.637 509.344 0.0022 45

BM – – – – –238.132 518.547 0.83 20

With measurement error

 Σyy  diagonal Σyy  upper triangular

Model Log-lik AICc  R2 dof Log-lik AICc  R2 dof 

1 –1169.295 2387.614 0.0024 23 –1169.411 2411.144 0.0024 33
2 –1169.379 2383.275 0.0023 21 –1169.190 2405.938 0.0024 31
3 –1169.106 2382.730 0.0024 21 –1169.373 2406.303 0.0024 31
4 –1169.187 2378.434 0.0024 19 –1169.363 2401.573 0.0024 29
5 –1169.972 2384.709 0.0024 22 –1169.460 2408.852 0.0023 32
6 –1169.370 2390.038 0.0023 24 –1169.629 2413.982 0.0024 34
7 –1169.016 2369.319 0.0024 15 –1169.126 2391.833 0.0024 25
8 –1168.928 2407.855 0.0024 35 –1168.928 2439.925 0.0024 45

BM — — — — –1169.527 2381.337 0.95 20
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is a tendency towards the diagonal A model 7, which is 
in line with our observations from the simulation study 
in “Model selection efficiency and quality of parameter 
estimates”. We underline that it seems that the problem 
of identifying the correct structure of A from compara-
tive data is a subtle one and might require the develop-
ment of new decision methods. On the other hand, we 
do not notice issues with rejecting or correctly accepting 
models where BM traits are present.

Without measurement error, as the sample grows, 
especially for the Brownian motion model, numerical 
errors seem to be more and more common. In fact, with 
2048 tips so many as 881 trees and trait simulations had 
to be performed in order to obtain a sample of size 100. 
A possible explanation for these numerical errors are 
too short tip branches which cause singularities. When 
measurement error is present, such numerical prob-
lems are neither observed for BM nor for OU models. 
This supports that the problem is mainly with short tip 
branches. Measurement error additively increases the 
variance of change along a tip branch. If a tip branch 
is so short that for a given parameter the covariance 
matrix of change along a tip branch is singular, then 
adding the variance of measurement error removes this 
singularity. However, this comes at a price. In Fig. S.10, 
we can see that without measurement error, the estima-
tor of Σxx, from the accepted simulation samples, seems 
to behave consistently.

On the other hand, when measurement error is 
present, parameter estimation errors are larger and 
improvement (other than the decrease of estimation 
variance) cannot be observed. Similarly, for the OUOU 
models, parameter estimation error is much smaller 
without measurement error. With measurement error, 
the misclassification rate of BM increased. Given a 

single optimum and ultrametric tree, the collection of 
measurements for tip species is identically (but not 
independently) distributed. If the noise from measure-
ment error dominates and masks signal, especially 
dependencies between observations, then information 
criteria could favor the simplest model that can fit a 
common mean and variance. As misclassification rates 
with measurement error present seem to all exhibit sim-
ilar behavior, it could be that a given level of measure-
ment error will induce convergence to a particular limit 
of the misclassification rate.

Many plants develop seed packaging structures, 
which play various roles throughout the seed life span. 
Hard encapsulation, as in the case of Ferula, protects 
seeds and assists in dispersal with the help of special-
ized structures such as wings. Generally, our analyses 
supported two different parcellation models indicat-
ing independent evolution of all or some of studied 
fruit traits. The possible scenario for evolution of these 
quasi-independent functional modules in fruits can 
be inferred from empirical studies showing that selec-
tion pressure from various agents often conflicts. An 
interesting example comes from research on tree squir-
rels (Tamiasciurus), which are important seed-eaters 
influencing conifer reproductive strategies (Benkman 
1995). The study showed that limber pine (Pinus flexi-
lis) coming from regions affected and unaffected by tree 
squirrels did not differ in seed kernel mass but did in 
seed-coat characters. This shows that the protective and 
provision functions evolved independently. The former 
was the main target of directional selection although the 
latter was under stabilizing selection as abiotic factors 
influencing germination—that are important selective 
agents of kernel mass—do not differ between these 
regions (Benkman 1995). Although this study showed 

Table 5 Phylogenetic half-lives with parametric bootstrap (1000 bootstrap replicates) confidence intervals (CI) reported here as percentage 
of tree height in the eigenvector directions for the best models 7 and 4. The abbreviations relate to measured fruit traits: ratio of oil ducts to 
length of space between ribs (ROD), mean periderm thickness (MPT), wing area (WA), wing thickness (WTH), and fruit mass (FM) (see also 
Fig. S.20). Notice that in some cases the bootstrap CIs do not cover the estimated values, illustrating the known difficulties of estimating the 
parameter as already shown in the one dimensional case (Cressler et al. 2015).

Model 7 Directions (eigenvectors)

e⃗1 e⃗2 e⃗3 e⃗4 e⃗5 

ROD 0 1 0 0 0
MPT 1 0 0 0 0
WA 0 0 1 0 0
WTH 0 0 0 0 1
FM 0 0 0 1 0
Half-life 1.32% 5.08% 13.36% 15.45% 30.04%
(CI) (0.10%, 26.26%) (3.52%, 40.06%) (17.67%, 60.12%) (23.61%, 66.22%) (25.19%, 68.82%)

Model 4 Directions (eigenvectors)

e⃗1 e⃗2 e⃗3 e⃗4 e⃗5 
ROD 0.00 0.00 –0.33 – 0.54i –0.33 + 0.54i 0.00
MPT 0.00 0.00 0.78 0.78 0.00
WA 0.99 0.00 0.00 0.00 0.00
WTH –0.01 0.00 0.00 0.00 0.99
FM 0.00 1.00 0.00 0.00 0.00
Half-life 0.09% 3.7% 12.09% 12.09% 2207.8%
(CI) (0.03%, 25.91%) (2.21%, 48.03%) (7.92%, 58.94%) (19.42%, 66.35%) (10.87%, 128.14%)
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the conflicting selection on seed functions, the evolution 
was rapid and likely free of any constraints as squirrels 
were extirpated in the studied region approximately 
12,000 years ago. In the case of interspecific compara-
tive analysis of fruits of Ferula, the rate of co-adaptive 
changes in fruit traits is also fast—taking no more than 
several thousand of generations. This is in agreement 
with observations of other species from the subfamily 
Apiaceae, that show, although indirectly, rapid change 
in quantitative traits of fruits. For example, in the genus 
Chaerophyllum belonging to the same tribe as Ferula, there 
is no quantitative character of fruit that characterizes 
clades assigned to taxonomic sections (Piwczyński et al. 
2015). The principal component analysis (PCA) showed, 
that in many cases, sister taxa have more divergent traits 
than distantly related ones leading to complete over-
lap between convex hulls delimiting sections. Similar 
results were obtained by Wojewódzka et al. (2019). The 
Authors searched for common combinations of ana-
tomical and morphological traits that are associated 
with switches among different dispersal syndromes. 
The results show no such combinations with overlap-
ping convex hulls between species representing various 
dispersal strategies and various phylogenetic affinities. 
This may point to mixed dispersal strategies as sug-
gested by the Authors, but it is also in agreement with 
quasi-independent evolution of traits associated with 
various functions in the fruit as suggested by analysis 
of Ferula data. It is reasonable, for example, to assume 
that wind dispersal species may be under a wide range 
of selection pressures, often in opposite directions, on 
protective traits of fruit. Modules may help in optimiz-
ing each trait independently by selection (Hansen 2003).

Another set of interesting results from model 4 is the 
negative relationship between traits within functional 
modules. In the case of dispersal, this relationship is 
expected from aerodynamic theory which states that 
any diaspore size, having any settling velocity, can be 
dispersed to a given distance if the shape of falling 
object is sufficiently modified (Niklas 1994). In our 
example, it can be argued that the increase in wing 
area is counteracted by a decrease in wing thickness 
to optimize area–mass relationship. Unfortunately, the 
estimation of regression coefficients was imprecise—
precluding deeper analysis. The second negative rela-
tionship occurred in the protection module that may be 
explained by trade-off between costly traits. Generally 
in Apiaceae, various forms of endosperm protection 
do not occur together. For example, species having 
thickened cuticule possess reduced canals and bundles 
(Spalik et al. 2001). In line with this observation, the 
increased protection by thickening of periderm leads to 
reduction of canals without harmful consequences.

As pointed out by Niklas (1994), evolution of wind 
dispersed fruits seems to be counterintuitive. Plants 
add extra mass to seeds potentially reducing disper-
sal capacity. However, this excess of tissues may have 
higher evolutionary potential, expanding the range of 
phenotypic characters available for selection, in com-
parison with a seed coat. In addition, fruit walls can 

offer an extra protective barrier against seed predators. 
This increase in evolutionary potential may be realized 
by modularity, which may sufficiently reduce the con-
sequences of conferring extra mass to seeds.

Our analyses provided several important observa-
tions for mvSLOUCH users. First, the user must pay 
attention to the quality of the data. In a typical compar-
ative analysis, the sample size differs from species to 
species even by orders of magnitude. This, as shown in 
our analyses, can lead to imprecise estimation of mea-
surement error and, in consequence, problems with 
estimation of model parameters (Table 4). From our 
simulations, we can also observe that measurement 
error can have a big effect on estimation. Our analyses 
aimed to illustrate mvSLOUCH’s possibilities, but to 
make firm conclusions about the genus Ferula, we can 
see that 78 species are too few, and measurement error 
is too high (too few replicates per species). This is most 
evidently seen in the (marginal, 2.5% and 97.5% quan-
tiles) parametric bootstrap confidence intervals pre-
sented in Tables. S.19 and S.20 for the correlation and 
regression coefficients. In all the non-zero (by model 
definition) cases, the confidence intervals cover zero. 
Our simulations show that with the given sample the 
more complex model 4 is not identifiable. However, 
as we increase the tree size, non-ignorable numerical 
issues start to appear. The third observation concerns 
the interpretation of model parameters, which is impos-
sible without a clear hypothesis. The software cannot be 
used for a “phylogenetic correction,” the species’ joint 
evolutionary history should be used to test specific 
hypotheses motivated by our theories and knowledge 
of the considered system. Estimated parameters should 
therefore be interpreted with a link to what drove the 
particular study setup.

Discussion
Our simulation studies, Appendix SC and Appendix 

SD, found that if there is any bias in model identifiabil-
ity, it will be in the direction of simpler models (opposite 
to the conclusions of Adams and Collyer (2018), based 
on a BM simulation and BM, OU reestimation study). 
On the other hand, our simulation from the Ferula 
study showed that as the sample size increases, infor-
mation criteria can prefer more complex OUOU mod-
els over simpler OUOU ones (Table 3, rows where data 
was simulated under model 7). However, as discussed 
already, the chosen parameters are difficult ones for the 
estimation procedures. For small n, the BM could out-
perform more complex OUOU, OUBM models. As n  
increased, this preference toward BM disappeared for 
all models. OUBM models are distinguishable from 
OUOU models, but distinguishing between different 
types of A matrices inside the OUBM class might not 
be that straightforward. However, again the main error 
seemed to be in the case of preferring simpler models—
diagonal A when simulated under a non-diagonal one. 
The most striking issue is that the diagonal A–diagonal 
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Σyy (OUOUs1) model is consistently preferred over the 
non-diagonal A–diagonal Σyy (OUOUs2) model. It is 
known from previous, one-dimensional, studies that 
even the scalar counterpart of A is difficult to estimate 
(Cressler et al. 2015). Our multivariate simulation–rees-
timation study confirms this, with non-diagonal A 
there were many outliers with high relative errors for 
this parameter (and others). Therefore, in the multivar-
iate case, it seems to be an open question if there is a 
parameter-identifiability issue for A, or more data (i.e., 
larger n) is required to justify the choice of the model 
with more parameters. Hence, a practitioner should 
always be careful when the OUOU model with diago-
nal A is indicated and should weight the understand-
ing of the system under study. In all model cases, some 
parameters are easier to estimate—those correspond-
ing to the diffusion parameter, Σxx, Σyy, Σ. For these, 
the boxplots in Appendix SC suggest consistency. The 
drift parameters, entries of A; A’s associated eigenval-
ues, eigenvectors, half-lives, as already discussed, are 
more difficult to estimate, especially if it is non-diago-
nal. Covariance, correlation, and regression parameters 
also tend to have much variability in their estimation. 
Finally, it has to be stressed that the simulations did 
not indicate problems with identifying the main class 
of models. From n = 128, major problems with discrim-
inating BM from OUOU from OUBM are not visible. 
Perhaps it is difficult to identify the type (based on the 
A matrix’s type) of model in some situations, but the 
main dynamics seemed identifiable.

It is also worth pointing out that Mitov et al.’s (2020) 
posterior-quantile validation did not find any issues 
with PCMBase’s loglikelihood values. Mitov et al.’s 
(2019) very extensive simulation study also does not 
indicate any serious issues with estimation nor model 
identifiability of the PCMFit package, which uses the 
same likelihood computation engine provided by 
PCMBase and PCMBaseCpp.

To compare our simulations study with Adams and 
Collyer’s (2018), when simulating under the BM model, 
we restrict our simulations to independent traits. 
Re-estimation was done under multiple setups but two 
are worth discussing. One (OUOU5 in Table S.2) was 
with A assumed as general invertible and Σyy upper 
triangular. This is the default, but highly unrecom-
mended, mvSLOUCH setting that Adams and Collyer 
(2018) used. It has the property that it does include the 
least possible assumptions and hence a priori biologi-
cal hypotheses about the relationships between traits. 
Having it as a default will not bias the user towards 
any particular hypothesis and hopefully encourage to 
explore different ones. However, it is extremely unsta-
ble to estimate under and, from our experience, tends to 
get very easily stuck in local optima and is therefore not 
recommended. We also take models with A eigende-
composable with positive real eigenvalues and diago-
nal positive or free, and upper-triangular Σyy (OUOU4, 
OUOU4P, OUBM4, OUBM4P in Table S.2). The latter 
setups, we believe, are fairer towards mvSLOUCH 
than Adams and Collyer’s (2018) use of the default 

settings. The numerics seem, from our experience, to be 
significantly more stable than in the default case and, 
we re-iterate, PCM studies should be carried out with 
some biological hypotheses in mind, corresponding to 
particular parameter settings.

We ran estimation both with A’s diagonal constrained 
to be positive or free to vary. When the diagonal was 
assumed positive, then the diagonal values were 
exponentiated after the matrix was calculated from 
its eigendecomposition parametrization. As positive 
real eigenvalues do not imply a positive diagonal, we 
wanted to see what implication a positive diagonal con-
straint could have on the estimation. On the one hand, it 
will guarantee a correct sign of the diagonal, but on the 
other, interfere with R’s numerical optimizer’s, optim(), 
search path. And in fact this was observed. Under the 
OUBM model, for non-diagonal A, forcing the diagonal 
to be positive reduced model selection abilities. In the 
OUOU case, such an issue was not observed.

The simulation study based on parameters estimated 
from the Ferula data brought up further issues that 
need to be heeded when using PCMs. Measurement 
error can result in decreasing quality of parameter 
estimates and make deciding between models diffi-
cult, but must still always be included in compara-
tive analyses. When trees become large, numerical 
problems can become more of an issue. However, the 
observed numerical problem is due to very short tip 
branches, hence it might not be present at all in real 
estimated phylogenies. Short tip branches arise natu-
rally when trees are simulated under birth-death mod-
els conditioned on a particular (large) number of tips. 
Hence, it becomes a question, whether, despite their 
simplicity and mathematical elegance, these are the 
optimal ways of generating trees for simulation stud-
ies of PCMs. Even if the Brownian motion model is 
not of interest, the user of mvSLOUCH is advised to 
consider it. Closed form estimation formulæ will pick 
up the numerical issues due to short branches leading 
to tips (by returning infinite information criteria) and 
indicate that the estimation results under the OUOU 
models require careful scrutiny. A possible way of deal-
ing with such a situation is to drop species with short 
pendant branches (if there are few). Alternatively, if 
there would be many such situations, multiple ran-
dom subsampling with, e.g., subsequent model aver-
aging can be employed. However, the choice of action 
is particular to the situation, and is up to the user. 
Based on our simulations here, we recommend that an 
applied PCM user should not only look at the single 
best (according to their chosen measure) model but 
also explore those in the “plausible set,” taking into 
account domain knowledge and estimated parameters 
(models could have nearly the same parameter values 
e.g., non-zero values are very close to zero). A simu-
lation study limited to the plausible set of models can 
indicate whether there is distinguishability between 
them, and a parametric bootstrap will show parameter 
identifiability. With the analyses and simulation stud-
ies here, we have only touched the tip of the iceberg 
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and as algorithmic improvements in PCM software 
have reduced running times and numerical prob-
lems (or made them clearer), we will be able to design 
more and more complex simulation studies that will 
give better understanding of estimation possibilities. 
Hopefully, it will be possible to approach this from the 
mathematical direction to have analytical results on 
the inference methods.

Supplementary Material
The GitHub repository https://github.com/krz-

bar/KJVJMRKK_mvSLOUCH contains R scripts, data, 
random seeds and simulation outputs used in this 
work. These files are also available from the Dryad 
Digital Repository: http://dx.doi.org/10.5061/dryad.
sj3tx9656.
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