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Abstract.— The advent of fast computational algorithms for phylogenetic comparative methods allows for considering
multiple hypotheses concerning the co-adaptation of traits and also for studying if it is possible to distinguish between such
models based on contemporary species measurements. Here we demonstrate how one can perform a study with multiple
competing hypotheses using mvSLOUCH by analyzing two data sets, one concerning feeding styles and oral morphology
in ungulates, and the other concerning fruit evolution in Ferula (Apiaceae). We also perform simulations to determine if
it is possible to distinguish between various adaptive hypotheses. We find that Akaike’s information criterion corrected
for small sample size has the ability to distinguish between most pairs of considered models. However, in some cases
there seems to be bias towards Brownian motion or simpler Ornstein-Uhlenbeck models. We also find that measurement
error and forcing the sign of the diagonal of the drift matrix for an Ornstein-Uhlenbeck process influences identifiability
capabilities. It is a cliché that some models, despite being imperfect, are more useful than others. Nonetheless, having
a much larger repertoire of models will surely lead to a better understanding of the natural world, as it will allow for
dissecting in what ways they are wrong. [Adaptation; AIC.; model selection; multivariate Ornstein-Uhlenbeck process;

multivariate phylogenetic comparative methods; mvSLOUCH.]

The primary objective of phylogenetic comparative
methods (PCMs) is to test evolutionary hypotheses
whilst understanding and controlling for dependencies
of trait measurements that arise due to shared ances-
try and/or shared environmentally mediated selective
pressures on macroevolutionary time scales. Evolution
is a process that can include both deterministic (e.g.,
natural selection) and stochastic (e.g., numerous, small
unmeasured selective forces and genetic drift) compo-
nents. When the process includes speciation, the traits
exhibited by extant species will all have spent some pro-
portion of time evolving in common ancestral lineages.

For the past half-century, biologists have employed
explicit stochastic processes to model trait evolution
when phylogeny is involved. The generic goal is to use
trait values measured at the tips of the phylogeny, along
with estimates of the phylogenetic branching patterns
to estimate parameters that capture the magnitude of
the above-mentioned trait dependencies caused by
these genetic and selective covariances. A Brownian
motion (BM, Edwards 1970; Felsenstein 1985) was the
first stochastic process proposed to model the evolution
of continuously distributed traits on a phylogeny. The
BM process’ variance, however, increases unboundedly
with time and the process does not have a stationarity
distribution. As such, a BM process is not well suited to

model stabilizing selection around adaptive optima, a
major mode of adaptive phenotypic evolution, where
convergence of the variance and process to station-
arity would be expected (Hansen and Orzack 2005).
This requirement for mathematical models describing
traits under selection was recognized by Felsenstein
(1988); subsequently, Hansen (1997) demonstrated
that by replacing the BM process with an appropriate
Ornstein—Uhlenbeck (OU) process, the process’” vari-
ance converges. The Markovian, temporal homogene-
ity and mean-reverting properties of the OU process
(under specific parameter classes) are well suited for
modeling pervasive modes of natural selection such
as stabilizing and directional selection. Furthermore,
because it also satisfies Gaussian assumptions, parame-
ter estimation through well-known techniques such as
maximum likelihood is facilitated.

Following Hansen’s (1997) formulation, the initial
focus was predominantly on univariate implementa-
tions of these methods, i.e., the study of single, well-de-
fined traits, exemplified by, R (R Core Team 2019)
packages such as ape (Paradis 2012), geiger (Harmon
et al. 2008), or ouch (Ornstein—Uhlenbeck Models for
Phylogenetic Comparative Hypotheses, Butler and King
2004). Biological traits, however, do not exist in isolation
and both their form and function typically depend on
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interactions with other traits (Walsh and Blows 2009).
The evolution of one trait cannot therefore be under-
stood properly if one does not consider how other traits
interact with the focal trait throughout its evolution-
ary history (e.g., Dobzhansky 1956; Chetverikov 1961;
Frazzetta 1975; Lande and Arnold 1983; Wagner 1988).
Multivariate extensions of the OU-based methods have
been developed to analyze such trait interactions (e.g.,
Bartoszek et al. 2012; Beaulieu et al. 2012; Butler and
King 2004; Clavel et al. 2015; FitzJohn 2010; Goolsby et
al. 2017; Hansen et al. 2008; Ho and Ané 2014b; Mitov
et al. 2019, to name a few). The early implementations,
however, all run into issues with (1) long computational
running time, (2) parameter identifiability due to large
sample sizes required for accurate parameter estimation,
and (3) computational complexity involved in obtaining
the likelihood. These problems precluded large-scale
simulation studies concerning model identifiability.

Fortunately, recent years have seen tremendous
improvements in the computational capabilities of soft-
ware for phylogenetic comparative methods. In particu-
lar, the PCMBase and PCMBaseCpp R packages (Mitov
etal. 2020) provide a very efficient computational engine
to obtain the likelihood for a wide class of phylogenetic
Gaussian models. The Ornstein—-Uhlenbeck family of
models considered by mvSLOUCH (Bartoszek et al.
2012) is within the above class. Changing the likelihood
calculation method resulted in massively reduced com-
putational time for mvSLOUCH. This allows for con-
sidering larger sets of species; as our simulation studies
will demonstrate, a phylogeny with 2000 tips does not
pose any particular running time challenge. We also
suspect that the dimensionality (i.e., number of consid-
ered variables) of each species can be much higher now.
However, we have not run any tests in this direction,
and the limiting factor will be the efficiency of eigen-
vector decomposition for matrices whose dimension
equals the number of traits. One has to remember that
increasing the number of traits induces a (quadratic in
general) increase of parameters, hence would require
larger samples. Understanding the number of estimable
parameters as a function of observed species (and also
tree height growth) is a topic for further work.

Importantly for the work here, the improvement in
the algorithm has allowed us to design a large-scale
simulation study to investigate the identifiability
properties. In particular, we look at how well Akaike’s
information criterion corrected for sample size (AIC,,
Hurvich and Tsai 1989) is able to distinguish between
various multivariate phylogenetic Ornstein—Uhlenbeck
models, corresponding to different adaptation and
constraints hypotheses, for both simulated and empir-
ical comparative datasets. We asked, for example, can
causal claims of one trait driving another be defended
against a null hypothesis of independent evolution?

To facilitate the reading, we have organized this work
as follows. We begin with a brief justification of why
we use the AIC. ( “On the use of AIC_ in model selec-
tion”) as our main model selection tool, then (“Model

selection for the multivariate Ornstein-Uhlenbeck pro-
cess in mvSLOUCH”) we introduce the multivariate
Ornstein-Uhlenbeck process with a special focus on the
possible forms of the drift matrix, A in Eq. (1). In this sec-
tion, we also discuss model selection strategies and look
into how well various OU setups can be differentiated by
AIC,, and how well mvSLOUCH recovers parameters of
OU models. We then illustrate how in practise one can for-
mulate and distinguish between competitive hypotheses
concerning adaptive, evolutionary interactions between
traits with two empirical studies (“Example analyses”).
The first example concerns feeding styles and oral mor-
phology in ungulates and the second fruit evolution in the
genus Ferula (Apiaceae). We end the work with a discus-
sion of the simulation findings in relation to the biologi-
cal meaning inferred from the examples presented here.
In the online Supplementary Material, we consider mea-
surement error (Appendix SA), then we give more details
on the possible parametrizations of the OU process’s drift
matrix, Appendix SB, and in Appendix SC, and Appendix
SD, we detail the setup and results of our simulation-
reestimation studies. Finally, in Appendices SE and SF,
we report parameter estimates and other summary statis-
tics from the ungulates and Ferula analyses. Included in
mvSLOUCH’s vignette is another exemplary analysis on
locomotion and forelimb morphology in carnivorans.

ON THE UsE oF AIC. IN MODEL SELECTION

It is important, especially for the applied reader,
who wants to use these tools for making statements
concerning empirical data, to know that information
criteria (or in fact any statistical tool) can only reveal
relationships between the models/hypotheses from a
predefined set. If the correct model/hypothesis is not in
this set (i.e., the user did not take it into consideration),
then information criteria could point to models that are
overparametrized (overfit). Examples of such situations
could be errors in the phylogeny (topology or branch
lengths), assumptions of homogeneity of the evolu-
tionary process or incorrectly mapped shifts in param-
eters on the tree, and incorrect assumptions concerning
structures of matrix parameters of the models. These
issues stem from general principles of statistical infer-
ence and manifest in any study in any field that uses
model selection. The only way that users may guard
themselves against these issues is to carefully define
the set of plausible hypotheses (according to subject
matter knowledge) and to include both a simple “null”
and a fully parameterized model in this set. Finally,
information criteria rankings should not be treated as
absolute truths. Rather they should be treated as guides
to what level of information is contained in the data.
Alternative models should also be looked at and their
plausibility should be interpreted in light of the implied
biological mechanisms. If information criteria point to
the simplest, “null” model, then this could mean that
there is too little information in the data for estimating
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parameters. On the other hand, the choice of the fully
parametrized model could suggest that the “truest”
model is not in the considered set of hypotheses. The
estimated values under the fully parametrized model
could be of some guidance. For example, if some esti-
mated values are close to 0 or values for some levels of a
parameter are very similar, then perhaps a model with,
e.g. these values set to 0 or with these levels lumped
together would be better supported by information cri-
teria, and be more interpretable.

In our work here, we focus on the AIC, as it takes into
account the number of observations. PCM studies often
suffer from small samples, and also phylogenetically
induced dependencies result in less independent data
points than observed species (Bartoszek 2016), hence,
giving some benefit of the doubt to more complex
models could lead to consideration of more plausible
hypotheses. One could also do model selection by, e.g.,
AIC or B(ayesian)IC; however, Bartoszek (2016) dis-
cussed that (unless the sample was very small) it is the
likelihood that outweighed the “correction component”
in the AIC., hence one should expect similar conclu-
sions to be reached by alternative information criteria.
However, we emphasize that there is no agreement in
the literature on what is the most appropriate criterion
for model selection and that bias toward more complex
models has been observed in the literature, e.g., Ho and
Ané (2014a) report that AIC and BIC tend to favor com-
plex, with many shifts, scenarios of ancestral mappings
of selective optima (levels of 6 in Eq. (1)). We do not
consider reaching decisions based on R? values, nor
likelihood ratio tests, the latter assume nested hypoth-
eses, something that in general will not hold for the
whole family of considered models.

MODEL SELECTION FOR THE MULTIVARIATE ORNSTEIN—
UHLENBECK PROCESs IN MvSLOUCH

The multivariate Ornstein—Uhlenbeck process

The multivariate Ornstein—-Uhlenbeck process
describes the evolution of a k-dimensional suite of traits
i € RF over a period of time through the following sto-
chastic differential equation

dij(t) = —A (F(1) = 0(1)) dt + Dy dW (1), (1)

where W(t) is a k-dimensional standard Wiener pro-
cess, A € Rk 9(t) € R¥, and X, € R**. Setting A = 0
reduces the model to a BM one. The OU process is a nor-
mal process, hence the joint distribution of all the traits
on the phylogeny will be normal. From the biological
perspective, the A matrix represents rates of adaption
(if all its eigenvalues have positive real part) of trait
values towards optimum values, 6 (t) the primary opti-
mum (sensu Hansen 1997) trait values at time ¢, whereas
W (t) and X, represent the non-directed stochastic per-
turbations caused by unconsidered selective factors,
environmental fluctuations or constraints due to, for

example, developmental correlations. In addition, g (t)
can take the form of a step function representing fixed
selective regimes painted on phylogeny. The A matrix
generalizes the “« parameter” of a one-dimensional
OU process (e.g., Hansen 1997; Butler and King 2004)
to the multivariate case. In the single-trait case, only
the rate of adaptation was present but, in the multi-trait
case, we need to include the interactions between the
traits on their path to their primary optimum, and these
interactions are described in A’s eigenvectors.

The possibility to work with a wide class of A matrices
and to be able to impose various restrictions is highly rel-
evant for evolutionary studies based on the OU process.
Different setups (e.g., diagonal, symmetric positive defi-
nite, upper, lower triangular) will have different biological
interpretations concerning causation (i.e, selective covari-
ance patterns, see Bartoszek et al. 2012; Reitan et al. 2012).
To correctly interpret the various parameterizations of A
and X,,, one important distinction must be made: evolu-
tion and adaptation cannot be treated synonymously. The
observed selection can be either direct, when it is caus-
ally related to the trait under study, or indirect, when it
acts through other correlated traits. The trait, indirectly
affected by selection, evolves, but not adaptively. Taking
into account this remark, the general interpretational
framework for OU models (with all eigenvalues of A hav-
ing positive real part) here can be as follows:

(a) diagonal A and diagonal X, —traits evolve inde-
pendently, for example as belonging to different
developmental modules,

(b) diagonal A and non-diagonal X,,—traits are
related through the X,, matrix indicating cor-
related evolution due to, for example, devel-
opmental constraints or covariation with other
unmeasured traits under selection,

(c) non-diagonal A and diagonal X,,—traits evolve
adaptively and they may serve as primary optima
for each other; here, for example, a symmetric A
may indicate trait-trait adaptive co-evolution.

(d) non-diagonal A and non-diagonal X,,—in this
scenario, there is a combination of non-adaptive
and adaptive trait evolution; here, the interpreta-
tion depends strongly on the tested hypothesis,
see “Example analysis 2”.

Singular, det(A) =0, matrices will have a very
specific meaning—some linear combination of traits
evolves as a Brownian motion, and there is no tendency
to move towards an optimum along some directions in
the trait space. Ancestral effects, in this case, do not dis-
appear with time, leading to non-adaptive evolution (in
some directions). After the original Brownian motion
process, the model implemented in the slouch package
(Hansen et al. 2008) and then generalized to the mul-
tivariate setting by Bartoszek et al. (2012) are the first
allowing for such a singularity,

dj(t) = —A(F: — (Y(t) + QX(t)))dt + 2y, dW, (1)
dX(t) = S dW,(t), 2)
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V_Vy(t) and W,(t) are independent multivariate Wiener
processes. We can see that, in the language of Eq. (1),
we will have

Agrq2) —AgQ| -~ b (t)
Agq 1) = {0 0 ,0(t) = K
Eq.(2)
sEa() _ Sy 0 _
" o xh@

Model Selection Strategies

Given the plethora of possible models to consider in
mvSLOUCH, a methodological approach is necessary to
choose the model best supported by the data. The statisti-
cally sound approach is to first design a collection of mod-
els informed by biologically plausible hypotheses. They
are expressed in the mvSLOUCH framework as appro-
priate parametrizations of the A and X,, matrices, fur-
thermore enhanced by the possibility to fix specific entries
of these and other parameters to a user provided value.
For each provided setup, maximum likelihood estimation
by mvSLOUCH, through the underlying PCMBase com-
putational engine, is performed. Then, the best supported
model according to the desired criterion is chosen.

The simplest pair of hypotheses to test statistically
is whether the traits evolve as a Brownian motion
(Agq.(1) = 0) or not (Agq 1) # 0). This tests whether the
traits are randomly dif?using through time (due to both
neutral processes as well as numerous, small unmea-
sured selective forces acting in different directions) or
adapting (if Agq (1) s eigenvalues all have positive real
part) to some deterministic optimum. However, there
are more complex setups to test, if we look at Eq. (1)
then, as already discussed in the bullet points following
the equation, imposing different structures on A and X,
will lead to different adaptive hypotheses, described in
Appendix SB. One has to remember that a wrong model
can be chosen due to the effect sizes of parameters. For
example, sometimes a BM model could be favored over
a true OU process, if the latter has close to 0 values in
Agq.(1)- Looking at the half-lives (t;,, = In2/\;, where \;
is an eigenvalue of A, see also Bartoszek et al. (2012), of
an OU process will tell us if we should expect adaptive
effects over our observed time-scale, tree height).

Once we have the values of the information criteria
for a collection of models representing our hypotheses,
comes the question whether we should only consider
the best supported model or look also into (some of) the
alternative ones. Burnham et al. (2011) write that plausible
models are included within a difference in AIC. values
up to 7 and implausible models will have an AIC, value
greater than about 14. When the difference in AIC, values
is between 7 and 14, then “evidence ... is inconclusive and
value judgments for hypotheses in this region are equiv-
ocal” (caption of Fig. 2 in Burnham et al. (2011)). It has to
be pointed out that Burnham et al. (2011) did not consider
phylogenetically structured data, hence their conclusions

should be treated as suggestions. The effects of a hierarchi-
cal correlation between data points on the AIC. still needs
to be explored and in effect rules of thumb still need to
be developed for PCMs (or more generally hierarchically
correlated data). We advocate that a user strikes a balance
between what the formal statistics says and what biolog-
ical intuition says. Instead of giving a single definitive
answer, the user should discuss the different possibilities
and their implications.

Therefore, there is an incentive to explore the impli-
cations of less supported models, but with relative AIC.
values not much larger than the best one. It is a ques-
tion of what is meant by “much larger” for a multivari-
ate PCM setting, as a definite study on this matter is yet
to be presented. Hence, rules of thumb intuitions, based
on a single response and independent data, have to be
cautiously generalized. Most importantly, when decid-
ing on a model’s plausibility, subject matter knowledge
needs to be taken into consideration. There need to be
other arguments supporting the consideration of the
best model and/or alternatives. In particular, this should
be strong domain-specific knowledge that indicates
underlying mechanisms and understanding of the mod-
els. One has to very carefully balance what the data is
saying and what we know /suspect prior to the study;
automatized decisions either way are not the optimal
approach. One should look at the estimated parameter
values themselves, their “effect size” and if they are of
sensible magnitudes. Extreme values, e.g., nearly 0,
could indicate that alternative models, where the par-
ticular parameter is, e.g., not present, could be better
supported by the data. Having decided on a set of plau-
sible models, one can perform a simulation study, as we
did in our “Example analysis 2” to see if it is possible
to distinguish between them. Afterward, the conclusions
about the system should be presented in the light of the
accepted models, what they agree and disagree on, and
what models are distinguishable. We cannot forget that
all conclusions are relative to the set of models consid-
ered by us (each one corresponding to some hypothesis).
It could very well be that a model (hypothesis) outside
the considered set would fit (be supported) better to (by)
the data, i.e., models can be wrong but some will be more
wrong than others. In summary “hard thinking” (p. 29
Burnham et al. 2011) is required for comparing between
models so that “analysts make an informed choice from
all available strategies, employing each in contexts where
they are most informative.” (Steidl 2006).

Model Selection Efficiency and Quality of Parameter
Estimates

Here we perform an extensive simulation study to
investigate how well thenew mvSLOUCH packageis able
to perform model selection. The tree is simulated as a pure
birth tree using TreeSim::sim.bd.taxa() (Stadler 2009, 2011)
foranumber oftips,n = 32,64,128,256,512,1024,2048. For
comparison between all the simulations, all the phyloge-
nies are rescaled to height 1. Four dimensional trait data is
simulated under BM, OUOU (no traits evolve marginally
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as BMs, A in Eq. (1) is non-singular) and OUBM (some
traits evolve marginally as BMs, Eq. 2) models and are then
recovered under various assumptions. AIC. was used to
distinguish among the various models. The simulation-re-
estimation setups considered are presented in Appendix
SC. Under the OUBM models, the estimation procedure
is such that the compound, in terms of Eq. (2)’s formula-
tion parameter, B = —Ag, (2)Q is estimated directly in the
numerical optimization of the likelihood. In the old, slow
version of mvSLOUCH, this parameter was estimated via
aniterated GLS, but after experimenting we found that this
approach’s performance was much poorer both in terms of
model selection ability and parameter recovery.

In Table S.2 in Appendix SC, we present how
mvSLOUCH is able to select the correct model.
For small trees (32, 64 tips), there is some bias of the
OUOUs2 model (non-diagonal A, diagonal X,,, see
Table S.1 for definition of model abbreviations) towards
simpler models, like BM or OUBM. However, we also
noted another type of bias. For all tree sizes, the sim-
pler OUOUsl model (diagonal A, diagonal X,,) is
always preferred over the more complicated OUOUSs2
model. The OUBM models perform much better with
respect to distinguishing between competing hypothe-
ses. For small trees, the simpler OUBMsl1 (diagonal A,
diagonal X,,) model is preferred over the more com-
plex OUBMs2 (non-diagonal A, diagonal X,,) one. As
the tree size grows, this preference diminishes. Model
selection under the OUBM model is not perfect, but
one can observe that the tendency is toward the correct
model. On a coarser classification, BM versus OUOU
versus OUBM, no problems are noticed. Even for the
smallest setup, 32 tips, models are correctly classified.
Sometimes a BM can be misclassified as an OUBM but
the chances of this decrease with the number of tips.

Following the generally optimistic results concern-
ing mvSLOUCH's model selection abilities, we take a
more detailed look into how well it can recover model
parameters and certain important compound parame-
ters. Recovery of parameters of a phylogenetic OUOU
process is known to be a difficult problem. Cressler et
al. (2015) and Ho and Ané (2014a) considered the one
dimensional phylogenetic OU process, whereas Pienaar
et al. (2008) and Bartoszek et al. (2012) analyzed the
phylogenetic OUBM process. To evaluate the quality of
parameter estimates, the following error formulae were
introduced

~ T ~
Euclidean estimation error = \/ (¥ — X) (¥ —X), (3)
and
~T A~
-3 (¥-%)
Relative estimation error = = ,
XTx 4

where X and X are, respectively, the vectorized ver-
sion of the true value of the given parameter and its
estimate. The Euclidean distance is for the case when
the parameters to be estimated equal 0, these are the
ancestral states and deterministic optimum values. For

matrix or vector parameters, we do not compare entry
by entry, but jointly over all positions. Through such
an approach, we obtain the possibility to look at the
matrix/vector parameter as a whole and not entry by
entry, which could miss potential interactions between
estimates. This could be especially relevant when the
given matrix is parametrized through a decomposition
(e.g., when it is assumed to be eigendecomposable with
real positive eigenvalues). The optimization is over the
eigenvalues and eigenvectors and hence one cannot
expect to have independence between the estimates of
the actual matrix entries. In Figs. S.1-5.9, we present
boxplots for different values of the number of tips, n,
for the most relevant parameters for the given models.
These include the ancestral state (all models), the deter-
ministic part of the primary optimum (OUOU, OUBM),
3,y (all models), X, (OUBM), X (all models), A with
eigenvalues and half-lives (OUOU, OUBM), Q (OUBM),
evolutionary and optimal regressions (OUBM), trait
regressions and limiting (long-term) trait regressions
(OUOU), and between traits correlation and stationary
correlation matrices (OUOUs2 and OUBM).

We can see that for all setups and parameters with
n the error either decreases or tends to stabilize. No
systematic increase of error with n is observed. For the
BM model, the diffusion matrix seems well estimable,
whereas the ancestral state’s error does not decrease (in
line with the observation that it cannot be consistently
estimated, Ané 2008; Sagitov and Bartoszek 2012). For
the OUOU model, we can see that estimation is much
better in the OUOUsL case, i.e., the traits are indepen-
dent. Error in A’s estimation decreases with sample
size. When moving to the OUOUs2 case—traits depen-
dent through a non-diagonal A—there are many more
outliers with large estimation error in A (and also its
eigenvalues and half-lives). The diffusion parameters
(24, %) and deterministic optimum (¢) are much bet-
ter estimated. Parameters that depend on both the drift
and diffusion (regressions and correlations) exhibit the
same sort of outliers that the estimator of A does. In
the OUBM models’ case, we can see similar behavior,
diffusion parameters are well estimated, the drift ones
are more difficult. However, Q seems to be well esti-
mated—error surely decreasing with .

However, we can also observe another trend. As
the number of tips of the tree increases, errors in esti-
mation procedures become more common (Table S.4),
especially for the Brownian motion model which has
closed form formulee. We take a deeper look at this in
our “Example analysis 2,” where this becomes more
dramatic and clear.

ExAMPLE ANALYSES

Example Analysis 1: Feeding Styles and Oral Morphology
in Ungulates

Hypsodonty is a classical feature linked to the study
of feeding adaptations in mammals (e.g., Van Valen
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1960; MacFadden 1992; Stromberg 2006). It essentially
corresponds to a measure of relative crown height that
reflects the capabilities of the tooth to wear longer for
processing abrasive material such as grasses with high
silicophytolith contents, or soil and grit that can be
ingested during feeding (Mendoza et al. 2002; Damuth
and Janis 2011; Jardine et al. 2012). Here we show the
advantages of studying this classical feature under the
capabilities offered by mvSLOUCH.

The first, most obvious, advantage is the possibil-
ity of testing the adaptive significance of hypsodonty
in a comparative framework consistent with the pro-
cess of natural selection. When introducing the model
of adaptive evolution that we extend here, Hansen
(1997) showed that the comparative study of hypsod-
onty should not be limited to a statistical correction due
to phylogeny (Pérez-Barberia and Gordon 2001) but
rather used to account for the selective history of spe-
cies to estimate current adaptation. In this seminal OU
formulation, Hansen (1997) specified a selective regime
by mapping the emergence of a new primary optimum
in the equid tree, distinguishing browsing and grazing
niches. Further extensions allowed for not only speci-
fying more complex regimes but also for comparing
their adaptive significance through information criteria
(Butler and King 2004), as currently implemented by
mvSLOUCH. This setup allows us to compare brows-
ers and grazers with another niche: the mixed feed-
ers, ie., those ungulates that both browse and graze
(Mendoza et al. 2006; Mendoza and Palmqvist 2008;
Damuth and Janis 2011). The character assignation of
these three feeding styles was based on Pérez—Barberia
and Gordon (2001) for the present example.

mvSLOUCH also offers the possibility of studying
hypsodonty without the need for computing ratios. To
study trends in molar crown height free of the effects
of general body size, hypsodonty has often been stud-
ied as a ratio (the hypsodonty index), typically divid-
ing the crown height by some other linear variable
(Van Valen 1960; Janis 1988; Mendoza and Palmqvist
2008). However, ratios have been criticized for their
poor distributional properties and limited useful-
ness as size-adjusted variables (Reist 1985; Albrecht
et al. 1993; Mendoza et al. 2002), whereas regression
techniques have been recommended for scaling pur-
poses (Packard and Boardman 1999; Garcia-Berthou
2001; Freckleton 2002). In the context of this exam-
ple, a regression setup implies using crown height
(a numerator of the hypsodonty index) as a response
variable with molar width (a denominator of the hyp-
sodonty index) as a continuous covariate (an explan-
atory variable). The specification of a continuous
predictor under the adaptation-inertia framework is
not as simple as under a regular regression, however,
because it requires information on both the present
trait values (at the tips) as well as their past history
(across the tree). The first way of dealing with this
problem was to assign fixed covariate values directly
on tree branches (Hansen 1997). A more elaborate
and flexible solution, as explained above, models the

covariate as a Brownian motion (OUBM model) or
Ornstein—Uhlenbeck (OUOU model) process, with-
out fixing trait values on tree branches (Hansen et al.
2008; Bartoszek et al. 2012). These models (OUBM and
OUOU) can be contrasted under the new version of
mvSLOUCH with an alternative in which the traits
do not evolve toward an optimum (BM). This compar-
ison was conducted for ungulates using the unworn
lower third molar crown height (HM3, measured from
the base of the crown to the tip of the protoconid)
and width (WM3;, measured at the occlusal surface,
between the outer aspects of the protoconid and the
entoconid) data presented by Mendoza et al. (2002).
We used logarithmically transformed variables (orig-
inally measured in cm) for data analysis (Pérez-
Barberia and Gordon 2001).

A final advantage, which lies at the core of
mvSLOUCH, is its multivariate nature. This is espe-
cially true for a structure such as the skull, which can be
subject to multiple, often conflicting, selective pressures
(Porto et al. 2009; Damuth and Janis 2011; Toljagic et al.
2018). The ungulate feeding apparatus in particular can
be seen as reflecting the requirements for either pro-
cessing or selectivity of food (Gordon and Illius 1988;
Janis and Ehrhardt 1988; Pérez—Barberia and Gordon
2001). Hypsodonty optimizes the former by increasing
chewing effectiveness, ensuring that the animal can
process food fast enough to meet its energy demands
(Pérez—Barberia and Gordon 1988a). A narrow focus
on hypsodonty can, however, clarify the role of molar
teeth in food comminution whereas the implications of
changes in oral morphology for food selectivity remain
unexplored (Gordon and Illius 1988). We explore these
implications here by specifying a bivariate model in
which a variable informative of food selection is used
as a response along with crown height. We use muz-
zle width (MZW, measured at the outer junction of
the boundary between the maxilla and premaxilla)
where narrower muzzles facilitate greater selectivity in
food foraging (Janis and Ehrhardt 1988; Mendoza and
Palmqvist 2008). As with the tooth variables, muzzle
width (originally measured in cm) was obtained from
Mendoza et al. (2002), and was logarithmically trans-
formed for data analysis.

We used the mammalian tree presented by Hedges et
al. (2015) after pruning it to only include the 104 ungu-
late species for which we had phenotypic data avail-
able (i.e., for which we had complete information of
all the variables at the species level). This tree resulted
from a synthesis of studies in molecular evolution and
phylogenetics that incorporated a time calibration com-
ponent (Hedges et al. 2006; Hedges and Kumar 2009).
Diet was assigned as an adaptive regime by ancestral
state reconstruction under stochastic character map-
ping (Nielsen 2002; Nielsen and Bollback 2003; Bollback
2006), as implemented in the phytools R package
(Revell 2012), after identifying the best supported tran-
sition rate model (equal rates, symmetric backward and
forward rates, all-rates-different). As explained above,
the full regime specification (OUg) included three diets

20z Aenuer g uo Jasn AjIsiaAlun |euoneulaiu] eplo|d4 Aq 1.822969/S/22/2/2 . /a191e/01qsAs/wod dno-olwapede//:sdiy woly papeojumoq



2023

BARTOSZEK ET AL.—MODEL SELECTION PERFORMANCE IN PHYLOGE-NETIC COMPARATIVE METHODS

281

(browsers, grazers, and mixed feeders). Considering the
possibility that the craniodental variables may respond
to simpler selective regimes, we specified two binary
alternatives by lumping mixed feeders with either
browsers (OUg) or grazers (OUg). We also ran analyses
under a single regime for the entire tree for compari-
son (OUj), which would be an indication that diet has
little adaptive significance for the morphological traits
under consideration. The compiled dataset (phenotypic
data and phylogenetic tree) and analysis scripts can be
found in the accompanying GitHub repository.

For each of these regime specifications, we conducted
a comprehensive model comparison under the new
wrapper function of mvSLOUCH, which runs a series
of multivariate models (BM, OUBM, OUOU) under
different specifications of the underlying parameters.
For the OUOU and OUBM models, we ran each setup
five times from different starting points (however, we
would encourage users to try more starting points as
we do in “Example analysis 2”). The model setups

consisted of all possible combinations of predefined A
(diagonal, upper or lower triangular, and decompos-
able with positive or real eigenvalues) and X, (diago-
nal and upper triangular) classes (with the diagonal of
A always specified to be positive). Model support was
assessed through AIC, with a difference larger than two
units providing support to the candidate with lower
value (Burnham and Anderson 2004).

We found that for all regime specifications (OUF,
OUg, OUg, and OUy), including those based on the evo-
lutionary history of diet (Fig. 1), OUOU was preferred
with a model setup consisting of diagonal A and upper
triangular X,,. Given that diagonal A OUOU models
deserve some caution (see “Model selection efficiency
and quality of parameter estimates”), we also explored
the best alternative candidates for comparison. The
best alternatives, for all the regime specifications, were
OUOU models with upper triangular %,, and non-di-
agonal A. However, both lower and upper triangular A
matrices were equally supported in all cases, providing
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Ungulate phylogeny with feeding preferences (B = browser; G = grazer; and M = mixed feeder) reconstructed under 500 stochastic

character mappings with a symmetric transition matrix (Appendix SE1). Character state transitions were assigned to those branches where the
highest posterior probability shifted from one diet category to another. Branch lengths are scaled and thus informative of relative time (scale
provided at the bottom left). Full species names are provided in a higher resolution color phylogeny in Fig. S.19 in Appendix SE1.
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no clear preference for any alternative model (see Table
5.9 in Appendix SE2). This lack of consistency, combined
with the lower support for these alternative models (all
of them were more than four AIC, units higher than the
preferred models), suggest that the off-diagonals of A
are not highlighting any relevant trend in the data. As
a result, the diagonal A parametrization, rather than
a statistical artifact linked to bias, can be considered
appropriate for this dataset. There is substantial sup-
port for models describing feeding adaptations, partic-
ularly the full regime specification (Table 1). This result
holds true for both the best (diagonal A) and alterna-
tive (non-diagonal A) candidates of the model set (see
Table S.9 in Appendix SE2), providing stronger support
for the full regime hypothesis. The preferred model
highlighted a positive association between the mor-
phological variables (Table 2), with browsers showing
the lowest primary optima in all cases, and grazers the
highest (Fig. 2). The optima can be more clearly differ-
entiated for crown height and muzzle width, especially
the former, with browsers showing distinguishably
lower primary optima. This explains why the regime
that keeps this feeding style in a separate niche (OUj)
is much closer in support to the preferred model (OUg,
AAIC. = 3.66) than the alternative lumped regime
(OUg, AAIC, = 23.62). It needs to be pointed out that
for reproducibility the analyses were run with a specific
random seed set.

All things considered, the preference for a full regime
specification (OUg) for the ungulate dataset reflects
the adaptive significance of feeding style on oral mor-
phology. The only alternative plausible hypothesis
(AAIC. < 4) is the regime distinguishing browsers

TaBLe 1 Comparison of the best candidates under each model
type showing statistics of model support (AIC. and R?) and phylo-
genetic half-lives (reported as percentage of tree height in the eigen-
vector directions, ). The full regime specification (OUf) is the best
supported model with lowest AIC. and highest R% Other parameter
estimates for these models are shown in Appendix SE3.

Half-lives (%)
Model AICC R2 51 Ez E3
BM 96.65 0.07 - - -
ouU, 91.59 0.01 34.25 36.05 189.11
OUr 57.52 0.19 23.28 31.13 38.92
OUg 81.14 0.07 26.76 33.57 69.25
OUg 61.18 0.15 29.15 35.26 47.70

TaBLE 2 Observed correlations between traits and evolutionary
regression coefficients with 95% parametric bootstrap (1000 bootstrap
replicates) confidence intervals (CI, within parenthesis), which in all
cases are significantly positive (intervals exclude zero). However,
the correlation between the responses (HM3 and MZW) conditional
on the covariate (WM3;) is weaker (0.24) and non-significant (CI
—0.04,0.655).

Trait Correlations
MZW

Regression
WM;

WM;

HM;  0.64 (0.009,0.749) 0.65 (0.003,0.748) 0.73 (0.003,1.003)
MZW — —— 0.81 (0.007,0.871) 0.9 (0.007, 1.374)

from the rest (OUg), which still reflects the importance
of diet as a selective factor. Importantly, a closer inspec-
tion of the optima shows that browsers exhibit a consis-
tent trend across models (Table S.13) and that, despite
less differentiated, grazers and mixed feeders constitute
distinctive niches (Fig. 2). From this comprehensive
point of view, the plausible support for OUp (Burnham
et al. 2011) does not preclude the relevance of mixed
feeders and grazers as separate niches, but highlights
the resemblance of their oral morphologies relative to
browsers. The strong support for the OUOU model
highlights the role of stabilizing selection on each of
the variables considered. Despite the large influence
of selection on the pattern, adaptation is not instan-
taneous, with all half-lives surpassing 20% of total
tree height. This confirms slow evolution that might
result from morphological constraints acting on ungu-
late craniodental attributes (Janis and Ehrhardt 1988;
Damuth and Janis 2011; Toljagi¢ et al. 2018).

Given that the data set is influenced by the effects of
both adaptation and inertia, neither approaches ignor-
ing phylogeny nor those that simply assume that phy-
logenetic inertia is present (such as BM) are appropriate
for analyzing it (Table 1). For example, Pérez—Barberia
and Gordon (2001) analyzed differences in body size
and oral morphology between ungulates with differ-
ent feeding styles, using comparative methods focused
on controlling for phylogenetic effects. Muzzle width
(as well as other oral traits) showed differences when
phylogeny was ignored, whereas only hypsodonty
attributes and body mass showed differences when
comparative methods were used. It is not surprising
that the feeding associations hinted by the non-phylo-
genetic analyses were deemed non-existent by the com-
parative methods, given that approaches focused on
controlling for phylogeny can remove the adaptive sig-
nal of patterns in which the traits and the environment
share some history (Hansen 2014). Hypsodonty might
have been an exception due to a strong association with
feeding styles, which makes sense considering how
well crown height differentiates feeding optima (Fig. 2).
Nevertheless, they concluded that feeding adaptations
for most oral traits (including muzzle width) were sub-
sumed by the effects of body mass and shared ancestry.

Our results suggest, however, that scaling effects
and shared ancestry in ungulates are not inconsistent
with feeding adaptations in oral morphology. All traits
covary positively (Table 2) with optima that exhibit a
similar trend (Fig. 2) possibly reflecting scaling effects.
The conditional correlation of crown height and muz-
zle width is weaker than the general correlations (Table
2) suggesting that, as expected for dental measures,
the explanatory variable can work effectively as a scal-
ing factor (Gordon and Illius 1988; Shipley et al. 1994;
Damuth and Janis 2011). Under the preferred OUOU
model, an adaptive pattern dominated by the scaling
factor would be corroborated through a non-diagonal
A (in particular, an upper triangular matrix with vari-
ables ordered as in Appendix SE3, Table S.11). And yet,
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FIGURE 2. Optima (with 95% ClIs estimated by GLS conditional on A and diffusion matrix parameters) for lower third molar crown height
(HM3), muzzle width (MZW), and lower third molar crown width (WM3) under the best supported model (after logarithmic transformation).
This model corresponds to an OUOU with three feeding strategies specified as selective regime (B = browser; M = mixed feeder; G = grazer).
Note that the only feeding style showing no overlap in CI is browsing under HM3. Nevertheless, the optimum estimates of both grazers and
mixed feeders are excluded from each other’s CI except for WM3 (where no optimum estimate is clearly differentiated), indicating that they
are differentiable, albeit not as distinctively as browsers. For numerical outputs, as well as estimates under other models, see Appendix SE3.

the preferred model has a diagonal A matrix, suggest-
ing that all traits are adapting independently to feeding
preferences. This result is more consistent with the idea
of allometric patterns arising from natural selection on
more than one trait (Lande 1979), than with the idea of
feeding adaptations subsumed by the effects of body
size (Pérez-Barberia and Gordon 2001).

In our results, where general phylogenetic effects are
not removed from the adaptive pattern, both crown
height and muzzle width are important components of
feeding preferences in ungulates (Janis 1988; Janis and
Ehrhardt 1988; Mendoza and Palmqvist 2008). Feeding
differences obtained from crown height alone would
downplay the interspecific relevance of food selection
(linked to muzzle width) compared with food process-
ing (Pérez-Barberia and Gordon 2001). Also, because
hypsodonty is not strictly associated with obligate
grazing, focusing on relative crown height alone sug-
gests that the evolution of oral morphology in ungu-
lates involves adaptations for broadening the feeding
niche (Feranec 2003). That both traits adapt to primary
optima, however, is more indicative of a functional
trade-off reflected by a consistent opposing trend in the
distribution of oral trait optima across feeding types
(Fig. 2). Hypsodonty is particularly advantageous
when exhibiting a broad multiridged surface that facil-
itates processing flat blades of grass during mastica-
tion (Pérez—Barberia and Gordon 1988a, 1988b). But a
relatively flat occlusal surface is not advantageous for

cutting material of different physical properties (e.g.,
dicotyledonous leaves or twigs), and then suboptimal
for browsing (Damuth and Janis 2011). Similarly, a
broad muzzle is advantageous for grazers by enabling
them to take large bites of food that is usually of low
nutritional value (i.e., grass), and therefore requires a
high intake rate for meeting energy demands (Janis
1988; Janis and Ehrhardt 1988; Feranec 2003). It is not
so advantageous, however, for animals such as brows-
ers that benefit from picking out certain plants or plant
parts, as well as reaching areas concealed by struc-
tures such as thorns and spines (Gordon and Illius
1988; Janis and Ehrhardt 1988; Mendoza and Palmqvist
2008). Therefore, the attributes exhibited by browsers
that optimize food selection (small size, low-crowned
teeth, narrow muzzles) can be seen as traits maintained
by stabilizing selection (Hansen 1997) that are no less
adaptive than the attributes that optimize food pro-
cessing (Feranec 2003). The latter (i.e., attributes opti-
mizing food processing), exhibited by grazers, follow
exactly the opposite trend (large size, high-crowned
teeth, broad muzzles) reflecting conflicting functional
demands that result in well-adapted forms for each
feeding type (Gordon and Illius 1988; Damuth and Janis
2011). The mixed feeders show intermediate optima for
all traits making them, more than transitional grazers,
forms that optimize both functions (Fig. 2: CI overlap
in crown height with grazers and in muzzle width with
browsers, even when browsers and grazers themselves
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show no overlap in either trait) without specializing for
either. Given that mixed feeders experience resource
fluctuations over the seasons (Gordon and Illius 1988;
Mendoza et al. 2006; Damuth and Janis 2011), special-
ization in either way (processing or selectivity) could
be disadvantageous for this feeding style. As explained
earlier, however, our results show a stronger resem-
blance between mixed feeders and grazers, suggesting
that the oral morphology of the former is better adapted
to intake rate than to food selection.

Example Analysis 2: Fruit Evolution in Ferula (Apiaceae)

Seed size is a trait that has been known to affect mul-
tiple aspects of plant ecological strategies (Moles 2018).
Selection for a particular seed size often requires the
coordinated evolution of seed or fruit traits facilitat-
ing a particular ecological strategy. For example, the
intensity of seed predation may increase with changes
in seed size driving selection for higher investment in
seed or fruit defensive traits (Fricke and Wright 2016).
Similarly, there is a strong allometric relationship
between seed/fruit size, area, shape as well as mass of
dispersal appendages such as wings, pappus or kapok
that directly influence terminal velocity (Niklas 1994;
Greene and Quesada 2005). In extreme cases, when
seed size exceeds a certain threshold, the mode of
seed dispersal may change, triggering the evolution of
novel seed dispersal appendages. Anemochory (wind
dispersal), for instance, is almost invariably limited to
cases where the seed mass is less than approximately
1 g, whereas zoochory (animal dispersal) characterizes
large-seeded species (Tackenberg et al. 2003; Greene
and Quesada 2005). These observations have led many
authors to conclude that the structural properties of
fruit and seed are subject to strong selective pressures
and have been shaped by a trade-off among three
primary functions: seed provision, seed protection,
and seed dispersal. However, the evolutionary conse-
quences of this statement concerning changes in fruit
and seed structure have not been tested in a phyloge-
netic framework.

To test the evolutionary consequences of potentially
conflicting selection pressures on three primary func-
tions (dispersal, protection, and provision) of seeds, we
examine fruit variation in the umbellifer species-rich
genus Ferula (including Dorema and Leutea, Kurzyna-
Mtynik et al. 2008). In Apiaceae, the fruits are dry
schizocarps and the dispersal units are single-seeded
mericarps. The mericarp is usually tightly connated
with the seed taking over the protective role of the seed
coat and determining the mode of dispersal. The fruit
anatomy in the family is structured according to a com-
mon plan (Fig. 5.20), although a wide array of modifi-
cations can be encountered (Wojewddzka et al. 2019).
In the genus Ferula, fruits are dorsally compressed with
marginal ribs developed into wings suggesting wind as
a main dispersal agent (Fig. 5.20). The degree of wing
development varies among species indicating poten-
tial correlation with fruit size (Fig. S.20). Protective

characters, such as the periderm (fruit wall) thickness
and the number and arrangement of oil ducts (vallec-
ular vittae), also change considerably among species
making the genus Ferula an interesting model system
for studying fruit evolution. For the purpose of this
study, we measured five characters on fruits for Ferula
species. The periderm thickness and the proportion of
oil ducts covering the space between median and lateral
ribs were assigned to protective functions, wing thick-
ness, and wing area to dispersal functions, whereas fruit
mass was used as a proxy of seed provision (Fig. S.20).

The maximum likelihood phylogenetic tree (depos-
ited in the Supplementary Material) with 78 tips was
obtained from the recent molecular taxonomic revision
of the genus (Panahi et al. 2018) and dated using a sec-
ondary calibration point for the root based on Banasiak
et al.’s (2013) work with memctree (Yang 2007). Such a
small sample size is, to say the least, problematic con-
sidering the dimensionality of the models we want to
consider. However, our main aim here is to show the
modeling possibilities that mvSLOUCH has, i.e., that
one can declare a family of models that corresponds
to informed biological hypotheses. When analyzing
the results, we will be able to observe what issues can
arise given the sample size. For ease of reproduction,
the analyses were run with very specific random seeds.

We compared eight models with custom setups for
the A matrix reflecting various degrees of adaptive par-
cellation of three primary functions of fruits (Fig. 3).
These models may be assigned to the four categories
described below. Each model was run with %, set as
diagonal or as upper triangular, and with or without
the measurement error.

1. Functional allometry model (no. 1 in Fig. 3). Here,
fruit mass affects the primary optima of both
defensive and dispersal traits. This assumption is
congruent with the empirical evidence that seed
size, which directly influences offspring quality, is
usually the main target of selection, whereas the
remaining characters, representing other func-
tions, are allometrically related to mass. We also
assume that within the functional groups, the
traits are correlated, affecting each other’s optima.

2. Parcellation models (nos. 2—4) with various combi-
nations of parcellation of the three primary func-
tions. In model 2, fruit mass (a proxy for seed size)
affects only dispersal characters; in model 3, it acts
only on defensive traits, whereas in model 4, the
three primary functions do not alter each other’s
optima.

3. Developmental allometry models (nos. 5 and 6)
assume that all anatomical traits that measure
de facto different characteristics of the fruit wall
evolve together affecting each other’s optima,
whereas wing area evolves independently from
wing thickness. Seed provision affects wing area
model in 5 and fruit wall traits in model 6.

4. This category includes two extreme models, the
first with all traits evolving independently, i.e., the
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FIGURE 3. Left: The graphical representation of tested models. “The functional allometry model” is represented by model 1, “parcellation
models” by models 2, 3, and 4, whereas the developmental allometry models by models 5 and 6. In models 1, 2, 3, and 4, the functional
modules (dispersal: wing thickness and wing area, protection: periderm thickness and ratio of canals, and provision: fruit mass) are colored.
Traits within protective and dispersal modules affect each others optima (double-headed arrows). Fruit mass, on the other hand, affects traits
belonging to other modules (single-headed arrows). In the developmental allometry models, periderm traits are combined into one module.
Right: Classes of the Agq (1) matrix considered in the analyses of the Ferula data. Models 7, and 8 are described in Item 4. The numeric value, 0,
implies that the particular entry is constrained to be 0 in the estimation procedure and +, that it is constrained to be positive. Entries denoted
by 7 are free to vary over the whole real line, they are not constrained to be equal to each other in the matrix. The models are indicated by
the numbers to the left of the matrices. In model 8, the matrices A are constrained to be “DecomposablePositive.” The rows and columns in the
matrices correspond to ratio of canals (row/column 1), periderm thickness (2), wing area (3), wing thickness (4), and fruit mass (5).

matrix A was set as diagonal (model 7), and the
second with all traits affecting each other’s optima
(model 8). With these setups, we wanted to exam-
ine if there is a bias toward the simplest model as
suggested by simulations (see “Model selection
efficiency and quality of parameter estimates”)
or toward the most parameter-rich model as sug-
gested by Adams and Collyer (2018).

Because of the small sample size (up to 6 mericarp
measurements per species, but 16.7% and 55.1% species
had only 1 or 2 replicates respectively) that prevents
the reliable estimation of measurement variance for
each species (the square of standard error of the species
average), we assumed that the within-species variance
of each variable was identical for all species (see Ives et
al. 2007; Labra et al. 2009; Grabowski et al. 2016). This
assumption leads to estimation of the variance for each
variable as a sample-size-weighted average of the sam-
ple variances of each species, calculated according to
Eq. (S.1), by setting Zw, = s2,, where s2, is the sample
variance of species i.

Each model was run 1000 times starting from differ-
ent starting points obtained from preliminary analy-
ses in which A was set to “DecomposablePositive.” The

analyses were then sorted by the AIC. values and the
run with the smallest value was considered as the best
estimate of model parameters. We also performed a
simulation study (Appendix SD) to examine the ability
to distinguish between models by comparing the two
best models under our Ferula phylogeny, and then we
checked how the result would change as the number
of species grows. To do this, we simulated data accord-
ing to the BM, and two best found models on the Ferula
phylogeny and then on simulated pure-birth trees with
128, 512, 1024, and 2048 tips. For each model and tree
setup we simulated 100 datasets. Then, for each dataset
we re-estimated parameters under BM and the two best
found models. We considered setups with and without
measurement error.

Although in both sets of analyses of empirical data,
with and without measurement error, model 7 (matrix
A diagonal) was the best, according to AIC,, there was
a difference in the parameterization of X,,. Without
measurement error present, the best model was with
3,y upper triangular (traits correlated through noise),
whereas when measurement error was included,
the model with X, diagonal was favored (all traits
are independent). This implies different biological
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interpretations for the best models (see cases a and b in
“The multivariate Ornstein—-Uhlenbeck process”) and
shows that contrasting results are possible when differ-
ent sources of error are not considered in a study. Here,
we will examine in greater detail the results from anal-
yses with measurement error as its omission can lead to
errors in parameter estimation (Hansen and Bartoszek
2012). However, in addition to model 7, we will also
consider model 4 as a plausible one for three reasons.
First, it shows up as the second best model with an
AIC, value greater than the best model’s one by 9.115.
This difference places these models in the “inconclu-
sive region” (see discussion in “Model selection strat-
egies” concerning the work of Burnham et al. 2011).
Second, our previously introduced simulation study
(“Model selection efficiency and quality of parameter
estimates”) indicated a bias toward simpler models
with diagonal A. This argument also speaks in favor of
model 4. Lastly, there is strong domain-specific knowl-
edge in favor of model 4, it is one of the parcellation
models in which all three primary functions of the fruit
(i.e., protection, provision, and dispersion) evolve inde-
pendently from each other.

Our performed simulation showed that some model
pairs are distinguishable even with a small number
of tip taxa, whereas for others pairs this is difficult,
even with large trees. With some model pairs, e.g.,
4DmP/4UmP (we use the notation true/competing,
see Tabs. S.5 and S.6 for explanation of abbreviations)
there is consistent (but slow) improvement with sam-
ple size. In other cases, e.g.,, BMm, distinguishability
of the true model seems to decrease with the number
of tips. In Table S.7, we can see that numerical errors
become more and more evident with the increase in tree
size; however with measurement error included they
do not take place. Based on the model selection results
presented in Table 4, we care most about distinguish-
ing model 4U from 7U and 4Dm from 7Dm (in the 78
tips case). We can see that for the tree and measurement
error from the Ferula study, model 7 (the simpler one) is
easily identifiable, whereas model 4 is not (Table 3). As
the sample size increases, the misclassification rates for
model 4 decrease (albeit slowly), whereas for model 7
increase.

The AIC. values and simulation study results sug-
gest that models 4 and 7 with diagonal 3, are plausi-
ble choices. First, we look into model 7 with diagonal

3yy. This model implies independent evolution of all
measured traits irrespective of their functional module
affiliation. Because it does not describe any particular
adaptive hypothesis (no predictors), each trait evolves
around a single central state. In this case, the half-life
which is interpreted in adaptive scenarios as the time
to move half the distance from the ancestral state to the
optimum, can be taken as a measure of overall phylo-
genetic signal (Hansen 2012). The phylogenetic signal
in the trait can come from two different sources: phy-
logenetic inertia or from the distribution of predictor
variables on the phylogeny (Labra et al. 2009). Thus, a
model with a diagonal A and X, may serve as a null
model displaying the overall phylogenetic signal for
each trait. In model 7, although uncorrelated, the traits
responsible for fruit protection, i.e., the proportion of
oil ducts in periderm and periderm thickness, evolve
the quickest with respective half-lives of 1.32% and
5.08% given here as percentage of tree height in the
directions pointed by eigenvectors, which are the same
as the traits” directions as A is diagonal. Assuming that
the root height is approximately 4-5 Ma according to
molecular dating (Banasiak et al. 2013), the half-life con-
verts to 52-65 ka and 200-250 for each trait respectively.
Taking into account that all species of Ferula are long-
lived perennials, the phylogenetic effect here is weak as
it takes no more than several thousands of generations
to half the effect of the ancestral state. Dispersal traits,
on the other hand, evolve slower with wing area and
wing thickness having half-lives of 13.36% and 30.04%
of tree height, respectively. Fruit mass, the only trait
representing provision functionality, had a half-life of
15.45% of tree height.

In model 4, traits within functional modules co-evolve
adaptively enhancing their functional roles. However,
this relationship is not symmetrical. For example, in the
dispersal module, the slope of the evolutionary regres-
sion between wing area and wing thickness equals
—7.498, whereas the slope of the evolutionary regres-
sion in the opposite direction is —0.001. However, the
half-lives for this module indicated that only 0.09% of
tree height is necessary to move half the distance from
the ancestral state to the primary optimum in the case
of wing area (1% eigenvector of A, in which wing area
dominates, see Table 5), whereas over 2000% in the case
of wing thickness (5" eigenvector, where wing thick-
ness dominates, see Table 5). Although these estimates

TaBLE 3 Comparison of model identifiability concerning the two pairs of best competing model with measurement error: models 4 and 7
with diagonal X, This is a subtable from Table S.6. In the row names, we use the notation true/competing model. The D indicates that %, is
constrained to be diagonal, P that A’s diagonal is forced to be positive, and m that measurement error was included. Each fraction is the result
of successful 100 simulation-reestimation repeats. When n = 78, the tree is constant across all simulations, the same as the Ferula tree; the mea-
surement error is also identical to the one in the Ferula study. For greater n, the trees are simulated as pure birth trees and measurement error

variance is sampled according to Alg. S.1.

Number of tips
Model pair 78 128 256 512 1024 2048
4Dm/7Dm 0.05 0.19 0.37 0.41 0.43 0.5
4Dm P/7Dm P 0.06 0.28 0.28 0.44 0.42 0.53
7Dm/4Dm 0.96 0.78 0.68 0.63 0.57 0.59
7Dm P/4Dm P 0.95 0.75 0.71 0.63 0.54 0.47
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TaBLE 4 The best AIC, scores along with the log likelihood (Loglik) and R? values for eight models analysed with diagonal and upper
triangular 3, as well as with and without measurement error included. The best two models discussed in the main text were marked in bold.

Without measurement error

3%y diagonal 3%y, upper triangular

Model Loglik AIC, R? dof Loglik AIC, R? dof
1 —288.524 626.073 0.0019 23 —210.019 492.360 0.0019 33
2 —277.220 598.957 0.0021 21 —209.727 487.012 0.0019 31
3 —279.100 602.717 0.0023 21 —207.453 482.464 0.0024 31
4 —276.067 592.193 0.0018 19 —205.480 473.808 0.0022 29
5 —-255.185 557.134 0.0016 22 -207.125 484.182 0.0023 32
6 —285.483 622.267 0.002 24 —208.809 492.341 0.0021 34
7 -291.323 613.933 0.0016 15 —205.480 464.542 0.0022 25
8 —271.311 619.761 0.001 35 —203.637 509.344 0.0022 45

BM - - - -238.132 518.547 0.83 20

With measurement error
3y diagonal 3y upper triangular

Model Log-lik AIC, R2 dof Log-lik AIC, R2 dof
1 -1169.295 2387.614 0.0024 23 -1169.411 2411.144 0.0024 33
2 -1169.379 2383.275 0.0023 21 -1169.190 2405.938 0.0024 31
3 -1169.106 2382.730 0.0024 21 -1169.373 2406.303 0.0024 31
4 -1169.187 2378.434 0.0024 19 -1169.363 2401.573 0.0024 29
5 -1169.972 2384.709 0.0024 22 -1169.460 2408.852 0.0023 32
6 -1169.370 2390.038 0.0023 24 -1169.629 2413.982 0.0024 34
7 -1169.016 2369.319 0.0024 15 -1169.126 2391.833 0.0024 25
8 -1168.928 2407.855 0.0024 35 -1168.928 2439.925 0.0024 45

BM — — — — -1169.527 2381.337 0.95 20

should be treated with caution due to numerical prob-
lems (see above), the result suggests a much faster
adaptation of wing area than wing thickness. In the
protection module, we can observe a similar pattern of
slope differences—the proportion of oil ducts in perid-
erm had a stronger effect on periderm thickness than
vice versa (slope —0.257 vs. slope —0.07). In this case,
however, the half-lives are longer (12.09%) and simi-
lar based on the two eigenvectors dominated by load-
ings corresponding to traits from this module (3* and
4™ eigenvectors, see Table 5). Within both protection
and dispersal modules, we can observe negative rela-
tionships between traits” optima (negative correlation
coefficients), which may indicate trade-offs between
characters. The third, provision module, represented
here only by fruit mass, showed fast adaptation with
3.7% of tree height, which converts to 148-185 ka or
several thousands of generations. Notice, however, in
Table S.20 that in one case the parametric bootstrap con-
fidence intervals do not cover the estimated value of the
regression parameter shown here. This can be one of the
consequences of considering such a high-dimensional
model with so few observations.

An interesting result from the analyses is also an
observed high variation in the values of likelihood func-
tion between different runs of the same model. With
measurement error, the best model 7 with diagonal %,,,
had the log-likelihood varying from —1463 to —1169.016.
Even bigger differences among runs were obtained
for models without measurement error included. For
example, for model 7 with diagonal %, the log-like-
lihood varied from —1558198.186 to —291.323. This

serves as an important reminder that many repetitions
of the same model using different random seeds and
starting points are necessary to obtain the best possible
estimates of model parameters.

In the Section “Model selection efficiency and quality
of parameter estimates”, we noticed that there is a bias
towards simpler OU models in analyses. A diagonal A
model (model 7; Fig. 3) was found to be best by AIC,,
and in simulation results presented in Table 3 a similar
preference for simpler models, with small sample sizes,
is visible. However, as the number of tips increases,
model 4 becomes more identifiable, albeit very slowly.
On the other hand, with the increase of tips, model 7
becomes less identifiable. On A’s diagonal for both
models 4 and 7, we have large values (the trees are
always scaled to height 1), implying short half-lives/
rapid loss of ancestral signal/fast adaptation to the
optimum. Hence, as in both cases the tip sample will
be oscillating around the global optimum, additional
parameters (with a large sample) can lead to overfitting,
for which AIC, does not penalize sufficiently for.

If one looks in detail at Table S.6, one can see that
measurement error can have a profound effect on being
able to distinguish between models. When simulations
were done without it, the BM model is always correctly
identifiable. Models 4D and 7D are still hard to distin-
guish between each other. It is usually possible to dis-
tinguish between diagonal and upper triangular %,
matrices, especially with the Ferula tree. It seems also
possible to distinguish between models 4 and 7 assum-
ing an upper-triangular X,, matrix. However, what can
also be seen is that as the number of tips increases, there
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TaBLE5 Phylogenetic half-lives with parametric bootstrap (1000 bootstrap replicates) confidence intervals (CI) reported here as percentage
of tree height in the eigenvector directions for the best models 7 and 4. The abbreviations relate to measured fruit traits: ratio of oil ducts to
length of space between ribs (ROD), mean periderm thickness (MPT), wing area (WA), wing thickness (WTH), and fruit mass (FM) (see also
Fig. 5.20). Notice that in some cases the bootstrap CIs do not cover the estimated values, illustrating the known difficulties of estimating the
parameter as already shown in the one dimensional case (Cressler et al. 2015).

Model 7 Directions (eigenvectors)

) & 2 e s
ROD 0 1 0 0 0
MPT 1 0 0 0 0
WA 0 0 1 0 0
WTH 0 0 0 0 1
M 0 0 0 1 0
Half-life 1.32% 5.08% 13.36% 15.45% 30.04%
(CI) (0.10%, 26.26%) (3.52%, 40.06%) (17.67%, 60.12%) (23.61%, 66.22%) (25.19%, 68.82%)
Model4  Directions (eigenvectors)

e & & € s

ROD 0.00 0.00 -0.33 - 0.54i -0.33 + 0.54i 0.00
MPT 0.00 0.00 0.78 0.78 0.00
WA 0.99 0.00 0.00 0.00 0.00
WTH -0.01 0.00 0.00 0.00 0.99
M 0.00 1.00 0.00 0.00 0.00
Half-life 0.09% 3.7% 12.09% 12.09% 2207.8%
(C1) (0.03%, 25.91%) (2.21%, 48.03%) (7.92%, 58.94%) (19.42%, 66.35%) (10.87%, 128.14%)

is a tendency towards the diagonal A model 7, which is
in line with our observations from the simulation study
in “Model selection efficiency and quality of parameter
estimates”. We underline that it seems that the problem
of identifying the correct structure of A from compara-
tive data is a subtle one and might require the develop-
ment of new decision methods. On the other hand, we
do not notice issues with rejecting or correctly accepting
models where BM traits are present.

Without measurement error, as the sample grows,
especially for the Brownian motion model, numerical
errors seem to be more and more common. In fact, with
2048 tips so many as 881 trees and trait simulations had
to be performed in order to obtain a sample of size 100.
A possible explanation for these numerical errors are
too short tip branches which cause singularities. When
measurement error is present, such numerical prob-
lems are neither observed for BM nor for OU models.
This supports that the problem is mainly with short tip
branches. Measurement error additively increases the
variance of change along a tip branch. If a tip branch
is so short that for a given parameter the covariance
matrix of change along a tip branch is singular, then
adding the variance of measurement error removes this
singularity. However, this comes at a price. In Fig. 5.10,
we can see that without measurement error, the estima-
tor of Xy, from the accepted simulation samples, seems
to behave consistently.

On the other hand, when measurement error is
present, parameter estimation errors are larger and
improvement (other than the decrease of estimation
variance) cannot be observed. Similarly, for the OUOU
models, parameter estimation error is much smaller
without measurement error. With measurement error,
the misclassification rate of BM increased. Given a

single optimum and ultrametric tree, the collection of
measurements for tip species is identically (but not
independently) distributed. If the noise from measure-
ment error dominates and masks signal, especially
dependencies between observations, then information
criteria could favor the simplest model that can fit a
common mean and variance. As misclassification rates
with measurement error present seem to all exhibit sim-
ilar behavior, it could be that a given level of measure-
ment error will induce convergence to a particular limit
of the misclassification rate.

Many plants develop seed packaging structures,
which play various roles throughout the seed life span.
Hard encapsulation, as in the case of Ferula, protects
seeds and assists in dispersal with the help of special-
ized structures such as wings. Generally, our analyses
supported two different parcellation models indicat-
ing independent evolution of all or some of studied
fruit traits. The possible scenario for evolution of these
quasi-independent functional modules in fruits can
be inferred from empirical studies showing that selec-
tion pressure from various agents often conflicts. An
interesting example comes from research on tree squir-
rels (Tamiasciurus), which are important seed-eaters
influencing conifer reproductive strategies (Benkman
1995). The study showed that limber pine (Pinus flexi-
lis) coming from regions affected and unaffected by tree
squirrels did not differ in seed kernel mass but did in
seed-coat characters. This shows that the protective and
provision functions evolved independently. The former
was the main target of directional selection although the
latter was under stabilizing selection as abiotic factors
influencing germination—that are important selective
agents of kernel mass—do not differ between these
regions (Benkman 1995). Although this study showed
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the conflicting selection on seed functions, the evolution
was rapid and likely free of any constraints as squirrels
were extirpated in the studied region approximately
12,000 years ago. In the case of interspecific compara-
tive analysis of fruits of Ferula, the rate of co-adaptive
changes in fruit traits is also fast—taking no more than
several thousand of generations. This is in agreement
with observations of other species from the subfamily
Apiaceae, that show, although indirectly, rapid change
in quantitative traits of fruits. For example, in the genus
Chaerophyllum belonging to the same tribe as Ferula, there
is no quantitative character of fruit that characterizes
clades assigned to taxonomic sections (Piwczyniski et al.
2015). The principal component analysis (PCA) showed,
that in many cases, sister taxa have more divergent traits
than distantly related ones leading to complete over-
lap between convex hulls delimiting sections. Similar
results were obtained by Wojewddzka et al. (2019). The
Authors searched for common combinations of ana-
tomical and morphological traits that are associated
with switches among different dispersal syndromes.
The results show no such combinations with overlap-
ping convex hulls between species representing various
dispersal strategies and various phylogenetic affinities.
This may point to mixed dispersal strategies as sug-
gested by the Authors, but it is also in agreement with
quasi-independent evolution of traits associated with
various functions in the fruit as suggested by analysis
of Ferula data. It is reasonable, for example, to assume
that wind dispersal species may be under a wide range
of selection pressures, often in opposite directions, on
protective traits of fruit. Modules may help in optimiz-
ing each trait independently by selection (Hansen 2003).

Another set of interesting results from model 4 is the
negative relationship between traits within functional
modules. In the case of dispersal, this relationship is
expected from aerodynamic theory which states that
any diaspore size, having any settling velocity, can be
dispersed to a given distance if the shape of falling
object is sufficiently modified (Niklas 1994). In our
example, it can be argued that the increase in wing
area is counteracted by a decrease in wing thickness
to optimize area—mass relationship. Unfortunately, the
estimation of regression coefficients was imprecise—
precluding deeper analysis. The second negative rela-
tionship occurred in the protection module that may be
explained by trade-off between costly traits. Generally
in Apiaceae, various forms of endosperm protection
do not occur together. For example, species having
thickened cuticule possess reduced canals and bundles
(Spalik et al. 2001). In line with this observation, the
increased protection by thickening of periderm leads to
reduction of canals without harmful consequences.

As pointed out by Niklas (1994), evolution of wind
dispersed fruits seems to be counterintuitive. Plants
add extra mass to seeds potentially reducing disper-
sal capacity. However, this excess of tissues may have
higher evolutionary potential, expanding the range of
phenotypic characters available for selection, in com-
parison with a seed coat. In addition, fruit walls can

offer an extra protective barrier against seed predators.
This increase in evolutionary potential may be realized
by modularity, which may sufficiently reduce the con-
sequences of conferring extra mass to seeds.

Our analyses provided several important observa-
tions for mvSLOUCH users. First, the user must pay
attention to the quality of the data. In a typical compar-
ative analysis, the sample size differs from species to
species even by orders of magnitude. This, as shown in
our analyses, can lead to imprecise estimation of mea-
surement error and, in consequence, problems with
estimation of model parameters (Table 4). From our
simulations, we can also observe that measurement
error can have a big effect on estimation. Our analyses
aimed to illustrate mvSLOUCH’s possibilities, but to
make firm conclusions about the genus Ferula, we can
see that 78 species are too few, and measurement error
is too high (too few replicates per species). This is most
evidently seen in the (marginal, 2.5% and 97.5% quan-
tiles) parametric bootstrap confidence intervals pre-
sented in Tables. 5.19 and S.20 for the correlation and
regression coefficients. In all the non-zero (by model
definition) cases, the confidence intervals cover zero.
Our simulations show that with the given sample the
more complex model 4 is not identifiable. However,
as we increase the tree size, non-ignorable numerical
issues start to appear. The third observation concerns
the interpretation of model parameters, which is impos-
sible without a clear hypothesis. The software cannot be
used for a “phylogenetic correction,” the species’ joint
evolutionary history should be used to test specific
hypotheses motivated by our theories and knowledge
of the considered system. Estimated parameters should
therefore be interpreted with a link to what drove the
particular study setup.

DiscussioN

Our simulation studies, Appendix SC and Appendix
SD, found that if there is any bias in model identifiabil-
ity, it will be in the direction of simpler models (opposite
to the conclusions of Adams and Collyer (2018), based
on a BM simulation and BM, OU reestimation study).
On the other hand, our simulation from the Ferula
study showed that as the sample size increases, infor-
mation criteria can prefer more complex OUOU mod-
els over simpler OUOU ones (Table 3, rows where data
was simulated under model 7). However, as discussed
already, the chosen parameters are difficult ones for the
estimation procedures. For small 7, the BM could out-
perform more complex OUOU, OUBM models. As n
increased, this preference toward BM disappeared for
all models. OUBM models are distinguishable from
OUOU models, but distinguishing between different
types of A matrices inside the OUBM class might not
be that straightforward. However, again the main error
seemed to be in the case of preferring simpler models—
diagonal A when simulated under a non-diagonal one.
The most striking issue is that the diagonal A-diagonal
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3,y (OUOUs1) model is consistently preferred over the
non-diagonal A-diagonal X, (OUOUs2) model. It is
known from previous, one-dimensional, studies that
even the scalar counterpart of A is difficult to estimate
(Cressler et al. 2015). Our multivariate simulation-rees-
timation study confirms this, with non-diagonal A
there were many outliers with high relative errors for
this parameter (and others). Therefore, in the multivar-
iate case, it seems to be an open question if there is a
parameter-identifiability issue for A, or more data (i.e.,
larger n) is required to justify the choice of the model
with more parameters. Hence, a practitioner should
always be careful when the OUOU model with diago-
nal A is indicated and should weight the understand-
ing of the system under study. In all model cases, some
parameters are easier to estimate—those correspond-
ing to the diffusion parameter, 3., 3,,, 3. For these,
the boxplots in Appendix SC suggest consistency. The
drift parameters, entries of A; A’s associated eigenval-
ues, eigenvectors, half-lives, as already discussed, are
more difficult to estimate, especially if it is non-diago-
nal. Covariance, correlation, and regression parameters
also tend to have much variability in their estimation.
Finally, it has to be stressed that the simulations did
not indicate problems with identifying the main class
of models. From n = 128, major problems with discrim-
inating BM from OUOU from OUBM are not visible.
Perhaps it is difficult to identify the type (based on the
A matrix’s type) of model in some situations, but the
main dynamics seemed identifiable.

It is also worth pointing out that Mitov et al.’s (2020)
posterior-quantile validation did not find any issues
with PCMBase’s loglikelihood values. Mitov et al.’s
(2019) very extensive simulation study also does not
indicate any serious issues with estimation nor model
identifiability of the PCMFit package, which uses the
same likelihood computation engine provided by
PCMBase and PCMBaseCpp.

To compare our simulations study with Adams and
Collyer’s (2018), when simulating under the BM model,
we restrict our simulations to independent traits.
Re-estimation was done under multiple setups but two
are worth discussing. One (OUOU?5 in Table S.2) was
with A assumed as general invertible and X, upper
triangular. This is the default, but highly unrecom-
mended, mvSLOUCH setting that Adams and Collyer
(2018) used. It has the property that it does include the
least possible assumptions and hence a priori biologi-
cal hypotheses about the relationships between traits.
Having it as a default will not bias the user towards
any particular hypothesis and hopefully encourage to
explore different ones. However, it is extremely unsta-
ble to estimate under and, from our experience, tends to
get very easily stuck in local optima and is therefore not
recommended. We also take models with A eigende-
composable with positive real eigenvalues and diago-
nal positive or free, and upper-triangular %, (OUOU4,
OUOU4P, OUBM4, OUBMA4P in Table S.2). The latter
setups, we believe, are fairer towards mvSLOUCH
than Adams and Collyer’s (2018) use of the default

settings. The numerics seem, from our experience, to be
significantly more stable than in the default case and,
we re-iterate, PCM studies should be carried out with
some biological hypotheses in mind, corresponding to
particular parameter settings.

We ran estimation both with A’s diagonal constrained
to be positive or free to vary. When the diagonal was
assumed positive, then the diagonal values were
exponentiated after the matrix was calculated from
its eigendecomposition parametrization. As positive
real eigenvalues do not imply a positive diagonal, we
wanted to see what implication a positive diagonal con-
straint could have on the estimation. On the one hand, it
will guarantee a correct sign of the diagonal, but on the
other, interfere with R’s numerical optimizer’s, optim(),
search path. And in fact this was observed. Under the
OUBM model, for non-diagonal A, forcing the diagonal
to be positive reduced model selection abilities. In the
OUOU case, such an issue was not observed.

The simulation study based on parameters estimated
from the Ferula data brought up further issues that
need to be heeded when using PCMs. Measurement
error can result in decreasing quality of parameter
estimates and make deciding between models diffi-
cult, but must still always be included in compara-
tive analyses. When trees become large, numerical
problems can become more of an issue. However, the
observed numerical problem is due to very short tip
branches, hence it might not be present at all in real
estimated phylogenies. Short tip branches arise natu-
rally when trees are simulated under birth-death mod-
els conditioned on a particular (large) number of tips.
Hence, it becomes a question, whether, despite their
simplicity and mathematical elegance, these are the
optimal ways of generating trees for simulation stud-
ies of PCMs. Even if the Brownian motion model is
not of interest, the user of mvSLOUCH is advised to
consider it. Closed form estimation formulee will pick
up the numerical issues due to short branches leading
to tips (by returning infinite information criteria) and
indicate that the estimation results under the OUOU
models require careful scrutiny. A possible way of deal-
ing with such a situation is to drop species with short
pendant branches (if there are few). Alternatively, if
there would be many such situations, multiple ran-
dom subsampling with, e.g., subsequent model aver-
aging can be employed. However, the choice of action
is particular to the situation, and is up to the user.
Based on our simulations here, we recommend that an
applied PCM user should not only look at the single
best (according to their chosen measure) model but
also explore those in the “plausible set,” taking into
account domain knowledge and estimated parameters
(models could have nearly the same parameter values
e.g., non-zero values are very close to zero). A simu-
lation study limited to the plausible set of models can
indicate whether there is distinguishability between
them, and a parametric bootstrap will show parameter
identifiability. With the analyses and simulation stud-
ies here, we have only touched the tip of the iceberg
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and as algorithmic improvements in PCM software
have reduced running times and numerical prob-
lems (or made them clearer), we will be able to design
more and more complex simulation studies that will
give better understanding of estimation possibilities.
Hopefully, it will be possible to approach this from the
mathematical direction to have analytical results on
the inference methods.

SUPPLEMENTARY MATERIAL

The GitHub repository https://github.com/krz-
bar/KJVJMRKK_mvSLOUCH contains R scripts, data,
random seeds and simulation outputs used in this
work. These files are also available from the Dryad
Digital Repository: http://dx.doi.org/10.5061/dryad.
5j3tx9656.
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