
MORE: Measurement and Correlation Based

Variational Quantum Circuit for Multi-classification

Jindi Wu

Department of Computer Science

William & Mary

Williamsburg, VA, USA

jwu21@wm.edu

Tianjie Hu

Department of Computer Science

William & Mary

Williamsburg, VA, USA

thu04@wm.edu

Qun Li

Department of Computer Science

William & Mary

Williamsburg, VA, USA

liqun@cs.wm.edu

AbstractÐQuantum computing has shown considerable
promise for compute-intensive tasks in recent years. For instance,
classification tasks based on quantum neural networks (QNN)
have garnered significant interest from researchers and have been
evaluated in various scenarios. However, the majority of quantum
classifiers are currently limited to binary classification tasks due
to either constrained quantum computing resources or the need
for intensive classical post-processing. In this paper, we propose
an efficient quantum multi-classifier called MORE, which stands
for measurement and correlation based variational quantum
multi-classifier. MORE adopts the same variational ansatz as
binary classifiers while performing multi-classification by fully
utilizing the quantum information of a single readout qubit. To
extract the complete information from the readout qubit, we
select three observables that form the basis of a two-dimensional
Hilbert space. We then use the quantum state tomography
technique to reconstruct the readout state from the measurement
results. Afterward, we explore the correlation between classes to
determine the quantum labels for classes using the variational
quantum clustering approach. Next, quantum label-based super-
vised learning is performed to identify the mapping between the
input data and their corresponding quantum labels. Finally, the
predicted label is determined by its closest quantum label when
using the classifier. We implement this approach using the Qiskit
Python library and evaluate it through extensive experiments
on both noise-free and noisy quantum systems. Our evaluation
results demonstrate that MORE, despite using a simple ansatz
and limited quantum resources, achieves advanced performance.

Index TermsÐquantum machine learning, quantum multi-
classifier, variational quantum algorithm, hybrid quantum-
classical method, observable-based method

I. INTRODUCTION

Quantum computing derived from quantum mechanics can

exponentially accelerate the solution of specific problems com-

pared to classical computing, because of the unique properties

of superposition and entanglement [1]. Nevertheless, we are

now in the Noisy Intermediate-Scale Quantum (NISQ) era, in

which quantum machines contain just 50-100 qubits and are

error-prone. Several months ago, IBM unveiled Osprey, the

world’s largest quantum computer with 433 qubits [2]. This

effort will provide the groundwork for the next era of quantum-

centric supercomputing. However, its computing procedure is

still plagued with qubit decoherence errors, gate errors, and

measurement errors [3]. Quantum Machine learning (QML) is

one of the most attractive applications of quantum computing
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Fig. 1. Two-step MORE. First, the classical labels are converted into quantum
labels in a two-dimensional Hilbert space based on the interclass correlation.
Next, quantum label-based supervised learning is employed to minimize the
difference between the readout state and its correct quantum label.

because of its demand for computing power and its resilience

to noise [4]±[6]. In recent years, many efforts have been made

to develop QML techniques as the counterparts of classical

ones, such as quantum k-nearest neighbor [6], [7], quantum

support vector machines [8]±[10], Quantum clustering [11],

[12], and quantum neural networks (QNNs) [13]±[15]. Since

classical neural networks have achieved remarkable success in

various fields [16]±[20], QNNs have also been attempted for

data processing in many domains, including finance [21], [22],

chemistry [23], [24] and healthcare [25]±[29].

Classification is a fundamental data processing technique

in many domains, making QNN-based classifiers an area of

significant interest. In 2018, Farhi and Neven proposed the first

QNN classifiers for near-term processors [13]. Following this,

in 2019, Cong et al. proposed quantum convolutional neural

networks (QCNNs) for image processing, which adopt the

architecture design of its classical analog [30]. Based on these

two quantum classifier designs, numerous variants are shown

[31]±[34]. Moreover, some other QNN designs are suggested

in [34]±[39].

Prior works on QNN-based classification have predomi-

nantly focused on binary classification tasks, with relatively

few addressing multi-classification problems. This is partly

due to the fact that QNNs typically produce binary measure-

ment results, meaning that a single readout qubit can only

represent two classes. The popular solutions for QNN-based

multi-classification are: (1) use extra ancillary qubits to repre-

sent labels for multiple classes. However, qubits are a limited
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resource on NISQ machines, and using more ancillary qubits

reduces the number of qubits available for data processing,

thus limiting the capacity of the QNN. (2) Select a subset of

qubits at the end of the QNN circuit to serve as the readout for

multi-class labels. However, if the one-hot encoding is used to

represent labels, the number of classes a QNN-based classifier

can handle is limited by the number of qubits available in

the circuit. On the other hand, if binary encoding is used

to represent labels, there may be cases where measurement

results are not interpretable, which is a limitation that also

applies to the previously mentioned solution. Specifically, the

binary property of qubit measurement results enables an n-

qubit state to include 2n possible labels. Thus, given a p-

classification task, where p ∈ (2n−1, 2n), some output states

will not map to any valid class. Especially when p = 2n−1+1,

almost half of the label space is wasted. (3) Attaching classical

fully-connected layers after QNNs is a common approach to

mapping the QNN outcomes to multiple classes. However,

this may incur high computational costs because the fully-

connected layers contain a large number of parameters to

train. Moreover, adding classical layers after QNNs may

offset the potential quantum advantage of using QNNs for

classification. And (4) decomposing the multi-classification

task into several binary classification ones. The downsides

include a complicated training process and lengthy training

and inference times due to the need to train multiple binary

classifiers. Therefore, there is a need for a novel QNN-based

multi-classifier that features a concise variational quantum

circuit, a streamlined classical post-processing procedure, and

a straightforward training process.

In this article, we propose MORE approach, a novel QNN

multi-classifier that utilizes measurements and interclass corre-

lations. MORE is designed to be resource-efficient, featuring

a simple ansatz similar to that used in binary classification,

with only one readout qubit at the end of the circuit. MORE

is a two-step approach, as shown in fig. 1. First, it converts

the classical labels of training data into quantum labels, which

are quantum states reconstructed from the measurement results

of the readout qubit. The quantum label of each class is

determined using the variational quantum clustering method

that considers the correlation between classes. Then, quantum

label-based supervised learning is conducted to converge the

QNN and achieve the desired performance quickly. Compared

to prior QNN-based multi-classifiers, MORE requires fewer

qubits and quantum gates, resulting in fewer gate and deco-

herence errors during the quantum state evolution. Moreover,

MORE is computationally efficient, with a fixed amount of

quantum computation and linearly increasing classical com-

putation, allowing scalability to more complex tasks.

The contribution of this work is fourfold:

• We present the attempt to design efficient quantum multi-

classifiers by leveraging the full quantum information

contained in a single qubit.

• We offer a technique for converting the classical labels

of training data into quantum states by investigating

interclass correlations.

• We introduce a quantum label-based quantum supervised

learning approach that includes a loss adjuster to improve

the quality of the QNN model.

• We implement the proposed MORE approach and eval-

uate it from many perspectives using comprehensive

experiments. And our experiment results demonstrate the

advantages of our proposed approach.

In the remaining content of this article, we provide some

basic knowledge needed for understanding this article in

section II. We then introduce our motivation for the proposed

approach by discussing quantum state tomography, which is

a method for reconstructing quantum states, in Section III.

The proposed two-step approach MORE is detailed in sec-

tion IV. The first step, variational quantum clustering based

on interclass correlation, is described in subsection IV-B, then

the second step, quantum label-based supervised learning, is

discussed in subsection IV-C. Then, we present the evaluation

setup and results in Section V, followed by a review of

related works in Section VI. Finally, we conclude our proposed

MORE approach in Section VII.

II. PRELIMINARIES

A. Quantum state and visualization

A qubit (short for a quantum bit) is the information carrier

in the quantum computing/communication channel [40]. A

qubit is defined as a two-dimensional Hilbert space with

two orthonormal bases |0⟩ and |1⟩, which are known as

computational bases in two-level quantum computing. These

computational bases are usually represented as vectors |0⟩ =
[1, 0]⊤ and |1⟩ = [0, 1]⊤. Due to the unique qubit characteristic

of superposition, the state of a qubit can be represented as

the sum of two computational bases weighted by (complex)

amplitudes:

|ψ⟩ = α|0⟩+ β|1⟩ =

[

α

β

]

(1)

where α and β ∈ C, and |α|2 + |β|2 = 1. |α|2 and |β|2 are

the probability of obtaining states |0⟩ and |1⟩ after multiple

measurements, respectively.

The Bloch sphere is a valuable tool for visualizing the state

of a single qubit, as shown in Fig. 2. It encompasses all

possible states of a qubit, making it an excellent representation

of a two-dimensional Hilbert space. In this article, we will use

the Bloch sphere to illustrate our proposed method clearly.

Every pure state of a qubit can be mapped to a distinct point

on the surface of the Bloch sphere, whereas mixed states

correspond to points within the sphere. The state of a qubit on

the Block sphere can be described with two real parameters,

θ and ϕ,

|ψ⟩ = cos
θ

2
|1⟩+ eiφ sin

θ

2
|1⟩ (2)

where θ ∈ [0, π] and ϕ ∈ [0, 2π]. I.e., θ = 0 for |0⟩ and θ = π

for |1⟩, and global phase ϕ can be any value.
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Fig. 2. Bloch sphere and z-measurement

B. Quantum measurement

Quantum measurement is the retrieval of the numerical

information stored in a qubit. A measurement result is +1

for state |0⟩ and -1 for state |1⟩ according to a specified

probability distribution associated with the quantum state.

Therefore, numerous measurements are required to determine

the exact quantum state. The final result of the quantum

measurement is the expected value of all outcomes.

Observables are used to understand the properties of a quan-

tum system and can be measured. Mathematically, observables

are formulated as Hermitian operators that map Hilbert space

onto themselves. For a valid observable, its eigenvalues are real

numbers and can be the outcomes of measurement. Moreover,

observables can form an orthonormal basis of the target Hilbert

space, which will be the state of the quantum system after

measurement. The observables considered in this article are

Pauli matrices:

σx =

[

0 1
1 0

]

, σy =

[

0 −i
i 0

]

, σz =

[

1 0
0 −1

]

. (3)

These Pauli matrices span a complex two-dimensional Hilbert

space (a qubit). The projection measurement is to extract

quantum information by operating on the interested observable

and the density matrix of the target quantum state

⟨σ⟩ = Tr(σ|ψ⟩⟨ψ|) (4)

where |ψ⟩⟨ψ| generates the density matrix. For the general z-

measurement, the state vector is projected onto the z-axis of

the Bloch sphere, and the corresponding value on the z-axis is

the expectation of the measurement results, as shown in Fig. 2.

C. Variational quantum algorithm

The variational quantum algorithm (VQA) is the standard

approach to performing QNN. It processes prepared quantum

information by applying a series of parametric quantum gates,

ultimately producing an output through measurement. As an

example, a binary quantum classifier is implemented using

VQA in [13]. It has an (n+1)-qubit circuit, where the first n

qubits are prepared using an encoding method (such as angle,

basis, or amplitude encoding) to represent specific information.

The final qubit acted as a readout, generating the output

through measurements. These qubits then pass a sequence of

quantum gates with trainable parameters U(θ) =
∏N

l=1
Ul(θl),

where θ is a set of parameters. A measurement outcome of 1

corresponds to one class, while a result of -1 corresponds to the

other class. VQA uses a hybrid quantum-classical procedure to

iteratively optimize the trainable parameters. The popular op-

timization approach includes gradient descent [41], parameter

shift [42], and gradient-free techniques, such as COBYLA. All

of the methods take the training data as input and evaluate the

model performance by comparing the generated and correct

labels. Based on this evaluation, the methods update the model

parameters for the next round, repeating the process until the

model converges and achieves the desired performance. The

hybrid method performs the evaluation and parameter selection

on a classical machine, while the model inference is carried

out on a quantum machine.

III. QUANTUM STATE TOMOGRAPHY

Quantum state tomography (QST) is a technique to re-

construct an unknown quantum state using its measurement

results [43]. The measured observables must form a basis in

the Hilbert space so that all state information can be recorded

and used to recover the state. In the present age of NISQ,

when the number of qubits is limited, QST is an essential

method for retrieving the complete information stored in a

quantum system. Nevertheless, as the number of qubits grows,

the number of measurements needed and the complexity of

state reconstruction increase exponentially. Hence, for the sake

of simplicity, we consider the reconstruction of a single qubit

using three observables to restore its state in a two-dimensional

Hilbert space in this work.

Any arbitrary density matrix of a 1-qubit state can be

expressed as a linear combination of Pauli matrices (basis of

two-dimensional Hilbert space) as

ρ =
1

2
(I + rxσx + ryσy + rzσz)

=
1

2

[

rz + 1 rx − ry
rx + ry −rz + 1

] (5)

where r denotes real number and r2x + r2y + r2z = 1. For the

typical qubit measurement using observable σz , as used by

most quantum applications, the expectation of the measure-

ment result is

⟨σz⟩ = Tr

(

1

2
(I + rxσx + ryσy + rzσz)σz

)

= rz (6)

Eq. 6 demonstrates that the expectation of measurement results

is directly related to the density matrix ρ of interest. In this

case, however, only diagonal entries of ρ can be retrieved,

while some useful information remains untouched. Hence,

in order to rebuild the density matrix ρ completely, the

measurements on observables σx and σy are necessary to

obtain rx and ry .

From the perspective of the geometric representation, the

expectation values ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩ are exactly the pro-

jections of the state vector on the x-, y- and z-axis of the

Bloch sphere, respectively. Therefore, after getting sufficient
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Fig. 3. MORE overview. Step 1: variational quantum clustering (a)-(d). (a) The QNN takes a pair of training instances as input and reconstructs their
single-qubit readout states using x-, y-, and z-measurements. (c) QNN’s parameters are tuned to adjust the distance between readout states depending on (b)
the interclass correlations represented by MSE. (d) After iterative training, the distribution of readout states in Hilbert space corresponds to that of classes in
feature space. The centroid of readout states within the same class is the quantum label for this class. Step 2: quantum label-based supervised training (e).
The readout state tends to approach its corresponding quantum label during the training process. During inference, the predicted label of a test instance is the
quantum label closest to its readout state.

measurement results, we can restore the quantum state in the

Bloch sphere for an intuitive interpretation. In other words,

the interested 1-qubit state is a state vector with an unknown

direction in the Bloch sphere. By projecting the vector on the

three axes, we can figure out the direction of the state vector,

which contains all information about the state.

IV. MEASUREMENT AND CORRELATION-BASED QNN

MULTI-CLASSIFIER

In this section, we present MORE, an efficient quantum

multi-classifier that employs a simple QNN with a single

readout qubit. We use QST to reconstruct the state of the

readout qubit to retrieve the entire information from it. This

allows us to fully leverage information of a single qubit

to address complex multi-classification tasks via two steps.

First, we employ the variational quantum clustering method to

convert the classical labels of the dataset into 1-qubit states,

taking into account interclass correlations. Next, we proceed

to train the QNN using a quantum label-based supervised

learning approach, where the QNN learns to map an input to

its corresponding quantum label. After completing the training

process, the model can accurately categorize new data by

comparing the readout state of the data with quantum labels

and assigning it to the appropriate class based on the shortest

distance.

A. Overview

The overview of MORE is presented in Fig. 3. The goal is to

solve a multi-classification task that assigns appropriate labels

to classical input data. A training dataset consisting of K sub-

sets is provided, D = {D1, D2, . . . , DK}. The subset Dk is a

collection of training data in class k, with each training data

instance being a pair of data point x and its correct classical

label y. MORE addresses this problem by utilizing a QNN

to learn the pattern that characterizes the mapping between

the input data point and its correct label from the training

dataset. The learning of MORE is a two-step procedure. First,

the classical labels y are converted into quantum labels −→y
in the two-dimensional Hilbert space. This step employs the

quantum clustering method while considering the inherent

correlation between classes. (Fig. 3(a-d) and Section IV-B).

Then, quantum label-based supervised learning is undertaken

to fine-tune the parameters (Fig. 3(e) and Section IV-C).

The ansatz of MORE is shown in Fig 3(a). Its circuit

includes three layers: (1) Encoding layer: the encoding layer

quantizes the classical input data by preparing the quantum



states based on classical data values. MORE is compatible with

any general encoding scheme, such as angle and amplitude

encoding. (2) Variational data processing layer U(θ): this layer

transforms the prepared state using its parameterized gates.

The parameter set θ of the layer is iteratively adjusted based

on MORE’s performance using a hybrid classical-quantum

method, as introduced in section II. The optimal parameters

should enable MORE to assign a label y to unseen input x

with high accuracy. (3) Measurement layer M : One qubit is

chosen as the readout in this layer, and its observable σx, σy ,

and σz are measured to produce a three-dimensional vector

(reconstructed state vector −→vi and −→vj ).

As the quantum measurement operator in superconducting

hardware implementation can only measure the state on the

z-axis, MORE requires two additional measurement units to

measure the observables σx and σy , as shown in Fig. 4. The

unit for observable σx inserts an H gate before the mea-

surement operator, which can be conceptualized as rotating

the x-axis of the Bloch sphere to the location of the z-axis

first and then projecting the state vector to the new z-axis.

Similarly, for observable σy the readout qubit passes an S†

gate and an H gate, followed by the measurement operator in

the measurement unit. In the measurement layer of the QNN,

these three measurement units are applied in succession to

construct the state vector −→v = (⟨σx⟩, ⟨σy⟩, ⟨σz⟩).

|Ψ⟩ H

|Ψ⟩ HS† ⟨σy⟩

⟨σx⟩

|Ψ⟩ ⟨σz⟩

Y

X

Z

Fig. 4. Measurement unit of MORE

B. Class correlation-based variational quantum clustering

To perform multi-classification on the 1-qubit state vectors,

it is necessary to determine the distribution of classes in a

two-dimensional Hilbert space first. This involves converting

classical labels to quantum labels. To accomplish this, we use

the variational quantum clustering method while investigating

the correlation between classes. Deep clustering is a technique

in classical machine learning that concurrently learns the

parameters of neural networks and the cluster assignments for

processed inputs [44]. Here, we borrow this idea and apply

it to variational quantum clustering. Specifically, we train the

parameters of the QNN to map readout state vectors from the

same class to a particular quantum state.

Class correlation. First of all, we calculate the correlation

between classes by measuring the difference between the

data instances belonging to different class collections. To be

specific, we first pre-process the training data using Principal

Component Analysis (PCA) to extract critical features and

downscale the data to a size that is suitable for our quantum

circuit. Then, the average pattern set Dpattern is created by

averaging the data instances of the class dataset Dk,

Dpattern = {x1, x2, . . . , xK} (7)

where xk = 1

|Dk|

∑|Dk|
i=1

xik, k ∈ [1,K]. The correlation

between the average pattern of classes is then recorded in a

K ×K array, known as scaler array S. For example, we use

Mean square error (MSE) to quantify the difference between

two average patterns. As a result, the entry (i, j) of the scaler

array S can be calculated by

Si,j =MSE(xi, xj) (8)

The larger the MSE value, the lower the correlation. The

original diagonal entries of S are 0s, indicating that the

correlation between two identical patterns is maximal. We

modify these 0s to negative values, which will be explained

and utilized later in this section. Fig. 3(b) shows an example of

the scaler array S that stores the correlations between classes

‘0’, ‘1’, and ‘2’ from the MNIST handwritten digit dataset.

Clustering dataset. We then prepare the clustering dataset

by pairing the instances in the given dataset D. The

clustering dataset consisting of data pairs: Dcluster =
{[(xi, yi), (xj , yj)]t}

N
t=1 where i, j ∈ [1,K] and N is a

small number to ensure the model can fast converge. In our

evaluation, we set it to
(

5K

2

)

. Each data pair is independently

sampled from D across all classes, i.e., (xi, yi) and (xj , yj)
are two sampled instances from class i and j.

Clustering loss. In a training step, the QNN U(θ) sequen-

tially takes as input of a data pair xi and xj and generates

two three-dimensional state vectors −→vi = (⟨σx⟩i, ⟨σy⟩i, ⟨σz⟩i)
and −→vj = (⟨σx⟩j , ⟨σy⟩j , ⟨σz⟩j). We express the loss function

as

Lclt = −Si,j ×Dist(−→vi ,
−→vj ) (9)

where

Dist(−→vi ,
−→vj ) = 1−

−→vi ·
−→vj

||−→vi || ||
−→vj ||

(10)

The function Dist(−→vi ,
−→vj ) computes the Cosine distance be-

tween two vectors −→vi and −→vj , and the coefficient Si,j serves as

the scaler of cosine distance. We assume that the distribution

of state vectors in a two-dimensional Hilbert space is relevant

to the distribution of data in feature space. Therefore, the

clustering step aims to bring the generated state vectors −→vi
and −→vj closer together if xi and xj belong to the same class,

and farther apart otherwise. In addition, the distance between
−→vi and −→vj will be larger if their class correlation is significantly

smaller. Specifically, as illustrated in Fig. 3(c), if xi and xj
from the same class, the negative scaler value Si,j where

i = j, will minimize the cosine distance between −→vi and −→vj .

Otherwise, the distance between −→vi and −→vj will be maximized,

and the final distance between them depends on the value of

Si,j . The higher the correlation, the closer they will be.

Quantum labels. After the training of quantum clustering,

the state vectors of data instances belonging to the same class

are oriented in similar directions (a cluster). The centroid of

these directions is recorded as the quantum label of the class.
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So far, we have mapped the classcial labels y into quantum

labels −→y , which are distributed in the Hilbert space based on

the correlation between classes, as shown in Fig. 3(d). Then

we substitute the classical labels y in the training dataset D

with quantum labels −→y , and now we are ready to proceed with

quantum label-based quantum supervised learning.

C. Quantum label-based supervised learning

After the clustering step, we initially train the parameters θ

of QNN U(θ) to determine the quantum labels for classes.

However, as the U(θ) is trained on a small subset of the

training data, it may not be optimal for classification. Thus, to

enhance the performance of U(θ), we fine-tune the parameters

by conducting quantum label-based supervised learning. We

use the dataset containing the training data points x and their

quantum labels −→y to train U(θ). The goal is to map the

readout state vector of inputs to be as close as possible to

their corresponding quantum labels, as shown in Fig. 3 (e).

In this step, the U(θ) takes one training instance as input and

generates the 1-qubit state vector −→v . Then, we compare the

generated vector with its corresponding quantum label −→y , and

express the loss function of quantum label-based supervised

learning as

Lsup = Dist(−→v ,−→y ) (11)

The training procedure aims to minimize the value of Lsup.

For inference, the class of the unseen data is determined by

y = argmink{Dist(
−→v ,−→yk)} (12)

where −→yk is the quantum label for class k ∈ [1,K].
However, misclassifications are more likely to occur when

there are a large number of classes and their quantum labels

are closely distributed in the Hilbert space, which is known as

the curse of density (see Fig. 5 left). The circle is a side view

of the Bloch sphere, and the colored dots are quantum labels.

The triangle represents the readout state of an input. It may

be classified into a nearby but incorrect class (represented by

the pink dot) due to the small distance between the readout

state and the pink quantum label. To improve the accuracy of

the classifier in scenarios with crowded quantum labels, we

introduce a loss adjuster R.

In each training step, if the distance between the readout

state and its correct quantum label is less than a threshold

r, we also consider the other quantum labels whose distance

from the readout state is less than the threshold, as shown in

Fig. 5 right. Specifically, when Dist(−→y ,−→v ) ≤ r, we define

the loss regulator as

R =
∑

k∈K′

Dist(−→yk,
−→v ) (13)

where K ′ is a subset of classes whose quantum label −→yk
satisfies Dist(−→yk,

−→v ) ≤ r.

We then assign a weight factor w ∈ [0, 1] to the supervised

loss term. Hence, the overall objective function of the quantum

labels-based training process is

Lsup+R = wLsup − (1− w)R. (14)

By minimizing the value of Lsup+R, this objective function

tends to bring the readout state closer to its correct quantum

label while moving farther away from the incorrect quantum

labels surrounding it, resulting in the readout state being

closest to its correct label among crowded quantum labels. The

selection strategy for the values of r and w will be discussed

in Sec. V-C.

V. EVALUATION

We conducted empirical studies in various scenarios to eval-

uate the performance of the proposed quantum multi-classifier

MORE. To implement MORE and related baselines, we used

Python 3.8 and the IBM Qiskit package [45] to simulate

quantum systems both with and without noise. For simulating

noisy systems, we employed several noisy backends, including

FakeAuckland, FakeAthensV2, and FakeBelemV2.

The source code used to generate the experiment results is

available in github.com/Jindi0/MORE.

Dataset: (1)We utilize the MNIST dataset [46] to conduct

experiments in the noiseless quantum system. The MNIST

is a widely used benchmark for image classification tasks,

consisting of ten classes of hand-written digits ranging from 0

to 9. We randomly select 1,000 training and 200 test images

from each class and reduce their dimensions to 8 using PCA.

(2) Additionally, we evaluate MORE using the Iris dataset

[47] in simulated noisy quantum systems. The Iris dataset

contains 150 instances classified into three distinct classes,

each consisting of 50 instances with 4 pixels. We use 70% of

the instances (105 instances) for training, while the remaining

30% (45 instances) are reserved for testing purposes.

Model implementation: We develop the QNN classifiers

based on Qiskit NeuralNetworkClassifier class, and

use the optimizer COBYLA to update trainable parameters.

MORE employs an 8-qubit QNN for the MNIST dataset and

a 4-qubit QNN for the Iris dataset, with 91 and 39 train-

able parameters, respectively. We build QNNs based on the

design principles for quantum convolutional neural networks

proposed in [30]. For the readout, we choose the last active

qubits at the end of the circuit and measure it with σx, σy ,

and σz observables. To efficiently convert classical labels to

quantum labels during the clustering step, we randomly select

five instances from each class and form pairs from the resulting

dataset. The clustering dataset consists of
(

5K

2

)

pairs in total,
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where K is the number of classes. We use MSE to calculate the

interclass correlations. And to make the quantum labels spread

out as much as possible, the MSE between different classes is

normalized to the interval [0.5, 1]. During supervised learning,

then, the entire training dataset is used.

A. Accuracy

We evaluate the accuracy of the proposed approach MORE

using the MNIST dataset on noise-free quantum systems. We

conduct nine classification problems ranging from binary to

10-class.

Our evaluation starts by investigating the effect of using

multiple observables of a readout qubit on binary classification

tasks. To do so, we compare our results to BaseBin, which

serves as the baseline in this experiment. The comparison

is illustrated in Fig. 6. Both MORE and BaseBin use the

same ansatz (QCNN with 91 trainable parameters) for binary

classifications, but the readout qubit of BaseBin is measured

only with observable σz . The expected value of its measure-

ment results is associated with two distinct classes: a positive

expected value represents one class, and a negative expected

value represents the other. We conduct 45 binary classifications

on MNIST using MORE and BaseBin, respectively. The class

pairs for classification are listed on the x-axis of Fig. 6 and are

sorted in descending order of interclass correlations. E.g., the

training data of classes ‘4’ and ‘9’ have the highest similarity,

while those of classes ‘0’ and ‘1’ have the lowest. The results

indicate that MORE outperforms BaseBin in 37 out of 45

tasks and achieves comparable accuracy in the remaining tasks.

MORE improves accuracy by up to 22.28% and by an average

of 4.9%. Furthermore, the performance of MORE demon-

strates greater stability across tasks of varying difficulty than

BaseBin. As observed, a roughly inverse relationship exists

between accuracy and interclass correlation for both MORE

and BaseBin, i.e., as class correlation increases, classification

becomes more challenging. Consequently, both MORE and

BaseBin exhibit the highest accuracy on (0, 1)-classification

and the lowest accuracy on (4, 9)-classification. Nonetheless,

the variance of MORE’s accuracy over 45 tasks is only 34.01,

while that of BaseBin is 59.41, indicating that MORE is more

stable than BaseBin. It shows the advantage of MORE, which
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has three observables, in terms of accuracy and stability.

Next, we evaluate MORE on multi-classification tasks using

the MNIST dataset and summarize the results in Fig. 7. We

conduct eight multi-classification tasks, categorizing handwrit-

ten digits into three to ten classes. Note that the ansatzes used

in multi-classifications are identical to the binary classification

ansatzes. The accuracy of MOREs is compared to that of

BaseAnc and BaseMea, which serve as the baselines in

this experiment. BaseAnc and BaseMea are both variational

quantum multi-classifiers. BaseAnc utilizes eight qubits for

data processing and n ancilla qubits as the readout for n-class

classifications. And BaseMea employs a total of eight qubits

and measures a subset of qubits at the end of the circuit to

produce a result. In a multi-classification task with n classes,

n qubits are measured. They encode class labels as one-hot

vectors and measure the readout qubits on the z-basis. So

BaseAn and BaseMea can only support the classifications in-

volving up to eight classes, due to the limitation in dimensions

and the number of qubits, respectively. MORE, however, is

capable of conducting 10-class classification regardless of the

number of qubits, and we believe it still qualifies if the dataset

contains more classes. Fig. 7 indicates that MORE outperforms

BaseAnc and BaseMea across the board. The reason is that

both BaseAnc and BaseMea require simultaneous control of

several qubits to represent the class label, which can be

challenging, particularly for an unstable quantum system. In

contrast, MORE only utilizes a single qubit to record the

outcome, thus reducing the number of factors contributing to

instability.

Overall, our proposed MORE approach, which uses a simple

circuit with only one readout qubit, can beat other general

approaches and achieve the desired performance. In the fol-

lowing subsections, we will analyze the impact of the MORE’s

components and access MORE in noisy quantum systems.

B. Quantum label

We now examine the impact of selecting quantum labels for

classes. To do so, we compare the following approaches:

• BaseRand: A baseline method that randomly assigns

quantum states to classical labels.

• MORE\cor: A variant of the MORE approach that does

not consider interclass correlation during the variational

quantum clustering step, i.e., all diagonal entries in the

scaler array S are -1s and all other entries are 1s.

• MORE: The vanilla MORE method employs interclass

correlation for determining quantum labels.

Then, based on the selected quantum labels, each of the

three approaches is followed by quantum label-based super-

vised learning using objective function Eq. 11 without the loss

regulator R. The test accuracy of the above approaches is

summarized in Fig. 8. Across eight multi-classification tasks,

MORE outperforms other methods in all cases. BaseRand and

MORE\cor have comparable performance, all of which are

inferior to MORE. Therefore, we conclude that it is beneficial

to take interclass correlations into account when deciding the

quantum labels for classical labels. A possible reason is that

the data distribution in the Hilbert space is strongly related to

that in the classical feature space. As an example, Fig 3 (d)

shows the distribution of quantum labels for class ‘0’, ‘1’, and

‘2’ of MNIST, according to their relationship as listed in Fig 3

(b). Classes ‘1’ and ‘2’ have the smallest MSE value (strongest

correlation), so their quantum labels are closer to each other

compared to other class pairs. Similarly, the readout states of

the instance from classes ‘1’ and ‘2’ are supposed to be closer

than those of other classes. As a result, assigning quantum

labels based on class correlation can capture the training data

pattern to some extent, which is advantageous for enhancing

model quality, as shown in Fig. 8. Nonetheless, the figure

reveals that the accuracy of quantum classifiers decreases as

the number of classes increases. This trend is also observed

in quantum classifiers that employ alternative implementation

strategies. Thus, we introduce a loss adjuster to alleviate this

issue, as shown in Eq. 13, and analyze its impact in the next

subsection.



TABLE I
PARAMETERS AND RESULTS FOR LOSS ADJUSTER

Task
Min. label
distance

r w More\R acc. MORE acc.

0-2 1.302 1.5 0.1 84.13% 88.7%

0-3 0.713 1.0 0.2 63.45% 70.1%

0-4 0.57 0.8 0.1 53.5% 63.3%

0-5 0.077 0.2 0.4 40.48% 50.2%

0-6 0.212 0.4 0.5 29.06% 37.2%

0-7 0.067 0.2 0.5 44.8% 48.6%

0-8 0.099 0.15 0.2 29.4% 33%

0-9 0.086 0.15 0.2 22.6% 27.8%

C. Loss adjuster

Table I summarizes the parameters and results for the loss

adjuster over the multi-classification tasks. The accuracy of

MORE (with R) and MORE\R (without R) are listed in

the last two columns. The comparison indicates that MORE,

which uses the loss function (Eq. 14) with R during su-

pervised learning, improves the accuracy across all tasks.

This improvement is caused by the corrected misclassification

between the classes whose quantum labels in the Hilbert

space are too near together. In Eq. 14, two hyper-parameters

need to be determined by users: the threshold r and the

weight w. The threshold r is empirically determined based

on distances between quantum labels. In our experiments, the

Cosine distance between quantum labels is calculated. Usually,

r is specified to be slightly larger than the shortest distance,

as shown in the 2nd and 3rd columns of table I. E.g., the

smallest Cosine distance between quantum labels in the 0-9

task, a 10-class classification, is 0.086 (about 24 degrees), so

we set the r to be 0.15 (about 32 degrees around the target

quantum label). Moreover, we test MORE with a w range from

0.1 to 1.0 and identify the optimal value of w for each task. We

report these values in the 4th column of the table, although we

found accuracy improvements across all values of w in each

task. The w values demonstrate that R has varying importance

across different tasks, but its contribution is not greater than

half in any task. Hence, we recommend that users search for

an appropriate value of w within the range of 0.1 to 0.5.

D. Noisy quantum system

Table II summarizes the test accuracy of MORE using the

noisy quantum backends, including FakeAuckland, FakeA-

thensV2, and FakeBelemV2 on the Iris dataset. The hybrid

quantum-classical training method of QNN typically requires

a long time to execute on a quantum machine, but the IBM

cloud quantum computing platform imposes time limits for

tasks. In this experiment, we therefore utilize simulators of

noisy quantum computing systems. The noisy backends used

in this experiment have the noise model collected from real

quantum machines, which includes T1 and T2 time, 1-qubit

and 2-qubit gate errors, and measurement errors. So these

TABLE II
TEST ACCURACY OF MORE ON IRIS DATASET WITH NOISY BACKENDS

# Shots FakeAuckland FakeAthensV2 FakeBelemV2

1k 95.56 95.56 93.33

2k 97.78 93.33 95.56

3k 97.78 93.33 95.56

4k 97.78 93.33 95.56

5k 93.33 93.33 95.56

6k 95.56 95.56 95.56

simulated backends provide us with a practical and reasonable

way to evaluate the performance of MORE in noisy quantum

systems. To process the Iris instances of size 4, we construct

4-qubit QNNs with 39 trainable parameters. We update the

QNNs for 300 steps using the COBYLA optimizer. We varied

the number of shots for the quantum program from 1,000

to 6,000 on the backends to examine the impact of quantum

computation costs.

The MOREs reach their highest accuracies of 97.78 (44/45),

95.56 (43/45), and 95.56 (43/45) on the FakeAuckland, FakeA-

thensV2, and FakeBelemV2 backends, respectively. The noisy

MOREs achieve comparable performance to the noise-free ver-

sion, with an accuracy of 97.78%. Surprisingly, we found that

the accuracy was not directly proportional to the number of

shots, suggesting that the quantum computation cost required

for this task is not significant. However, we acknowledge that

the number of shots required may increase with an increase in

the number of classes. Nonetheless, the cost is still acceptable

only if the distribution of learned quantum labels is scattered

in the Hilbert space. Furthermore, while it is true that accurate

measurement results are necessary for the MORE approach,

we want to highlight that using a simple quantum circuit (with

fewer qubits, gates, and shallow depth) can lead to less error

compared to other methods. This makes the MORE approach

feasible and promising to implement on NISQ machines.

VI. RELATED WORK

In recent years, numerous attempts have been made to

explore the capabilities of QNNs using various techniques.

In this section, we will discuss some notable works that focus

primarily on the classification task, which is the central theme

of this article.

First of all, there are several suggested concepts for the

design of QNN-based classifiers [13], [30], [31], [35]. [13]

and [30] concentrate on the ansatz design of QNNs. They are

the fundamentals of current popular QNNs that use parametric

unitary transformations to process data efficiently. However,

scalability is a crucial concern for QNNs, particularly on

NISQ devices, where the limited number of qubits restricts the

quantum circuit’s size and performance. Quanvolutional NN

[35] employs the quantum circuit of modest size as kernels

of quantum convolution NN, rather than building the entire

QNN. And SQNN [31] scales up QNNs by constructing large-



scale QNNs modularly and leveraging quantum computation

resources from multiple quantum machines. All of these

studies focus on binary classification tasks and demonstrate

the advantages of QNNs. In addition to model scalability, the

ability to scale the problem size is essential for improving the

capacity of QNNs. In this article, we propose an approach

that aims to expand the problem size that a QNN can handle

without having to scale up its quantum circuit.

Many prior efforts have attempted to enhance the problem

size that QNN classifiers can address [33], [36], [37], [48]±

[53]. A QNN classifier with four ancilla qubits for 4-class

classification is built in [48]. The capability of the solution

is restricted by the quantum hardware, as larger problem

sizes require additional ancilla qubits, which are not currently

available on NISQ machines. [33], [53] also address milt-

classification problems by using ancilla qubits. An alternative

solution is QuClassi proposed in [39]. It breaks down a

multi-classification into several binary classifications. For each

binary classification, the cost function is constructed based on

quantum state fidelity by using SWAP, and only one ancilla

qubit is needed for measurement to get the readout. The

measurement results of all classes are softmaxed to obtain the

final classification result. Despite the quantum computing re-

sources being limited in this method, the training and inference

processes are complicated and time-consuming. Similarly, a

fidelity-based QNN classifier is proposed in [37], but its QNN

ansatz can only solve binary classification tasks. Moreover,

VSQL [49] slides a predefined partial observable ªxxº across

the qubits to get the classical shadows of the quantum state

prepared by a QNN, and then feeds the local shadows to

a classical fully-connected layer for decision making. Yet,

the computationally demanding classical fully-connected layer

may counteract the quantum speedup. A unified quantum

classifier is presented in [50]. This approach investigates the

connection between class labels and quantum states. In our

study, we further investigate the distribution of quantum labels

in Hilbert space based on interclass correlations and demon-

strate its significance by highlighting the superior performance

of our approach. Additionally, we introduce a loss adjuster

during supervised learning to ensure optimal performance

when dealing with multiple classes in the task at hand.

VII. CONCLUSION

We propose MORE, a QNN-based multi-classifier that

maximizes quantum resource efficiency. By fully leveraging

quantum information, MORE employs a simple ansatz as

the binary classifier with only one readout qubit to solve

multi-classification problems. To achieve this, MORE first

converts classical labels into corresponding quantum labels

using variational quantum clustering. This process considers

interclass correlations, allowing the learned quantum labels to

capture intrinsic patterns in the classical feature space of the

training data. Quantum supervised learning is then performed

based on the quantum labels to efficiently train the model.

Furthermore, we introduce a loss adjuster to enhance the

model’s quality by making it more sensitive to the labels

that can result in misclassifications during training. Our com-

prehensive evaluations demonstrate that MORE outperforms

general quantum multi-classifiers and is capable of effective

operation in noisy quantum systems due to its reduced error

sources. This suggests that fully utilizing quantum information

offers a promising approach for scaling up the problem sizes

that can be addressed during the current NISQ era.
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