IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

1733

An Efficient and Robust Cloud-Based Deep
Learning With Knowledge Distillation

Zeyi Tao"™, Student Member, IEEE, Qi Xia
, Senior Member, IEEE, and Qun Li, Fellow, IEEE

Songging Cheng

, Student Member, IEEE,

Abstract—In recent years, deep neural networks have shown extraordinary power in various practical learning tasks, especially in
object detection, classification, natural language processing. However, deploying such large models on resource-constrained devices
or embedded systems is challenging due to their high computational cost. Efforts such as model partition, pruning, or quantization have
been used at the expense of accuracy loss. Knowledge distillation is a technique that transfers model knowledge from a well-trained
model (teacher) to a smaller and shallow model (student). Instead of using a learning model on the cloud, we can deploy distilled
models on various edge devices, significantly reducing the computational cost, memory usage and prolonging the battery lifetime.

In this work, we propose a novel neuron manifold distillation (NMD) method, where the student models imitate the teacher’s output
distribution and learn the feature geometry of the teacher model. In addition, to further improve the cloud-based learning system
reliability, we propose a confident prediction mechanism to calibrate the model predictions. We conduct experiments with different
distillation configurations over multiple datasets. Our proposed method demonstrates a consistent improvement in accuracy-speed

trade-offs for the distilled model.

Index Terms—Deep learning, transfer learning, knowledge distillation

1 INTRODUCTION

ECENTLY, deep neural networks (DNNs) [1] have
Rachieved state-of-the-art accuracy on many tasks rang-
ing from computer vision to natural language processing.
People usually run the powerful DNNs on the cloud or the
proximal edge server [2]. Users hence, execute machine
learning (ML) tasks on mobile devices by sending the data
such as images, video frames, or speech records to a remote
cloud server. Consequently, transmitting a large amount of
data uses a lot of network bandwidth, causing network con-
gestion, data plan waste, and lowering the quality of service
(Q0S). On the other hand, time-sensitive applications such
as autopilot, AR games, and control sensors require a quick
response between the user and remote server. The network
delay or cloud server outages are prohibited and may cause
significant loss in such applications.

Practitioners face the dilemma of processing massive
data in a local environment or transmitting it to a remote
cloud server. Deep learning model deployment is a well-

o Zeyi Tao and Qun Li are with Computer Science, College of William and
Mary, Williamsburg, VA 23187-8795 USA. E-mail: ztao@email wm.edu,
ligun@cs.wm.edu.

o Qi Xia is with Computer Science, William and Mary, Williamsburg, VA
23187-8795 USA. E-mail: qxia01@email wm.edu.

o Songqing Cheng is with Computer Science, George Mason University,
Fairfax, VA 22030 USA. E-mail: sqchen@gmu.edu.

Manuscript received 5 Nov. 2021; revised 31 Jan. 2022; accepted 9 Mar. 2022.
Date of publication 22 Mar. 2022; date of current version 7 June 2023.

This work was supported by the U.S. National Science Foundation under grant
CNS-1816399 and was also supported by the Commonwealth Cyber Initiative,
an investment in the advancement of cyber R&D, innovation and workforce
development.

(Corresponding author: Zeyi Tao.)

Recommended for acceptance by D. O. Wu.

Digital Object Identifier no. 10.1109/TCC.2022.3160129

known issue in both the deep learning and edge-cloud com-
munity. To increase the model deployability, many practical
approaches have been discussed. These methods can be
roughly categorized into three types: deep neural network
partition [3], [4], [5], model pruning [6], or quantization [7]
and knowledge distillation.

DNN:is partition heavily relies on infrastructure support so
that we can benefit from executing the model in a parallel
manner on different infrastructure components [8]. Although
slicing the DNNs layers across the edge increases training
parallelism and provides more flexibility in the model place-
ment, it is very challenging to use. Because the problems such
as how to discover the optimal model partition strategy, how
to deal with the tradeoff between runtime and meta-data
transmission make this approach unpopular [9].

Network pruning iteratively prunes the model by remov-
ing less important neurons or weights while ensuring the
model does not significantly lose accuracy. On the other
hand, Parameter quantization tries to decrease the represen-
tation precision of weights. Similar to network pruning, a
big challenge of the quantized models is preserving high
accuracy. Although both network pruning and quantization
reduce the computational costs and memory usage of mod-
els, they require the pre-knowledge of the model, and peo-
ple need to retrain and fine-tune the models until they can
be fully used [10]. Moreover, the above two approaches are
slightly not favored in the edge-cloud community because
of the extra training efforts.

In summary, most of the techniques mentioned above are
very hard to apply to edge-cloud based ML applications
because of two reasons. First, edge-cloud based ML applica-
tions are usually running on many different devices and
embedding systems. Deploying learning models on hetero-
geneous edge devices requires lots of effort in searching

2168-7161 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

1734

N

o
2
Teacher 3
Model ———> output Activation '%
T(x) g
[— n
Output Activation
@
Student s
Model 2
SK) One-hot Lable E

(@

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Knowledge
Distillation

EEEEMAER

000000
500
o lelolole] Distilled Model I
o6 =
00

(b)

Fig. 1. (a) Conventional knowledge distillation. A state-of-the-art teacher model (more deeper and wider) displays in blue color and the distilled stu-
dent model is displayed in cream-coloured. Given input data (handwriting 5), we train the student model via knowledge distillation by two losses. First
is a soft loss where we minimize the difference between student activation and teacher activation. This process is also known as student model mim-
icking teacher model distribution. The second loss is a hard loss where we compare the prediction result to a one-hot label. (b) illustrates a cloud-
based machine learning using knowledge distillation. The powerful deep model resides in a cloud server or edge server. While the distilled models

can be deployed on the various end devices.

appropriate models, preventing widespread use. Second,
deep model reduction techniques such as pruning and
quantization spend considerable computation resources in
fine-tune training, which is less efficient.

Recently, the emergence of knowledge distillation [11]
has become an appealing approach to address the problem
of DNNs model deployment. Knowledge distillation trans-
fers knowledge from a deeper and wider model (teacher
model) to a shallow model (student model) with negligible
performance loss. Recent advances in natural language pro-
cesses (NLP) such as BERT [12], which has 12 layers and
110 million parameters, can be distilled to 3 or 6 layers shal-
low models without performance sacrifice [13]. Conse-
quently, using an efficient student network, users can
process the learning tasks on resource-constrained devices.
Fig. 1a illustrates a typical knowledge distillation process.
The key insight of knowledge distillation is that the student
model mimics the output distribution of the teacher model.
Students acquire information encoded in the teacher’s clas-
sifiers to achieve the exact prediction as a teacher does.
Fig. 1b illustrates a typical knowledge distillation process.

In this paper, we propose a novel cloud-based machine
learning framework that users could process the ML tasks
on their mobile devices without using the very deep learn-
ing models and unnecessarily sharing the local data to the
cloud. We use a novel knowledge distillation method
named Neural Manifold Distillation (NMD) to reduce the
state-of-the-art model complexity without performance
loss. Moreover, to improve the reliability, we design an effi-
cient algorithm that enables users to execute the learning
task on the cloud if the local predictions are not convincing.

In our design, as shown in Fig. 1b (Fig. 2 for more details),
the state-of-the-art models (teacher model) are trained and
stored on the cloud or edge server, e.g., through distributed
training. Through knowledge distillation, teacher models
produce various student models that meet different task
requirements and local configurations. In addition, the stu-
dent models are also trainable by using a local dataset, which
enables users to fine-tune their local model.

The proposed knowledge distillation method, NMD, can
efficiently produce and improve the performance of distilled
student models such that we can execute machine learning

tasks on mobile devices with a low computational cost. A key
idea in our proposed knowledge distillation method is using
feature manifold to transfer knowledge from the teacher
model to the student model. The feature manifold is a low-
dimensional representation of the original feature space in
DNNs. Ideally, we can use this low-dimensional feature
representation to recover the original feature space. Our
method matches the feature manifolds from the same feature
space of the teacher and student models. Compared with the
existing knowledge distillation methods, feature manifold
gains knowledge from both feature and its geometric infor-
mation. With additional knowledge, we can improve the per-
formance of student models. Overall, our approach has two
advantages. First, our proposed method introduces minimal
computation cost without significant performance loss on the
distilled model compared with other methods. The overhead
that is introduced by generating feature manifolds is negligi-
ble. Second, since our method uses additional feature infor-
mation to help the distillation, we improve the performance
of distilled models.

In summary, the contributions of this paper are threefold:

e We propose a new knowledge distillation method
that effectively addresses the problem of deep neural
network deployment. In particular, our method
shows advantages in computation and communi-
cation efficiency.

e To further ensure the reliability of the distilled
model, we introduce a simple but efficient prediction
mechanism for validating the final results.

e Based on the above, we also propose an end-to-end
framework for cloud-based machine learning appli-
cations running on resource-constrained mobile devi-
ces. To the best of our knowledge, this is the first
demonstration of knowledge distillation for an edge-
cloud environment.

2 RELATED WORK

In this section, we first briefly summarize recent works for
accelerating the deep learning in the edge computing. Then
we introduce related works about various knowledge distil-
lation techniques.

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

TAO ETAL.: EFFICIENT AND ROBUST CLOUD-BASED DEEP LEARNING WITH KNOWLEDGE DISTILLATION

Residual Block 1
18

]

STEM
Basic Block
Basic Block

<
[53
o
o
L
[}
©
m

1735

Knowledge
Distillation

Knowledge
Distillation

Basic Block
Basic Block
Basic Block

STEM
Residual Block 2

Residual Block 1

Feature Manifold

Residual Block 3

Fig. 2. Overview of our proposed method. The teacher network in light blue is a standard deep residual network [40] (ResNet110). The student net-
work in cream color is a shallow network (ResNet20). Both networks have 3 residual blocks but are different in the number of basic blocks.
ResNet110 has 18 basic blocks in each residual block, but ResNet20 only has 3. Knowledge distillation happens after each residual block.

2.1 Efficient Deep Learning in the Edge

In recent years, edge intelligence is expected to push learn-
ing computations from the cloud to the edge [14], [15], [16],
thus enabling various distributed, low-latency, and reliable,
intelligent services. Learning tasks are usually computation-
ally intensive and require large memory footprints. Conven-
tional methods such as model pruning and quantization are
not specifically designed for the edge [17]. To this end,
researchers find that the DL model can be segmented into
multiple partitions and then allocated to 1) distributed edge
nodes [18], [19], or 2) use collaborative cloud-edge architec-
ture [20], [21], [22]. The most common segmentation method
is partitioning the learning model horizontally, i.e., along
the end, edge and cloud. Another model segmentation strat-
egy is vertically partitioning [19]. In contrast to horizontal
partition, vertical partition fuses layers and partitions them
vertically in a grid fashion, and thus divides CNN layers
into independent computation tasks. Chen et al. [23]
explored the decentralized collaboration in heterogeneous
edge training. It can be configured into any specialized sub-
models for dedicated edge tasks given a predefined CNN
model structure. The computation cost of the specialized
sub-models can be significantly reduced. The challenge lies
in how to select the partition points intelligently.

Other common approaches can be summarized as using
shared learning computation. The edge users from the same
region might request learning tasks for the same object of
interest. In this case, it might introduce redundant computa-
tion of learning. Cachier [24] proposes to cache the related
models to edge servers to minimize expected end-to-end
latency and reuse learning models, according to the offline
analysis of applications and online estimates of network
conditions. To effectively process streaming data, Deep-
Mon [25] and DeepCache [26] reuse the intermediate results
of the video frames from CNN layers to reduce the process-
ing latency of continuous vision applications.

2.2 Knowledge Distillation

Recently, extensive works have been proposed to explore
various knowledge distillation techniques. The key to

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48

understanding knowledge distillation is knowing how to
define the knowledge in the student-teacher training par-
adigm. The existing efforts can be broadly categorized
into three types: soften activation knowledge [11], [27],
[28], feature knowledge [29], [30], [31], [32], [33], and
first-order Jacobian knowledge [34], [35], [36].

Soften activation knowledge was first proposed by [11].
The insight of work is that the knowledge is defined as soft
outputs (soften activation) of the teacher network. The soft
knowledge converts the discrete label to a continuous distri-
bution where enlarge the learning space. Student models
mimic teacher soft activation distribution as their learning
outcomes. The main drawback of using soft knowledge is
apparent: soften activation only fits classification tasks. How-
ever, for example, in a binary classification problem, soften
activation is barely helpful in improving the performance.

Most knowledge distillation techniques have adopted
feature knowledge, which improves knowledge distillation
by using more helpful information other than soften activa-
tions. DNNs usually have a strong ability to extract the fea-
tures from input data via various operations such as
convolution, non-linear activation, residual block, etc. This
type of knowledge distillation utilizes multiple intermediate
features extracted by DNNs to improve the performance of
distilled models. [37] proposed attention transfer (AT) by
defining the network knowledge as a spatial attention map
of input images. A similar work applied in the computer
vision field is named Flow of Solution Procedure [38] (FSP).
Later, the success of the attention mechanism in NLP also
inspires researchers to apply it to knowledge distilla-
tion [29]. While the idea of using contrastive representation
learning on knowledge distillation also draws the research
attention [30].

First-order Jacobian knowledge has been explored
by [34]. The authors describe the neural network as a non-
linear function. Hence, knowledge distillation can be
regarded as matching the Jacobians of two neural networks
by using the first-order approximation of the functions. Our
proposed knowledge distillation method is inspired by

Jacobian knowledge in [35].
TC from IEEE Xplore. Restrictions apply.

1736

3 PRELIMINARY

This section will briefly introduce the key concept in knowl-
edge distillation, followed by a discussion of current issues
of applying the knowledge distillation to large-scaled edge-
cloud environments and possible solutions.

3.1 Knowledge Distillation

The conventional use of knowledge distillation is training a
shallow student network from a large teacher ensemble.
The teacher model activations are used to guide the training
process. Consider a classic supervised learning, suppose we
have image dataset {z;,y;} € X x),i=1,2,...,n where
x; € X is the i-th input image and y; € Y is its class label.
Let 7 () to be the teacher model, and let p! = softmax(2?) to
be its class probability where 2! is the output logit for ith
image z; in the teacher model. In addition, we define S(-) as
a student model with class probability p; = softmax(z)
where z; is the output logit for ith image =; in the student
model. In knowledge distillation, the student network S is
trained to optimize the following loss function:

LKD = Z aLhard(pfa yb) + (1 - a)Lsoft (pjvpf)v (1)

i€[n]

where Ly, is a user-specified loss function used for measur-
ing the prediction p; to ground-truth label y;, and Ly is loss
function for calibrating the soft activation loss between
teacher p! and student p? respectively. « is the hyper-parame-
ter to balance the hard and soft losses. Particularly, in the sem-
inar work of Hinton et al. [11], they use Kullback-Leibler (KL)
divergence for Ly, and standard cross-entropy (CE) 1955 for
Lpara. By defir}ing soften activation as p! = softmax(%) and
p; = softmax(’), Hinton et al. distill the knowledge by opti-
mizing the following:

1 S s .t

T, €X

where 7 is a hyper-parameter that aims to produce a smooth
continuous distribution over all classes. In this setting, the
soften activation knowledge is transferred to the distilled
student model. Notice that the t is only used during the
training phase. After that, the 7 is set to be 1 for inference.
Although the knowledge distillation produces shallow, com-
pact, and computationally efficient models, researchers find
the presence of the performance gap between teacher and
student models. In the next section, we discuss the main
drawbacks of knowledge distillation used in cloud-edge
computing.

3.2 Issues With Knowledge Distillation

We produce shallow, compact, and computationally effi-
cient models through knowledge distillation, which can
process learning tasks on portable devices. However, recent
studies have shown that the distilled model suffers from
accuracy loss. Tian et al. [30] implement 10 different distilla-
tion approaches and find that all of them fail to outperform
the knowledge distillation baseline. Moreover, recent stud-
ies [39] indicates the presence of a generalization gap on stu-
dent model. Consequently, applying the distilled model to

Authorized licensed use limited to:

illiam & Mary. Downloaded on January 24,2024 at 19:14:48

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

the edge is challenging due to the need for high-quality
models. For example, when a user requests the light-
weight distilled model from the cloud server, a distilled
model is expected to make decent prediction results. In
particular, users may use low-resolution data with noise,
which makes distilled model hard to predict. Instead,
users send the data to cloud servers seeking a better pre-
diction where massive communication costs are intro-
duced and inefficient.

To effectively improve the performance of the distilled
model, let us consider over-parameterized deep learning
models where the number of model parameters is far more
than the data. DNNs can extract millions of features from
the input data to dramatically increase their performance.
These features are encoded in the output of the different
layers and always presented in a high-dimensional feature
space.

Therefore, feature-based distillation methods are more
appealing. They, however, have two significant drawbacks.
First, feature-based distillation can be regarded as conduct-
ing a very strong and strict regularization for student mod-
els [41]. When student models heavily rely on intermediate
features, student models will likely be overfitting and thus
poor generalization. The above reminds us that it is essen-
tial to decide what appropriate features to include for train-
ing the student model. Second, the teacher features contain
noise and usually lie in a very high dimensional space.
Directly using these features is not only unsafe but also
introduces computation overhead. Moreover, either vanilla
knowledge distillation or the aforementioned feature-based
knowledge distillation does not utilize the information in
the feature geometric structures. Here, the feature geometric
structure refers to a feature related to or in contrast with
other features in a system of representations.

3.3 Proposed Method

In the proposed distillation method, we relax the use of
intermediate teacher features. Instead, we use feature mani-
fold, a low dimensional feature representation, to reduce
the feature noise and adequately regulate the training. Sup-
pose the teacher’s high-dimensional features can be pro-
jected into a low-dimensional nonlinear space. Inspired by
Whye et al. [42] and Zhang et al. [43], we can use local tan-
gent space to approximate a low-dimensional feature mani-
fold. The tangent space we used is constructed from a series
of neighborhood feature points to preserve the nonlinear
geometric information. The feature manifold plays a very
crucial role in our proposed method. It has an important
characteristic: the original feature space can be recovered
from the feature manifold where all key features and the
nonlinear relationship are preserved. Meanwhile, the fea-
ture manifold contains less noise. Therefore, in the process
of knowledge distillation, we simply use feature manifolds
to train the student model. The student model is moderately
regularized, and the generalization ability is improved.
Moreover, compared to feature-based distilled models, our
method learns knowledge more efficiently with the same
amount of training time and resources. However, it is not
trivial to discover the feature manifold from a set of features
sampled from deep models, possibly with noise. We will

elaborate on our ag?roach in the next section.
C from IEEE Xplore. Restrictions apply.

TAO ETAL.: EFFICIENT AND ROBUST CLOUD-BASED DEEP LEARNING WITH KNOWLEDGE DISTILLATION

4 FEATURE MANIFOLD DISTILLATION

In this section, we will introduce our proposed knowledge
distillation method.

4.1 Overview of NMD

Neuron manifold distillation (NMD) focuses on transferring
numerical and geometric knowledge using low-dimen-
sional feature manifolds. Fig. 2 illustrates the design of our
proposed method. The key challenge of the proposed
method is how to find such feature representation from
noise features. To this end, NMD transfers feature manifold,
a low-dimensional feature representation, which can best
represent the original feature space on numeric and geomet-
ric characteristics. NMD has three optimization goals: (1)
minimizing standard training loss; (2) minimizing student
model output loss, which is the same as the conventional
knowledge distillation; (3) minimizing the feature manifold
distillation loss, which occurs after each residual block in
ResNet for example. As a result, our method shows high
training accuracy and strong generalization ability on the
test data. In summary, we combine the method of local fea-
ture geometric extraction and conventional knowledge dis-
tillation and propose NMD to distill a flexible, portable, and
computation-efficient model.

We first briefly demonstrate the overall optimization goal
of our distillation method. Considering knowledge distilla-
tion training from teacher model to student model with
same batch training data, we have teacher feature set 7 t and
student feature set 7*. Given a pre-defined feature manifold
extraction function /(-), we extract feature f' € F' and f* €
S" as ¥(f') and ¥(f*) respectively. Then we minimize the I,
distance of the feature manifolds as ||y¥(f!) — ¥(ff)||§ for
each pair. The optimization problem can be formulated as

Lxp = Y 0Lnara (0}, 91) + Lot (9}, 1Y)
i€[n]
+ 37 Nl = v, 3)

jelFt

where «, 8, y; are hyper-parameters that control the weight
of each component. Feature manifold extraction function
¥(-) maps the high-dimensional features to a low-dimen-
sional space where reserves key feature characteristics. The
low-dimensional feature manifold contains less noise from
stochastic min-batch training. The choices of hyper-parame-
ter A\ are very important. We choose a relatively large A
value for shallow-level features, and for deep-level features,
we prefer a smaller A value. In the next section, we carefully
explain how to extract the feature geometric information
from a given feature space as a feature manifold.

4.2 Linear Feature Manifold

We assume there is a d-dimension feature manifold M C
R? is embedded in a m-dimension space R™ such that d <
m. We define a construction function h(-)

h: McR —R™)
We are given a set of IV learning features from DNNs, where

fi € R™ are sampled possibly with noise from d-dimension
feature manifold, i.e.,

1737

fi=hsw)+e, i=1,...,N, (6))

where v; is the feature manifold for ith feature f; and ¢; is
error. Our goal is to estimate the unknown lower-dimen-
sional feature vector v; according to f;, i.e., f; € R™ is pro-
jected to v; € R?. In other words, we would like to represent
the learning feature f; by using a low-dimension vector v;.
Next, we start by showing the linear feature manifold
approximation to give some intuition first and then explain
the method for a realistic non-linear approximation.

We first assume the feature manifold v; exists and are
sampled to construct the feature f; € R™ by using a d-
dimensional affine subspace (A), i.e.,

fi=c+Av;+¢, i=1,...,N, (6)
where c € R™, v; € R? and ¢; € R™ is error. A € R™*¢ is a
matrix forms an orthonormal basis of the affine subspace.

For all N features, we have
F=ce' + AV +E, @)

where F =[fi, fo,..., fn] including all N features, V =
[v1,v2,...,uN], E = [e1,€2,...,ey] and e is an N-dimensional
column vector of all ones. Equation (7) illustrates the linear
feature manifold construction function.

Our goal is going to find ¢, A and V to minimize the
approximation error F, i.e.,

argmin || E||; = argmin ||F — (ce” + AV)|[3, (8)
c, AV A,
where || - ||, is the Frobenius norm. Optimization problem in

Equation (8) can be solved by singular value decomposition
(SVD) [42].

Let c = f = Fe/N to be the mean of F of all features, the
optimal solution of low-rank matrix AV is computed by the
SVDof F — fe',ie,

F—fel =U3QT, 9)
and

AV = UddedT, (10)

where
Ud c Rde,Ed c Rdxd7 Vd c RdXN.

Particularly, 3, = diag(o1, 02, . ..,04) of the d largest singu-
lar values of F' — fe'. Remember our goal is to find the low-
dimension representation v; € V' by given its corresponding
feature f;. The optimal linear affine transformation A is
given by U,;. We have the close form solution of construction
function h such as

WV)=fe +U V. (11)

The low-dimensional feature manifold V' can be produced as
V=U F—fe')
= diag(al, 09, ..

.y Ud)Q;—

Usually, the dimension d of learned linear manifold V is
chosen such that 04,1 < 04. In practice, we use a fixed and

(12)

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

1738

small d to produce computational efficient results. The
above Equation (12) demonstrates the approach of comput-
ing linear feature manifold based on linear assumption in
Equation (6).

4.3 Feature Manifold in Deep Feature

Recall our goal is learning the low-dimensional representa-
tion of features produced by the deep learning model. Previ-
ous Section 4.2 illustrates the linear manifold learning.
However, this is not the case for deep learning features.
Deep learning features are far more complicated and non-
linear. [43] points out that the key difficulty for non-linear
manifold learning is unorganized dimension reduced data.
In other words, the traditional dimension reduction
approaches such as PCA or multidimensional scaling (MDS)
fail to reconstruct the underlying structural information in
the target space. The Equation (12) may not correctly reflect
the high-dimensional projection V' on low dimension space.
To perform manifold learning of deep learning features, we
use an approach inspired by [43] and [44].

We assume that deep learning feature space F is a subset
of R™. The feature f; € F has unknown generating function
h(v), v € R". By training deep learning model, we collect a set
of N m-dimensional feature vectors F = [fi, fo,..., fn], fi €
R™ which is generated from the following noise-free form

fi = h(v)

Our objective for manifold learning of non-linear deep fea-
ture is to reconstruct v; from the corresponding feature f; or
h(v;) without explicitly knowing h(-). Assume that the func-
tion h is smooth enough, using first-order Taylor expansion
at a fixed v, and define a small neighbourhood ¥ such that
{||6 = v||> < €}, esmall. Let hy, = [hy(v), . .., hyu(v)]", we have

h(0) = v) + O(ll6 =),

where Vvhf(v)T
has the form of

Vi € [N]. (13)

h(v) + Vh(v)' (6 — (14)

€ R is the Jacobian matrix of h at v, who

ohV /o) B /g0
jh(U) -)
oh(m™) /(D) B Jau@),

where h() and v () indicate the ith element of vector. Let
Tn(v) = Vyhy (v) , we know that the tangent space K, of h at
v is spanned by this d column Jacobian matrix J(v), which
ensure the dimension of v at most d. The Equation (14) is
known as the local affine approximation of the function A(:).
Given two neighboring features f = h(v) and f=h(v),
we are unable to construct v and ¢ in the affine subspace
h(v) + K, without knowing function h. To this end, let G,
be a matrix formmg an orthonormal basis of K, we can rep-
resent V, h() (6 —v) = Gyv and v = P,(# — v) where P, =
GTV,h(v)". According to the Equation (14) and ignoring
the second-order term, we have
Gl (h(d) — h(v)).G} V,h(v) (6 —v) = v. (15)
Knowing G,, we can compute local affine transformation v
using Equation (15). We restate this transformation proce-
dure in [43] in the following.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

Remark 4.1 (Local Affine Transformation [43]). Let vari-
bale f, f ,0,0,v,G,, P, and function h defined above.
Assume that the function h is smooth. We perform mani-
fold learning by approximating local transformation P,

first
/ dv / [|P,(0

where (v) is the neighborhood of v. For linear align-
ment, we have ¥ — v = P, v = L,v. This step is equiva-
lent to optimize

/dv/ 16— v — Lyv||do.
Q(v)

Note that the v can be approximated via G, (h(?)

—v||do,

= h(v)).

In Remark 4.1 and Equation (15), the key challenge is com-
puting unknown orthonormal basis G, of K,. The G, can be
constructed via Locally Linear Embedding (LLE) [44]. Con-
sidering a set of feature { f1, fs, ..., fn } of k-nearest neighbor
features of f; including f;, we let Sy = [fi,..., fi] be a
matrix. To obtain G, we optimize Equation (8) in the Sec-
tion 4.2 using local feature Sy,

argmin |[Sy, — (fe' +GiV)]]3,
f.GL'.v

(16)

where G; € R™*. The optimal f is given by S},, the mean of
k neighbor features Then G, is the d-largest left singular vec-
tors of Sy, (I — tee") (Equation (10)). We locally produce the
d-dimensional feature representation V; = [v;, v,, ... v;,] for
eachv;; = GI (fi, — Sp,).

To reconstruct the feature manifold v with respect to the
local geometry determined by v, we assume

vi; = 0 + Livi; + €. 1mn
Writing it matrix form
V—EVee + L)V, + E;, (18)
where V; = [v;,vi,,...,v;,] and E; = [¢;,...,€;,]. To opti-
mize the local construction error ||E;||:
1
argmin || E;|| = argmin ||V;(] — %eeT) — LVill,- (19)
The optimal L; can be founded
1
L= I/;(I—%eeT)V;r, (20)

where V; is the Moore-Penrose generalized inverse of V;.
Now we have:

min||E|| = Z Vi1 ——ee)T = ViVl (21)
Our goal is to determine the optimal V in the low-dimen-
sion space. Let S; be a 0-1 selection matrix such that Vi =
VS; and W = diag(Wh,...,Wy) with W; = (I —fee')(I —
ViV;). We have

min||E|| = ||[VSW]|. (22)

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

TAO ETAL.: EFFICIENT AND ROBUST CLOUD-BASED DEEP LEARNING WITH KNOWLEDGE DISTILLATION

Now, let us use Lagrange multiplier x to impose the con-
straint that 'V TV = I;, we have

LV,p) =VSW — u(k"'VTV —1). (23)
Solving V is simply taking the derivative of £(V,u) with
respect of V.

In next section, we will explain why this feature manifold
is closely related to knowledge distillation in the theory.

4.4 Local Affine Approximators of Neural Networks
In this section, we will answer the question that why it is
necessary to use teacher feature in knowledge distillation
and the question that how it relates to our feature manifold,
we recall the Equation (1) in Section 3,

Lkd = O[Lhard (PS7 y) + (1 - a)Lsoft(ps’pt)~

We notice that the soft losses contain information about the
relationship between different classes as discovered by
teacher. By learning from soft losses, the student network
inherits such dark knowledge. To see how does the knowl-
edge distillation relate to our local affine approximation, we

define a multi-layer teacher neural network 7 : RPut —
Routput.

T =ti(t2(--- (1))

and #(x

Zalz¢l wi, T

+bl)a

(24)

where ¢, is lth operation layer such as ReLU activation, w; is
the hidden weight, b, is the bias vector, and a;; is the output
weight vector, and p; indicates the number of hidden neu-
rons. To simplify the analysis, we assume the [th layer of
teacher network extracts the corresponding feature accord-
ing to t;(a;—1) = f where a;_; is the activations from layer [—
1. We know the Ith layer feature has a construction function
h¢(v) + € with the respect to low dimensional feature space
of V. Then we have following result.

Theorem 1 (Local Affine Equivalence Theorem). Con-
sider the squared error cost function for matching soft targets of
two neural networks at lth layer with p features, given by

)=

i=1

LSOft(Tt] St] Sél))))

where x is the activations from layer | — 1. and & is noise. Let
fi =Ty (x) and f; = Sy, (x), the f;, f; € F are the features in
feature space F which are generated by T, and Sy, respec-
tively. Then matching soft targets of two neural networks is
equivalent to match their feature manifold where

p

E|Y (T)(z+¢)

i=1

= (T, (@) =S (2))*

i=1

— 8} (@ +8)’

p B
(Vahy(v) =
i=1

+0°E Vahiy(v))*| +O(p"), (25)

where ¥V ;hi(v) is the Jacobian matrix of hy at v.

Proof. To prove this, we recall the Section 4.2, the feature

manifolds are $1ven by two construction function where
Authorized

1739
Ty, = h(0) and Sy (x + &) = hy(0) where £ is small noise.
Using first-order Taylor expansmn at a fixed v, and a

small neighbourhood with {||0 — o> < p} and p is small,
we have

E {zp:(’f;](x + f)—S (z+€))

) p[i

Zw — hi(d)) }

v) + Vohi(v)p = B (v) = Vuhi(v)p))* | +O(p")

V4

p .
2 SCORADERAD LR vmh;(v»ﬂ
1=1 i=
p p . b
= (T} (&) = S, ()" + PPE| Y _(V.hi(v) — V.1l ()%
1=1 i=1
We omit O(p?) at third and last row. o

We notice that the loss function has two components. The
first term indicates the conventional loss of knowledge dis-
tillation on samples from both teacher and student. And the
second regularizer term represents the difference of local
affine approximation of the given networks. The final error
terms are small for small p and can be ignored. From the
observation in Theorem 1, we can conclude that it is ill-con-
sidered practice for conventional knowledge distillation
that it only transfers the raw CNN activation outputs point-
wisely to their offspring model. For a complete knowledge
distillation method, transfer of the underlying knowledge
residing in the infinitely many data points nearby is also
obligatory.

5 DISTILLATION BASED CLOUD COMPUTING

The knowledge distilled model proposed in this work can be
widely used for many real-world applications such as image
classification, speech recognition, object detection, etc. There
is plenty of research focusing on improving the distilled
models’ accuracy and speed of networks. As a result, the dis-
tilled models are good at providing predictions that are cor-
rect most of the time. However, they are failing at telling the
user when their predictions can be trusted and when they
cannot [45]. Consider an application such as an autonomous
driving car with a front camera for detecting the pedestrian.
Most of the time, the lightweight model can provide confi-
dent predictions that tell whether there is a pedestrian or
not. But, in some cases, for example, the heavy rain, the view-
ing condition is poor, and the outline of pedestrians captured
by the front camera is not clear. The model may not provide a
reliable prediction. In this case, in order to make more confi-
dent predictions, we tend to utilize a more robust model that
resides in the central cloud.

In this section, we propose an end-to-end solution for the
aforementioned issue. We first define the problem in the
following.

5.1 Definitions

The problem we address is supervised multi-class classifica-
tion with neural networks. Let input z € X and label y €
Y ={1,2,...,C} are random variables that follow a ground
truth joint distribution 7 (z, y) = 7(y|x)n(z).

censed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

1740

Let NV be a neural network with N (z) = (¢, Z,). The § is
neural network prediction and Z, = (2,1,...,2:.c41) € R¢
is confidence scores, one for each possible class identity
1,..., K. Usually, the confidence score are converted into
probabilities P, = {j,1,...,prc+1} by using the softmax
function such as

ﬁ:l?,i = SOftmaX(Zx‘i) — M7

C
2 e=1 XP(22,4)

each p; indicates the probability that the input « falls to one
of class c. The neural network will generate the final predic-
tion by selecting the largest probability over all probabilities
in P,

(26)

(27)

4 = arg max B,.
i
Ideally, we expect the well-train model can be indicative of
the actual likelihood of correctness such as

P@H=ylp=p) =p Vpel0.1], (28)
where the probability is over the joint distribution. How-
ever, in real-world application, achieving perfect estimation
is impossible. In most cases, we notice that the non-confi-
dent model will produce the class probabilities p,; and p, ;
with i # j close to each other. This indicates that the model
N likely to pair the input z to either class § =i or class § =
j- We name such model as uncertain model.

For supervised learning, the expected calibration
error [46] (ECE) is a good metric to measure the model
uncertainty. One notion of model uncertainty is the differ-
ence in expectation between prediction and accuracy

E[[P(§ = ylp = p) — pll; (29)
ECE can be approximated via partitioning predictions into
M equally-size bins and taking a weighted average of the
bins’ accuracy and prediction difference, such as

m

Z

where B,, is a set of indices of samples whose prediction
probability p; falls into the interval I,, = (%=, 2] such as

M M
By, = {i: 22 < p; <2} Ace(By,) and Pred(B,,) are defined

ECE = |Acc) — Pred(By,)|, (30)

as
Ace(B,) = 5= 3 106 = w). (31)
mlie By,
and
Pred(B,,) =B, |Z i, (32)

i€Bpy,

We use the ECE score to select the distilled models during
the knowledge distillation training. The smaller ECE score
indicates the model is more confident in its predictions.
Unfortunately, we are unable to calculate the ECE score dur-
ing the inference stage because we have no way to know the
ground truth distribution p (or Acc(B,,)) in advance. Once a
non-confident model generates two similar predictions ;

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

and ¢; with their probability scores p; and p; respectively, we
are unable to trust this results. A good practice for address-
ing this issue is utilizing a more powerful and confident
model in the cloud. For example, we could send the input
data back to the cloud and receive the prediction from the
teacher model.

5.2 Confidence Prediction

Non-confident models such as distilled light-weight models
in constrained devices may generate ambiguous predictions
due to the low-resolution input data or lacking information.
To this end, we propose a simple but effective threshold-
based algorithm to ensure the prediction is trustworthy. We
explain the details in the following two phases. During the
knowledge distillation training phase, we monitor the model
accuracy, such as top-1 and top-5 scores. We also select the
most confident model by calculating the ECE score for each
intermediate model and choosing the one with the lowest
ECE score. In the inference phase, given an input = € X, the
non-confident model A will generate a series of probabilities
stored in a vector P,, = (Pa1s-- - Pucy1) € RC. Each score p;
indicates the probability that the input = belongs to the class
i. The final prediction is made according to Equation (27).
We define a non-confident model with ambiguous predic-
tions as

|ﬁr,7 —ﬁr,]| <o ﬁT.HﬁT] € pz { 7é ja (33)
where 0 >0 is a small real number. In our proposed
method, we use the largest and second largest probabilities

to evaluate the model uncertainty such as

|Pzi—Dzj| < 0" -s where

Dy = argmax Py
Pu

and ﬁx,j = arg ma'X{Px - ﬁmi}? (34)
Px

where s is a constant scalar. We use the equation above to
evaluate the model uncertainty due to the following rea-
sons. First, consider a classification task with 10 different
classes, such as the cifar10 dataset. It has a small output pre-
diction space (a vector with 10 entries). The largest and sec-
ond-largest probabilities are good enough to represent the
model uncertainty. Second, we observe that the difference
between the largest and smallest probability is huge, which
is not a good indicator of model uncertainty.

We propose our confidence prediction knowledge distil-
lation based learning algorithm in Algorithm 1.

5.3 Confidence Prediction Machine Learning
Fig. 3 illustrates our confidence knowledge distillation-
based machine learning framework. A state-of-the-art
teacher model is stored on the cloud. We perform knowl-
edge distillation on the cloud server because it is powerful
in computation and it contains a large amount of training
data. We ensure the distilled student model quality by max-
imizing its accuracy and minimizing test ECE scores. Then
the cloud sends the distilled model to the server in advance,
and this model is ready for use.

Once a remote device starts a machine learning task, it
will first request the distilled model from the proximal edge
server [47]. As we mentioned before, the distilled model

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

TAO ETAL.: EFFICIENT AND ROBUST CLOUD-BASED DEEP LEARNING WITH KNOWLEDGE DISTILLATION

1741

AR
5 ~ N \ 0>
Confidence Check (Proposed Algorithm) Prediction
s Model Request D
Prediction
lolele) <@
LEARRR 0000
- [EEREN O e AR
QO0000 Lo . 000000
WY e 5 Model Delivery
P2 o Y || = = | = | -
0000 | i E 5 NIESID
PR —=—i——)— (000000 . g o
a00000 PS5 B ! : 8 £
L B0 00 : -
@19)] E w . 1 1 g i
v Edge Server 1 188
lg’roposed MethodI l - = 0 = l
Cloud I Fog/Edge ! Mobile Devices I User Interface

Fig. 3. Knowledge distillation-based machine learning on cloud. The state-of-the-art deep networks deploy on the cloud server. @ Use the proposed
KD distillation method to produce a shallow and efficient model that meets the different networks configurations and stores them in the edge
server. @ The user requests a model. @ Edge server delivers a model to a user. @ User executes the machine learning task on a local device. @ If
the local model is not confident in the result, send the task to the cloud server.

may not be very confident about its prediction and usually
produce ambiguous results. In this case, we first evaluate the
prediction results from the distilled model and check if it is
an ambiguous result according to the Algorithm 1. If the pre-
diction is ambiguous, we will send the task to the cloud
where the powerful teacher network resides to help make
predictions (shown in red line and green dash line in Fig. 3).

Algorithm 1. Confidence Prediction on Knowledge Dis-
tillation Based Machine Learning

Edge Server
1: Perform knowledge distillation from teacher network 7
to student network S using algorithm in Section 4.3.
2: Distilled student model should meet the ECE criteria
shown in Equation (30), otherwise repeat step 1.
3: Listening the model request from remote devices.
4: Listening the prediction request from remote devices.
Remote Device
5: Request the distilled student model S from edge server.
6: Given input data z, student model makes prediction vector P,
7: if |pyi — Py j| < 0 - s (Equation (34)) then
8: Request teacher network prediction on Edge server
(step 4) and send = to edge server
9: Return the prediction result ¢, from teacher model 7
10: else
11: Return the prediction result g, by Equation (27)
12: end if

Ideally, the additional prediction help from the teacher
model should not be high frequency. We expect the machine
learning tasks are processed on a local distilled model other
than on the Cloud server. If local models are not confident in
prediction, they frequently send the tasks to the cloud server,
resulting in a high communication cost. We conduct the com-
munication cost analysis, and experiment details are shown
in Section 6.4. In addition, it is worthy of mentioning that the
distilled model will be periodically updated by replacing it
with a newly generated model from the cloud to keep the
model up to date. Furthermore, distilled models can also be
trained locally (shown in blue dot line in Fig. 3).

6 EVALUATION

In this section, we evaluate the performance of our pro-
posed method on several image classification tasks. We
compare our results with conventional knowledge distilla-
tion method in [11] (ST). We also compare our results with
state-of-the-art distillation methods such as Attention Map
Distillation [37] (AT), Attention Features Distillation [29]
(AF), Gram Matrix Distillation [38], Sobolev (Jaccobian
Matrix) Distillation [48] (SOB), Contrastive Representation
Distillation [30] (CRD) etc. We also deploy our distilled
model on resource constrained devices such as Raspberry
Pi 4 Model B to evaluate the distilled model performance.
Raspberry Pi 4 Model B does not have GPU installed, there-
fore the inference is processed via CPU.

Our experiments cover three significant aspects: (1) the
performance of the distilled model, (2) the efficiency of dis-
tilled models, and (3) the communication reduction. The
first two sets of experiments focus on evaluating the pro-
posed distillation algorithm. The results show that the pro-
posed method achieves promising performance. The last
experiment set indicates the efficiency of proposed Algo-
rithm 1 is achieved.

6.1 Experiment Setup
Environment. We conduct our experiments in two different
environments. We first compare the distilled student model
performance on a single lab server with 4 GeForce GTX
1080ti GPUs. We implement the different knowledge distilla-
tion methods by using Pytorch 1.9.0. Next, in order to simu-
late the cloud-edge environment, we chose a lab server as a
cloud server. We perform knowledge distillation on it. Then
we use a Raspberry Pi 4 Model B with Quad Core Cortex-
A72 (ARM v8) CPU as a remote device. Raspberry Pi4 Model
B does not equip with GPU, therefore the model inference is
processed via CPU. Under this experiment setting, we simu-
late the real-world application that requires the data recall
when the model is not confident about its prediction.
Datasets and Deep Neural Networks. We conduct experi-
ments on image classification tasks including CIFAR10,

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

1742 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023
TABLE 1 TABLE 2
The Performance of Different Distillation Methods The Training Epoch Time of Different Distillation Methods

TCH/STD Model KD Method top-1 Acc. top-5Acc. TCH/STD Model KD Method Time(sec) Acc.

ResNet110/20 Baseline(ResNet110) 73.15% 95.02% ResNet20/20 Baseline(ResNet20) 62 92.75%
ST [11] 63.40% 90.02% ST 72 92.75&
AT [37] 7021% 94.36% AT 75 92.45%
AF [29] 68.48% 96.30% Gram matrix 82 93.8%
Gram matrix [38] 66.10% 93.73% AF 92 93.75%
SOB [48] 69.01% 94.22% SOB 114 93.12%
CRD [30] 70.61% 95.35% CRD 90 93.35%
NMD (this paper) 71.92% 95.11% NMD (this paper) 88 93.20%

ResNet110/110 ST 73.10% 95.41&
2}; ;ggg% gggggj last layer of the teach?r model. For methods such as AT, SOB
Gram matrix 73.13% 95.43% and CRD, we also distill knowledge from the end of each
SOB 72.81% 94.12% residual block. For the Gram matrix method, we train the stu-
CRD 74.61% 96.35% dent in two stages. The first stage we initialize the model and
NMD (this paper) 74.58% 96.32% train with the teacher model in 50 epochs. Then in the second

CIFAR100 and ImageNet (ILSVRC2013). The CIFAR-10
dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images
and 10000 test images. CIFAR100, similar to CIFARI10, has
100 classes containing 600 images each. There are 500 train-
ing images and 100 testing images per class. The 100 classes
in the CIFAR-100 are grouped into 20 superclasses. Image-
Net consists of two parts, training data and validation data.
The training data contains 1000 categories and 1.2 million
images and the validation and test data consists of 150,000
photographs, collected from flickr and other search engines,
hand labeled with the presence or absence of 1000 object
categories.

The training models we are using include LeNet, Alex-
Net, ResNet, VGG, GoogleNet and MobileNet. To evaluate
the performance of different knowledge distillation meth-
ods, we use ResNet110 as teacher model and ResNet20 as
student. In our setting, the ResNet110 contains 1.73M train-
able parameters and ResNet20 only contains 0.2724M train-
able parameters. We roughly reduce the 84% model size in
total. We train the model by using a standard SGD opti-
mizer with a start learning rate 0.1 weight decay 0.0001. We
train student models within 100 epochs and learning rate
decay 10% at epoch 40 and 70.

6.2 Performance Results

We first evaluate the performance of our proposed method
and compare it with the-state-of-the-art approaches. We con-
duct two different types of experiments: knowledge distilla-
tion and self-knowledge distillation (as shown in the Table 1).
The former one is very common. But in the latter one, we use
two exactly the same model as both teacher and student. The
self-knowledge distillation aims at testing the distillation
algorithm itself only by giving it the same model with the
same learning capacity. We use a pre-train ResNet110 model
trained on CIFARI10 as a teacher model which provides
73.1% top-1 accuracy and 95.0% top-5 accuracy.

We use ResNet20 as a student model. Both ResNet110 and
ResNet20 contain 3 residual blocks but different in the num-
ber of layers inside each residual block. For conventional dis-
tillation method (ST), we only distill the knowledge from the

stage, we conduct normal training on it for another 50
epochs. As shown in Table 1, our proposed method achieves
71.92% accuracy on top-1 result and it also achieves 74.58%
accuracy on top-1 with self-knowledge distillation. Notice
that our method achieves even better results by comparing it
to the baseline model.

In Table 2, we evaluate the single epoch training time of
different knowledge distillation approaches. Compared to
the normal training process, the extra computation cost
comes from 1) data inference time of the teacher model since
the teacher model is usually large and the inference time can
not be ignored at this time. 2) extra computation of distilla-
tion algorithm. For example, the AF method requires build-
ing another shallow attention model to extract the attention
information from the input intermediate feature which
involves a lot of effort on computation. Similarly, the SOB
method requires the calculation of gradients. In Table 2, we
self-distilled the model ResNet20 on CIFAR10 with batch
size 128. The original approach ST used 72s for 1 epoch
training. Compared to the baseline, the 10s more epoch time
is mainly from teacher model inference.

The methods such as AF, SOB and CRD need more time
in computing and matching the different knowledge
between teacher model and student model. Our method is
22% slower than the baseline method but we gain ~ 4%
speed up compared to other methods.

We also perform the inference experiments on Raspberry
Pi and collect the performance data as shown in Table 3. We
train models on the CIFAR100 dataset, and deploy them to
Raspberry Pi. The inference time for one epoch mainly
depends on the number of parameters of a model. Compared
to the other model, VGG16 is the biggest one we deploy on a
constrained device and it requires much more computational
resources than other ResNets. VGGI16 is distilled from
another VGG16 network. We see that all the distilled models
have better performance than the baseline model which indi-
cates that the knowledge distillation can improve the perfor-
mance of ultra shallow models. Our proposed method
improves 3% accuracy gain on VGG16 and 2% on ResNet34.

6.3 Confidence Prediction
In the Section 5, we discuss the confidence prediction on
knowledge distillation. The distilled models are always

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

TAO ETAL.: EFFICIENT AND ROBUST CLOUD-BASED DEEP LEARNING WITH KNOWLEDGE DISTILLATION

TABLE 3
Distilled Models Status on Raspberry Pi

Model VGG16 ResN18 ResN20 ResN34
Stats # para(M) 131 11.4 17.3 21.5

model size (MB) 478 31 36 40

GFLOPs (forward) 134 1.88 1.92 3.80

EpochTime (s) 47 9 10 12
Acc.(%) Baseline 70.48 62.07 66.33 70.02

ST 71.79 64.33 69.92 72.28

AT 73.33 63.66 66.87 70.91

AF 73.41 62.17 69.17 71.39

CRD 72.93 64.69 70.16 72.58

NMD 73.40 64.91 69.83 72.66

smaller and have less parameters compared to the teacher
model. Therefore, we can not fully trust the prediction
results made by a distilled model especially when the input
data contains a large amount of noise.

In order to address this problem, we use two strategies to
make the distilled model more trustworthy. The first one is
we monitor the additional ECE score of the distilled model.
Fig. 4a illustrates the ECE score change over the training.
The bottom red line indicates the teacher model average
ECE score when given different batches of training data.
Teacher model ECE score curve is stable. The top blue line
is the student model average ECE score. We see the blue
line tries to go down at the end of training. But the gap
between blue and red curve indicates the model perfor-
mance difference since the deeper the model is the better
the performance is. In fact, it is very hard to mitigate this
gap.

We further evaluate the difference of the largest probabil-
ity score p,; and second largest probability score p,; on
inference. Fig. 4c shows that we only have 15% predictions

0.06 0.6
T e
9 0.5
5 0.04 o .]
b et 504 et
w (7]
O
w 0.02 0.3
0.2
0 25 50 75 100 0 25 50 75 100
epochs epochs

(@)

1743

are very confident which means the absolute value between
Da,i and P, ; is close to 1. We see that there are a considerable
number of predictions that are quite ambiguous for distilled
models, for example those difference scores are less than
0.25. Fig. 4d gives a concrete example on the class of ‘plane’.
We see that the distilled model has a hard time predicting
the “plane” even at 100 epochs after.

6.4 Communication Reduction

In this section, we evaluate the communication cost for dif-
ferent distillation methods. The major communication
reduction is coming from the data transmission to the Cloud
server. In our proposed learning framework, users only
need to send their local data if the local model is not confi-
dent in its predictions. Otherwise, users can trust the local
prediction without sending the data to the Cloud server for
extra help. As we state in the Algorithm 1, the non-confident
predictions are labeled if the difference of largest and sec-
ond largest probability scores are close enough, say the o >
0. Given a test batch size b, we will evaluate the predictions
on this batch and we define the recall rate as:

B ~ ~
rccall rate 0 — 2ima M{[Pri = Buyl > 0})
B

x 100, (35)

where 1 is identity function. Therefore the communication
reduction is equivalent to the 1 — recall rate because users
do not send that amount of data to Cloud sever.

Fig. 5 illustrates the recall rate of different knowledge
distillation methods on different thresholds o over the train-
ing process. We evaluate the result on ResNet20 with the
CIFAR10 dataset. The batch size is 128. We have the follow-
ing observations: (1) the overall recall rates are converging
during the training process; (2) our proposed knowledge
distillation NMD achieves lowest recall rate for all different

1.0
o 10 0.8 MIVV V—VH Vv\u[w’
g 0 0.6 ‘w — {xv\)“'or lane v
% 5 § 0.4 "A\ — D:(Kvl)A'urp\ane ﬂ
RSSO | B 1 BV T)
000 025 050 075 1.00 o 20 40 60 80 100

difference of p_{x,i} and p_{x,j} epochs

(© (d

Fig. 4. We train student network ResNet20 with teacher network ResNet110 on CIFAR10 dataset. We evaluate the model uncertainty by using ECE
metric. (a) The average ECE score for student mode (blue) and teacher model (red), we see the method of AT is barely helpful in improving the ECE
on student model. (b) We see the discrepancy of largest probability score p,; and the second largest probability score p,; is quite large in average
for all classes. However, in (c) we see there are considerable number of probability scores are close to each other during the inference stage. (d)
shows the largest probability score p,; and he second largest probability score p, ; of class "plane” is hard to be distinguished by student model even

after 100 training epochs.

w

N
|
E

ot

N
o

N
N

(%]
o

S

— «55.0

— Gammarx | £

B 525 -
5
e
©50.0

= K =
£ £ £
§30 \/\)\ g E45
b - =
52 5 = 3 5 L
o &35 =3 o 47.5
g N g g ~Ns | 8§
§26 § §40 545.0
g
%24 F\ 530 5 TN\ | fe2s
0 20 40 60 80 100 0 20 40 60 80 100 0 200 40 60 80 100 0 20 40 60 80 100

epochs epochs

(@) o =0.15 (b) ¢ =0.20

epochs epochs

() 0 =025 d) o =0.30

Fig. 5. Recall rate on different knowledge distillation algorithm and different o(s). Batch size is 128.
Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

1744

thresholds o at 100 epochs. For example Fig. 5b, when o =
0.2, we will return the results of the prediction difference
score larger than 0.2. The distilled model trained by our
method thinks 29% prediction results should be re-evalu-
ated on the Cloud server. But other methods such as AT, AF
and Gram Matrix will send 36%, 35% and 32% respectively
to the Cloud server.

7 CONCLUSION AND FUTURE WORK

This paper proposes an efficient cloud-edge distributed
machine learning framework based on knowledge distilla-
tion techniques. We propose a new knowledge distillation
method that allows state-of-the-art accuracy for distilled
and computation-efficient models. Therefore, we can easily
apply the distilled models to resource-constrained devices
where users can execute the machine learning tasks in the
local environment. To ensure the QoS of distilled models,
we present a confidence prediction algorithm to improve
the system accuracy.

In future work, we will further improve the efficiency of
the distilled model by corporating model pruning and quan-
tization techniques. Furthermore, since an expert selects the
current student model, we could further use neural architec-
ture search (NAS) to learn the best model to achieve the
efficiency goal. In addition, distilled models should meet dif-
ferent environment requirements, how to fast generate the
distilled models should be considered.

ACKNOWLEDGMENTS

We thank all reviewers for their helpful comments.

REFERENCES

[1]1 I Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. [Online]. Available: http://
www.deeplearningbook.org

[2] Q. Xia, W. Ye, Z. Tao,]J. Wu, and Q. Li, “A survey of federated
learning for edge computing: Research problems and solutions,”
High-Confidence Comput., vol. 1,2021, Art. no. 100008.

[3] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay, “Edge-host
partitioning of deep neural networks with feature space encoding
for resource-constrained internet-of-things platforms,” CoRR,
2018. [Online]. Available: http:/ /arxiv.org/abs/1802.03835

[4] Y.Mao, S.Yi, Q. Lj, J. Feng, F. Xu, and S. Zhong, “Learning from
differentially private neural activations with edge computing,” in
Proc. IEEE/ACM Symp. Edge Comput., 2018, pp. 90-102.

[5] Y. Mao, W. Hong, H. Wang, Q. Li, and S. Zhong, “Privacy-pre-
serving computation offloading for parallel deep neural networks
training,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp.
1777-1788, Jul. 2021.

[6] Y.Cheng, F.X. Yu, R.S. Feris, S. Kumar, A. N. Choudhary, and S.
Chang, “Fast neural networks with circulant projections,” CoRR,
2015. [Online]. Available: http:/ /arxiv.org/abs/1502.03436

[7]1 M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural
networks with weights and activations constrained to +1 or -1,”
CoRR, 2016. [Online]. Available: http:/ /arxiv.org/abs/1602.02830

[8] S.Teerapittayanon, B. McDanel, and H.-T. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 328-339.

[91 C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile
and wireless networking: A survey,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 3, pp. 2224-2287, Jul.-Sep. 2019.

[10] T.Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and
quantization for deep neural network acceleration: A survey,”
Neurocomputing, vol. 461, pp. 370-403, 2021.

[11] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” Mar. 2015, arXiv:1503.02531.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 2, APRIL-JUNE 2023

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” 2018, arXiv:1810.04805.

[13] X.Jiao et al., “Tinybert: Distilling bert for natural language under-
standing,” 2019, arXiv:1909.10351.

[14] J. Chen and X. Ran, “Deep learning with edge computing:
A review,” Proc. IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019.

[15] D.Yuetal.,, “Decentralized parallel SGD with privacy preservation
in vehicular networks,” IEEE Trans. Veh. Technol., vol. 70, no. 6,
pp- 5211-5220, Jun. 2021.

[16] Z.Xiong, Z. Cai, D. Takabi, and W. Li, “Privacy threat and defense
for federated learning with non-iid data in AloT,” IEEE Trans. Ind.
Inform., vol. 18, no. 2, pp. 1310-1321, Feb. 2022.

[17] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A compre-
hensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2,
pp- 869-904, Second Quarter 2020.

[18] J. Zhang, S. Chen, B. Liu, Y. Ma, and X. Chen, “A locally distributed
mobile computing framework for DNN based android applications,”
in Proc. 10th Asia-Pacific Symp. Internetware, 2018, pp. 1-6.

[19] Z.Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distrib-
uted adaptive deep learning inference on resource-constrained
IoT edge clusters,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 37, no. 11, pp. 2348-2359, Nov. 2018.

[20] G.Li, L. Liu, X. Wang, X. Dong, P. Zhao, and X. Feng, “Auto-tun-
ing neural network quantization framework for collaborative
inference between the cloud and edge,” in Proc. Int. Conf. Artif.
Neural Netw., 2018, pp. 402—411.

[21] Z. Zhao, Z. Jiang, N. Ling, X. Shuai, and G. Xing, “ECRT: An edge
computing system for real-time image-based object tracking,” in
Proc. 16th ACM Conf. Embedded Netw. Sensor Syst., 2018, pp. 394-395.

[22] H.Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning
for the internet of things with edge computing,” IEEE Netw.,
vol. 32, no. 1, pp. 96-101, Jan./Feb. 2018.

[23] X.Chen and Z. Qin, “Exploring decentralized collaboration in het-
erogeneous edge training,” in Proc. IEEE/ACM Symp. Edge Com-
put., 2020, pp. 450-453.

[24] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in Proc. IEEE 37th Int.
Conf. Distrib. Comput. Syst., 2017, pp. 276-286.

[25] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile GPU-
based deep learning framework for continuous vision applications,”
in Proc. 15th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2017, pp. 82-95.

[26] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Princi-
pled cache for mobile deep vision,” in Proc. 24th Annu. Int. Conf.
Mobile Comput. Netw., 2018, pp. 129-144.

[27] R. Miiller, S. Kornblith, and G. Hinton, “When does label smooth-
ing help?,” 2019, arXiv:1906.02629.

[28] B. Heo, J. Kim, S. Yun, H. Park, N. Kwak, and J. Y. Choi, “A com-
prehensive overhaul of feature distillation,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 1921-1930.

[29] K. Wang, X. Gao, Y. Zhao, X. Li, D. Dou, and C.-Z. Xu, “Pay atten-
tion to features, transfer learn faster CNNs,” in Proc. Int. Conf.
Learn. Representations, 2019.

[30] Y.Tian, D. Krishnan, and P. Isola, “Contrastive representation dis-
tillation,” 2019, arXiv:1910.10699.

[31] K. Yue, J. Deng, and F. Zhou, “Matching guided distillation,” in
Proc. 16th Eur. Conf. Comput. Vis., 2020, pp. 312-328.

[32] J. Guo, M. Chen, Y. Hu, C. Zhu, X. He, and D. Cai, “Reducing the
teacher-student gap via spherical knowledge disitllation,” 2020,
arXiv:2010.07485.

[33] Z. Zhou, C. Zhuge, X. Guan, and W. Liu, “Channel distillation:
Channel-wise attention for knowledge distillation,” 2020,
arXiv:2006.01683.

[34] W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and R. Pas-
canu, “Sobolev training for neural networks,” CoRR, 2017. [Online].
Auvailable: http:/ /arxiv.org/abs/1706.04859

[35] S. Srinivas and F. Fleuret, “Local affine approximations for
improving knowledge transfer,” Idiap, 2018. [Online]. Available:
http:/ /infoscience.epfl.ch/record /256319

[36] Z.Tao, Q. Xia, and Q. Li, “Neuron manifold distillation for edge
deep learning,” in Proc. IEEE/ACM 29th Int. Symp. Qual. Service,
2021, pp. 1-10.

[37] S.Zagoruyko and N. Komodakis, “Paying more attention to atten-
tion: Improving the performance of convolutional neural net-
works via attention transfer,” CoRR, 2016. [Online]. Available:
http://arxiv.org/abs/1612.03928

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

TAO ETAL.: EFFICIENT AND ROBUST CLOUD-BASED DEEP LEARNING WITH KNOWLEDGE DISTILLATION 1745

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distilla-
tion: Fast optimization, network minimization and transfer
learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp- 7130-7138.

S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh, “Improved knowledge distillation via teacher
assistant,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 5191-5198.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, 2015. [Online]. Available: http:/ /arxiv.
org/abs/1512.03385

J. Gou, B. Yu, S.]. Maybank, and D. Tao, “Knowledge distillation:
A survey,” CoRR, 2020. [Online]. Available: https://arxiv.org/
abs/2006.05525

Y. W. Teh and S. Roweis, “Automatic alignment of local repre-
sentations,” in Proc. 15th Int. Conf. Neural Inf. Process. Syst., 2002,
pp. 865-872. [Online]. Available: http://dl.acm.org/citation.cfm?
1d=2968618.2968726

Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimen-
sion reduction via local tangent space alignment,” CoRR, 2002.
[Online]. Available: http:/ /arxiv.org/abs/cs.LG /0212008
S.T.Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Sci., vol. 290, no. 5500, pp. 2323-2326,
2000. [Online]. Available: https://science.sciencemag.org/content/
290/5500/2323

L. Neumann, A. Zisserman, and A. Vedaldi, “Relaxed softmax: Effi-
cient confidence auto-calibration for safe pedestrian detection,”
Open Rev., 2018.

M. P. Naeini, G. Cooper, and M. Hauskrecht, “Obtaining well cali-
brated probabilities using bayesian binning,” in Proc. 29th AAAI
Conf. Artif. Intell., 2015, pp. 2901-2907.

Z.Tao, Q. Xia, Z. Hao, C. Li, L. Ma, S. Yi, and Q. Li, “A survey of
virtual machine management in edge computing,” Proc. IEEE, vol.
107, no. 8, pp. 1482-1499, Aug. 2019.)

W. M. Czarnecki, S. Osindero, M. Jaderberg, G. Swirszcz, and
R. Pascanu, “Sobolev training for neural networks,” 2017,
arXiv:1706.04859.

Zeyi Tao (Student Member, IEEE) is currently
working toward the PhD degree with the Depart-
ment of Computer Science, Wiliam & Mary
advised by Prof. Qun Li. His research interests
include machine learning, deep learning, edge
computing, online convex and non-convex optimi-
zation, especially the computation and communi-
cation efficiency problems in distributed learning
systems such as classic distributed machine
learning and federated learning.

Qi Xia (Student Member, IEEE) received the BS
degree from the University of Science and Technol-
ogy of China, in 2016, and the PhD degree from the
Department of Computer Science, College of Wil-
liam & Mary, in 2021, advised by Prof. Qun Li. His
research interests include deep learning, machine
learning, edge computing and quantum computing,
especially the security and privacy problems in dis-
tributed learning systems such as classic distrib-
uted machine learning, federated learning and
quantum federated learning.

Songging Chen (Senior Member, IEEE) received
the BS and MS degrees in computer science from
the Huazhong University of Science and Technol-
ogy, in 1997 and 1999, respectively, and the PhD
degree in computer science from the College of
William and Mary, in 2004. He is currently a profes-
sor in computer science with George Mason Uni-
versity. His research interests include the Internet
content delivery systems, Internet measurement
and modeling, system security, and distributed sys-
tems. He is a recipient of the U.S. NSF CAREER
Award and the AFOSR YIP Award.

Qun Li (Fellow, IEEE) received the PhD degree
from Dartmouth College. He is currently a profes-
sor with the Department of Computer Science,
Wiliam & Mary. His recent research focuses on
edge computing and deep learning.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: William & Mary. Downloaded on January 24,2024 at 19:14:48 UTC from IEEE Xplore. Restrictions apply.

