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Abstract—In this paper, we investigate lossy source coding
based on a soft-decision based belief propagation guided decima-
tion (BPGD) algorithm for low-density generator matrix (LDGM)
codes, called soft-hard BPGD. For this algorithm, the optimal
performance can only be achieved by carefully selecting the
softness parameters which are conventionally found by exhaustive
empirical search. To address this issue, we have introduced
a framework that leverages the cavity method to predict the
values of softness parameters at which phase transition occurs.
This framework can significantly reduce the need for time-
consuming empirical searches to determine the best parameter
values for soft-hard BPGD. Our approach has been found to
deliver superior rate-distortion performance compared to the
hard-decimated BPGD algorithm and faster implementation than
the soft-decimated algorithm.

I. INTRODUCTION

Lossy source coding is used in various applications such
as data compression [1], information hiding [2], and data
embedding [3]. Linear codes have been proven to be an
effective method to approach Shannon’s rate-distortion (RD)
bound for binary sources under Hamming distortion measure
[4]–[6]. However, it is important to identify encoding schemes
that are both low-complexity and capable of attaining the
RD limit. Unfortunately, applying a conventional belief prop-
agation (BP) algorithm cannot achieve good performance for
lossy source coding due to unreliable marginal approximation
in quantization. Consequently, BP algorithms are modified
to include a decimation step proposed in terms of hard-
decimation [7] or soft-decimation [8] algorithms. The idea of
decimation is to sequentially fix bits and allow the BP encoder
to converge. Soft-decimation based algorithms for low-density
generator matrix (LDGM) codes, such as [8], [9], achieve
linear complexity in code block length by substituting the hard
decimation step with a soft indicator function. However, the
performance of the algorithm depends heavily on the optimal
parameter selection for the indicator function, which controls
the distortion.

The lossy compression encoding problem in certain scenar-
ios can be viewed as the study of the zero temperature limit
of the Gibbs measure associated with a Hamiltonian [11]. The
Gibbs measure can be considered as the posterior measure of
the dual test-channel problem and it was shown in [6] that the
inverse temperature is half the log-likelihood parameter of a
binary symmetric channel (BSC) with crossover probability p,
e.g., 1

2 ln
1−p
p , for a spatially coupled LDGM code ensemble.

Spin glass theory in the cavity method predicts the dynamical
and condensation phase transition thresholds for the Gibbs
measure which, in turn, informs a number of values that can be
related to the test-channel noise thresholds for channel coding.

In this paper, we apply the cavity method to soft-hard
BPGD [9] and use the phase transition of the Gibbs measure
at a specific temperature to tune the softness parameters of
the algorithm. Determining a dynamic temperature threshold
enables us to compute a corresponding threshold value for
the algorithm parameters under which good RD performance
can be obtained. The ability to compute this threshold value
can reduce or eliminate the need for expensive numerical
search techniques based on computer simulation [8], [9].
In fact, the possible solution space for finding the optimal
parameter value is reduced to the point where the phases of
the Gibbs measure change. We show that the soft-hard BPGD
algorithm yields good RD performance using the threshold
values, outperforming the (hard-decimation) BPGD algorithm.

II. LDGM CODE ENSEMBLES FOR LOSSY SOURCE CODING

In this paper, we quantize a source sequence s =
(s1, s2, . . . , sN ) consisting of N independent and identically
distributed Bernoulli (p = 1/2) random variables to the near-
est codeword w = (w1, w2, . . . , wM ) from an LDGM code
with a compression rate of R = M

N . The codeword w is
used to reconstruct the source sequence as ŝ, where the
mapping w → ŝ(w) depends on the LDGM code. For the
binary quantization problem, we use the Hamming metric
d (s, ŝ) = 1

N

∑N
i=1 |si − ŝi| for calculating the distortion. In

lossy source coding, the final goal is to minimize the average
distortion D = E [d (s, ŝ)], where E[·] is the expectation
taken over all possible source sequences s. The rate-distortion
function is in the form R(D) = 1 − H(D) for D ∈ [0, 0.5]
and 0 otherwise, where H is the binary entropy function.

LDGM codes, as duals of LDPC codes, can be represented
by generator matrix G ∈ {0, 1}N×M .We define the factor
graph of this code as G = (V,C,E) where V = {1, . . . ,M},
C = {1, . . . , N}, and E = {. . . , (a, i), . . .} denote the code
bit nodes, the check nodes and the edges connecting them,
respectively. The vector (a, i) denotes an edge between check
node a and code bit i, which occurs iff Ga,i = 1. We will use
indices a, b, c ∈ C to denote check nodes and indices i, j, k ∈
V to denote information bits. We define the sets C(i) = {a ∈
C | (a, i) ∈ E}, V (a) = {i ∈ V | (a, i) ∈ E}.

In this paper, we follow the construction of [6], where each
edge emanating from a regular check node with degree k
is connected uniformly at random to one of the bit nodes.
The degree of bit nodes is a random variable with Binomial
distribution Bi(kN, 1/M). In the asymptotic regime of large
N , M , the bit node degrees have i.i.d. Poisson distribution with
an average degree k/R. For an LDGM code C, defined by the
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generator matrix G, and for a codeword w, the reconstructed
source sequence is given by ŝ = Gw.

III. SOFT-HARD BPGD

The algorithm used in this paper is a combination of both
hard and soft decimation. Following [9], our algorithm uses
soft decimation equations like [8], but after each iteration it
searches for a bit node with maximum bias value. This bit
node is then fixed in all future steps, and the graph is reduced
with the hard decimation process. The soft-decimation BP
algorithm equations are updated as follows

R
(t+1)
i =

∑
a∈C(i)

R̂
(t)
a→i, R

(t+1)
i→a =

∑
b∈C(i)\a

R̂
(t)
b→i +

1

µ
R

(t)
i ,

(1)

R̂
(t+1)
a→i = 2(−1)sa+1 tanh−1

β
∏

j∈V (a)\i

B
(t)
j→a

 , (2)

B
(t)
i = tanh

(
R

(t)
i

2

)
, B

(t)
i→a = tanh

(
R

(t)
i→a

2

)
, (3)

where R
(t)
i→a, R̂

(t)
a→i, and B

(t)
i→a denote the message sent from

code node i to check node node a, the message sent from
check node a to code node i, and the bias associated with
R

(t)
i→a at iteration t, respectively; R

(t)
i and B

(t)
i denote the

likelihood ratio of code bit i and the bias associated with
R

(t)
i , respectively; and β = tanh(γ) and µ are non-negative

parameters. The γ parameter reflects the effort of the message-
passing algorithm to find the resulting codeword ŝ = Gw as
close to s as possible. The larger the γ, the stronger is the
effort. On the other hand, the structure of the code imposes
a limit on how strong this effort can be. The term 1

µR
(t)
i→a is

added to the plain BP equation to make the decimation softer.
The soft indicator function IS(B

(t)
i→a) =

2
µ tanh−1(B

(t)
i→a) =

1
µR

(t)
i→a approximates the hard-indicator function [9], given as

IH

(
B

(t)
i→a

)
=


−∞, B

(t)
i→a = −1,

0, −1 < B
(t)
i→a < 1,

+∞, B
(t)
i→a = 1,

where µ controls the softness of the approximation and is
called the softness parameter. Algorithm 1 describes the
procedure, where t indicates the iteration number, G(t) is
the LDGM code graph at iteration t, and wi represents the
binary value assigned to code node i. The initial information
to check node node messages, R

(0)
i→a, are set to ±0.1 with

P
(
R

(0)
i→a = 0.1

)
= 0.5, and reset to 0 at iteration 1.

In [8], there is no analytical way to tune the value of µ or
β in order to give the best distortion performance. There, and
in subsequent papers, e.g., [9], the best value of µ is found
numerically by exhaustive and expensive code simulation. In
the next section, we apply spin glass theory in the cavity
method to carefully tune the softness parameters in the soft-
hard BPGD algorithm to ensure good RD performance.

Algorithm 1 Soft-Hard Decimation Algorithm

Require: At iteration t = 0, initialize graph instance G(t=0);
Generate a Bernoulli symmetric source word s;
while V ̸= ∅ do

Update R
(t+1)
i→a according to (1) for all (a, i) ∈ E;

Update R̂
(t)
a→i according to (2) for all (i, a) ∈ E;

Compute bias B
(t)
i→a and B

(t)
i according to (3);

Find B(t) = maxi

{∣∣∣B(t)
i

∣∣∣ | i not fixed
}

;

if B(t) > 0 then
wi ← ′0′ ;

else
wi ← ′1′;

end if
∀a ∈ C(i), sa ← sa ⊕ wi (update source);
Reduce the graph G ← G\{i};
G(t+1) = G(t)\{i} (remove code node i and all its

edges);
end while

IV. TUNING PARAMETERS FOR SOFT-HARD BPGD

In order to find the softness parameters, the solution space
{0, 1}NR of the equation ŝ = Gw can be equipped with a
conditional probability which is linked to spin glass theory in
statistical mechanics. We consider the general class of Gibbs
distribution of the form

Pγ(w | s) =
1

Zγ

∏
a∈C

e−2γNd(s,ŝ(w)). (4)

The random Hamiltonian 2Nd (s, ŝ(w)) is a cost-function for
assignments of variables wi ∈ {0, 1}; for which the different
source bits and different graph ensembles of LDGM codes
give different cost functions. The parameter γ is the inverse
temperature, and the normalizing factor Zγ is the partition
function. From a statistical mechanics point of view, finding
the most reliable code word w∗ = argmaxw Pγ (w | s) is
to find the minimum energy configuration [6]. The minimum
energy per node is equal to 2dN,min, in which dN,min =
minw d (s, ŝ(w)). The one-step replica symmetry breaking
(1RSB) [10] in the cavity method gives the exact value for the
internal energy, which allows the computation of the optimal
distortion numerically by the population dynamics method.

Instead of estimating the optimal code word w∗, the cavity
method assumes that (4) can be decomposed into a convex
superposition of measures

Pγ(w | s) =
N∑

λ=1

ηλPγ,λ(w | s). (5)

The summation of weights ηλ = e−γN(fλ−f) should be one,
where fλ is the free energy. Therefore

e−γNf ≈
N∑

λ=1

e−γNfλ ≈ e−γN minφ(φ−γ−1Σ(φ;γ)), (6)

where eNΣ(φ;γ) counts the number of extremal states Pγ with
free energy fλ ≈ φ. The cavity method seeks two thresholds,
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γd and γc, in which the nature of the decomposition (5)
changes. For γ < γd this measure is extremal and N = 1.
For γd < γ < γc, the measure is a convex superposition of an
exponentially large number of extremal states. The exponent
φ − γ−1Σ(φ; γ) in (6) is minimized at a value φint (γ) such
that Σ (φint (γ); γ) > 0. Then the complexity function

Σ(γ) ≡ Σ (φint (γ); γ) = γ (φint (γ)− f(γ)) (7)

describes the growth rate of extremal states (5). The com-
plexity function decreases as γ increases, becoming negative
at γc, which is the point where it loses its meaning. At γd,
there are no singularities in the free and internal energies,
and their analytical expressions do not change in the range
0 < γ < γc. The transition at γd is dynamic, and Markov
chain Monte Carlo algorithms have an equilibration time that
diverges when γ approaches γd. The cavity method uses the
population dynamic approach to predict phase transitions by
solving fixed point integral equations [10].

The goal of this paper is to apply the cavity method to soft-
hard BPGD and thus the general framework and derivation will
follow that of [6], which applied the method for hard-decision
BPGD of spatially coupled LDGM codes; however, the BP
formulation with a soft indicator function that we use will
result in certain changes to the computation. We first derive the
cavity equations needed to compute the complexity function
(7) for our soft-hard BPGD algorithm. For BP equations (1)
and (2), we need to replace (−1)sa = J as well as express
the bias in terms of variable to check node updates using (3),
since the average field hi in the cavity method must be defined
as R(t)

i→a = γhi. To derive the fixed point equations, the cavity
equations [10] are written for an average ensemble of the graph
and source word, which involve messages on the edges of the
graph. For the integral fixed point equations and their relations,
the interested reader may refer to appendices B and C of [6].

We define two functions F̂ and F based on BP equations
(1) and (2) as

F̂ (h1, . . . , hk−1 | J) =
2J

γ
tanh−1(

1− β

1 + β

k−1∏
i=1

tanh
γhi

2
),

F
(
ĥ1, . . . , ĥz

)
=

z∑
i=1

(
1

µ
+ 1)ĥi − ĥz,

(8)
where hi, ĥi are average fields in the cavity messages Qi→a

and Q̂a→i, which are distributions on R̂a→i and Ri→a.The
Qi→a(Ri→a) and Q̂a→i(R̂a→i) can be considered as i.i.d.
realization of the random variables Q(r) and Q(r̂). We note
that the primary difference in these equations compared to
the g(·) and ĝ(·) equations in [6] is the addition of the soft
parameters β and µ. The probability distributions for the
average fields hi→a and ĥa→i satisfy equations

q(h) =

∞∑
z=0

P (z)

∫ z∏
a=1

dĥaq̂(ĥa)× δ(h− F (ĥ1, . . . , ĥz)),

(9)

q̂(ĥ) =∫ k−1∏
i=1

dhiq(hi)×
1

2

∑
J=±1

δ
(
ĥ− F̂ (h1, . . . , hk−1 | J)

)
,

(10)
where P (z) = (k/R)z

z! e−k/R. The conditional measure over
spin variables σ1, . . . , σk−1 is

ν1(σ1, . . . , σk−1 | Jσ, h1, . . . , hk−1)

=
1 + β + Jσ(1− β)

∏k−1
i=1 σi

1 + β + Jσ(1− β)
∏k−1

i=1 tanh γhi

2

k−1∏
i=1

1 + σi tanh
γhi

2

2
.

(11)
Finally, the equations for distributions qσ(r | h) and q̂σ(r̂ | ĥ),
for σ = ±1, are

qσ(r | h)q(h) =
∞∑
z=0

P (z)

∫ z∏
a=1

dĥaq̂(ĥa)× δ(h− F (ĥ1, . . . , ĥz))

×
∫ z∏

a=1

dr̂aq̂
σ
(
r̂a | ĥa

)
× δ (r − F (r̂1, . . . , r̂z)) ,

(12)

q̂σ(r̂ | ĥ)q̂(ĥ) =
∫ k−1∏

i=1

dhiq (hi)

× 1

2

∑
J=±1

∑
σ1,...,σk−1=±1

ν1 (σ1, . . . , σk−1 | Jσ, h1, . . . , hk−1)

× δ
(
ĥ− F̂ (h1, . . . , hk−1 | J)

)
×
∫ k−1∏

i=1

driq
σi (ri | hi) δ

(
r̂ − F̂ (r1, . . . , rk−1 | J)

)
.

(13)
The equations (9), (10), (12), and (13) constitute the fixed

point equations for six probability distributions that comprise
the cavity method for our formulation of soft-hard BPGD. We
are now ready to give the expression for the complexity (7) in
terms of the above densities which will allow us to determine
the threshold values for our softness parameter µ. This next
formulation of the complexity follows the standard framework
derived for hard-decimation BPGD in [6], with only minor
differences according to the code parameters.

The Bethe free energy functional which approximates ϕ(γ)
is given by

− γϕint =

ln(1 + e−2γ) + (R− 1) ln 2− (k − 1)

∫ k∏
i=1

dhiq(hi)

× 1

2

∑
J=±1

∑
σ1,...,σk=±1

ν1(σ1, . . . , σk | J, h1, . . . , hk)

×
∫ k∏

i=1

driq
σi(ri | hi) lnZ1(r1, . . . , rk | J)
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+R
∞∑
z=0

P (z)×
∫ z∏

a=1

dĥaq̂(ĥa)
∑
σ

ν2(σ | ĥ1, . . . , ĥz)

×
∫ z∏

a=1

dr̂aq̂
σ(r̂a | ĥa) lnZ2(r̂1, . . . , r̂z),

(14)
where

Z1(h1, . . . , hk) = 1 + J
1− β

1 + β

k∏
i=1

tanh
γhi

2
,

Z2(ĥ1, . . . , ĥk) =
1

2

∑
σ=±1

z∏
i=1

(1 + σ tanh
γhi

2
).

and

ν2(σ | ĥ1, . . . , ĥz)

=

∏z
a=1(1 + σ tanh γĥa

2 )∏z
a=1(1 + tanh γĥa

2 ) +
∏z

a=1(1− tanh γĥa

2 )
.

(15)

We assume that for γ < γc, equations (9) and (10) have
unique solutions q(h) = δ(h) and q̂(ĥ) = δ(h). Note that
the initial condition qσi (r | h) = δ+∞(σiri) satisfies a
symmetry qσ(r | 0) = q−σ(−r | 0) = δ+∞(rσ) (even for
h ̸= 0). Now, for h = ĥ = 0 the iterations of (12) and
(13) preserve this symmetry. In other words, the solutions of
these equations (for h = ĥ = 0) found from a symmetric
initial condition satisfy qσ=+1(r | 0) = qσ=−1(−r | 0) and
q̂σ=+1(r̂ | 0) = q̂σ=−1(−r̂ | 0). Therefore, we look only
for symmetrical solutions and set q+(r) = qσ=+1(r | 0) and
q̂+(r̂) = q̂σ=+1(r̂ | 0). Then we have

q+(r) =

∞∑
r=0

P (z)×
∫ z∏

a=1

dr̂aq̂
+ (r̂a) δ (r − F (r̂1, . . . , r̂z)) ,

(16)

q̂+(r̂) =

∫ k−1∏
i=1

driq
+ (ri)

×
∑

J=±1

1 + β + J(1− β)

2(1 + β)
δ
(
r̂ − F̂ (r1, . . . rk−1 | J)

)
.

(17)
This simplifies the free energy (14) as

−γf = ln(1 + e−2γ) + (R − 1) ln 2. (18)

To compute the complexity, the first line in ϕint in (14) omits
expression (18) and we have

Σ(γ) = (k − 1)Σe

[
q+, q̂+

]
− kΣv

[
q̂+
]
+RΣv

[
q+
]
,

where
Σv

[
q+
]
=

∫
drq+(r) ln(1 + tanh

γr

2
),

Σe

[
q+, q̂+

]
=

∫
drdr̂q+(r)q̂+(r̂) ln(1 + tanh

γr

2
tanh

γr̂

2
).

The average distortion or internal energy at temperature γ
is obtained by differentiating (18). In order to compute the

solutions of the cavity equations (9), (10), (12), and (13) we
will use the population dynamics algorithm [6] with some
modification. We omit the algorithm here, due to limited
space, but describe briefly the formulation. We consider two
populations for code bits and check nodes; the total size of the
populations for the check nodes and the bit nodes is n, and
we use a maximum iteration tmax. First, the equations (9) and
(10) are solved by the algorithm, and then equations (12) and
(13) are found. From the final populations obtained after tmax
iterations, it is straightforward to compute the complexity and
the thresholds γd.

In order to obtain parameter thresholds for soft-hard BPGD,
we now derive the corresponding values βd = (1−e−2γd)/(1+
e−2γd) and µd = e4γd , where ξd = 1/µd. Since decimated BP
can correctly sample the Gibbs-Boltzmann measure up to γd,
we can see that the optimal value for γ can be found near the
dynamic phase γd. Therefore, the best value of µ for soft-hard
BPGD can be found in the interval

(
0, e4γd

)
. This can either

be used to reduce the search space for an optimal value of µ, or
the thresholds can be used directly in the BP equations. These
techniques significantly reduce the complexity of exhaustive
search techniques based on code simulation, such as [8], which
need to be re-run for each code/code ensemble.

V. NUMERICAL RESULTS

In this section, the results of various experiments of a C++
based implementation of Algorithm 1 are reported for different
LDGM code ensembles. Codes were generated randomly with
regular check nodes and irregular bit nodes degrees with a
binomial distribution as described in Section II.

Fig. 1 demonstrates the impact of choosing the parameter
ξ. The algorithm was run for 1000 iterations of a randomly
drawn LDGM code with a constant check node degree 5,
R = 1/2, and three different codeword lengths N = 1000,
10000, and 100000. The results were obtained by averaging
over 100 trials. We observe that, as stronger constraints are
enforced (increasing ξ), the distortion value initially decreases
but then becomes flat beyond the optimal value of ξ, indi-
cating the presence of a threshold. The proposed dynamic
phase transition in the cavity method described in Section
IV can be applied to determine γd = 0.851, which results
in a corresponding value of ξd = 0.0331. We note that the
computed threshold ξd lies in the flat region of the distortion
curve and thus yields good performance, since the algorithm
is not sensitive to the choice of ξ in this region. This choice
therefore has the advantage of avoiding exhaustive searches
over ξ, or could be used to reduce the search space. Moreover,
we observe that the computed ξd is robust over multiple
different source length realizations from the ensemble.1 Hard
BPGD [6] has a corresponding algorithmic parameter that can
be optimized by the cavity method, which we denote βA. In
Fig. 2, we compare the average distortion obtained by varying
ξ in the soft-hard BPGD algorithm and βA in BPGD, where

1The optimal value of ξ (for minimum distortion) in the BPGD algorithm
for fixed check node degrees is typically observed to be slightly lower than
the dynamical temperature ξd. While the value of ξd can be calculated using
cavity theory, it is not clear what theoretical principles affect the optimum
value of ξ. The calculation of the optimal value for ξ is left to future work.
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Fig. 1. BPGD distortion as a function of ξ for LDGM codes with R = 1/2.
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d= 0.0424

Fig. 2. Distortion comparison between BPGD and soft-hard BPGD

we set ξ = e−4βA . Both constructed LDGM codes have check
node degree 5, rate R = 1/2, and length 128000. For this
example, we compute the threshold ξd = 0.0424. We observe
that, providing the softness parameter is seleceted carefully, the
soft-hard BPGD outperforms BPGD; moreover, this happens
at the threshold value. The soft-hard BPGD has an advantage
in that it constrains the belief of the code bits in the direction
of the current bit belief at each iteration rather than only
constraining the beliefs at the decimation step in the hard
BPGD. This allows for a refinement of the information bit
beliefs at each iteration and improves the distortion results.

Finally, Fig. 3 displays a comparison of the average dis-
tortion obtained from the BPGD algorithm [6] and soft-hard
BPGD algorithm as a function of R for long code lengths. The
constructed codes have check node degrees k = 3, 4, or 5 and
length N = 128000. The distortion is computed for fixed R,
different ξd for different check node degrees, for 50 instances,
and the empirical average is taken. We compare against the
RD bound Dsh(R), shown as the lowest bold black curve. We
observe that, as expected, the distortion performance of codes
encoded with soft-hard BPGD outperform those with hard
BPGD algorithm where, for both algorithms, the performance
worsens for increasing k. This behavior follows from the fact
that the BPGD threshold worsens with increasing k, while the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 3. Distortion performance over a range of rates for long codes with
BPGD and soft-hard BPGD.

optimal encoding threshold improves to the Shannon limit [6].

VI. CONCLUSIONS

This paper proposes a framework based on the cavity
method to compute a critical threshold for parameters in the
soft-hard BPGD algorithm. By choosing parameters equal
to, or close to the threshold value, superior rate-distortion
performance is obtained when compared to the hard-decimated
BPGD algorithm. Such an approach can reduce or eliminate
costly computer search and simulation to optimize parameters
while maintaining good rate-distortion performance.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CCF-2145917.

REFERENCES

[1] T. Berger and J. D. Gibson, “Lossy source coding,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2693-2723, 1998.

[2] P. Moulin and J. A. O’Sullivan, “Information-theoretic analysis of in-
formation hiding,” IEEE Trans. Inf. Theory, vol. 49, no. 3, pp.563-593,
2003.

[3] R. J. Barron, B. Chen, and G. W. Wornell, “The duality between
information embedding and source coding with side information and some
applications,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1159-1180,
2003.

[4] M. J. Wainwright, E. Maneva and E. Martinian, “Lossy Source Com-
pression Using Low-Density Generator Matrix Codes: Analysis and
Algorithms,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1351-1368,
2010.

[5] S. Korada and R. Urbanke, “Polar Codes are Optimal for Lossy Source
Coding,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1751-1768, 2010.

[6] V. Aref, N. Macris and M. Vuffray, “Approaching the Rate-Distortion
Limit With Spatial Coupling, Belief Propagation, and Decimation,” IEEE
Trans. Inf. Theory, vol. 61, no. 7, pp. 3954-3979, 2015.

[7] T. Filler and J. J. Fridrich, “Binary quantization using belief propa-
gation with decimation over factor graphs of LDGM codes,” CoRR,
vol.abs/0710.0192, 2007.

[8] D. Castanheira and A. Gameiro, “Lossy source coding using belief
propagation and soft-decimation over LDGM codes,” IEEE Int. Symp.
on Personal, Indoor and Mobile Radio Comm., pp. 431-436, 2010.

[9] A. Golmohammadi, D. G. M. Mitchell, J. Kliewer and D. J. Costello,
“Encoding of spatially coupled LDGM codes for lossy source compres-
sion,” IEEE Trans. Comm., vol. 66, no. 11, pp. 5691-5703, 2018.

[10] A. Montanari, F. Ricci-Tersenghi, and G. Semerjian, “Clusters of solu-
tions and replica symmetry breaking in random K-satisfiability,” J. Stat.
Mechanics: Theory and Experiment, vol. 2008, no. 4, p. P04004, 2008.

[11] A. G. Dimakis, M. J. Wainwright and K. Ramchandran, “Lower bounds
on the rate-distortion function of LDGM codes,” 2007 IEEE Information
Theory Workshop, pp. 650-655, 2007.

Authorized licensed use limited to: New Mexico State University. Downloaded on October 27,2023 at 20:11:00 UTC from IEEE Xplore.  Restrictions apply. 


