
Neural Networks 170 (2024) 94–110

A
0

T
a

b

c

d

e

2
C
i
b
2
s

h
R

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

Stabilizingmachine learning prediction of dynamics: Novel noise-inspired
regularization tested with reservoir computing
Alexander Wikner a,∗, Joseph Harvey d,1, Michelle Girvan a, Brian R. Hunt b, Andrew Pomerance e,
homas Antonsen a,c, Edward Ott a,c
Department of Physics, University of Maryland, 4150 Campus Dr, 20742, College Park, United States
Department of Mathematics, University of Maryland, 4176 Campus Dr, 20742, College Park, United States
Department of Electrical and Computer Engineering, University of Maryland, 8223 Paint Branch Dr, 20742, College Park, United States
Hillsdale College, 33 E College St, 49242, Hillsdale, United States
Potomac Research LLC, 801 N Pitt St, 22341, Alexandria, United States

A R T I C L E I N F O

Dataset link: https://github.com/awikner/res-n
oise-stabilization

Keywords:
Chaotic dynamics
Prediction
Climate
Stability
Reservoir computing
Regularization

A B S T R A C T

Recent work has shown that machine learning (ML) models can skillfully forecast the dynamics of unknown
chaotic systems. Short-term predictions of the state evolution and long-term predictions of the statistical
patterns of the dynamics (‘‘climate’’) can be produced by employing a feedback loop, whereby the model
is trained to predict forward only one time step, then the model output is used as input for multiple time
steps. In the absence of mitigating techniques, however, this feedback can result in artificially rapid error
growth (‘‘instability’’). One established mitigating technique is to add noise to the ML model training input.
Based on this technique, we formulate a new penalty term in the loss function for ML models with memory of
past inputs that deterministically approximates the effect of many small, independent noise realizations added
to the model input during training. We refer to this penalty and the resulting regularization as Linearized
Multi-Noise Training (LMNT). We systematically examine the effect of LMNT, input noise, and other established
regularization techniques in a case study using reservoir computing, a machine learning method using recurrent
neural networks, to predict the spatiotemporal chaotic Kuramoto–Sivashinsky equation. We find that reservoir
computers trained with noise or with LMNT produce climate predictions that appear to be indefinitely stable
and have a climate very similar to the true system, while the short-term forecasts are substantially more
accurate than those trained with other regularization techniques. Finally, we show the deterministic aspect of
our LMNT regularization facilitates fast reservoir computer regularization hyperparameter tuning.
1. Introduction

Learning dynamics solely from state time-series measurements of
otherwise unknown complex dynamical systems is a challenging prob-
lem for which, in recent years, machine learning (ML) has been shown
to be a promising solution. For example, ML models trained on time
series measurements have been applied to obtain accurate predictions
of terrestrial weather (Arcomano et al., 2020; Bi et al., 2023; Lam et al.,
023; Pathak et al., 2022; Rasp et al., 2020; Rasp & Thuerey, 2021).
haotic dynamics is of particular interest due to its common occurrence
n complex systems. Time series measurements from such systems have
een accurately predicted using ML (e.g., in Balakrishnan & Upadhyay,
020; Pathak, Hunt, Girvan, Lu, & Ott, 2018; Vlachas, Byeon, Wan, Sap-
is, & Koumoutsakos, 2018; Vlachas et al., 2020), although, due to the

∗ Corresponding author.
E-mail address: awikner1@umd.edu (A. Wikner).

1 Joseph Harvey is currently employed at Aunalytics in South Bend, IN 46601.

exponentially sensitive dependence of chaotic orbits on perturbations,
the time duration for which specific measurements can be predicted
is necessarily limited (e.g., as in weather forecasting). Nonetheless,
ML models can also produce arbitrarily long-term predictions that
approximate the correct ‘‘climate’’ (Gentine, Pritchard, Rasp, Reinaudi,
& Yacalis, 2018; Rasp, Pritchard, & Gentine, 2018), by which we mean
a statistical description of the long-term system behavior. However, as
with numerical methods for solving differential equations, ML models
sometimes generate artificial instabilities that lead to an inaccurate
climate, as was seen in Bi et al. (2023), Chattopadhyay, Mustafa,
Hassanzadeh, Bach, and Kashinath (2022), Lam et al. (2023), Scher
and Messori (2019) and Vlachas et al. (2020). We call this situation
a ‘‘climate instability’’; such an instability might or might not degrade
the accuracy of a short term forecast.
vailable online 7 November 2023
893-6080/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

ttps://doi.org/10.1016/j.neunet.2023.10.054
eceived 12 December 2022; Received in revised form 19 October 2023; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

30 October 2023

https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
https://github.com/awikner/res-noise-stabilization
mailto:awikner1@umd.edu
https://doi.org/10.1016/j.neunet.2023.10.054
https://doi.org/10.1016/j.neunet.2023.10.054
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.10.054&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Neural Networks 170 (2024) 94–110A. Wikner et al.

m
e

Fig. 1. Machine Learning Model with Memory Used for Predicting Dynamics. The above diagrams show an ML model with memory for prediction in the (a) ‘‘open-loop’’
configuration (for training) and (b) ‘‘closed-loop’’ configuration (for prediction). In panels (a) and (b), the dashed line indicates that the output is fed back into the model as the
next input.
1.1. Machine learning prediction of dynamics and the issue of climate
stability

In this article, we consider the commonly employed ML scheme used
for predicting dynamical system states from time-series measurements
{𝐮(𝑡 + 𝛥𝑡)}. We are concerned here with ML models that contain some
form of a ‘‘memory’’ of previous inputs, so that 𝐮𝑜𝑢𝑡(𝑡 + 𝛥𝑡) depends
not only on 𝐮𝑖𝑛(𝑡), but also on a memory vector 𝐬(𝑡 − 𝛥𝑡) that contains
information on 𝐮𝑖𝑛(𝑡−𝛥𝑡), 𝐮𝑖𝑛(𝑡−2𝛥𝑡), etc. The general structure of such
odels is shown in Fig. 1. The model output is given by the memory
volution function, 𝐠, and the output function, 𝐡, as follows:

𝐬(𝑡) = 𝐠(𝐮𝑖𝑛(𝑡), 𝐬(𝑡 − 𝛥𝑡)),

𝐮𝑜𝑢𝑡(𝑡 + 𝛥𝑡) = 𝐡(𝐬(𝑡)).
(1)

Notice that our formulation allows 𝐬(𝑡) to include auxiliary variables
that are used to compute 𝐡(𝐬(𝑡)) but are ignored as inputs by 𝐠, so that
they are not, strictly speaking, part of the model’s memory (The case
of ML without memory can be represented by making 𝐠 depend only
on 𝐮𝑖𝑛(𝑡)). In general, both 𝐠 and 𝐡 can contain parameters that will
be learned during the ML model training. The ML model memory is
a necessary component when one does not have access to full system
measurements, and it often improves model performance even when
full system state measurements are available.

The goal during ML model training in this scheme (Fig. 1(a)) is to
adjust the model weights such that when the model input has been
𝐮𝑖𝑛 = 𝐮 up to and including time 𝑡, the output 𝐮𝑜𝑢𝑡(𝑡 + 𝛥𝑡) closely
matches the measurements 𝐮(𝑡+𝛥𝑡). We refer to Fig. 1(a) as the ‘‘open-
loop’’ configuration. After training, the prediction is initialized after
time 𝑡 = 𝑇𝑖𝑛𝑖𝑡𝛥𝑡 by switching the model to the configuration shown
in Fig. 1(b), which we refer to as the ‘‘closed-loop’’ configuration. In
this configuration, the output 𝐮𝑜𝑢𝑡((𝑇𝑖𝑛𝑖𝑡 + 𝑛)𝛥𝑡) is used as the next input
𝐮𝑖𝑛((𝑇𝑖𝑛𝑖𝑡 + 𝑛)𝛥𝑡) for 𝑛 = 1, 2, 3,… , and the outputs {𝐮𝑜𝑢𝑡((𝑇𝑖𝑛𝑖𝑡 + 𝑛)𝛥𝑡)}
also form the predicted time series of measurements. This closed-loop
configuration is used for prediction in Arcomano et al. (2020), Li
et al. (2021), Pathak et al. (2018, 2022), Rasp et al. (2020), Rasp and
Thuerey (2021) and Vlachas et al. (2018, 2020) for ML models both
with and without memory.

Once a trained ML model has been placed into the closed-loop
configuration, it acts as an autonomous dynamical system. Assuming
that the unknown dynamical system generating the training data {𝐮(𝑡)}
is evolving on an ‘‘attractor’’ (an invariant set of the state space
dynamics that ‘‘attracts’’ nearby orbits Auslander, Bhatia, & Seibert,
1964), the closed-loop ML model plausibly has an invariant set that
approximates this attractor (Lu, Hunt, & Ott, 2018). From examples,
it appears that this approximating invariant set is often indeed an
attractor for the ML model, with ergodic properties nearly identical to
those of the true dynamical system being measured (Pathak, Lu, Hunt,
Girvan, & Ott, 2017). However, even in cases where the existence of
an approximating invariant set can be guaranteed, it might be that
small perturbations transverse to the invariant set grow with time, so
95

that, eventually, the ML model climate grossly differs from that of the
dynamical system producing the training data {𝐮(𝑡)} (Lu et al., 2018).
Climate stability requires suppressing the growth of such perturbations.
In chaotic systems where accurate long-term prediction is impossible,
such as the earth’s atmosphere, obtaining the correct climate is often
the goal of long-term predictions. In addition, climate instability can
limit the duration of accurate short-term state forecasts (as shown,
e.g., in Figs. 4 and 5 of Pathak et al., 2017). This can occur if the growth
time of the climate instability is fast enough that it causes substantial
deviation from the invariant set of the closed-loop system before the
predictions break down due to the natural chaos of the orbits on the
original attractor of the unknown system being predicted.

1.2. Stabilization

One of our primary goals in this article is to study the effect of
adding noise to the model input. Adding noise as a form of regular-
ization is an established technique for improving the robustness and
generalization of artificial neural networks (An, 1996; Goodfellow,
Bengio, & Courville, 2016; Greff, Srivastava, Koutník, Steunebrink, &
Schmidhuber, 2017; Poole, Sohl-Dickstein, & Ganguli, 2014; Sietsma
& Dow, 1991; Vincent, Larochelle, Bengio, & Manzagol, 2008). The
addition of noise as regularization is also an essential component of
NARMAX models for nonlinear system identification (Billings, 2013).
Adding input noise is a commonly used technique in reservoir com-
puting (see, e.g., Jaeger, 2001; Lukoševičius & Jaeger, 2009; Vlachas
et al., 2020). Here, we systematically compare the utility of noise reg-
ularization with other regularization techniques for promoting climate
stability and prediction accuracy.

In the context of learning to forecast chaotic dynamics, one can
view the added noise as perturbing the input training orbit off the
target invariant set of the dynamics so that, during the training, the ML
model learns to respond to input from a neighborhood of the invariant
set. Thus, perturbations from the invariant set are trained to be pulled
back toward the invariant set, tending to make it stable (i.e., make
it an attractor). We emphasize, however, that this reasoning is only
heuristic, because it is based on the open-loop system (Fig. 1(a)), while
the prediction uses the closed-loop system (Fig. 1(b)).

In addition to systematically considering the utility of input noise,
we also formulate and test a new penalty term in the ML loss function
based on the idea of adding noise to the input training data. This term
is computed by linearly approximating the mean effect of added noise
from a prescribed number of most-recent inputs to the ML model with
memory. This penalty term is deterministic, approximating the effect
of an arbitrarily large number of noise realizations without sampling
error. We refer to the technique of training with this penalty as Lin-
earized Multi-Noise Training (LMNT) and to the resulting regularization
as LMNT regularization. In the context of our chosen machine learning
method, reservoir computing, we find that LMNT regularization greatly
simplifies the tuning of the hyperparameter associated with the regu-
larization strength when compared to the approach of adding noise to
the model input, though this particular benefit might be specific to the

training protocol for reservoir computing.

Neural Networks 170 (2024) 94–110A. Wikner et al.

p
t
d
a
i
p
t
w
p
r
s

o

1.3. Outline and main results

Our article is structured as follows: In Section 2, we describe the
rocess of training an ML predictor with memory to produce short-
erm forecasts and then using it for long-term climate prediction. We
iscuss in Section 2.1 our implementation of reservoir computing using
recurrent neural network (RNN), describe the process of training

n Section 2.2, and discuss different regularization techniques, whose
erformance we will test, in Section 2.3. We then describe our LMNT
echnique and the resulting regularization in Section 2.4. In Section 2.5,
e discuss how we will produce and evaluate short and long-term
redictions using each of the regularization techniques described. Our
esults using reservoir computing with training data from a chaotic test
ystem, the Kuramoto–Sivashinsky equation, are discussed in Section 3.
We discuss alternative implementations of LMNT and give concluding
remarks in Section 4.

1.4. Additional background: ML model robustness to perturbations

A number of techniques have been used to improve ML model ‘‘ro-
bustness’’ – insensitivity to small spurious changes – for input/output
situations analogous to Fig. 1(a). Since this relates to the subject of
this article, we discuss some of this past background. These techniques
include regularization, such as Tikhonov regularization (Tikhonov &
Arsenin, 1977) (also known as ridge regression), LASSO regression
(Tibshirani, 1996), and Jacobian regularization (Hoffman, Roberts,
& Yaida, 2019). Training using a dropout scheme (Srivastava, Hin-
ton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) is another method
which introduces random noise to improve model robustness. In RNN
models, teacher forcing (Kolen & Kremer, 2001), the more sophisticated
professor forcing (Lamb et al., 2016), or the online weight adjustment
technique known as FORCE learning (Sussillo & Abbott, 2009) are used
to encourage the dynamics during the closed-loop prediction to more
closely resemble the dynamics during training. Noise may also be added
to an RNN model’s internal state to encourage stability (Lim, Erichson,
Hodgkinson, & Mahoney, 2021). In the case where an ML prediction
model runs in a closed-loop configuration (as in our Fig. 1(b)), using
a loss function that incorporates multiple feedback loops, which can
be done simultaneously, as in Lam et al. (2023), Rasp et al. (2020),
or iteratively, as in Pathak et al. (2022) (referred to as ‘‘fine-tuning’’),
may also improve model stability. In addition, hybrid methods which
combine machine learning with a science-based model can also im-
prove model stability and climate replication (Arcomano et al., 2022;
Wikner et al., 2020). Many of these regularization techniques introduce
additional model ‘‘hyperparameters’’ – algorithmic parameters that
are not optimized within the training procedure – to obtain optimal
performance. Tuning hyperparameters can often be computationally
expensive, even when full optimization is not attempted.

2. Methods

We consider the case where we have a finite-duration time series of
training data consisting of 𝑀 simultaneous measurements of state vari-
ables from our unknown dynamical system, 𝐮(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡),… , 𝑢𝑀
(𝑡)]⊺, obtained from time 𝑡0 to time 𝑡0+𝑡train with a sampling time-step of
𝛥𝑡. We standardize 𝐮 by applying, for each 𝑘, a linear transformation to
the 𝑘th measurement time series so that 𝐮𝑘(𝑡) has mean 0 and standard
deviation 1. We assume that the sampling time-step is short compared
to the time scale of the unknown dynamical system (e.g., for a chaotic
system, the average 𝑒-fold error growth time, known as the ‘‘Lyapunov
time’’).

We perform our model training in the open-loop configuration
shown in Fig. 1(a). Beginning with an arbitrary initial memory vector,
e.g., 𝐬(𝑡) = 0, we input samples from our training time series to our ML
model (𝐮𝑖𝑛(𝑡) = 𝐮(𝑡)), obtaining an 𝑀-dimensional output 𝐮𝑜𝑢𝑡(𝑡 + 𝛥𝑡)
and the evolved memory vector. The goal of the training is to adjust
96
the parameters of our ML model, contained in the functions 𝐠 and
𝐡, so that 𝐮𝑜𝑢𝑡(𝑡 + 𝛥𝑡) ≃ 𝐮(𝑡 + 𝛥𝑡) for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑡train − 𝛥𝑡. Once
trained, our model takes an input 𝐮(𝑡) and outputs a prediction of the
dynamical system state at time 𝑡 + 𝛥𝑡. Following training, we use the
trained model to produce predictions by switching our ML model into
the closed-loop configuration shown in Fig. 1(b). After receiving input
up to time 𝑡𝑖𝑛𝑖𝑡 ≥ 𝑡0+ 𝑡𝑡𝑟𝑎𝑖𝑛 and evolving the memory vector accordingly,
the model in this configuration functions autonomously by feeding the
model output back into the model as input (𝐮𝑖𝑛(𝑡 + 𝛥𝑡) = 𝐮𝑜𝑢𝑡(𝑡 + 𝛥𝑡)),
shown by the bottom dashed line in Fig. 1(b). We obtain a prediction
for the unknown dynamical system state at time 𝑡𝑖𝑛𝑖𝑡+𝑇𝛥𝑡, where 𝑇 is a
positive integer, by cycling the model as depicted 𝑇 times and recording
the final model output as the prediction.

2.1. Reservoir computing

We next describe the particular ML technique with memory used in
this article, known as reservoir computing. In reservoir computing, the
𝑀-dimensional input vector 𝐮𝑖𝑛(𝑡) is coupled by an 𝑁 ×𝑀 input cou-
pling matrix 𝐁 to a high-dimensional reservoir with an 𝑁-dimensional
internal state vector 𝐫(𝑡). The internal reservoir state at time 𝑡 depends
n both this input and the internal state at time 𝑡 − 𝛥𝑡. This internal
state is an essential component of the memory vector and allows the
reservoir to produce useful predictions even when the 𝑀-dimensional
vector 𝐮𝑖𝑛(𝑡) does not have enough components to represent the full
dynamical state of the unknown system to be predicted. The evolved
memory vector is finally coupled by an output coupling matrix 𝐖 to
produce an output 𝐮𝑜𝑢𝑡(𝑡+𝛥𝑡). In reservoir computing, only the matrix el-
ements of𝐖 (i.e., the parameters of the output function 𝐡(𝐬(𝑡)) = 𝐖𝐬(𝑡))
are adjusted during training, while the input coupling matrix elements
and the internal reservoir coupling parameters (i.e., the parameters of
the memory evolution function 𝐠) are fixed after initialization.

For the reservoir computer implementation used in this article,
we use an artificial recurrent neural network with a large number of
computational nodes. This network’s adjacency matrix, 𝐀, is an 𝑁 ×𝑁
sparse matrix with randomly generated non-zero elements. These non-
zero elements represent edges in a directed, weighted graph of 𝑁
nodes, and the 𝑖th element of the reservoir state vector 𝐫(𝑡) represents
the scalar state of the 𝑖th network node. Values of the non-zero elements
of 𝐀 are sampled from a uniform random distribution over the interval
[−1, 1], and are assigned such that the average number of non-zero
elements per row is equal to ⟨𝑑⟩, called the ‘‘average in-degree’’. For 𝐀
to be sparse, we choose ⟨𝑑⟩ ≪ 𝑁 . Then, 𝐀 is re-scaled (𝐀 → [constant]×
𝐀) such that its ‘‘spectral radius’’ 𝜌, the magnitude of the maximum
magnitude eigenvalue of 𝐀, is equal to some chosen value. The spectral
radius is chosen to be small enough (typically less than 1 suffices) that
the reservoir will satisfy the ‘‘echo-state’’ property (Jaeger, 2001) and
large enough that the reservoir has substantial memory. We choose
the input coupling 𝐁 as a 𝑁 × 𝑀 matrix with exactly one non-zero
value per row so that each reservoir node is coupled to exactly one
coordinate of 𝐮𝑖𝑛(𝑡). We choose the location of these non-zero elements
such that each input is coupled to an approximately equal number of
reservoir nodes. These non-zero elements are sampled from a uniform
random distribution over the interval [−𝜎, 𝜎]; we refer to 𝜎 as the ‘‘input
scaling’’.

Given an input 𝐮𝑖𝑛(𝑡) and the previous reservoir internal state 𝐫(𝑡 −
𝛥𝑡), the reservoir internal state evolves according to the following
equation:

𝐫(𝑡) = (1 − 𝛼)𝐫(𝑡 − 𝛥𝑡) + 𝛼 tanh(𝐀𝐫(𝑡 − 𝛥𝑡) + 𝐁𝐮𝑖𝑛(𝑡) + 𝐂), (2)

where tanh is applied element-wise. Here, 𝐂 is an 𝑁-dimensional bias
vector with elements sampled from a uniform random distribution over
the interval [−𝜃, 𝜃]; we refer to 𝜃 as the ‘‘input bias’’. The leaking rate,
𝛼, controls the time scale of the reservoir evolution, and is chosen from
the interval (0, 1].

Neural Networks 170 (2024) 94–110A. Wikner et al.

i
v

𝐬

H
r
c

𝐮

T
w
m
m
(
i
F
t

𝜌
(
(
l
i
r
t
b
p
w
W

t

2

o
g
w
f
a

E
i
s
t
n
t
t
I
o
W
u

I
a
w
i
𝐑
d
p
t
s
𝑗
a
t

𝐖

Some implementations of reservoir computing use 𝐬(𝑡) = 𝐫(𝑡) as the
nput to the output coupling 𝐖. Here, we use an augmented memory
ector 𝐬(𝑡) defined by:

(𝑡) = 𝐟 (𝐫(𝑡),𝐮𝑖𝑛(𝑡)) =

⎡

⎢

⎢

⎢

⎢

⎣

1
𝐮𝑖𝑛(𝑡)
𝐫(𝑡)
𝐫(𝑡)2

⎤

⎥

⎥

⎥

⎥

⎦

. (3)

ere, the 𝐫(𝑡)2 represents an element-wise power of 2, while [⋮]
epresents vertical concatenation of the contained elements. We then
ompute the reservoir output as:

𝑜𝑢𝑡(𝑡 + 𝛥𝑡) = 𝐡(𝐬(𝑡)) = 𝐖𝐬(𝑡). (4)

he most essential component of 𝐬(𝑡) is the reservoir state vector 𝐫(𝑡),
hich is a high dimensional vector (𝑁 ≫ 𝑀) mapped from the
uch lower dimensional (𝑀) input state space. In addition to 𝐫(𝑡), the
emory vector also contains a constant (the 1), the reservoir input
𝐮𝑖𝑛(𝑡)), and the squared reservoir state (𝐫(𝑡)2). We include the reservoir
nput so that our model need only learn the change from 𝐮(𝑡) to 𝐮(𝑡+𝛥𝑡).
inally, we find empirically, as in Pathak et al. (2018), that including
he squared reservoir state improves the accuracy of our forecasts.
The parameters used to generate the reservoir computer (𝑁 , ⟨𝑑⟩,

, 𝜎, 𝜃, and 𝛼) and the regularization parameters used during training
which we will describe in Sections 2.2–2.4) are ‘‘hyperparameters’’
see Section 1.4). To obtain an accurate short-term prediction and a
ong-term prediction with a climate similar to that of the true system, it
s necessary to carefully choose the values of these hyperparameters. In
eservoir computing, modifying the hyperparameters used to generate a
rained reservoir computer will require that one re-perform the training
efore the reservoir can again be used for prediction. Regularization
arameters for some regularization types, however, can be changed
ithout having to re-perform all of the steps in the reservoir training.
e will discuss this more in Section 2.3.
We next describe the reservoir training process and loss function for

he different types of regularization we will discuss in this article.

.2. Training with regularization

The goal of the training is to determine the 𝑀 × (1 + 𝑀 + 2𝑁)
utput coupling matrix 𝐖 such that 𝐖𝐬(𝑡) ≈ 𝐮(𝑡 + 𝛥𝑡) when 𝐮(𝑡) is
enerated by the unknown dynamical system. Training is accomplished
ith the reservoir in the ‘‘open-loop’’ configuration with no output
eedback present. Our training data consists of measurements obtained
t 𝑇𝑠𝑦𝑛𝑐 + 𝑇𝑡𝑟𝑎𝑖𝑛 + 1 equally-spaced values:
{

𝐮(𝑡)
}

=
{

𝐮(0),𝐮(𝛥𝑡),… ,
𝐮((𝑇𝑠𝑦𝑛𝑐 + 𝑇𝑡𝑟𝑎𝑖𝑛 − 1)𝛥𝑡), 𝐮((𝑇𝑠𝑦𝑛𝑐 + 𝑇𝑡𝑟𝑎𝑖𝑛)𝛥𝑡)

}

.
(5)

ach of the 𝑀 components of 𝐮(𝑡) has been standardized such that
ts mean value and standard deviation over the 𝑇𝑡𝑟𝑎𝑖𝑛 + 𝑇𝑠𝑦𝑛𝑐 + 1 time
teps are 0 and 1, respectively. Here, 𝑇𝑡𝑟𝑎𝑖𝑛 represents the number of
raining samples, while, as explained subsequently, 𝑇𝑠𝑦𝑛𝑐 represents the
umber of synchronization samples. We begin training by initializing
he reservoir so that 𝐫(−𝛥𝑡) = 𝟎. We then input 𝐮𝑖𝑛(0) = 𝐮(0), computing
he evolved reservoir state 𝐫(0) and recording the memory vector𝐬(0).
terating from 𝑡 = 𝛥𝑡 to 𝑡 = (𝑇𝑠𝑦𝑛𝑐 +𝑇𝑡𝑟𝑎𝑖𝑛−1)𝛥𝑡, we perform this process,
btaining a set of memory vectors from 𝑡 = 0 to 𝑡 = (𝑇𝑠𝑦𝑛𝑐 +𝑇𝑡𝑟𝑎𝑖𝑛 −1)𝛥𝑡.
e can express the evolution of the memory vector during training
sing the open-loop memory evolution function, 𝐠𝑜, as follows:

𝐬(𝑡) = 𝐠𝑜(𝐮(𝑡), 𝐬(𝑡 − 𝛥𝑡)) =

⎡

⎢

⎢

⎢

⎢

⎣

1
𝐮(𝑡)

𝐠𝑟(𝐮(𝑡), 𝐬(𝑡 − 𝛥𝑡))
(

𝐠𝑟(𝐮(𝑡), 𝐬(𝑡 − 𝛥𝑡))
)2

⎤

⎥

⎥

⎥

⎥

⎦

, (6)

where
𝐠𝑟(𝐮(𝑡), 𝐬(𝑡 − 𝛥𝑡)) = (1 − 𝛼)

[

𝟎𝑁×(1+𝑀), 𝐈𝑁×𝑁 , 𝟎𝑁×𝑁
]

𝐬(𝑡 − 𝛥𝑡)
([]) (7)
97

+𝛼 tanh 𝟎𝑁×(1+𝑀), 𝐀, 𝟎𝑁×𝑁 𝐬(𝑡 − 𝛥𝑡) + 𝐁𝐮(𝑡) + 𝐂 .
In Eq. (7), […] denotes horizontal concatenation.
To ensure that the memory vectors have minimal dependence on

the initial reservoir state, we do not use the first 𝑇𝑠𝑦𝑛𝑐 memory vectors
to train the reservoir. The first 𝑇𝑠𝑦𝑛𝑐 inputs are only used to ‘‘syn-
chronize’’ the reservoir state 𝐫(𝑡) to the unknown dynamical system
trajectory (Pecora & Carroll, 2015). For a reservoir computer with
typical hyperparameter values, 𝑇𝑠𝑦𝑛𝑐 may be set such that 𝑇𝑠𝑦𝑛𝑐 ≪ 𝑇𝑡𝑟𝑎𝑖𝑛.
We thus obtain 𝑇𝑡𝑟𝑎𝑖𝑛 dynamical system state inputs to the synchronized
reservoir, reservoir internal states, and memory vectors to be used
for the training, which we will denote as {𝐮𝑗}, {𝐫𝑗}, and {𝐬𝑗}. Here,
0 ≤ 𝑗 ≤ 𝑇𝑡𝑟𝑎𝑖𝑛 − 1 and sample 𝑗 is obtained at time 𝑡 = (𝑇𝑠𝑦𝑛𝑐 + 𝑗)𝛥𝑡. We
additionally introduce the target time series data, {𝐯𝑗}, which contains
the unknown dynamical system states 𝐮(𝑇𝑠𝑦𝑛𝑐 + 𝑗 + 1) that we desire to
approximate at each time index 𝑗.

We train 𝐖 such that 𝐖𝐬𝑗 ≈ 𝐯𝑗 by minimizing the following
regularized least-squares loss function, which, for our purposes, has the
form:

𝓁(𝐖) = 1
𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=0
‖𝐖𝐬𝑗 − 𝐯𝑗‖22 +

∑

𝑖
𝛽𝑖Tr (𝐖𝐑𝑖𝐖⊺). (8)

n Eq. (8) and in future equations, Tr(…) denotes the trace of a matrix,
nd ‖… ‖2 is the Euclidean norm. Here, 𝐑𝑖 is a regularization matrix,
hich we denote with an index 𝑖, with an associated tunable regular-
zation parameter 𝛽𝑖. Depending on the type of regularization used,
𝑖 might or might not depend on {𝐮𝑗} and {𝐬𝑗}. We will discuss the
ifferent types of regularization used in this article and their associated
enalties in the loss function in Sections 2.3–2.4. For all regularization
ypes used, we will minimize this loss function using the ‘‘matrix
olution’’, as follows. We first form the matrices 𝐒 and 𝐕, where the
th columns of 𝐒 and 𝐕 are 𝐬𝑗 and 𝐯𝑗 , respectively. We then determine
matrix𝐖 which solves the following linear system obtained by setting
he derivative of Eq. (8) with respect to 𝐖 to zero:
(

1
𝑇𝑡𝑟𝑎𝑖𝑛

𝐒𝐒⊺ +
∑

𝑖
𝛽𝑖𝐑𝑖

)

= 1
𝑇𝑡𝑟𝑎𝑖𝑛

𝐕𝐒⊺. (9)

While all of the regularization methods which we use in this article may
be incorporated into the matrix solution, we note that this is not the
case for all regularization types (e.g., LASSO regularization Tibshirani,
1996). In such cases, it would be necessary to use a method other
than the matrix solution to minimize Eq. (8) (e.g., proximal gradient
methods for LASSO Daubechies, Defrise, & De Mol, 2004). We solve
for 𝐖 in Eq. (9) using the gesv function in LAPACK (Anderson et al.,
1999), implemented via numpy.linalg.solve (Harris et al., 2020)
in Python.

2.3. Regularization

We now discuss the regularization techniques to improve an ML
model’s climate stability that we will test in this article. Each of
these techniques adds a penalty term to the loss function that, for the
reservoir computer training, can be reduced to the form of Eq. (8).
Noise training, which replaces the vectors 𝐬𝑗 in Eq. (8) with perturbed
vectors 𝐬̃𝑗 , is the one exception to this general form discussed in this
article.

2.3.1. Tikhonov regularization
Tikhonov regularization (Tikhonov & Arsenin, 1977), also known

as ‘‘ridge regression’’, places a penalty on the Frobenius (element-wise
𝐿2) norm of the trainable model parameters to prevent model over-
fitting. In this article, we consider Tikhonov regularization using a
single scalar regularization parameter, 𝛽𝑇 ; however, one may generally
use a matrix of regularization parameters to penalize different trainable
model parameters to different degrees. The Tikhonov regularization
function for the reservoir computer is

𝛽 ‖𝐖‖

2 = 𝛽 Tr (𝐖𝐖⊺) (10)
𝑇 𝐹 𝑇

Neural Networks 170 (2024) 94–110A. Wikner et al.

m

𝐑
w
I
n
a

f
m
T
r
s
n
p

2

n
f
t
a
o
T
r
l
p

𝓁

w
𝛁

where ‖… ‖𝐹 is the Frobenius matrix norm, i.e., the square root of the
sum of the squares of all the matrix elements. For use in the last term
on the right-hand side of Eq. (8), we define a Tikhonov regularization
atrix as

𝑇 = 𝐈(1+𝑀+2𝑁)×(1+𝑀+2𝑁), (11)

and express Tr(𝐖𝐖⊺) as Tr(𝐖𝐑𝑇𝐖⊺).

2.3.2. Jacobian regularization
Jacobian regularization penalizes the Frobenius norm of an ML

model’s input–output Jacobian matrix to promote model robustness
with respect to input perturbations (Hoffman et al., 2019). For ML
models with memory, we use the Jacobian matrix of 𝐮𝑜𝑢𝑡(𝑡 + 𝛥𝑡) =
𝐡(𝐠(𝐮𝑖𝑛, 𝐬(𝑡−𝛥𝑡))) with respect to 𝐮𝑖𝑛(𝑡). Notably, Jacobian regularization
only penalizes the Jacobian with respect to the most recent model input
and does not account for the dependence of 𝐬(𝑡 − 𝛥𝑡) on earlier inputs.
Using the notation of Fig. 1 and Eq. (1), the Jacobian regularization
penalty term for a single training sample can be expressed as

𝛽𝐽‖𝛁𝐬𝐡(𝐬𝑗)𝛁𝐮𝐠(𝐮𝑗 , 𝐬𝑗−1)‖2𝐹 . (12)

Here, 𝛽𝐽 is a scalar regularization term and 𝛁𝐱𝐟 (𝐱𝑗 , 𝐲𝑗) denotes the
Jacobian of 𝐟 (𝐱, 𝐲) with respect to 𝐱 evaluated at 𝐲 = 𝐲𝑗 and 𝐱 = 𝐱𝑗 .

For the reservoir computer, we use the reservoir open-loop memory
evolution function 𝐠𝑜(𝐮(𝑡), 𝐬(𝑡 − 𝛥𝑡)) for an input 𝐮𝑗 and that 𝛁𝐬𝐡(𝐬𝑗) =
𝐖. From this, we can express the Jacobian regularization function
computed for all training samples as

𝛽𝐽
𝑇𝑡𝑟𝑎𝑖𝑛 − 1

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=1
‖𝐖𝛁𝐮𝐠𝑜(𝐮𝑗 , 𝐬𝑗−1)‖2𝐹 = 𝛽𝐽Tr (𝐖𝐑𝐉𝐖⊺), (13)

where the Jacobian regularization matrix is

𝐑𝐉 =
1

𝑇𝑡𝑟𝑎𝑖𝑛 − 1

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=1
𝛁𝐮𝐠𝑜(𝐮𝑗 , 𝐬𝑗−1,)𝛁𝐮𝐠𝑜(𝐮𝑗 , 𝐬𝑗−1)⊺. (14)

We have introduced a normalizing factor of 1∕(𝑇𝑡𝑟𝑎𝑖𝑛 − 1) so that the
scaling of 𝐑𝐉 is approximately independent of 𝑇𝑡𝑟𝑎𝑖𝑛. We compute
𝛁𝐮𝐠𝑜(𝐮𝑗 , 𝐬𝑗−1) from Eqs. (6) and (7) as follows.

𝛁𝐮𝐠𝑜(𝐮𝑗 , 𝐬𝑗−1) =

⎡

⎢

⎢

⎢

⎢

⎣

0
𝐈𝑀×𝑀

𝛼 diag(𝐝(𝐫𝑗−1,𝐮𝑗))𝐁
𝛼 diag(2𝐫𝑗) diag(𝐝(𝐫𝑗−1,𝐮𝑗))𝐁

⎤

⎥

⎥

⎥

⎥

⎦

, where (15)

diag(𝐝) =
⎡

⎢

⎢

⎣

𝑑1 0
⋱

0 𝑑𝑁

⎤

⎥

⎥

⎦

, and (16)

𝐝(𝐫𝑗−1,𝐮𝑗) = sech2 (𝐀𝐫𝑗−1 + 𝐁𝐮𝑗 + 𝐂), (17)

where the sech2 in Eq. (17) is the derivative of tanh. We note that
Eq. (14) depends on the reservoir model parameters (𝐀, 𝐁, 𝐂, and 𝛼)
and the internal reservoir state, 𝐫𝑗−1, when the reservoir receives the
input 𝐮𝑗 .

2.3.3. Noise training
Similar to our motivation for using Jacobian regularization, we can

use noise added to the reservoir input to encourage the reservoir output
to be insensitive to perturbations of the input. In noise training, we
add a scaled noise vector

√

𝛽𝑁𝜸(𝑡) to each input to the reservoir during
training:

𝐮𝑖𝑛(𝑡) = 𝐮(𝑡) +
√

𝛽𝑁𝜸(𝑡), (18)

where 𝜸(𝑡) is the noise vector and 𝛽𝑁 is the noise variance. We generate
the set of noise vectors, {𝜸𝑗}, to be added during training for each of
the 𝑀 components of 𝜸(𝑡) at sample time 𝑡, sampling independently
from a normal distribution with mean 0 and standard deviation 1.
Following the process described earlier in this section, we obtain the
98
noisy memory vectors, denoted by {𝐬̃𝑗}. We then train 𝐖 such that
𝐖𝐬̃𝑗 ≈ 𝐯𝑗 by minimizing the noisy loss function:

𝓁(𝐖) = 1
𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑟𝑎𝑖𝑛
∑

𝑗=1
‖𝐖𝐬̃𝑗 − 𝐯𝑗‖22 +

∑

𝑖
𝛽𝑖Tr (𝐖𝐑𝑖𝐖⊺), (19)

here we include potential additional regularization terms as well.
n practice, Tikhonov regularization is often used in conjunction with
oise training. We minimize Eq. (19) as we did Eq. (8): by constructing
matrix 𝐒̃, where the 𝑗th column of 𝐒̃ is 𝐬̃𝑗 , and solving the following

linear system:

𝐖
(

1
𝑇𝑡𝑟𝑎𝑖𝑛

𝐒̃𝐒̃⊺ +
∑

𝑖
𝛽𝑖𝐑𝑖

)

= 1
𝑇𝑡𝑟𝑎𝑖𝑛

𝐕𝐒̃⊺. (20)

We note that while we can solve Eq. (20) using the same method used
or Eq. (9), changing the noise scaling 𝛽𝑁 requires us to re-compute the
atrix 𝐒̃ before we can solve Eq. (20) again. By contrast, changing the
ikhonov or Jacobian regularization parameter only requires that we
e-scale the already-determined regularization matrices before we can
olve Eq. (9) again. This re-computation generally makes tuning the
oise scaling more computationally costly than the other regularization
arameters.

.4. Linearized Multi-Noise Training (LMNT)

We now introduce Linearized Multi-Noise Training (LMNT), pro-
ounced as an initialism. LMNT introduces a penalty term to the loss
unction that penalizes the sum of the squares of the derivatives of
he ML model output with respect to the 𝐾 most-recent model inputs,
veraged over roughly the entirety of the training data and scaled by an
verall constant (which represents the approximated noise variance).
his penalty term aims to approximate the effect of many independent
ealizations of small-amplitude input noise added to the unregularized
east-squares loss function about a minimum of this loss function. The
enalty term for LMNT can be written using the notation of Eq. (1) as

𝐿𝑀𝑁𝑇 = 𝛽𝐿
1

𝑇𝑡𝑟𝑎𝑖𝑛 −𝐾

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=𝐾

𝑗
∑

𝑘=𝑗−𝐾+1
‖𝛁𝐬𝐡(𝐬𝑗)𝛁𝐮(𝑗, 𝑘)‖2𝐹 , (21)

here 𝛽𝐿 is the scaling constant representing input noise variance and
𝐮(𝑗, 𝑘) is the Jacobian matrix of 𝐬𝑗 with respect to 𝐮𝑘, where 𝑘 ≤ 𝑗:

𝛁𝐮(𝑗, 𝑘) = 𝛁𝐬𝐠(𝐮𝑗 , 𝐬𝑗−1)𝛁𝐬𝐠(𝐮𝑗−1, 𝐬𝑗−2)…
𝛁𝐬𝐠(𝐮𝑘+1, 𝐬𝑘)𝛁𝐮𝐠(𝐮𝑘, 𝐬𝑘−1).

(22)

Here {𝐮𝑗} and {𝐬𝑗} are the training inputs and the resulting memory
vectors, as in Section 2.2. Though this training technique is moti-
vated by noise training, it is deterministic. For the reservoir computer
training, this results in a regularization matrix that may be easily re-
scaled for efficient regularization parameter tuning (thus avoiding the
drawback mentioned at the end of Section 2.3).

Next, we illustrate the connection between the LMNT penalty term
and the effect of input noise on a mean-squared-error loss function in
the case of reservoir computing. Suppose that we compute the noisy
memory vectors as described in Section 2.3.3 for 𝑃 different noise
realizations added to the input during training, where 𝑃 ≫ 1. That
is, we compute the memory vectors for a particular set of noise vectors
{𝜸𝑖,1}; then, beginning the computation again, we compute the memory
vectors for another set of noise vectors {𝜸𝑖,2}; and so on, up to iteration
𝑃 . We denote these memory vectors as {𝐬̃𝑗,𝑝}, where the index 𝑝 =
1, 2,… , 𝑃 denotes the noise realization used. The least-squares loss
function without additional regularization is

𝓁(𝐖) = 1
𝑃

𝑃
∑

𝑝=1

1
𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=0
‖𝐖𝐬̃𝑗,𝑝 − 𝐯𝑗‖22 (23)

where we have added a factor of 1∕𝑃 to normalize the loss function to
have values similar to Eq. (8). We perform a bias–variance decomposi-
tion (James, Witten, Hastie, & Tibshirani, 2014) on the loss function,

Neural Networks 170 (2024) 94–110A. Wikner et al.

r

C
a

w
c

𝐬

w
c
c

a

𝐪

Fig. 2. Diagram of our Reservoir Computer Model. The reservoir is trained in the ‘‘open-loop’’ training phase (analogous to Fig. 1(a)). During this phase, the dashed line representing
the feedback loop is inactive. Once training is complete, the ‘‘closed-loop’’ prediction phase (analogous to Fig. 1(b)) may begin by activating the output-to-input feedback connection
(shown by the dashed line). On the left, we indicate the input during training for the standard training (discussed in Section 2.2) and for noise training (discussed in Section 2.3.3),
as well as the feedback input during prediction (discussed in Section 2.5).
w
E
a
w
W
m

a

I
J

obtaining:

1
𝑃

𝑃
∑

𝑝=1

1
𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=0
‖𝐖𝐬̃𝑗,𝑝 − 𝐯𝑗‖22 =

1
𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=0
‖𝐖𝐬̄𝑗 − 𝐯𝑗‖22

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
bias

+ 1
𝑃

𝑃
∑

𝑝=1

1
𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=0
‖𝐖𝐪𝑗,𝑝‖22

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
variance

(24)

In Eq. (24), 𝐬̄𝑗 is the mean of the memory vector computed over 𝑃 noise
ealizations for time index 𝑗, while 𝐪𝑗,𝑝 = 𝐬̃𝑗,𝑝− 𝐬̄𝑗 is the deviation of 𝐬̃𝑗,𝑝
from 𝐬̄𝑗 .

We next approximate Eq. (24) by assuming that: (a) 𝑃 → ∞; (b) 𝛽𝑁
is small, allowing us to approximate to linear order in

√

𝛽𝑁 ; and (c) due
the reservoir computer’s decaying memory, we can consider only the 𝐾
most-recent additions of noise prior to time index 𝑗, where 𝐾 ≤ 𝑇𝑠𝑦𝑛𝑐 .
onsidering assumption (a), we can write the variance term in Eq. (24)
s:

lim
𝑃→∞

1
𝑃

𝑃
∑

𝑝=1

1
𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=0
‖𝐖𝐪𝑗,𝑝‖22

= lim
𝑃→∞

1
𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=0
Tr
[

𝐖
(1
𝑃

𝑃
∑

𝑝=1
𝐪𝑗,𝑝𝐪

⊺
𝑗,𝑝

)

𝐖⊺
]

= 1
𝑇𝑡𝑟𝑎𝑖𝑛

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=0
Tr[𝐖𝜮𝑗𝐖⊺],

(25)

here 𝜮𝑗 is the covariance of 𝐪𝑗,𝑝, 𝜮𝑗 = lim𝑃→∞ 𝑃−1 ∑𝑃
𝑝=1 𝐪𝑗,𝑝𝐪

⊺
𝑗,𝑝. Next

onsidering assumptions (b) and (c), we write 𝐬̃𝑗,𝑝 as:

̃𝑗,𝑝 ≈ 𝐬𝑗 +
√

𝛽𝑁
𝑗
∑

𝑘=𝑗−𝐾+1
𝛁𝐮(𝑗, 𝑘)𝜸𝑘,𝑝 + (𝛽𝑁), (26)

here 𝐬𝑗 is the feature vector for noiseless training and 𝛁𝐮(𝑗, 𝑘) is
omputed from Eq. (21) with 𝐠 = 𝐠𝑜 from Eq. (6). Then, since 𝜸𝑘,𝑝 is
hosen from a distribution with mean zero,

lim
𝑃→∞

𝐬̄𝑗 = 𝐬𝑗 + (𝛽𝑁), (27)

nd for large P,

𝑗,𝑝 ≈
√

𝛽𝑁
𝑗
∑

𝛁𝐮(𝑗, 𝑘)𝜸𝑘,𝑝 + (𝛽𝑁). (28)
99

𝑘=𝑗−𝐾+1 c
We use Eq. (27) to approximate the bias term in Eq. (24), and
Eq. (28) to approximate the variance term. We assume that the (𝛽𝑁)
term in Eq. (27), which depends on 𝑗, has fluctuations that are inde-
pendent of the fluctuations in 𝐖𝐬𝑗 − 𝐯𝑗 , and that the mean over 𝑗 of
𝐖𝐬𝑗 − 𝐯𝑗 is approximately zero, as it should be for least-squares fitting.
Thus we assume that changing 𝐬̄𝑗 to 𝐬𝑗 in Eq. (24) makes a change that
is small compared to 𝛽𝑁 , due to the cancellation of the (𝛽𝑁) terms in
the expression ‖𝐖𝐬̄𝑗 − 𝐯𝑗‖22 − ‖𝐖𝐬𝑗 − 𝐯𝑗‖22 ≈ 2𝐖(𝛽𝑁)(𝐖𝐬𝑗 − 𝐯𝑗)⊺ after
summing over 𝑗.

Next, since the noise vectors 𝜸𝑗,𝑝 are independent of each other and
each has covariance 𝐈, we approximate 𝜮𝑗 in Eq. (25) as

𝜮𝑗 =
𝑗
∑

𝑘=𝑗−𝐾+1
𝛁𝐮(𝑗, 𝑘)

(

𝛽𝑁 𝐈
)

𝛁𝐮(𝑗, 𝑘)⊺ = 𝛽𝑁
𝑗
∑

𝑘=𝑗−𝐾+1
𝛁𝐮(𝑗, 𝑘)𝛁𝐮(𝑗, 𝑘)⊺. (29)

Combining Eqs. (25) and (22), we obtain the LMNT regularization
function for the reservoir computer:

𝛽𝐿
1

𝑇𝑡𝑟𝑎𝑖𝑛 −𝐾

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=𝐾

𝑗
∑

𝑘=𝑗−𝐾+1
‖𝐖𝛁𝐮(𝑗, 𝑘)‖2𝐹 , (30)

here we have replaced 𝛽𝑁 by 𝛽𝐿. Notice that Eq. (30) agrees with
q. (21) in the case that 𝐡(𝐬) = 𝐖𝐬. We restrict to 𝑗 ≥ 𝐾 so that 𝑘 ≥ 1
nd, thus, 𝑘 − 1 ≥ 0 in Eq. (22). In Eq. (22), 𝐮𝑘 and 𝐬𝑘 are computed
ithout any addition of noise, making this regularization deterministic.
e use Eq. (15) for 𝛁𝐮𝐠𝑜, and we compute 𝛁𝐬𝐠𝑜 using the open-loop
emory vector evolution described by Eq. (6) and shown in Fig. 2:

𝛁𝐬𝐠𝑜(𝐮𝑗 , 𝐬𝑗−1) =
⎡

⎢

⎢

⎣

𝟎(1+𝑀)×(1+𝑀+2𝑁)
𝛁𝐬𝐠𝑟(𝐬𝑗−1,𝐮𝑗)

diag(2𝐫𝑗) 𝛁𝐬𝐠𝑟(𝐬𝑗−1,𝐮𝑗)

⎤

⎥

⎥

⎦

, where (31)

𝛁𝐬𝐠𝑟(𝐬𝑗−1,𝐮𝑗) = 𝛼 diag(𝐝(𝐫𝑗−1,𝐮𝑗))
[

𝟎𝑁×(1+𝑀), 𝐀, 𝟎𝑁×𝑁
]

+
[

𝟎𝑁×(1+𝑀), (1 − 𝛼)𝐈𝑁×𝑁 , 𝟎𝑁×𝑁
] (32)

nd where diag(…) and 𝐝(𝐫𝑗−1,𝐮𝑗) are the same as in Eqs. (16) and (17),
respectively. When computed using the inputs and internal reservoir
states during training, the resulting regularization matrix is:

𝐑𝐿 = 1
𝑇𝑡𝑟𝑎𝑖𝑛 −𝐾

𝑇𝑡𝑟𝑎𝑖𝑛−1
∑

𝑗=𝐾

[𝑗
∑

𝑘=𝑗−𝐾+1
𝛁𝐮(𝑗, 𝑘)𝛁𝐮(𝑗, 𝑘)⊺

]

. (33)

n the case where 𝐾 = 1, this regularization matrix is identical to the
acobian regularization matrix, 𝐑𝐽 . For all results in this article, we will

ompute the LMNT regularization using 𝐾 = 4; we justify this choice of

Neural Networks 170 (2024) 94–110A. Wikner et al.

𝐮

𝐾, show results for other 𝐾 values, and discuss general considerations
for selecting 𝐾 in Appendix A. We also note that the LMNT regulariza-
tion is computed here using approximately the same number of training
samples as is used to train the reservoir. In Appendix B.1, we discuss
computing the LMNT regularization with a greatly reduced number
of training samples, while in Appendix B.2, we compare prediction
stability and accuracy when the total amount of training samples is
greatly reduced.

2.5. Prediction and metrics

Once we have determined 𝐖, we are ready to begin prediction.
Prior to switching on the feedback loop shown in Fig. 2, we reset
the internal reservoir state to 𝟎, and then input a short sequence
of measurements, {𝐮𝑡𝑟𝑢𝑒(𝑡)}, from the system we intend to predict.
More precisely, assume that 𝐮𝑡𝑟𝑢𝑒(𝑡) is known up to time 𝑇𝑖𝑛𝑖𝑡𝛥𝑡. To re-
synchronize the reservoir to the true system trajectory, we begin at time
(𝑇𝑖𝑛𝑖𝑡 −𝑇𝑠𝑦𝑛𝑐)𝛥𝑡, inputting 𝐮𝑖𝑛((𝑇𝑖𝑛𝑖𝑡 −𝑇𝑠𝑦𝑛𝑐)𝛥𝑡) = 𝐮𝑡𝑟𝑢𝑒((𝑇𝑖𝑛𝑖𝑡 −𝑇𝑠𝑦𝑛𝑐)𝛥𝑡). We
iterate this process from 𝑡 = (𝑇𝑖𝑛𝑖𝑡 − 𝑇𝑠𝑦𝑛𝑐)𝛥𝑡 to 𝑡 = 𝑇𝑖𝑛𝑖𝑡𝛥𝑡, recording the
resulting reservoir states until we obtain 𝐫(𝑇𝑖𝑛𝑖𝑡𝛥𝑡). We then compute
our prediction for the system state at time (𝑇𝑖𝑛𝑖𝑡 + 1)𝛥𝑡 as 𝐮𝑜𝑢𝑡((𝑇𝑖𝑛𝑖𝑡 +
1)𝛥𝑡) = 𝐖𝐬(𝑇𝑖𝑛𝑖𝑡𝛥𝑡), where 𝐬(𝑇𝑖𝑛𝑖𝑡𝛥𝑡) = 𝑓 (𝐫(𝑇𝑖𝑛𝑖𝑡𝛥𝑡),𝐮𝑡𝑟𝑢𝑒(𝑇𝑖𝑛𝑖𝑡𝛥𝑡)) (see
Eq. (3)). We then activate the feedback loop shown in Fig. 2 so that
𝑖𝑛(𝑡) = 𝐮𝑜𝑢𝑡(𝑡) for 𝑡 ≥ (𝑇𝑖𝑛𝑖𝑡 + 1)𝛥𝑡. We compute 𝐮𝑜𝑢𝑡((𝑇𝑖𝑛𝑖𝑡 + 2)𝛥𝑡) =

𝐖𝐬((𝑇𝑖𝑛𝑖𝑡 +1)𝛥𝑡), feed back this prediction as input, and so on, until we
have reached our desired prediction time, 𝑡𝑝𝑟𝑒𝑑 = (𝑇𝑖𝑛𝑖𝑡+𝑇𝑝𝑟𝑒𝑑)𝛥𝑡, where
𝑇𝑝𝑟𝑒𝑑 is a positive integer. The closed-loop reservoir dynamics can be
expressed as a single evolution function 𝐬(𝑡) = 𝐠𝑐 (𝐬(𝑡 − 𝛥𝑡)), where

𝐠𝑐(𝐬(𝑡 − 𝛥𝑡)) =

⎡

⎢

⎢

⎢

⎢

⎣

1
𝐖𝐬(𝑡 − 𝛥𝑡)
𝐠𝑠(𝐬(𝑡 − 𝛥𝑡))

(

𝐠𝑠(𝐬(𝑡 − 𝛥𝑡))
)2

⎤

⎥

⎥

⎥

⎥

⎦

(34)

and
𝐠𝑠(𝐬(𝑡 − 𝛥𝑡)) = (1 − 𝛼)

[

𝟎𝑁×(1+𝑀), 𝐈𝑁×𝑁 , 𝟎𝑁×𝑁
]

𝐬(𝑡 − 𝛥𝑡)

+ 𝛼 tanh
([

𝟎𝑁×1, 𝐁𝐖, 𝐀, 𝟎𝑁×𝑁
]

𝐬(𝑡 − 𝛥𝑡) + 𝐂
)

.
(35)

The right side of Eq. (35) is obtained by substituting 𝐮(𝑡) = 𝐖𝐬(𝑡 + 𝛥𝑡)
into the right side of Eq. (7).

When evaluating the performance of a prediction from our machine
learning model, we are interested in:

1. For what duration of time is the near-term prediction approx-
imately valid? (In other words, how long does the near-term
prediction error remain below some chosen threshold?)

2. Is the long-term climate ‘‘stable’’? (In other words, does the ML
model prediction remain within approximately the same region
of space as the training data, or does it escape to some other
region?)

• Due to the chaotic nature of the systems we are interested
in, we expect predictions to be ‘‘unstable’’ in the sense that
the predicted trajectory will exponentially diverge from the
true trajectory due to any error in the initial condition, no
matter how small the error is in the model. We distinguish
this type of instability from climate instability.

3. If the prediction is stable, are its statistical properties, or ‘‘cli-
mate’’, similar to that of the unknown dynamical system?

To evaluate each of these criteria, we use the following metrics:

1. Prediction Valid Time: The prediction valid time is computed
as

𝑉 𝑇 = min
𝑇𝑖𝑛𝑖𝑡𝛥𝑡≤𝑡≤(𝑇𝑖𝑛𝑖𝑡+𝑇𝑝𝑟𝑒𝑑)𝛥𝑡

{

𝑡||
|

‖𝐮𝑜𝑢𝑡(𝑡) − 𝐮𝑡𝑟𝑢𝑒(𝑡)‖2
𝐸

> 𝜖𝑉 𝑇

}

−𝛥𝑡. (36)

Here, 𝜖𝑉 𝑇 is the valid time error threshold, and 𝐸 is the average
error between true system states computed from the training
100
data as the mean of ‖𝐮𝑗 − 𝐮𝑘‖2 over 0 ≤ 𝑗 < 𝑘 ≤ 𝑇𝑡𝑟𝑎𝑖𝑛. In all
of our tests, we choose 𝜖𝑉 𝑇 = 0.2, representing a 20% error in
the prediction.

2. Climate Stability: It is often the case that ML model predictions
will diverge exponentially from the region of the true attractor,
eventually resulting in numerical overflow in the floating-point
computation. These predictions can be easily identified as unsta-
ble. However, grossly inaccurate predictions of the true system
climate may also result when the system settles into some other
region of state space significantly removed from the true attrac-
tor. For the purposes of this paper, we also classify the latter
situation as instability. We desire to formulate a single metric
that can be used to signal the presence of instability of either of
the two types described above. We determine if such a prediction
is stable by computing the mean of the normalized ‘‘map error’’
over the entire prediction. This metric presumes a diagnostic
scenario where we know the true evolution equations for 𝐮(𝑡)
and that 𝐮(𝑡) is the entire state of the system to be predicted.
The map error at time 𝑡 is the norm of the difference between
𝐮𝑜𝑢𝑡(𝑡) and the result of evolving the true evolution equations for
time 𝛥𝑡 from initial condition 𝐮𝑜𝑢𝑡(𝑡 − 𝛥𝑡). The normalized map
error is

𝜖𝑚𝑎𝑝(𝑡) =
‖𝐮𝑜𝑢𝑡(𝑡) − 𝐅(𝐮𝑜𝑢𝑡(𝑡 − 𝛥𝑡), 𝑡 − 𝛥𝑡, 𝑡)‖2

𝐸𝑚𝑎𝑝

. (37)

Here, 𝐅(𝐮(𝑡0), 𝑡0, 𝑡𝑓) is a function that integrates the true evo-
lution equations with an initial condition 𝐮(𝑡0) from 𝑡0 to 𝑡𝑓 .
We have normalized the map error using the mean error of the
persistence forecast computed from the training data,

𝐸𝑚𝑎𝑝 = ‖𝐮𝑗+1 − 𝐮𝑗‖2, (38)

where the horizontal bar (…) denotes a mean computed over
the training time indices from 𝑗 = 0 to 𝑗 = 𝑇𝑡𝑟𝑎𝑖𝑛 − 1.
We denote by 𝜖𝑚𝑎𝑝 the mean of 𝜖𝑚𝑎𝑝(𝑡) for 𝑇𝑖𝑛𝑖𝑡𝛥𝑡 ≤ 𝑡 ≤ (𝑇𝑖𝑛𝑖𝑡 +
𝑇𝑝𝑟𝑒𝑑)𝛥𝑡. We choose a threshold for the mean normalized map
error that, if exceeded, characterizes the prediction as unstable.
We choose this threshold by first producing predictions using an
ensemble of reservoir realizations, training data sets, and testing
data sets that are each trained using regularization parameter
values from a logarithmic grid of parameter values. We then
compute a histogram of the mean map error values from predic-
tions that have not resulted in numerical overflow. In all cases
we test, we are able to clearly see a multimodal distribution,
with those points with low mean map error corresponding to
stable predictions and those with high mean map error cor-
responding to unstable predictions. We show an example of a
histogram of mean map error values in Section 3.2. From this
histogram, we have chosen 𝜖𝑚𝑎𝑝 = 1.0 as our stability cutoff.
To measure the maximum deviation from the true evolution
equations during prediction, we also compute the maximum map
error for each prediction,

𝜖𝑚𝑎𝑥𝑚𝑎𝑝 = max
𝑇𝑖𝑛𝑖𝑡𝛥𝑡≤𝑡≤(𝑇𝑖𝑛𝑖𝑡+𝑇𝑝𝑟𝑒𝑑)𝛥𝑡

𝜖𝑚𝑎𝑝(𝑡). (39)

3. Climate Similarity: To compare the climate of the true sys-
tem and the stable predictions generated from our reservoir
computer, we use the power spectral density (PSD), 𝑆𝑢𝑢(𝑓). We
estimate the PSD of a particular element of 𝐮𝑡𝑟𝑢𝑒(𝑡) or 𝐮𝑜𝑢𝑡(𝑡)
using a smoothed periodogram. For a 1-dimensional time series
data set {𝑢𝑗} = {𝑢0, 𝑢1,… , 𝑢𝐽−2, 𝑢𝐽−1}, where 𝐽 = 𝑇𝑝𝑟𝑒𝑑∕𝛥𝑡 and
𝑢𝑗 = 𝑢((𝑇𝑖𝑛𝑖𝑡 + 𝑗 + 1)𝛥𝑡), this estimate is computed using Welch’s

method (Welch, 1967).

Neural Networks 170 (2024) 94–110A. Wikner et al.

w
p
c
u
a
c
u

3. Results

3.1. Kuramoto-Sivashinsky equation

The test system that we will use to examine near-term accuracy
and long-term climate stability is the Kuramoto–Sivashinsky (KS) equa-
tion (Kuramoto, 1978; Sivashinsky, 1977) with periodic boundary con-
ditions:
𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
+ 𝑦(𝑥, 𝑡)

𝜕𝑦(𝑥, 𝑡)
𝜕𝑥

+
𝜕2𝑦(𝑥, 𝑡)
𝜕𝑥2

+
𝜕4𝑦(𝑥, 𝑡)
𝜕𝑥4

= 0, (40)

here 𝑦(𝑥, 𝑡) = 𝑦(𝑥 + 𝐿, 𝑡) for a chosen spatial periodicity length 𝐿. For
articular choices of 𝐿, the Kuramoto–Sivashinsky equation exhibits
haotic dynamics. To obtain the dynamical system states that we will
se as our training and testing data, and to evaluate the map error
s discussed in Section 2.5, we simulate Eq. (40) on a spatial grid
onsisting of 64 grid points equally-spaced at intervals of 𝛥𝑥 = 𝐿∕64
sing the ETRK4 method (Cox & Matthews, 2002; Kassam & Trefethen,
2005) to integrate the system at a time step of 𝛥𝑡 = 0.25. The resulting
discretized system state is:

𝐲(𝑡) = [𝑦(0, 𝑡), 𝑦(𝛥𝑥, 𝑡),… , 𝑦((𝑀 − 1)𝛥𝑥, 𝑡)]⊺, (41)

where 𝑀 = 64. For each time series used for training and testing, we
choose a different random initial condition, where each coordinate of
𝐮(0) is sampled from a uniform distribution on the interval [−0.6, 0.6],
with the spatial mean value of 𝐮(0) adjusted to be 0. We then integrate
the equation and discard the states obtained before 𝑡 = 500 to avoid
the effect of any transient dynamics that are not on the true attractor.
Our numerical integrations of Eq. (40) yield chaotic trajectories and
(as they should) preserve the zero spatial average of 𝐲(𝑡) for 𝑡 > 0.
We standardize 𝐲(𝑡) as follows to form 𝐮(𝑡) that is used for training
and testing the reservoir. To each coordinate of 𝐲(𝑡), we apply a linear
transformation so that the resulting coordinate of 𝐮(𝑡) has mean 0 and
standard deviation 1 over the training time period.

When discussing the prediction valid time and the prediction spec-
tra, we will do so in units of the Lyapunov time, corresponding to the
inverse of the largest positive Lyapunov exponent for typical orbits of
the chaotic attractor of Eq. (40). The Lyapunov time is characteristic
time over which errors in the true chaotic system will experience
an 𝑒-fold growth. For a periodicity length 𝐿 = 22, we have com-
puted the Lyapunov time to be 𝑡𝐿𝑦𝑎𝑝 = 20.83 using the Bennetin
algorithm (Bennetin, Galgani, Giorgilli, & Strelcyn, 1980).

We have also done tests with other systems besides the Kuramoto–
Sivashinsky equations (e.g., the chaotic Lorenz ’63 model Lorenz,
1963). We do not report these results here, as they result in conclusions
that coincide with what follows from our tests on Eq. (40).

3.2. Prediction test results

We now present the result of our predictions test on the Kuramoto–
Sivashinsky equation. In order to test a scenario where climate stability
is challenging, we have used a reservoir with 500 nodes (see Table 1).
Though it would be computationally feasible to improve stability with
a larger reservoir in this case, it might not be in scenarios with higher
dimensional dynamics. In summary, we find from our tests that:

• Reservoir computers trained with no regularization or only Jaco-
bian regularization produce predictions that are always observed
to be unstable and produce predictions that have a very low valid
time.

• Reservoir computers trained with only Tikhonov regularization
produce predictions that are only sometimes observed to be sta-
ble, while otherwise producing predictions with a very low valid
time.
101
Table 1
Reservoir computer hyperparameter values used for all
prediction tests.
Reservoir hyperparameters

Number of nodes (𝑁) 500
Average degree (⟨𝑑⟩) 3
Spectral radius (𝜌) 0.6
Input weight (𝜎) 0.1
Input bias (𝜃) 0.1
Leaking rate (𝛼) 1.0

• Reservoir computers trained with Jacobian and Tikhonov regu-
larization, noise training and Tikhonov regularization, and LMNT
and Tikhonov regularization are observed to always produce sta-
ble predictions if the regularization hyperparameters are chosen
large enough. The latter two regularization methods result in
the best prediction valid times, as well as the best mean and
maximum map errors.

• Stable predictions from reservoir computers trained with only
Tikhonov regularization have an average PSD that appears to
match the PSD of the true system climate somewhat well, while
predictions from the methods that always produce stable predic-
tions have an average PSD that near-perfectly matches the PSD of
the true system climate.

• From our variation of the regularization parameters, we find
the best prediction valid time performance near the boundary
between climate stability and partial climate instability, indicat-
ing that careful tuning of the regularization parameter value is
needed during optimization.

3.2.1. Climate stability and valid time
We simulate the KS equation using reservoir computers with the

hyperparameters listed in Table 1. For each of our tests, we train
an ensemble of random reservoir realizations, each generated using a
different random seed for the input coupling matrix 𝐁 and the reservoir
network adjacency matrix 𝐀, using a training time series data set drawn
from an ensemble of training data sets generated using Eq. (40), each
with a different random initial condition. Each trained reservoir makes
predictions on an ensemble of testing time series data sets, which
again each have a different random initial condition. The duration and
number of each of these training and testing time series data sets,
along with the number of reservoir realizations tested, can be found
in Table 2. Panel (A) in Fig. 3 shows a histogram of the mean map
error values of predictions generated from a reservoir computer trained
using Jacobian and Tikhonov regularization using the regularization
parameter values contained in Table 3. The histogram is multimodal,
with the clearest division between cases with 𝜖𝑚𝑎𝑝 < 10 and 𝜖𝑚𝑎𝑝 > 10.
Some cases with 1 < 𝜖𝑚𝑎𝑝 < 10 stay in the general vicinity of the
attractor but do not reproduce its climate, as illustrated by the 3rd
example in Fig. 3; we have chosen to classify these as unstable. Our
choice for a cutoff of 𝜖𝑚𝑎𝑝 = 1 between cases we classify as stable
or unstable is meant to ensure that those we classify as stable do
reasonably reproduce the true system climate, as illustrated by the first
2 examples in Fig. 3. We see that the predictions categorized as stable
appear to have chaotic behavior at the end of the prediction period and
have a power spectral density that matches that of the true system well,
while the prediction categorized as unstable has a periodic behavior by
the end of the prediction period and, as such, has a power spectral
density very different from that of the true system. We additionally
note that the stable prediction with a low mean map error has a power
spectral density that is closer to the truth than that with a high mean
map error, indicating that this metric is useful for determining how
closely the prediction climate will match that of the true system.

Table 4 shows the results of reservoir computer predictions made

using different regularization methods, ordered from worst to best

Neural Networks 170 (2024) 94–110

102

A. Wikner et al.

Fig. 3. Comparing Predictions with Increasing 𝜖𝑚𝑎𝑝 Values. In this figure, panel (A) shows a histogram of the mean map error values of predictions generated from reservoir
computers trained with Jacobian and Tikhonov regularization using a logarithmic grid of regularization parameter values (grid given in Table 3). In this panel, the solid blue
line marks the 𝜖𝑚𝑎𝑝 climate stability threshold, while the dashed red, green, and magenta lines denote the mean map error value for three example predictions: one is a stable
prediction with a low 𝜖𝑚𝑎𝑝, one is stable with a high 𝜖𝑚𝑎𝑝, and one is unstable, respectively. These predictions are obtained using a long 𝑇𝑝𝑟𝑒𝑑 = 1,000,000 (12,000 𝑡𝐿𝑦𝑎𝑝). The dynamics
at the end of these predictions are displayed in panel (B), with the stable example prediction with a low 𝜖𝑚𝑎𝑝 on the top, the stable example prediction with a high 𝜖𝑚𝑎𝑝 in the
middle, and the unstable example prediction on the bottom. Panel (C) displays the computed power spectral density of 𝑢𝑜𝑢𝑡,1(𝑡) and 𝑢𝑡𝑟𝑢𝑒,1(𝑡) for each of these predictions and the
true test data. When computing the power spectral density using Welch’s method, we used a window with 213 samples (98.304 𝑡𝐿𝑦𝑎𝑝) and no overlap between windows.

Fig. 4. Unstable Predictions of the KS Equation. The top panel shows a testing time series 𝐮𝑡𝑟𝑢𝑒(𝑡) generated from the true KS equations dynamics, while the bottom panels show
results from a reservoir computer trained with the regularization type displayed between the left and right panels. Panels on the left show the reservoir prediction, 𝐮𝑜𝑢𝑡(𝑡), while
those on the right show the difference between the reservoir prediction and the true evolution 𝐮𝑡𝑟𝑢𝑒(𝑡). In all panels, the horizontal axis denotes the time measured in Lyapunov
times based on the largest positive Lyapunov exponent of the true system, while the vertical axis denotes the spatial coordinate. In the top pa and in the panels on the left, the
color denotes the values of 𝐮𝑡𝑟𝑢𝑒(𝑡) and 𝐮𝑜𝑢𝑡(𝑡), respectively, while in panels on the right, the color denotes the difference, 𝐮𝑜𝑢𝑡(𝑡) −𝐮𝑡𝑟𝑢𝑒(𝑡), between the prediction and true dynamics.
An entire prediction at a particular time being colored black indicates that this prediction has become unstable and left the region of the true attractor. In the right panels, the
cyan line denotes the corresponding prediction valid time.

Neural Networks 170 (2024) 94–110A. Wikner et al.

e
e
i
p
u
r
f

u
l

Table 2
Parameters used for all reservoir training and tests.
Training and prediction parameters

𝑇𝑠𝑦𝑛𝑐 100 (1.2 𝑡𝐿𝑦𝑎𝑝)

𝑇𝑡𝑟𝑎𝑖𝑛 20,000 (240 𝑡𝐿𝑦𝑎𝑝)

𝑇𝑝𝑟𝑒𝑑
Valid Time Tests: 2000 (24 𝑡𝐿𝑦𝑎𝑝)
Climate Stability and Reproduction Tests: 16,000 (192 𝑡𝐿𝑦𝑎𝑝)

Number of Reservoir Ensemble Members 20

Number of Training Data Sets 10

Number of Testing Data Sets Prediction Valid Time Tests: 35
Climate Stability and Reproduction Tests: 5

Total Number of Predictions Prediction Valid Time Tests: 7000
Climate Stability and Reproduction Tests: 1000
Table 3
The regularization parameters that are searched over for each reservoir prediction test.
Regularization parameter search grids

Regularization type Search grid
Tikhonov (𝛽𝑇) 0 and 10𝑙 for 𝑙 ∈ {−18,−17.5,… ,−4.5,−4}
Jacobian (𝛽𝐽) 10𝑙 for 𝑙 ∈ {−8,−7.8,… ,−4.2,−4}
Noise Training (𝛽𝑁) and LMNT (𝛽𝐿) 10𝑙 for 𝑙 ∈ {−8,−7.8,… ,−6.2,−6}
Table 4
Reservoir computer prediction results using different types of regularization. Bold text marks the best performance for the corresponding metric.
In every case, regularization parameter values are chosen to maximize the fraction of stable predictions produced by an ensemble of reservoirs
over an ensemble of training and testing data sets. If multiple regularization parameter values are found to produce the same fraction of stable
predictions, then we choose the regularization parameter(s) from that subset that maximize the median prediction valid time. The ± error
bounds indicate the maximum of the upper and lower 95% confidence intervals for the median (Conover, 1999). In the case of the valid time,
we enlarge this interval slightly to account for the 𝛥𝑡 discretization of our predictions.
Prediction test results

Regularization Type Regularization
Parameters

Fraction
of Stable
Predictions

Median
Valid Time
(𝑡𝐿𝑦𝑎𝑝)

Median
𝜖𝑚𝑎𝑝

Median
𝜖𝑚𝑎𝑥𝑚𝑎𝑝

None N/A 0∕1000 0.05 ± 0.01 ∞ ∞

Jacobian Only 𝛽𝐽 = 10−7 0∕1000 0.25 ± 0.01 ∞ ∞

Tikhonov Only 𝛽𝑇 = 10−6 565∕1000 0.71 ± 0.02
(6.46 ± 0.22)
×10−1

5.23 ± 0.31

Noise Training Only 𝛽𝑁 = 10−6.2 997∕1000 3.67 ± 0.06
(4.05 ± 0.03)
×10−3

(2.81 ± 0.05)
×10−2

LMNT (𝐾 = 4) Only 𝛽𝐿 = 10−6.4 990∕1000 3.94 ± 0.05
(3.69 ± 0.03)
×10−3

(2.65 ± 0.04)
×10−2

Jacobian and
Tikhonov

𝛽𝐽 = 10−5.4

𝛽𝑇 = 10−8.5 𝟏𝟎𝟎𝟎∕𝟏𝟎𝟎𝟎 2.88 ± 0.02
(9.16 ± 0.04)
×10−3

(5.82 ± 0.06)
×10−2

Noise Training
and Tikhonov

𝛽𝑁 = 10−7.4

𝛽𝑇 = 10−14.5 𝟏𝟎𝟎𝟎∕𝟏𝟎𝟎𝟎 𝟒.𝟐𝟒 ± 𝟎.𝟎𝟒
(𝟐.𝟕𝟕 ± 𝟎.𝟎𝟐)
×𝟏𝟎−𝟑

(𝟐.𝟎𝟐 ± 𝟎.𝟎𝟒)
×𝟏𝟎−𝟐

LMNT (𝐾 = 4)
and Tikhonov

𝛽𝐿 = 10−7.4

𝛽𝑇 = 10−16.5 𝟏𝟎𝟎𝟎∕𝟏𝟎𝟎𝟎 𝟒.𝟐𝟕 ± 𝟎.𝟎𝟒
(𝟐.𝟕𝟓 ± 𝟎.𝟎𝟐)
×𝟏𝟎−𝟑

(𝟐.𝟎𝟑 ± 𝟎.𝟎𝟒)
×𝟏𝟎−𝟐
a
u
t
t
s
t
d
T
N
t
a
i
a
s
a
t

performance. Figs. 4 and 5 show examples of unstable and stable pre-
dictions, respectively. Each figure uses a particular reservoir computer,
training time series data set, and testing time series data set drawn from
our ensemble. We note that the reservoir computer and training time
series data set used in each figure are different, while the testing time
series data set is the same. In addition, we want to emphasize that the
predictions shown in Fig. 5 are observed to be stable for the entire long
prediction period of 192 𝑡𝐿𝑦𝑎𝑝. Fig. 6 shows the map error 𝜖𝑚𝑎𝑝(𝑡) during
ach of the predictions shown in Figs. 4 and 5. We observe that the map
rror of the unstable predictions curves increases, while the map error
n the stable predictions remains small throughout the entire prediction
eriod (192 𝑡𝐿𝑦𝑎𝑝). We note that the map error of the predictions made
sing noise training, LMNT regularization, noise training and Tikhonov
egularization, and LMNT and Tikhonov regularization are very similar
or 𝑡𝑝𝑟𝑒𝑑 < 7 𝑡𝐿𝑦𝑎𝑝.
We see that reservoir computers trained without regularization or

sing only Jacobian regularization produce predictions with a very
103

ow median valid time (less than 30% of a Lyapunov time) and are r
lways unstable. Reservoir computers trained with only Tikhonov reg-
larization have a somewhat longer, but still poor prediction valid
ime, while just over half of the predictions remain stable. Furthermore,
hey require a high amount of regularization to reach this fraction of
tability. When the reservoir computers are trained using only noise
raining or only LMNT regularization, the vast majority of the pre-
ictions are observed to be stable. Reservoir computers trained with
ikhonov regularization in addition to either Jacobian regularization,
oise Training, or LMNT produce predictions that are always observed
o be stable and appear to remain stable for arbitrarily long times with
ppropriately chosen regularization amounts. Prediction valid times us-
ng the combination of Jacobian and Tikhonov regularization, however,
re substantially lower than for those that are trained with the other
table regularization types with or without Tikhonov regularization
dded. The highest median valid times are, to within uncertainty, ob-
ained by reservoir computers trained with noise training and Tikhonov

egularization or with LMNT and Tikhonov regularization.

Neural Networks 170 (2024) 94–110A. Wikner et al.
Fig. 5. Stable Predictions of the KS Equation. The top panel shows a testing time series 𝐮𝑡𝑟𝑢𝑒(𝑡) generated from the true KS equations dynamics, while the bottom panels show
results from a reservoir computer trained with the regularization type displayed between the left and right panels. Panels on the left show the reservoir prediction, 𝐮𝑜𝑢𝑡(𝑡), while
those on the right show the difference between the reservoir prediction and the true evolution 𝐮𝑡𝑟𝑢𝑒(𝑡). In all panels, the horizontal axis denotes the time measured in Lyapunov
times based on the largest positive Lyapunov exponent of the true system, while the vertical axis denotes the spatial coordinate. In the top panel and in the panels on the left, the
color denotes the values of 𝐮𝑡𝑟𝑢𝑒(𝑡) and 𝐮𝑜𝑢𝑡(𝑡), respectively, while in panels on the right, the color denotes the difference, 𝐮𝑜𝑢𝑡(𝑡) −𝐮𝑡𝑟𝑢𝑒(𝑡), between the prediction and true dynamics.
Black coloring marks where the prediction (left panels) or prediction difference (right panels) is outside the range given by the color bar.
Fig. 6. Map Error over Time During Reservoir Predictions. This figure shows the map error 𝜖𝑚𝑎𝑝 during each of the unstable predictions shown in Figs. 4 and (dotted lines), stable
predictions shown in Fig. 5 from reservoirs trained with a single regularization type (dashed lines), and stable predictions shown in Fig. 5 from reservoirs trained with multiple
regularization types (solid lines).
3.2.2. Prediction climate
As discussed, results for some regularization methods appear to be

stable for arbitrarily long times. These are thus potential candidates
for climate predictions. In Fig. 7, we display the PSD computed from
time series data from the true system and from predictions made using
these long-time stable results. We find that predictions using reservoir
computers trained with only Tikhonov Regularization (using only those
orbits that remain stable) give a useful, but imperfect, replication of
104

the PSD of the true system climate. We observe in Fig. 7 that all of
the other regularization methods that resulted in stable predictions are
able to capture the PSD of the climate such that the 95% confidence
interval in the computed PSD for the true system and for the ensemble
of predictions overlap at all observed frequency values.

3.2.3. Regularization optimization
In this section, we show how the optimal regularization parameter

values used to produce the results shown in Figs. 4–7 and in Table 4
are obtained. Fig. 8 displays, for two of the regularization methods, the

Neural Networks 170 (2024) 94–110A. Wikner et al.

p
c

Fig. 7. Average Predicted PSD Compared to True PSD. The true KS equation PSD is computed over a single trajectory of duration 𝑇𝑝𝑟𝑒𝑑 = 10,000,000 (120,000 𝑡𝐿𝑦𝑎𝑝), while the
rediction PSD is computed as the average over predictions of duration 𝑇𝑝𝑟𝑒𝑑 = 16,000 (192 𝑡𝐿𝑦𝑎𝑝) produced by the ensemble of reservoirs, training data sets, and testing initial
onditions used to test the prediction climate. When computing the PSD with Welch’s method, we used a window with 213 samples (98.304 𝑡𝐿𝑦𝑎𝑝) and no overlapping windows. The
grey filled region surrounding the PSD curve for the true system shows the 95% confidence interval in the mean spectra computed over these windows. The color-filled region
surrounding the prediction PSD curves shows the 95% confidence interval in the mean spectra computed over these windows and over the different predictions. We note that for
some frequency values, the line width of the plotted PSD curve is wider than the corresponding shaded region. The cutout in the bottom-center panel shows a magnified view of
the PSD and 95% confidence interval between frequencies of 0.9 and 0.98 1∕𝑡𝐿𝑦𝑎𝑝.
Fig. 8. Fraction of Stable Predictions and Median Valid Time using Varying Regularization Parameter Values. Color plots displaying the fraction of stable predictions and median
prediction valid time over a grid of different regularization parameters values are shown on the top and bottom, respectively. The regularization parameters used for each
regularization type are plotted along the vertical and horizontal axes, respectively. The red dots in the bottom panels mark the regularization parameter values chosen to obtain
the largest fraction of stable prediction and to produce the largest median prediction valid time, which is noted in the white box in the top right of the respective panel.
fraction of stable predictions and the median prediction valid time for
predictions made using reservoir computers trained with regularization
parameter values distributed over a logarithmic grid. For each method,
among all of the tested regularization parameter values, we choose
those resulting in predictions that are always stable and have the
highest prediction valid time.

In general, we find that the chosen regularization parameters are
close to the boundary between parameters that produce predictions
105
that are always stable and those that sometimes produce unstable
predictions. This result demonstrates why it is advantageous be able
to efficiently tune the regularization parameters used during training;
the more efficiently one can tune, the closer one can explore to this
stability boundary, and thus the better one’s model will be. As discussed
in Section 2.3.3, the desirability of an easily-tunable regularization for
reservoir computing makes LMNT preferable to noise training, which

Neural Networks 170 (2024) 94–110A. Wikner et al.

m
t
𝛽
i
w

o
p
c
p
r
c
v

4

t
u
m
L
m
m
o
t
t
l
c
p
d
r
m
t
a
t
d
I
a
c
n

s
t
a
i
a
t
w
t
t

o
i
v
m
i
a
g
c
s
i

r
t
v
i
u
n
m
c
r

i
T
s
p
t
𝜖
g
𝜖
t

r
t
𝛁
t
m
w
d
c
t

t

requires re-computation of the reservoir internal states each time the
regularization parameter 𝛽𝑁 is changed.

We remark that in some cases, it is possible to obtain an increased
edian prediction valid time at the cost of a small fraction of predic-
ions being long-term unstable. For example, if we were to decrease
𝑇 from the optimal value marked by the red dot in bottom left panel
n Fig. 8, the median prediction valid time over all of the predictions
ould increase; however, the top left panel in Fig. 8 indicates that some

of our predictions will now eventually become unstable. In addition, we
see from the top right panel that increasing the LMNT regularization pa-
rameter value from the optimal (e.g., to 10−6) improves the robustness
f our prediction stability to changes in the Tikhonov regularization
arameter value. The bottom right panel shows that this comes at the
ost of a decreased valid prediction time; however, if one is only able to
erform a coarse hyperparameter optimization, then choosing a more
obust LMNT regularization parameter value may be necessary. These
ases emphasize how different choices of regularization parameter
alues can be optimal for different tasks.

. Discussion and conclusion

In the absence of mitigating techniques, long-term forecasting using
he machine learning approach shown in Fig. 1 can often become
nstable. Inspired by the mitigating technique of adding noise to the
odel input during training, we develop a novel training technique,
MNT, that introduces a new penalty term in the loss function for ML
odels with memory of past inputs that approximates the addition of
any small, independent noise realizations. We show that in the case
f reservoir computers trained to predict a paradigmatic test system,
he Kuramoto–Sivashinsky equation, the addition of input noise or
he use of LMNT regularization derived from our novel penalty term
eads the most accurate and stable predictions. We find that reservoir
omputers trained using only Tikhonov regularization are only able to
roduce stable predictions for some reservoir realizations and training
ata sets. Reservoir computers trained with Jacobian and Tikhonov
egularization make substantially less accurate short-term forecasts,
easured by prediction valid time, than those trained with noise
raining or LMNT. In addition, we find that all stable predictions are
ble to reproduce the climate of the Kuramoto–Sivashinsky equation,
hough reservoir computers trained with only Tikhonov regularization
id not reproduce the climate as closely as the other techniques used.
n the LMNT case, the regularization matrix need not be computed
gain for each regularization strength value tested during the reservoir
omputer hyperparameter tuning, presenting a clear advantage over
oise training.
While training with LMNT can lead to improved accuracy and

tability, computing the LMNT penalty term can be computationally in-
ensive due to the many matrix–matrix products involved (see Eq. (21)
nd Appendix A). One way to speed up this computation during train-
ng would be to approximate the LMNT regularization matrix using
smaller number of training samples than is used for the rest of

he training. Another, still more approximate and heuristic, possibility
ould be to compute the regularization using a constant input, such as
he mean computed over the training data. We discuss our results using
hese two methods in Appendix B.1.
Work remains to be completed on evaluating the performance of

ur new regularization technique on other systems, terrestrial climate
n particular. As of the writing of this article, we have implemented a
ersion of the reduced training sample LMNT in the hybrid atmospheric
odel described in Arcomano et al. (2022). In preliminary results, our
mplementation of LMNT leads to terrestrial climate predictions that
re stable for over the decade-long run duration test and maintain a
ood climate, similar to the results achieved using input noise. Our
ase study using reservoir computing has shown that there can be a
ubstantial advantage to considering, as LMNT does, the effect of many
106

ndependent perturbations to model inputs further in the past than the c
most recent input considered in Jacobian regularization. The LMNT
loss function penalty might, therefore, also be suitable for other RNN
training methods, such as LSTM. Once LMNT is implemented in this
context, one could also compare this technique to other regularization
techniques, such as LASSO or multiple feedback training, which require
that the model be trained using gradient descent or similar iterative
methods.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data and code that support the findings of this article are freely
available at https://github.com/awikner/res-noise-stabilization.

Acknowledgments

The research completed for this article was supported by DARPA,
United States contract HR00112290035 and by ONR, United States
award N00014-22-1-2319. Alexander Wikner’s contribution to this re-
search was also supported in part by National Science Foundation,
United States award DGE-1632976. Joseph Harvey’s contribution to
this research was supported by National Science Foundation, United
States award PHY-2150399. Michelle Girvan’s contribution to this re-
search was supported by ONR, United States award N000142212656.

Appendix A. LMNT performance vs. number of noise steps, 𝑲

LMNT performance and implementation depend on the hyperpa-
ameter 𝐾, which represents the number of time steps over which
o account for the lienarized effect of input noise. In general, larger
alues of 𝐾 should improve prediction performance, with diminishing
mprovement as 𝐾 increases. Smaller values of 𝐾 reduce the memory
sed to store the necessary model Jacobian matrices and the time
eeded to compute these Jacobian matrices and the many matrix–
atrix products and sums involved (see Eq. (21)). Ideally, one should
hoose the number of noise steps to be as small as possible while still
esulting in near-optimal prediction stability and prediction accuracy.
As an example of the saturation in prediction performance as 𝐾

ncreases, Table A.5 displays the results of reservoirs trained with
ikhonov and LMNT regularization as we increase the number of noise
teps approximated. We see that while we can select regularization
arameter values such that all predictions are stable for all values of 𝐾
ested, the median valid time increases and the median 𝜖𝑚𝑎𝑝 and median
𝑚𝑎𝑥
𝑚𝑎𝑝 decreases as 𝐾 is increased. We find that, in this scenario, 𝐾 = 4
ives as high a median valid time as low a median 𝜖𝑚𝑎𝑝 and median
𝑚𝑎𝑥
𝑚𝑎𝑝 as higher 𝐾; we have therefore chosen to use 𝐾 = 4 for all other
ests of the LMNT regularization discussed in this article.
Finally, we discuss the computations required by LMNT, to give the

eader and idea of how the complexity increases with 𝐾. To compute
he LMNT penalty term for the entire training data, one must compute
𝐬𝐡(𝐬𝑗), 𝛁𝐬𝐠(𝐮𝑗−1, 𝐬𝑗), and 𝛁𝐮𝐠(𝐮𝑗−1, 𝐬𝑗) for 1 ≤ 𝑗 ≤ 𝑇𝑡𝑟𝑎𝑖𝑛 − 1. To reduce
he total number of additional matrix–matrix products and conserve
emory, one can compute the sum over all training samples in order
ith the computation of the memory vectors also used for training. To
o so, we first define 𝑗 to be the result of the outer sum in Eq. (21)
omputed from 𝑗 = 𝐾 to 𝑗 ≤ 𝑇𝑡𝑟𝑎𝑖𝑛−1. Computation of the LMNT penalty
erm then proceeds as per Algorithm 1.
A very similar algorithm can also be used to efficiently compute

he LMNT regularization matrix (Eq. (33)) used to train the reservoir

omputer.

https://github.com/awikner/res-noise-stabilization

Neural Networks 170 (2024) 94–110A. Wikner et al.

t
m
m
l
l
n
s

A

B

a
r
t
t
r
a
u

Table A.5
Reservoir computer prediction results using Tikhonov regularization and LMNT regularization, where we vary the number of noise steps used
to compute the LMNT regularization. For a detailed description of how we select regularization parameter values and compute uncertainty
bounds, see the Table 4 caption.
LMNT test results

Noise Steps, 𝐾 Regularization
parameters

Fraction
of stable
predictions

Median
valid time
(𝑡𝐿𝑦𝑎𝑝)

Median
𝜖𝑚𝑎𝑝

Median
𝜖𝑚𝑎𝑥𝑚𝑎𝑝

1 (Jacobian) 𝛽𝐽 = 10−5.4

𝛽𝑇 = 10−8.5 1000∕1000 2.88 ± 0.02
(9.16 ± 0.04)
×10−3

(5.82 ± 0.06)
×10−2

2 𝛽𝐿 = 10−6.4

𝛽𝑇 = 10−10.5 1000∕1000 3.92 ± 0.04
(4.10 ± 0.02)
×10−3

(2.65 ± 0.03)
×10−2

3 𝛽𝐿 = 10−6.6

𝛽𝑇 = 10−12 1000∕1000 4.04 ± 0.04
(3.44 ± 0.01)
×10−3

(2.39 ± 0.03)
×10−2

4 𝛽𝐿 = 10−7.4

𝛽𝑇 = 10−16.5 1000∕1000 4.27 ± 0.04
(2.75 ± 0.01)
×10−3

(2.03 ± 0.04)
×10−2

5 𝛽𝐿 = 10−7.4

𝛽𝑇 = 10−16.5 1000∕1000 4.27 ± 0.04
(2.73 ± 0.02)
×10−3

(2.02 ± 0.02)
×10−2
c
t

𝐑

w
d

𝐑

I
a
⋯
c

t
L
2
t
m
c
n
w
g
r
p
t
t
o
r
t
m
o

B

t
t
t
s
r
F
t
o

Algorithm 1: LMNT Penalty calculation during training
Data: Training inputs {𝐮𝑗}, 1 ≤ 𝑗 ≤ 𝑇𝑡𝑟𝑎𝑖𝑛 ;
Memory vectors during training {𝐬𝑗}, 0 ≤ 𝑗 ≤ 𝑇𝑡𝑟𝑎𝑖𝑛 ;
Noise approximation steps 𝐾
Result: LMNT Penalty term (Eq. (21)), 𝓁𝐿𝑀𝑁𝑇

Compute 𝛁𝐬𝐡(𝐬𝐾), 𝛁𝐬𝐠(𝐮𝐾 , 𝐬𝐾−1), and 𝛁𝐮(𝐾,𝐾) = 𝛁𝐮𝐠(𝐮𝐾 , 𝐬𝐾−1)
for 𝑘 = 𝐾 − 1 to 1 do

Compute 𝛁𝐬𝐠(𝐮𝑘, 𝐬𝑘−1) and 𝛁𝐮𝐠(𝐮𝑘, 𝐬𝑘−1)
Compute 𝛁𝐮(𝐾, 𝑘) ; /* Eq. (22) */

end for
Compute 𝐾 =

∑𝐾
𝑘=1 ‖𝛁𝐬𝐡(𝐬𝐾)𝛁𝐮(𝐾, 𝑘)‖2𝐹 ; /* Eq. (21) */

for 𝑗 = 𝐾 + 1 to 𝑇𝑡𝑟𝑎𝑖𝑛 − 1 do
Compute 𝛁𝐬𝐡(𝐬𝑗), 𝛁𝐬𝐠(𝐮𝑗 , 𝐬𝑗−1) and 𝛁𝐮(𝑗, 𝑗) = 𝛁𝐮𝐠(𝐮𝑗 , 𝐬𝑗−1)
for 𝑘 = 𝑗 −𝐾 + 1 to 𝑗 − 1 do

Compute 𝛁𝐮(𝑗, 𝑘) = 𝛁𝐬𝐠(𝐮𝑗 , 𝐬𝑗−1)𝛁𝐮(𝑗 − 1, 𝑘)
end for
Compute 𝑗 = 𝑗−1 +

∑𝐾
𝑘=1 ‖𝛁𝐬𝐡(𝐬𝐾)𝛁𝐮(𝐾, 𝑘)‖2𝐹

end for
Compute 𝓁𝐿𝑀𝑁𝑇 = 𝛽𝐿

𝑇𝑡𝑟𝑎𝑖𝑛−𝐾
𝑇𝑡𝑟𝑎𝑖𝑛−1

For general ML models with memory, the 𝐾 for which one expects
o approach optimal prediction quality depends on the duration of the
odel memory. In the case of an RNN-based reservoir computer, this
emory is primarily parametrized by the spectral radius, 𝜌, and the
eaking rate, 𝛼. In general, the larger 𝜌 is, and the closer 𝛼 is to 0, the
onger the reservoir computer memory will be and the larger 𝐾 will
eed to be in order to account for perturbations to all prior inputs that
ubstantially affect the current reservoir state vector.

ppendix B. Comparing performance with reduced training data

.1. Reducing the amount of LMNT regularization training data only

While it is most natural to compute the LMNT regularization using
ll of the training states (similar to how we compute the Jacobian
egularization), this computation becomes expensive for long training
imes and large 𝐾 values, as discussed in Appendix A. One can substan-
ially decrease this computational cost and potentially obtain a useful
egularization matrix by either (a) computing the regularization using
size 𝑇 subset of the training states, obtained by sampling the states
niformly, or (b) computing the regularization using the mean input
107

p

omputed over the training data and the reservoir state synchronized
o this mean. The regularization matrix for the technique (a) is

𝐿,𝑇 = 1
𝑇

𝑇−1
∑

𝑗=0

[𝐾+floor(𝑗𝜏)
∑

𝑘=1+floor(𝑗𝜏)
𝛁𝐮(𝐾+floor(𝑗𝜏), 𝑘)𝛁𝐮(𝐾+floor(𝑗𝜏), 𝑘)⊺

]

, (B.1)

here 𝜏 = (𝑇𝑡𝑟𝑎𝑖𝑛−𝐾)∕𝑇 , 𝑇 < 𝑇𝑡𝑟𝑎𝑖𝑛−𝐾 is a positive integer, and floor(…)
enotes rounding down. The regularization matrix for technique (b) is

𝐿,0 =
𝐾
∑

𝑘=1
𝛁𝐮,𝟎(𝐾, 𝑘)𝛁𝐮,𝟎(𝐾, 𝑘)⊺. (B.2)

n Eq. (B.2), 𝛁𝐮,𝟎(𝐾, 𝑘) denotes evaluation of the right side of Eq. (22)
t 𝐮𝑘 = 𝟎 (the mean of our standardized training data) and 𝐬𝑗−1 = 𝐬𝑗−2 =
= 𝐬𝑘 = 𝐬𝑚𝑒𝑎𝑛, where 𝐬𝑚𝑒𝑎𝑛 is the memory vector synchronized to the

onstant mean input.
Table B.6 shows the prediction results obtained from reservoir

rained with LMNT, reduced training sample LMNT, and mean-input
MNT. For our particular test system, we find that training with only
0 training samples (0.1% of the available training data) is sufficient
o obtain predictions that are always observed to be stable and have a
edian valid time equivalent to that when the LMNT regularization is
omputed with all of the training data. This effectiveness for a small
umber of training samples indicates that LMNT-like regularization
ould also be effective in models trained in batches using stochastic
radient descent or its derivatives. In addition, computing the LMNT
egularization with the mean input and synchronized reservoir state
erforms as well as the full LMNT regularization. This result suggests
hat, in this case, the variability across the training data of the deriva-
ive matrices 𝛁𝐮(𝑗, 𝑘) is small enough that a small number of samples,
r one representative derivative matrix, is sufficient to compute a
egularization matrix that performs comparably to the full LMNT. If
his property holds in other applications, the computationally simpler
ean-input LMNT might yield sufficient stabilization and make the full
r partial LMNT computation unnecessary.

.2. Reducing the total amount of training data

In addition to comparing the performance of reservoir computers
rained with different regularization techniques in the limit where
here is sufficient training data for the resulting predictions to, in
he best case, produce accurate short-predictions that are always ob-
erved to be stable, we also compared the performance of different
egularization techniques in the limit of greatly reduced training data.
ig. B.9 displays the results of training the reservoir computer with
he regularization techniques which produced the best results in the
riginal tests using only 𝑇 = 750 training samples. All reservoir hyper-

arameters, training, and prediction parameters are kept the same as

Neural Networks 170 (2024) 94–110A. Wikner et al.

s
t
a
r
t
a
m
a

Table B.6
Reservoir computer prediction results using LMNT regularization computed with different numbers of training samples. For a detailed description
of how we select regularization parameter values and compute uncertainty bounds, see the Table 4 caption.
LMNT (𝐾 = 4) test results

Training samples, 𝑇 Regularization
parameters

Fraction
of stable
predictions

Median
valid time
(𝑡𝐿𝑦𝑎𝑝)

Median
𝜖𝑚𝑎𝑝

Median
𝜖𝑚𝑎𝑥𝑚𝑎𝑝

Mean Input (Eq. (B.2)) 𝛽𝐿 = 10−7.4

𝛽𝑇 = 10−15.5 1000∕1000 4.30 ± 0.04
(2.65 ± 0.01)
×10−3

(2.00 ± 0.03)
×10−2

1 𝛽𝐿 = 10−5.6

𝛽𝑇 = 10−10 1000∕1000 3.74 ± 0.07
(5.57 ± 0.03)
×10−3

(3.46 ± 0.04)
×10−2

5 𝛽𝐿 = 10−7.2

𝛽𝑇 = 10−16.5 1000∕1000 4.21 ± 0.04
(2.89 ± 0.02)
×10−3

(2.16 ± 0.03)
×10−2

10 𝛽𝐿 = 10−7.2

𝛽𝑇 = 10−16 1000∕1000 4.21 ± 0.04
(2.89 ± 0.02)
×10−3

(2.12 ± 0.03)
×10−2

20 𝛽𝐿 = 10−7.4

𝛽𝑇 = 10−16.5 1000∕1000 4.26 ± 0.04
(2.75 ± 0.02)
×10−3

(2.03 ± 0.03)
×10−2

100 𝛽𝐿 = 10−7.4

𝛽𝑇 = 10−16.5 1000∕1000 4.27 ± 0.04
(2.73 ± 0.02)
×10−3

(2.03 ± 0.03)
×10−2

19,996 𝛽𝐿 = 10−7.4

𝛽𝑇 = 10−16.5 1000∕1000 4.27 ± 0.04
(2.75 ± 0.01)
×10−3

(2.03 ± 0.04)
×10−2
Table B.7
The regularization parameters that are searched over for each reservoir prediction test using the reduced training data.
Regularization parameter search grids

Regularization type Search grid

Tikhonov (𝛽𝑇) 0 and 10𝑙 for 𝑙 ∈ {−18,−17.5,… ,−1.5,−1}
Jacobian (𝛽𝐽), Noise Training (𝛽𝑁), and LMNT (𝛽𝐿) 0 and 10𝑙 for 𝑙 ∈ {−14,−14 + 12∕35,… ,−2 − 12∕35,−2}
Fig. B.9. Fraction of Stable Predictions and Median Valid Time using Varying Regularization Parameter Values for Reduced Training Data . Color plots displaying the fraction
of stable predictions and median prediction valid time over a grid of different regularization parameters values are shown on the top and bottom, respectively. In the median
prediction valid time plots, the red dot marks the regularization parameters values that result in the largest fraction of stable predictions; if there are multiple values with the
same fraction, then we mark those that result in the longest median prediction valid time. The blue crosses mark the regularization parameters values which result in the longest
median prediction valid time; if there are multiple values with the same valid time, then we mark those that result in the largest fraction of stable predictions. Finally, the green
x’s mark the parameters values where we have performed the same optimization as for the red dot, but have excluded Tikhonov regularization parameters values above 10−4. If
multiple values remain after any of these optimizations, we mark the values with the lowest regularization, giving lowest priority to Tikhonov regularization.
p
e
p
a
m
d
w

in Tables 1 and 2, while the regularization parameter values tested are
hown in Table B.7. We observe that no combination of regularization
echniques result in predictions with reasonable short-term accuracy,
s indicated by the lack of any set of regularization parameters that
esult in a median prediction valid time above 0.5 𝑡𝐿𝑦𝑎𝑝. In each of the
hree cases, we are able to achieve universally stable predictions using
n extremely high amount of Tikhonov regularization; the minuscule
edian prediction valid time indicates, however, that these predictions
re not at all capturing the system dynamics.
108

m

Within the region marked by the light-green coloring in the top
anels and the yellow coloring in the bottom panels, we note that
ach combined regularization technique tested is still able to produce
redictions which are mostly stable and do have a small amount of
ccuracy in the short term. Comparing the results with the greatest
edian prediction valid time and the greatest fraction of stable pre-
ictions within this region for each type of combined regularization,
e find that reservoirs trained with noise training have the lowest
edian prediction valid time when using the regularization parameter

Neural Networks 170 (2024) 94–110A. Wikner et al.

A

A

A

A

B

B

B

B

C

C
C

D

G

G
G

H

H

J

J

K

K

L

L

L

L

L

L

P

P

P

P

P

values optimized for median prediction valid time (see the blue crosses
in the bottom panels of Fig. B.9). In addition, when using parameters
optimized for the highest fraction of stable predictions in this region
(the green x’s in the bottom panels of Fig. B.9), reservoirs trained
with noise training have approximately the same number of stable
predictions as Jacobian regularization while having a lower median
valid prediction time than those trained using either Jacobian or LMNT
regularization. Reservoirs trained with LMNT regularization achieve
the highest fraction of stable predictions within this region while
maintaining a comparable median prediction valid time to reservoirs
trained with other regularization techniques.

The comparatively poor performance of noise training in these
tests indicates the effectiveness of training the reservoir with input
perturbations in many different directions for each training input, as
is approximated for one input in Jacobian regularization and over 𝐾
past inputs in LMNT regularization, when the total amount of training
data is small. In this case, it is more likely that certain regions of the
attractor will be undersampled; if we would like the model to learn to
return to the true attractor from a generic perturbation to one of these
inputs, then we must consider many perturbations to these few cases.
In the long training data case, one could instead rely on similar samples
that appear later in the training data.

References

An, G. (1996). The effects of adding noise during backpropagation training on a
generalization performance. Neural Computation, 8(3), 643–674. http://dx.doi.org/
10.1162/neco.1996.8.3.643.

nderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., et al. (1999).
LAPACK users’ guide (3rd ed.). Philadelphia, PA: Society for Industrial and Applied
Mathematics.

rcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., & Ott, E. (2020).
A machine learning-based global atmospheric forecast model. Geophysical Research
Letters, 47(9), Article e2020GL087776. http://dx.doi.org/10.1029/2020GL087776.

rcomano, T., Szunyogh, I., Wikner, A., Pathak, J., Hunt, B. R., & Ott, E. (2022). A
hybrid approach to atmospheric modeling that combines machine learning with
a physics-based numerical model. Journal of Advances in Modeling Earth Systems,
14(3), Article e2021MS002712. http://dx.doi.org/10.1029/2021MS002712.

uslander, J., Bhatia, N. P., & Seibert, P. (1964). Attractors in dynamical systems: Tech.
rep. NASA-CR-59858, NASA.

alakrishnan, K., & Upadhyay, D. (2020). Deep adversarial koopman model for
reaction-diffusion systems. arXiv:2006.05547 [cs, eess].

ennetin, G., Galgani, L., Giorgilli, A., & Strelcyn, J.-M. (1980). Lyapunov characteristic
exponents for smooth dynamical systems and for Hamiltonian systems: A method
for computing all of them. Meccanica, 15(9), 27.

i, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2023). Accurate medium-range
global weather forecasting with 3D neural networks. Nature, 619(7970), 533–538.
http://dx.doi.org/10.1038/s41586-023-06185-3.

illings, S. A. (2013). Nonlinear system identification: NARMAX methods in the time,
frequency, and spatio-temporal domains. John Wiley & Sons, Ltd.

hattopadhyay, A., Mustafa, M., Hassanzadeh, P., Bach, E., & Kashinath, K. (2022).
Towards physics-inspired data-driven weather forecasting: Integrating data assim-
ilation with a deep spatial-transformer-based U-NET in a case study with ERA5.
Geoscientific Model Development, 15(5), 2221–2237. http://dx.doi.org/10.5194/gmd-
15-2221-2022.

onover, W. J. (1999). Practical nonparametric statistics (3). New York, NY, USA: Wiley.
ox, S. M., & Matthews, P. C. (2002). Exponential time differencing for stiff systems.
Journal of Computational Physics, 176(2), 430–455. http://dx.doi.org/10.1006/jcph.
2002.6995.

aubechies, I., Defrise, M., & De Mol, C. (2004). An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 57(11), 1413–1457. http://dx.doi.org/10.1002/cpa.20042.

entine, P., Pritchard, M., Rasp, S., Reinaudi, G., & Yacalis, G. (2018). Could machine
learning break the convection parameterization deadlock? Geophysical Research
Letters, 45(11), 5742–5751. http://dx.doi.org/10.1029/2018GL078202.

oodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
reff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017).
LSTM: a search space Odyssey. IEEE Transactions on Neural Networks and Learning
Systems, 28(10), 2222–2232. http://dx.doi.org/10.1109/TNNLS.2016.2582924.

arris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., et al. (2020). Array programming with NumPy. Nature, 585(7825),
357–362. http://dx.doi.org/10.1038/s41586-020-2649-2.

offman, J., Roberts, D. A., & Yaida, S. (2019). Robust learning with Jacobian
regularization. http://dx.doi.org/10.48550/arXiv.1908.02729, arXiv:1908.02729.
109
aeger, H. (2001). 148, The ‘‘echo state’’ approach to analysing and training recurrent
neural networks-with an erratum note. Bonn, Germany: German National Research
Center for Information Technology GMD Technical Report.

ames, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical
learning: with applications in r. Springer New York.

assam, A.-K., & Trefethen, L. N. (2005). Fourth-order time-stepping for stiff PDEs.
SIAM Journal on Scientific Computing, 26(4), 1214–1233. http://dx.doi.org/10.1137/
S1064827502410633.

olen, J. F., & Kremer, S. C. (2001). A field guide to dynamical recurrent networks. John
Wiley & Sons.

Kuramoto, Y. (1978). Diffusion-induced chaos in reaction systems. Progress of Theoretical
Physics. Supplement, 64, 346–367. http://dx.doi.org/10.1143/PTPS.64.346.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., et
al. (2023). GraphCast: learning skillful medium-range global weather forecasting.
http://dx.doi.org/10.48550/arXiv.2212.12794, arXiv:2212.12794.

amb, A. M., Goyal, A., Zhang, Y., Zhang, S., Courville, A. C., & Bengio, Y. (2016).
Professor forcing: a new algorithm for training recurrent networks. In Advances in
neural information processing systems, vol. 29. Curran Associates, Inc..

i, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., et
al. (2021). Fourier neural operator for parametric partial differential equations.
http://dx.doi.org/10.48550/arXiv.2010.08895, arXiv:2010.08895.

im, S. H., Erichson, N. B., Hodgkinson, L., & Mahoney, M. W. (2021). Noisy recurrent
neural networks. In Advances in neural information processing systems, vol. 34 (pp.
5124–5137). Curran Associates, Inc..

orenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences,
20(2), 130–141. http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.
CO;2.

u, Z., Hunt, B. R., & Ott, E. (2018). Attractor reconstruction by machine learning.
Chaos. An Interdisciplinary Journal of Nonlinear Science, 28(6), Article 061104.
http://dx.doi.org/10.1063/1.5039508.

ukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent
neural network training. Computer Science Review, 3(3), 127–149. http://dx.doi.
org/10.1016/j.cosrev.2009.03.005.

athak, J., Hunt, B., Girvan, M., Lu, Z., & Ott, E. (2018). Model-free prediction of large
spatiotemporally chaotic systems from data: a reservoir computing approach. Phys-
ical Review Letters, 120(2), Article 024102. http://dx.doi.org/10.1103/PhysRevLett.
120.024102.

athak, J., Lu, Z., Hunt, B. R., Girvan, M., & Ott, E. (2017). Using machine learning
to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos.
An Interdisciplinary Journal of Nonlinear Science, 27(12), Article 121102. http://dx.
doi.org/10.1063/1.5010300.

athak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., et
al. (2022). FourCastNet: a global data-driven high-resolution weather model using
adaptive Fourier neural operators. http://dx.doi.org/10.48550/arXiv.2202.11214,
arXiv:2202.11214.

ecora, L. M., & Carroll, T. L. (2015). Synchronization of chaotic systems. Chaos. An
Interdisciplinary Journal of Nonlinear Science, 25(9), Article 097611. http://dx.doi.
org/10.1063/1.4917383.

oole, B., Sohl-Dickstein, J., & Ganguli, S. (2014). Analyzing noise in autoencoders and
deep networks. http://dx.doi.org/10.48550/arXiv.1406.1831, arXiv:1406.1831.

Rasp, S., Dueben, P. D., Scher, S., Weyn, J. A., Mouatadid, S., & Thuerey, N.
(2020). WeatherBench: a benchmark data set for data-driven weather forecasting.
Journal of Advances in Modeling Earth Systems, 12(11), Article e2020MS002203.
http://dx.doi.org/10.1029/2020MS002203.

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid
processes in climate models. Proceedings of the National Academy of Sciences,
115(39), 9684–9689. http://dx.doi.org/10.1073/pnas.1810286115.

Rasp, S., & Thuerey, N. (2021). Data-driven medium-range weather prediction with
a resnet pretrained on climate simulations: a new model for WeatherBench.
Journal of Advances in Modeling Earth Systems, 13(2), Article e2020MS002405.
http://dx.doi.org/10.1029/2020MS002405.

Scher, S., & Messori, G. (2019). Weather and climate forecasting with neural networks:
Using general circulation models (GCMs) with different complexity as a study
ground. Geoscientific Model Development, 12(7), 2797–2809. http://dx.doi.org/10.
5194/gmd-12-2797-2019.

Sietsma, J., & Dow, R. J. F. (1991). Creating artificial neural networks that generalize.
Neural Networks, 4(1), 67–79. http://dx.doi.org/10.1016/0893-6080(91)90033-2.

Sivashinsky, G. I. (1977). Nonlinear analysis of hydrodynamic instability in laminar
flames—i. Derivation of basic equations. Acta Astronautica, 4(11), 1177–1206.
http://dx.doi.org/10.1016/0094-5765(77)90096-0.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1), 1929–1958.

Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63(4), 544–557. http://dx.doi.org/10.1016/j.
neuron.2009.07.018.

http://dx.doi.org/10.1162/neco.1996.8.3.643
http://dx.doi.org/10.1162/neco.1996.8.3.643
http://dx.doi.org/10.1162/neco.1996.8.3.643
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb2
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb2
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb2
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb2
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb2
http://dx.doi.org/10.1029/2020GL087776
http://dx.doi.org/10.1029/2021MS002712
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb5
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb5
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb5
http://arxiv.org/abs/2006.05547
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb7
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb7
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb7
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb7
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb7
http://dx.doi.org/10.1038/s41586-023-06185-3
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb9
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb9
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb9
http://dx.doi.org/10.5194/gmd-15-2221-2022
http://dx.doi.org/10.5194/gmd-15-2221-2022
http://dx.doi.org/10.5194/gmd-15-2221-2022
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb11
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1002/cpa.20042
http://dx.doi.org/10.1029/2018GL078202
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb15
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.48550/arXiv.1908.02729
http://arxiv.org/abs/1908.02729
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb19
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb19
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb19
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb19
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb19
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb20
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb20
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb20
http://dx.doi.org/10.1137/S1064827502410633
http://dx.doi.org/10.1137/S1064827502410633
http://dx.doi.org/10.1137/S1064827502410633
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb22
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb22
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb22
http://dx.doi.org/10.1143/PTPS.64.346
http://dx.doi.org/10.48550/arXiv.2212.12794
http://arxiv.org/abs/2212.12794
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb25
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb25
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb25
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb25
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb25
http://dx.doi.org/10.48550/arXiv.2010.08895
http://arxiv.org/abs/2010.08895
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb27
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb27
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb27
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb27
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb27
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1063/1.5039508
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/10.1063/1.5010300
http://dx.doi.org/10.1063/1.5010300
http://dx.doi.org/10.1063/1.5010300
http://dx.doi.org/10.48550/arXiv.2202.11214
http://arxiv.org/abs/2202.11214
http://dx.doi.org/10.1063/1.4917383
http://dx.doi.org/10.1063/1.4917383
http://dx.doi.org/10.1063/1.4917383
http://dx.doi.org/10.48550/arXiv.1406.1831
http://arxiv.org/abs/1406.1831
http://dx.doi.org/10.1029/2020MS002203
http://dx.doi.org/10.1073/pnas.1810286115
http://dx.doi.org/10.1029/2020MS002405
http://dx.doi.org/10.5194/gmd-12-2797-2019
http://dx.doi.org/10.5194/gmd-12-2797-2019
http://dx.doi.org/10.5194/gmd-12-2797-2019
http://dx.doi.org/10.1016/0893-6080(91)90033-2
http://dx.doi.org/10.1016/0094-5765(77)90096-0
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb42
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb42
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb42
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb42
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb42
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1016/j.neuron.2009.07.018

Neural Networks 170 (2024) 94–110A. Wikner et al.

T

V

V

Tibshirani, R. (1996). Regression Shrinkage and selection via the Lasso. Journal of
the Royal Statistical Society. Series B. Statistical Methodology, 58(1), 267–288. http:
//dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x.

ikhonov, A., & Arsenin, V. (1977). Scripta Series in Mathematics, Solutions of Ill-Posed
Problems. Winston.

incent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th
international conference on machine learning ICML ’08, (pp. 1096–1103). Helsinki,
Finland: ACM Press, http://dx.doi.org/10.1145/1390156.1390294.

lachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P., & Koumoutsakos, P. (2018).
Data-driven forecasting of high-dimensional chaotic systems with long short-term
memory networks. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 474(2213), Article 20170844. http://dx.doi.org/10.1098/rspa.
2017.0844.
110
Vlachas, P. R., Pathak, J., Hunt, B. R., Sapsis, T. P., Girvan, M., Ott, E., et al.
(2020). Backpropagation algorithms and Reservoir Computing in Recurrent Neural
Networks for the forecasting of complex spatiotemporal dynamics. Neural Networks,
126, 191–217. http://dx.doi.org/10.1016/j.neunet.2020.02.016.

Welch, P. (1967). The use of fast fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified periodograms.
IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. http://dx.doi.org/10.
1109/TAU.1967.1161901.

Wikner, A., Pathak, J., Hunt, B., Girvan, M., Arcomano, T., Szunyogh, I., et al.
(2020). Combining machine learning with knowledge-based modeling for scalable
forecasting and subgrid-scale closure of large, complex, spatiotemporal systems.
Chaos. An Interdisciplinary Journal of Nonlinear Science, 30(5), Article 053111.
http://dx.doi.org/10.1063/5.0005541.

http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb45
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb45
http://refhub.elsevier.com/S0893-6080(23)00615-9/sb45
http://dx.doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1098/rspa.2017.0844
http://dx.doi.org/10.1098/rspa.2017.0844
http://dx.doi.org/10.1098/rspa.2017.0844
http://dx.doi.org/10.1016/j.neunet.2020.02.016
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1063/5.0005541

	Stabilizing machine learning prediction of dynamics: Novel noise-inspired regularization tested with reservoir computing
	Introduction
	Machine learning prediction of dynamics and the issue of climate stability
	Stabilization
	Outline and main results
	Additional Background: ML Model Robustness to Perturbations

	Methods
	Reservoir computing
	Training with Regularization
	Regularization
	Tikhonov Regularization
	Jacobian Regularization
	Noise Training

	Linearized Multi-Noise Training (LMNT)
	Prediction and Metrics

	Results
	Kuramoto-Sivashinsky Equation
	Prediction Test Results
	Climate Stability and Valid Time
	Prediction Climate
	Regularization Optimization

	Discussion and Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. LMNT Performance vs. Number of Noise Steps, K
	Appendix B. Comparing Performance with Reduced Training Data
	Reducing the Amount of LMNT Regularization Training Data Only
	Reducing the Total Amount of Training Data

	References

