
A Low Complexity PEG-like Algorithm to
Construct Quasi-Cyclic LDPC Codes
Anthony Gómez-Fonseca∗, Roxana Smarandache∗†, and David G. M. Mitchell‡

Departments of ∗Mathematics and †Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
{agomezfo, rsmarand}@nd.edu

‡Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003, USA
dgmm@nmsu.edu

Abstract—In this paper, we introduce a modified version of
the Progressive Edge-Growth (PEG) algorithm that is used to
construct the Tanner graphs of quasi-cyclic (QC) low-density
parity-check (LDPC) codes having large girth. In our algorithms,
we replace certain requirements in the original PEG algorithm,
namely the expansion of subgraphs from symbol nodes and the
identification of a most distant check node before placing a new
edge, by the construction of certain minimal sets, called forbidden
sets, that contain the problematic quasi-cyclic constraints that
do not let us exceed a given girth. We propose some exponent-
selection strategies that are shown to increase the chance of
obtaining large girth, and reduce the number of short cycles
in the Tanner graph.

I. INTRODUCTION

Quasi-cyclic low-density parity-check (QC-LDPC) codes
are now in many industry standards, including those devel-
oped by the Consultative Committee for Space Data System
(CCSDS) [1], due to their structural simplicity and their
capacity-approaching performance. The compact way in which
QC-LDPC codes can be described is known to be the reason
why they are hardware-friendly, a feature that leads to linear-
time encoding [2] and efficiencies in decoder design [3]. As a
consequence of having these desirable properties, significant
research effort has been made to propose different construc-
tion strategies. Some of these strategies involve algebraic or
combinatorial designs [4]–[6]. Other approaches are based on
optimization and greedy-search algorithms, which can include
graph-theoretical ideas [7], [8].

One particularly effective strategy based on the latter is
the Progressive Edge-Growth (PEG) algorithm [9]. Originally
proposed as a general method for constructing Tanner graphs
having a large girth, the PEG algorithm works by establishing
edges or connections between symbol and check nodes in an
edge-by-edge manner. The placement of a new edge in the
Tanner graph is done in such a way that the impact on the
girth is minimized. The idea behind minimizing the impact on
the girth requires the expansion of a subgraph from a symbol
node and the identification of a most distant check node before
placing a new edge. The complexity of the PEG algorithm
scales as O(mn), where m is the number of check nodes
and n is the number of symbol nodes in the Tanner graph.
Since a Tanner graph with target girth g satisfying the input
parameters might not exist, the algorithm does not guarantee
a specific girth. The PEG algorithm has subsequently been
modified to include quasi-cyclic (QC) constraints [10]–[13].

The most natural QC modification is given in [10], where
the symbol and check nodes are divided into smaller groups

having N nodes. The edges are then created in a group-by-
group fashion instead of node-by-node, and the subgraphs
or trees are expanded only for the first node in each group
of N symbol nodes. The edges created for the remaining
N−1 symbol nodes in the corresponding group are determined
using the quasi-cyclic constraint. In [11], the concept of PEG-
undetectable cycles is introduced to form part of the compu-
tation tree in a QC-PEG algorithm. PEG-undetectable cycles
are cycles that could be formed by a circulant assignment
during the PEG construction, while not being detected in the
computation tree. In [12], [13], a modified version of the PEG
algorithm is presented which can simultaneously construct
large girth base graphs and determine the optimal quasi-cyclic
constraints.

In this paper, we propose several low complexity PEG-
like algorithms to construct QC-LDPC codes with large girth.
These algorithms benefit from a low complexity since neither
the expansion of subgraphs from symbol nodes, nor the iden-
tification of a most distant check node before placing a new
edge, are required. The reduced complexity of these algorithms
is attributed to the novel approach to construct some minimal
sets, called forbidden sets, which contain the problematic
quasi-cyclic constraints corresponding to the necessary and
sufficient conditions that do not let us exceed a given girth.

II. DEFINITIONS, NOTATION AND BACKGROUND

Let C be a QC-LDPC code, either regular or irregular, with
block length nvN , that is based on the nc × nv protograph
[7] described by the matrix B = (bij)nc×nv

, where bij is
a nonnegative integer for i ∈ [nc] and j ∈ [nv], and where
[l] , {0, 1, . . . , l − 1}. Then C can be described by a scalar
parity-check matrix H = (Hij)nc×nv

, where each Hij , for
i ∈ [nc] and j ∈ [nv], is a summation of bij N ×N circulant
permutation matrices if bij is nonzero, and the N×N all-zero
matrix if bij = 0. Graphically, this operation is equivalent to
taking an N -fold graph cover, or lifting, of the protograph.
Here, N is called the lifting factor (alternatively, lifting degree,
or degree of the graph cover).

Let xr denote the N ×N circulant permutation matrix ob-
tained by circularly shifting to the left, by r positions modulo
N , the entries of the N ×N identity matrix I . For simplicity
in the notation, let pij(x) be the polynomial representation
of Hij , where pij(x) =

∑N−1
l=0 alx

l and al ∈ {0, 1} for all
l ∈ [N]. Each polynomial pij(x) has weight bij . Then we
can rewrite the parity-check matrix H , using the polynomial
representation, as H = (pij(x))nc×nv

.

20
23

 1
2t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

To
pi

cs
 in

 C
od

in
g

(I
ST

C
) |

 9
79

-8
-3

50
3-

26
11

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

TC
57

23
7.

20
23

.1
02

73
48

1

Authorized licensed use limited to: New Mexico State University. Downloaded on October 27,2023 at 20:40:28 UTC from IEEE Xplore. Restrictions apply.

From the scalar parity-check matrix H = (hij)ncN×nvN
,

we construct a bipartite graph G = (V,E), called a Tanner
graph [8], by considering H as its biadjacency matrix. Since
the graph G is bipartite, the set of vertices V is the union of
two disjoint sets Vc = {ci | i ∈ [ncN]} and Vs = {sj | j ∈
[nvN]}. The vertices in the sets Vc and Vs are called check
nodes and variable nodes, respectively. The set of edges E is
the collection of all (ci, sj) such that ci ∈ Vc, sj ∈ Vs and
hij = 1. Collectively, the vertices in V are denoted by va,
a = 0, 1, . . . , |V |−1, and the edges by eb, b = 0, 1, . . . , |E|−1,
and where |S| denotes the cardinality of the set S. A (directed)
walk W of length m in the graph G is an alternating sequence
W = v0e1v1e2 · · · vm−1emvm of vertices and edges such that
el = (vl−1, vl) ∈ E for all 1 ≤ l ≤ m. A walk W is said to
be closed if v0 = vm. A cycle is a closed walk W , having
distinct vertices, except for v0 = vm, and if its alternating
sequence has k edges in it, then we call W a k-cycle. Finally,
a multiset (shortened to mset) is a generalization of a set in
which elements are allowed to repeat.

III. CONSTRUCTING THE FORBIDDEN SETS

The algorithms that we introduce in this paper admits a
significant reduction in complexity when compared to other
approaches in the literature. The reason is because they depend
on the construction of certain minimal sets that reduce the
search space of each exponent in the polynomial parity-
check matrix H . These sets are called forbidden sets and are
introduced in the following definition.

Definition 1. Let H be the polynomial parity-check matrix of a
QC-LDPC code and let N be the lifting factor. The forbidden
set Fg,N

a of the exponent a, corresponding to the circulant
permutation matrix xa in H , is the set of elements in [N]
such that if a ∈ Fg,N

a , then girth(H) ≤ g. �

To illustrate how to construct these forbidden sets, consider
the following example.

Example 1. Let the parity-check matrix H be given by

H =

1 1 · · · 1
1 xi1 · · · xinv−1

1 xj1 · · · xjnv−1

 . (1)

As discussed in [6], girth(H) > 4 if and only if all the
elements in each one of the three msets {il | l ∈ [nv]},
{jl | l ∈ [nv]}, and {il − jl | l ∈ [nv]} are distinct. It is
not difficult to see that

F4,N
il

= {il′ , jl + il′ − jl′ | l′ ∈ [nv]\{l}},
F4,N

jl
= {jl′ , il + jl′ − il′ | l′ ∈ [nv]\{l}}.

Similarly, girth(H) > 6 if and only if, for m ∈ [nv], all the
elements in each one of the msets {−il + im,−jl + jm |
l ∈ [nv], l 6= m}, {il, il − jl + jm | l ∈ [nv], l 6= m}, and
{jl, jl − il + im | l ∈ [nv], l 6= m} are distinct. Let,

T 6,N
il

=
⋃

m∈[nv]\{l}

{im − jm + jl′ , jl + im − jl′ | l′ 6= m, l},

T 6,N
jl

=
⋃

m∈[nv]\{l}

{jm − im + il′ , il − im + jl′ | l′ 6= m, l}.

Then F6,N
il

= F4,N
il
∪ T 6,N

il
and F6,N

jl
= F4,N

jl
∪ T 6,N

jl
. A

similar approach is used to determine Fg,N
a for any regular or

irregular polynomial parity-check matrix. �

IV. A FORBIDDEN SET BASED PEG ALGORITHM

Let C be an (nc, nv)-regular QC-LDPC code with length
n = nvN based on the nc × nv fully-connected (all-ones)
protograph. After some row and column permutations, and
some relabeling, we can write the parity-check matrix H as:

H =


1 1 · · · 1
1 xe1,1 · · · xe1,nv−1

...
...

. . .
...

1 xenc−1,1 · · · xenc−1,nv−1

 . (2)

A. Forward selection, reducing girth where necessary
In the following example, we illustrate the idea behind our

first algorithm, which tries to maximize the girth for a given
code length, but reduces the target if and when the desired
girth cannot be achieved. This idea imitates the original PEG
algorithm, but uses the forbidden sets.

Example 2. Suppose that we want to construct a QC-LDPC
code based on the 3×4 fully-connected protograph with fixed
lifting factor N = 64. We will choose the il’s and jl’s from the
set [N] = [64], selecting randomly from the available choices
that permit girth 12 according to the forbidden sets, following
the order i1, i2, i3, j1, j2 and j3, this is, row-by-row

Hr =

1 1 1 1
1 xi1 xi2 xi3

1 xj1 xj2 xj3

 girth 12−→

1 1 1 1
1 x3 x22 x37

1 x17 x26 0

 .

It turns out that our random selection of exponents satisfying
the girth 12 conditions was successful for the first five expo-
nents. To choose j3, we ran out of choices, so the girth 10
conditions were used instead. We take j3 = 57. This gives a
code with parameters [256, 67, 24].

If, instead of choosing the exponents row-by-row, we choose
them column-by-column, this follows the order i1, j1, i2, j2, i3
and j3 (again randomly from the available girth 12 exponent
choices), we obtain the following:

Hc =

1 1 1 1
1 xi1 xi2 xi3

1 xj1 xj2 xj3

 girth 12−→

1 1 1 1
1 x16 x43 0
1 x30 x45 0

 .

In this case, our random selection of exponents satisfying
the girth 12 conditions was successful for the first four
exponents. The exponents i3 = 38 and j3 = 63 were chosen
using the girth 10 conditions. This is a code with parameters
[256, 66, 24]. �

Before describing our first algorithm, we define some func-
tions. For a set S, the function RANDOM(S) returns a random
element in S; the function LEN(V) returns the length of the
list V (or the cardinality of the set V); and the function
FORBIDDEN(H,var, g,N) returns the set Fg,N

var . Our version
of a QC-PEG algorithm is described in Algorithm 1. Notice
that Algorithm 1 constructs an nc×nv parity-check matrix H
as in (2), following a forward search manner, maximizing the

Authorized licensed use limited to: New Mexico State University. Downloaded on October 27,2023 at 20:40:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 QC-PEG algorithm with forbidden sets
Input: nc, nv , N .
Initialize exponents hlk =∞, l ∈ [nc], k ∈ [nv].
for k = 0 to nv − 1 do

for l = 0 to nc − 1 do
if k = 0 or l = 0 then

hlk ← 0
else

Choose largest g ∈ {4, 6, 8, 10} such that F =
[N]\FORBIDDEN(H,hlk, g,N) 6= ∅
if there is such g then

hlk ← RANDOM(F)
else

hlk ← RANDOM([N])

return H

girth where possible from previous exponent selections. The
exponents are chosen column-by-column, following the idea
of PEG and other quasi-cyclic versions of PEG in the literature
[10]–[13]. Algorithm 1 was used to construct the matrix Hc

in Example 2. (The matrix Hr in Example 2 was obtained by
choosing the exponents row-by-row, and this just requires to
flip the order of the two for loops.)

The strategy of sequentially choosing the exponents row-by-
row, column-by-column, or even following a random ordering,
is affected by the random selection of exponents. Using
the conditions to guarantee girth 12, and after choosing the
exponents i1 = 3, j1 = 17, i2 = 22 and j2 = 26, we obtain
F = [64]\FORBIDDEN(HrS , i3, 10, 64) = {1, 37} 6= ∅,
where HrS is the submatrix of Hr under the current setting.
We set i3 = 37. After this, the forbidden set for j3, using
the conditions to guarantee girth 12, is the set [64], so we are
forced to decrease the target girth by 2 and choose the (only
remaining) value j3 = 57 using the conditions to guarantee
girth 10. The other possibility is to choose i3 = 1, but this
selection will force girth(H) ≤ 8 for any j3 ∈ [64]. For the
matrix Hc, we choose i1 = 16, j1 = 30, i2 = 43 and j2 = 45.
Considering this random selection of exponents, we obtained
F = [64]\FORBIDDEN(HcS , i3, 10, 64) = ∅, which is why we
were unable to choose i3, and in consequence j3, satisfying
the conditions to guarantee girth 12. Then we have to decrease
the target girth by 2, and once we choose i3 = 38, the only
option to maintain the girth at 10 is choosing j3 = 63.

B. Fixed girth

In Algorithm 1, the target girth is decreased by 2 once all
the remaining exponents under the current setting have full
forbidden set [N]. This algorithm will always successfully
terminate and return H because it is not required to return a
parity-check matrix with largest possible girth for the chosen
lifting factor N . In fact, in the worst case scenario, the
algorithm will return H with girth 4. If we force the target
girth to remain fixed, we have to declare a failure once all
the remaining exponents under the current setting have full
forbidden set [N]. This modification is presented in Algorithm
2. In Example 3, we use this algorithm to construct QC-LDPC

Algorithm 2 QC-PEG algorithm with fixed target girth
Input: nc, nv , N , g.
Initialize exponents hlk =∞, l ∈ [nc], k ∈ [nv].
for k = 0 to nv − 1 do

for l = 0 to nc − 1 do
if k = 0 or l = 0 then

hlk ← 0
else

F ← [N]\FORBIDDEN(H,hlk, g,N)
if F = ∅ then

declare failure
else

hlk ← RANDOM(F)

return H

codes with girth 12.

Example 3. Let N = 73. We use Algorithm 2 to construct
QC-LDPC codes based on the 3×4 fully-connected protograph
with fixed target girth 12. We followed the same strategy as
in Example 2, and constructed the matrices1 1 1 1

1 x65 x50 x60

1 x64 x38 x31

 and

1 1 1 1
1 x9 x46 x15

1 x8 x49 x62

 ,

denoted by Hr,12 and Hc,12, respectively, by choosing the
exponents row-by-row and column-by-column, respectively.
The matrices Hr,12 and Hc,12 were constructed after 5017 and
3976 failed attempts of Algorithm 2, respectively. In Table
I, we show the number of attempts and time taken for 15
successful outputs of Algorithm 2 for each exponent-selection
strategy.1,2 �

C. Multiples of rows
For the parity-check matrix H given as in (2), define its

exponent matrix as EH = (eij), where eij = 0 if i = 0 or
j = 0.

Example 4. The exponent matrices EHr,12
and EHc,12

of the
parity-check matrices in Example 3 are given by0 0 0 0

0 65 50 60
0 64 38 31

 =

0 0 0 0
0 65 50 60
0 65 · 65 65 · 50 65 · 60

 and

0 0 0 0
0 9 46 15
0 8 49 62

 =

0 0 0 0
0 9 46 15
0 9 · 9 9 · 46 9 · 15

 ,

respectively. From the previous equivalent matrices, modulo
73, we notice that the third row is a multiple of the second
row. We have implemented this strategy where we select row-
by-row only exponents that are a multiple of previous rows,

1The computations in Table I were done using SageMath [14] in a Lenovo
NeXtScale nx360 M5 (server) with an Intel(R) Xeon(R) CPU E5-2680 v3
processor @ 2.50GHz and 263534552 kB 2133 MHz DDR4 of memory.

2We note that the column-by-column strategy is generally faster. This occurs
as a result of the forbidden sets varying during the different stages of the
exponent selection process.

Authorized licensed use limited to: New Mexico State University. Downloaded on October 27,2023 at 20:40:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I
NUMBER OF ATTEMPTS AND TIME TAKEN FOR 15 SUCCESSFUL OUTPUTS

OF ALGORITHM 2.

Exponent-selection strategy
row-by-row column-by-column

Time Attempts Time Attempts
1 4min 1s 365 0min 47s 60
2 15min 16s 1386 2min 17s 192
3 19min 53s 2029 6min 43s 555
4 20min 47s 2091 8min 37s 730
5 23min 6s 1994 9min 47s 882
6 29min 20s 2574 14min 38s 1231
7 31min 18s 2725 15min 51s 1278
8 33min 24s 3555 16min 58s 1652
9 39min 20s 3502 24min 19s 2346

10 42min 36s 4365 30min 41s 2699
11 55min 5s 5673 48min 50s 4374
12 57min 37s 5245 1hr 06min 7s 5631
13 1hr 3min 2s 6825 1hr 18min 31s 6661
14 1hr 4min 18s 6471 1hr 20min 17s 7404
15 2hr 14min 4s 13341 1hr 21min 42s 7504
avg 42min 12s 4143 32min 24s 2880

TABLE II
NUMBER OF ATTEMPTS AND TIME TAKEN FOR 15 SUCCESSFUL OUTPUTS

FOR APPROACH IN EXAMPLE 4.

Exponent-selection strategy
row-by-row column-by-column

Time Attempts Time Attempts
1 449ms 1 3.38s 8
2 1.5s 3 16.4s 36
3 12.8s 29 17.3s 38
4 16.1s 36 18.4s 41
5 16.1s 37 22.4s 49
6 22.4s 51 30.4s 68
7 24.4s 55 35.5s 79
8 28s 64 46.2s 104
9 36.4s 83 1min 2s 143

10 41.3s 97 1min 4s 147
11 46.3s 109 1min 19s 184
12 1min 3s 150 1min 22s 185
13 1min 7s 156 2min 13s 310
14 1min 9s 154 2min 43s 387
15 1min 15s 182 6min 13s 851
avg 35s 80 1min 16s 175

but the algorithm is not included for space constraints. In Table
II, we show the number of attempts and time for 15 successful
output of this exponent-selection strategy.3 We note that the
search time is drastically reduced. �

D. Selective exponent targeting

If the lifting factor N is not large enough for our target
girth g, or if we choose a “bad” exponent, we will see that,
after some point in the construction process, the forbidden set
for a given exponent is the whole set [N]. Once this happens,
we will have to either decrease the target girth or declare a
construction failure. We can try to delay this point by assigning

3The computations in Table II were done using SageMath [14] in a
MacBook Pro (13-inch, 2018, Four Thunderbolt 3 Ports) with a 2.3 GHz
Quad-Core Intel Core i5 processor and 16 GB 2133 MHz LPDDR3 of
memory.

priority to those exponents with a larger-in-size forbidden set,
but which is not exactly the set [N]. We explore this idea
in Example 5 with a protograph used in the Consultative
Committee for Space Data Systems (CCSDS) standards [1].
We also use this example to illustrate that the choice of initial
target girth can affect the multiplicity of the g-cycles.

Example 5. Let the lifting factor be N = 64. Let H1 be the
parity-check matrix given by1 + x13 x2 x19 x47 0 x17 x19 1

x55 1 + x37 x20 x19 1 0 x x16

x61 1 1 + x11 x49 x51 1 0 x38

x39 x50 x27 1 + x20 x53 x32 1 0

 ,

This matrix was constructed starting with the conditions re-
quired to satisfy girth(H1) > 6. When we found more than
one candidate with the forbidden set having the same largest
size, we randomly chose one of the candidates and continue
the process as described. Following this strategy, we were able
to choose all but one exponent satisfying the conditions to
guarantee girth 8. The target girth is reduced to 6 and the last
exponent selected. The code has parameters [512, 256].

Let H2 be the parity-check matrix given by1 + x36 x37 x14 x30 0 x29 x44 1
x21 1 + x35 x19 x29 1 0 x52 x48

x40 x38 1 + x40 x24 x58 1 0 x6

x63 x3 x52 1 + x49 x60 x50 1 0

 ,

This matrix was constructed starting with the conditions re-
quired to satisfy girth(H2) > 8, which allowed us to choose
the first group of 13 exponents. After this point, we had to
decrease the girth conditions to satisfy girth(H2) > 6 and were
able to choose the second group of 9 exponents. The remaining
two exponents were chosen to satisfy girth(H2) = 6. The
matrix H2 gives a code with parameters [512, 256].

Let H3 be the parity-check matrix given by1 + x30 x9 x8 x62 0 x x24 1
x48 1 + x18 x22 x27 1 0 x57 x61

x54 x7 1 + x22 x47 x4 1 0 1
x52 x54 x14 1 + x27 x13 x27 1 0

 ,

This matrix was constructed using the previous idea, but
starting with the conditions to guarantee girth(H3) > 10. Its
girth is 6 and gives a code with parameters [512, 256]. �

Remark 2. The number of 6-cycles in the parity-check ma-
trices H1, H2 and H3 are 128, 320 and 384, respectively. All
of these codes have fewer 6-cycles than the code constructed
from the same protograph in [1]. We note that by initially
selecting a large target girth, a larger number of exponents
remain for the reduced girth. This implies that, since more
exponents must be selected at the smallest girth, the multi-
plicity is higher. �

Let E be the list of exponents of the parity-check matrix
H . For example, if H is the 3 × 4 matrix in Example 2,
then E = [i2, i3, i4, j2, j3, j4] (the order of the elements in
the list is irrelevant). We denote the kth element in E by
E [k]. In Algorithm 3, we describe the algorithm behind the
construction of the matrices in Example 5.

In Algorithm 3, an exponent var has priority over the
remaining exponents when its forbidden set Fg,N

var has the

Authorized licensed use limited to: New Mexico State University. Downloaded on October 27,2023 at 20:40:28 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 QC-PEG algorithm with prioritization of expo-
nent selection

Input: List of exponents E , N .
Initialize exponents in E to ∞.
C ← empty list to store chosen exponents
while LEN(C) < LEN(E) do

Choose largest g ∈ {4, 6, 8, 10} such that F :=
[N]\FORBIDDEN(H,var, g,N) 6= ∅ for at least one
var ∈ V \C
M← {var ∈ E\C | FORBIDDEN(H,var, g,N) has
largest size < N}
var← RANDOM(M)
Append var to C
if there is such g then

var← RANDOM([N]\FORBIDDEN(H,var, g,N))
else

var← RANDOM([N])
return H

largest size less than N under the current setting. If there are
at least two circulants permutation matrices with exponents
satisfying this property, we choose one randomly and a random
value in F = [N]\Fg,N

var is assigned to the chosen exponent.
Once the forbidden sets of all the remaining exponents are
equal to the set [N], the target girth g is decreased and we
repeat the process.

Remark 3. Notice that in both Algorithms 1 and 3 we set
g = 12 as the maximum possible value for the girth because
the protographs that we are considering, the nc × nv fully-
connected graph in Example 2 and the one used in the CCSDS
standard described in Example 5, have at least one 2× 3 all-
ones submatrix. It is known that this substructure forces an
upper bound of 12 in the girth [5]. We can use the results in
[4] to check for harmful substructures in the protographs and
set the maximum g accordingly. �

V. COMPLEXITY

The complexity of our proposed algorithms relies, almost
entirely, in the complexity of determining the forbidden sets,
as described in Section III. If H is the 3 × nv parity-check
matrix given in (1), then girth(H) > 4 is equivalent to
guarantee that all the elements in each one of the three
msets {hl − il | l ∈ [nv]}, {hl − jl | l ∈ [nv]} and
{il − jl | l ∈ [nv]} are distinct. Since each one of these
msets has nv elements, a total of 2(nv−1) equations must be
solved for each exponent il and jl with l ∈ [nv]. Hence, the
complexity of determining the corresponding forbidden sets is
O(nv log(N)), where N is the lifting factor, so the complexity
of returning H scales as O(ncn

2
vN log(N)) since we need to

choose (nc−1)(nv−1) exponents. For girth(H) > 6, a similar
argument is used to show that the complexity of determining
the corresponding forbidden sets is O(n2

v log(N)) and the
complexity of returning H scales as O(ncn

3
vN log(N)). The

same idea works to guarantee larger girths. We note that
a direct comparison of complexity between the algorithms
presented in this paper and the algorithms surveyed in the

Introduction is challenging since the algorithms have different
functionality and/or numerical data is unavailable. Such a
comparison is the subject of ongoing work.

VI. CONCLUDING REMARKS

The construction of the forbidden sets for the exponents
in a polynomial parity-check matrix offers an alternative to
construct QC-LDPC codes with large girth in a low complexity
QC-PEG algorithm. Furthermore, the strategy of choosing a
row as a multiple of another one reduces, significantly, the
number of construction failures before a successful output
when the target girth is fixed. Finally, assigning priority to
those exponents with a larger-in-size forbidden set, but which
is not exactly the set [N], can reduce the number of short
cycles in the Tanner graph and increase the likelihood of
obtaining a larger girth.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. CCF-2145917, CNS-
2148358, and HRD-1914635. A. G. F. thanks the support of
the GFSD (formerly NPSC) and Kinesis-Fernández Richards
fellowships.

REFERENCES

[1] CCSDS, “TC Synchronization and Channel Coding. Issue 4. Recommen-
dation for Space Data System Standards (Blue Book), CCSDS 231.0-
B-4. Washington, D.C.: CCSDS,” Jul. 2021.

[2] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encoding
of quasi-cyclic low-density parity-check codes,” IEEE Trans. Comm.,
vol. 54, no. 1, pp. 71–81, Jan. 2006.

[3] Z. Wang and Z. Cui, “A memory efficient partially parallel decoder
architecture for quasi-cyclic LDPC codes,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 4, pp. 483–488, Apr. 2007.

[4] S. Kim, J. S. No, H. Chung, and D. J. Shin, “Quasi-cyclic low-density
parity-check codes with girth larger than 12,” IEEE Trans. Inf. Theory,
vol. 53, no. 8, pp. 2885–2891, Aug. 2007.

[5] R. Smarandache and P. O. Vontobel, “Quasi-cyclic LDPC codes: In-
fluence of proto- and Tanner-graph structure on minimum Hamming
distance upper bounds,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp.
585–607, Feb. 2012.

[6] R. Smarandache and D. G. M. Mitchell, “A unifying framework to
construct QC-LDPC tanner graphs of desired girth,” IEEE Trans. Inf.
Theory, vol. 68, no. 9, pp. 5802–5822, Sept. 2022.

[7] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” Jet Propulsion Laboratory Pasadena, CA, INP Progress
Report 42-154, pp. 42–154, Aug. 2003.

[8] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, Sept. 1981.

[9] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51,
no. 1, pp. 386–398, Jan. 2005.

[10] Z. Li and B. V. K. V. Kumar, “A class of good quasi-cyclic low-density
parity check codes based on progressive edge growth graph,” Conference
Record of the Thirty-Eighth Asilomar Conference on Signals, Systems
and Computers, vol. 2, pp. 1990–1994, Nov. 2004.

[11] M. Diouf, D. Declercq, M. Fossorier, S. Ouya, and B. Vasić, “Improved
PEG construction of large girth QC-LDPC codes,” 9th International
Symposium on Turbo Codes and Iterative Information Processing
(ISTC), pp. 146–150, Sept. 2016.

[12] X. Q. Jiang, M. H. Lee, H. M. Wang, J. Li, and M. Wen, “Modified PEG
algorithm for large girth quasi-cyclic protograph LDPC codes,” 2016 In-
ternational Conference on Computing, Networking and Communications
(ICNC), pp. 1–5, Feb. 2016.

[13] X. Jiang, H. Hai, H. Wang, and M. H. Lee, “Constructing large girth QC
protograph LDPC codes based on PSD-PEG algorithm,” IEEE Access,
vol. 5, pp. 13 489–13 500, Aug. 2017.

[14] The Sage Developers, “SageMath, the Sage Mathematics Software
System,” 2018. [Online]. Available: https://www.sagemath.org

Authorized licensed use limited to: New Mexico State University. Downloaded on October 27,2023 at 20:40:28 UTC from IEEE Xplore. Restrictions apply.

