

1 **Rare Earth Metallosis: Gadolinium-rich Nanoparticle Formation from Magnetic**
2 **Resonance Imaging Contrast Agents in Rodent and Human Kidney**

3
4 Joshua DeAguero^{1,2,3*}, Tamara Howard², Donna Kusewitt², Adrian Brearley⁴, Abdul-
5 Mehdi Ali⁴, James H. Degnan⁵, Stephen Jett⁶, John Watt⁷, G. Patricia Escobar^{1,2,3}, Karol
6 Dokladny^{1,2,3}, Brent Wagner^{1,2,3*}

7 ¹Kidney Institute of New Mexico, University of New Mexico Health Science Center

8 ²University of New Mexico Health Science Center

9 ³New Mexico Veterans Administration Health Care System

10 ⁴University of New Mexico, Department of Earth & Planetary Science

11 ⁵University of New Mexico, Department of Mathematics and Statistics

12 ⁶Chan Zuckerberg Initiative, National Cancer Institute, Center for Integrated

13 Nanotechnologies, Sandia National Laboratories

14 ⁷Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos,

15 NM, USA 87545

16 *** Corresponding authors:**

17 Joshua DeAguero (joshdeaguero@salud.unm.edu), Brent Wagner
18 (BrWagner@salud.unm.edu)

20 **ORCID IDs:** 0000-0001-6821-2067 (J DeAguero), [0000-0002-9369-0623](https://orcid.org/0000-0002-9369-0623) (DK), 0000-

21 0002-7364-8815 (AB), 0000-0001-7886-638X (J Degnan), 0000-0002-4505-5297 (GPE),

22 0000-0003-2507-3196 (SJ), 0000-0002-8012-9837 (JW), 0000-0003-4912-9051 (KD),

23 0000-0002-7063-0142 (BW)

24

25

26 **ABSTRACT**

27 The leitmotifs of magnetic resonance imaging (MRI) contrast agent-induced
28 complications range from acute kidney injury, symptoms associated with gadolinium
29 exposure (SAGE)/gadolinium deposition disease, potentially fatal gadolinium
30 encephalopathy, and irreversible systemic fibrosis. Gadolinium is the active ingredient of
31 these contrast agents, a non-physiologic lanthanide metal. The mechanisms of MRI
32 contrast agent-induced diseases are unknown. Mice were treated with a MRI contrast
33 agent. Human kidney tissues from contrast-naïve and MRI contrast agent-treated patients
34 were obtained and analyzed. Kidneys (human and mouse) were assessed with
35 transmission electron microscopy and scanning transmission electron microscopy with x-
36 ray energy-dispersive spectroscopy (XEDS). MRI contrast agent treatment resulted in
37 unilamellar vesicles and mitochondriopathy in renal epithelium. Electron-dense
38 intracellular precipitates and the outer rim of lipid droplets were rich in gadolinium and
39 phosphorus. We conclude that MRI contrast agents are not physiologically inert. The
40 long-term safety of these synthetic metal-ligand complexes, especially with repeated use,
41 should be studied further.

42

43 **Keywords**

44 gadolinium; metals; gadodiamide; trace elements; magnetic resonance imaging contrast;
45 renal tubular epithelium; renal proximal tubules; mitochondriopathy; electron microscopy;
46 x-ray spectra

47

48

49

50 **INTRODUCTION**

51 The properties of magnetic resonance imaging (MRI) contrast agents rely on a rare
52 earth metal, gadolinium. Because gadolinium is toxic, magnetic resonance imaging
53 contrast agents are proprietary aminopolycarboxylic acid chelates designed to bind the
54 metal tightly and enhance renal elimination. Complications of MRI contrast agents include
55 (sometimes fatal) gadolinium encephalopathy, acute kidney injury, gadolinium deposition
56 disease/symptoms associated with gadolinium exposure (SAGE) [1], and 'nephrogenic'
57 systemic fibrosis [1-5]. Exposure to any class of MRI contrast agent leads to the long-
58 term retention of gadolinium [6]. Residual gadolinium from MRI contrast agent exposure
59 has been found in every vital organ, including the brain, in both patients and animal
60 models [7-11]. Urine can contain gadolinium years after exposure to MRI contrast agents
61 [12].

62 Our rodent models demonstrated the formation of gadolinium-rich nanoparticles in
63 the kidney and skin following systemic MRI contrast agent treatment [13-19]. Gadolinium-
64 rich densities have been found in neuronal cytoplasm and nuclei in the brains of
65 individuals exposed to MRI contrast agents during the course of routine care [11]. The
66 nanotoxicologic mechanisms of gadolinium-induced disease are poorly understood [5,
67 13-20]. Our understanding of MRI contrast-induced complications is far from complete.
68 These studies were conducted to characterize the composition of intracellular gadolinium-
69 rich minerals that form after systemic MRI contrast agent treatment.

70 **RESULTS**

71 **Magnetic resonance imaging (MRI) contrast agent treatment induced**
72 **pathologic changes in the skin, liver, and kidney.** Mice were treated with gadolinium-
73 based contrast agent according to our established protocols [13-18, 20, 21]. Skin
74 changes, including fibrosis, increased dermal cellularity, and epidermal thickening
75 (Supplementary Fig. S1a-d), were like what we have previously reported [15, 16, 20, 21].
76 There was vacuolation of renal cortical tubular epithelium from gadolinium-treated mice
77 (Supplementary Fig. S1e). These findings are similar to what we have previously reported
78 in rodent models of gadolinium-induced renal damage [14-17, 20, 21].

79 **MRI contrast agent treatment induced renal pathologic changes in the male**
80 **and the female mouse groups.** At the ultrastructural level, renal glomerular and tubular
81 pathologies were evident in the treated mice (Supplementary Fig. S2). Electron-dense
82 material was a common feature in the kidney in males and females (Fig. 1). The electron-
83 dense precipitates were dispersed throughout kidney sections and often rimmed large
84 unilamellar vesicles (Supplementary Fig. S2b-d, g-j, Fig. 1c-h, j-n). Mitochondrial toxicity,
85 characterized by swelling and an increased matrix-to-cristae ratio, was a common finding
86 in gadolinium-treated males (Supplementary Fig. S2e-f, g, i) and females (Fig. 1c, d, j,
87 m). Renal proximal tubules from gadolinium-treated males and females demonstrated
88 increased numbers of enlarged cytoplasmic vesicles (Fig. 1g-j), apical blebbing
89 (Supplementary Fig. 2j, Fig. 1d, i-j), tubular damage (Supplementary Fig. S2j), reduced
90 mitochondrial density (Supplementary Fig. S2k,l), basement membrane rupture
91 (Supplementary Fig. S2m), and occasionally rupture of the apical membranes
92 (Supplementary Fig. S2n). Quantified morphometry from transmission electron
93 microscopy is provided in Table 1.

94 **Gadolinium treatment affected renal glomeruli (Supplementary Fig. S3), distal**
95 **tubules, and interstitia in mice (Supplementary Fig. S4).** Renal glomerular parietal cells
96 of gadolinium-treated mice demonstrated vacuolization (Supplementary Fig. S3e,f),
97 sometimes with unilamellar vesicles (Supplementary Fig. S3g-i). Occasionally, podocytes
98 showed similar abnormalities (Supplementary Fig. S3j). Distal tubular epithelial cells
99 occasionally contained electron-dense material within vacuoles and signs of
100 mitochondrial stress (Supplementary Fig. S4). Distal tubular epithelia also demonstrated
101 intracellular unilamellar vesicles, occasionally rimmed with electron-dense material
102 (Supplementary Fig. S4d). Interstitial expansion and increased cellularity with occasional
103 vacuolized electron-dense material were present in the gadolinium-treated groups
104 (Supplementary Fig. S4e-h).

105 Concomitant with the Warburg effect in the kidney, systemic gadolinium-based
106 contrast agent treatment induces dyslipidemia and insulin resistance [14]. The impact of
107 gadolinium-based contrast agent treatment in the liver was examined (Supplementary
108 Fig. S5). Gadolinium increased intracellular triglycerides as assessed by oil red O
109 staining. Electron microscopy revealed that gadolinium treatment increased unilamellar
110 vesicles and reduced mitochondrial volume. Metabolomic analysis of the livers
111 demonstrated alterations in metabolites associated with amino acid metabolism,
112 glycogenesis, and glycolysis (Supplementary Table 1). These findings support the
113 hypothesis that gadolinium-based contrast agents are not biologically inert [5].

114 **Electron-dense material in kidney cells from MRI contrast agent-treated mice**
115 **contained gadolinium.** Gadolinium can be detected in several organs after systemic
116 treatment with MRI contrast agents [18]. The electron-dense precipitates and electron-

117 dense material rimming unilamellar vesicles/lipid droplets were localized using
118 transmission electron microscopy (Fig. 2). These regions were then identified using a
119 STEM equipped with XEDS (Fig. 2b-i). The spiculated, sea-urchin-like intracellular
120 precipitates were visualized in darkfield mode from specially sectioned and mounted
121 tissues (Fig. 2c). Electron-dense material rimming vacuolized lipid droplets (Fig. 2d-e)
122 and spiculated nanostructures (Fig. 2f) were identifiable by Z-contrast. In addition to the
123 pathologic electron-dense material, mitochondria and cellular nuclei could often be
124 visualized (Fig. 2g, h). Electron-dense regions were occasionally found within the
125 mitochondria of treated animals (Fig. 2i).

126 **Intracellular gadolinium-rich material correlated with high phosphorus**
127 **concentrations in mice.** Gadolinium is not a normal trace element [13] and possesses
128 a signature signal (particularly in the L electron shell energy range) detectable by XEDS
129 [18]. The chemical compositions of these electron-dense materials were assessed in
130 many subcellular regions via XEDS (Supplementary Fig. S6, Supplementary Fig. S7,
131 Supplementary Fig. S8). XEDS line scan data were obtained for gadolinium, phosphorus,
132 calcium, chlorine, chromium, magnesium, oxygen, and silicon. Electron-dense
133 precipitates contained gadolinium and phosphorus (Fig. 3, Supplementary Fig. S6,
134 Supplementary Fig. S7, Supplementary Fig. S8). Non-precipitate regions and the centers
135 of lipid droplets did not contain gadolinium (Supplementary Fig. S6, Supplementary Fig.
136 S7, Supplementary Fig. S8), and the electron-dense material rimming lipids
137 (Supplementary Fig. S6b, Supplementary Fig. S7e, f). Mitochondria tended to have low
138 gadolinium concentrations (Supplementary Fig. S9, Fig. 4). The XEDS line scan data of
139 the subcellular regions (Supplementary Fig. S9, Fig. 4) revealed that gadolinium

140 concentrations differed among electron-dense precipitates from mitochondria, lipid, and
141 non-mitochondrial/non-lipid regions ($P = 0$) (Fig. 4b, Supplementary Table 2).
142 Concomitantly, phosphorus ($P < 1 \times 10^{-5}$), calcium ($P < 3 \times 10^{-9}$), magnesium ($P = 0$),
143 manganese ($P = 0$), and sulfur ($P = 0.001$) in the precipitate differed from these subcellular
144 regions (Supplementary Fig. S9, Supplementary Fig. S10). Linear regression for
145 gadolinium and phosphorus signal intensities showed the strongest correlation between
146 the 2 in precipitates (multiple r^2 of 0.22, 0.25 for females and males, respectively; $P <$
147 0.001 by ordinary least squares).

148 **The electron-dense precipitates' concordance of gadolinium with**
149 **phosphorus in mice was confirmed with 2D XEDS** (Fig. 5). Regions rich in electron-
150 dense nanostructures were mapped (Fig. 5a,b) using STEM and XEDS. XEDS signals
151 from precipitates in the gadolinium L electron shell energy ranges were non-zero (Fig.
152 5c). Two-dimensional mapping demonstrated the colocalization of gadolinium with
153 phosphorus (Fig. 5d). Secondary 2D XEDS mapping of the electron densities confirmed
154 that these nanoparticles were rich in gadolinium and phosphorus (Supplementary Fig.
155 S11). Outside of the nanoparticles, other subcellular regions contained little or no
156 gadolinium (Fig. 4, Supplementary Fig. S6, Supplementary Fig. S6).

157 From the mouse tissues, multiple variable linear modeling of the XEDS line scan
158 data was used to analyze the elemental composition of the subcellular regions (i.e.,
159 gadolinium-rich nanoparticles, unilamellar/lipid-rich droplets, and mitochondria) relating
160 gadolinium to the other assessed elements (Table 2). The quality of the model for
161 electron-dense precipitates was optimized by the Akaike information criterion (AIC)
162 method. The optimal model (Akaike information criteria, AIC) for the electron-dense

163 debris correlated gadolinium to phosphorus and oxygen (Table 3). Principal component
164 analysis supported the correlations of phosphorus and gadolinium in precipitates
165 (Supplementary Fig. S12). These data show that gadolinium de-chelates from MRI
166 contrast agent formulations and precipitates intracellularly. This phenomenon is
167 concomitant with lipid vacuolization, mitochondrial damage, and subacute tubular
168 damage.

169 **MRI contrast agent use in humans leads to detectable gadolinium in the**
170 **kidney.** In humans, *permanent brain gadolinium retention* may occur from the routine use
171 of MRI contrast agents [22]. The kidney is a reservoir for gadolinium in rodent models [13,
172 14, 18, 20, 23]. Therefore, we investigated the potential of lanthanide metallosis in
173 humans. Human kidney samples were obtained from the University of New Mexico
174 Human Tissue Repository. The Repository is accredited by the Collage of American
175 Pathologists Guidelines for Biorepositories. There were equal numbers of MRI contrast
176 agent-exposed and unexposed donors ($n = 5$ each). Gadolinium was quantitated with
177 inductively coupled plasma mass spectroscopy (University of New Mexico Department of
178 Earth & Planetary Sciences). Gadolinium was detectable in 100% of the samples where
179 the donors had histories of MRI contrast agent exposure (Supplementary Fig. S13).

180 **Nanoparticles in human kidney are also primarily gadolinium and**
181 **phosphorus.** These human samples were analyzed by TEM and XEDS (University of
182 New Mexico Department of Earth & Planetary Sciences, Fig. 6). Several specimens
183 contained intracellular electron-dense precipitates. The electron densities were roughly
184 100 nm in diameter. XEDS analysis revealed that these intracellular precipitates

185 contained gadolinium (Fig. 6B). Human tissues were also analyzed by 2D XEDS (Fig. 7).
186 Again, nanoprecipitates showed elevations in gadolinium and phosphorus. STEM XEDS
187 line scans through multiple precipitates (from different patients) again showed a
188 correlation between gadolinium and phosphorus levels (Fig. 8). These results
189 demonstrate that routine MRI contrast agent use leads to lanthanide metallosis.

190 **DISCUSSION**

191 The affinities of the proprietary chemical formulations of MRI contrast agents for
192 gadolinium do not correlate with the incidences of 'nephrogenic'/gadolinium-induced
193 systemic fibrosis or gadolinium deposition disease (Supplementary Fig. S14). The
194 amount of time a brand of gadolinium-based contrast agent has been on the
195 market *does* correlate with cases of gadolinium-induced systemic fibrosis and gadolinium
196 deposition disease. Systemic treatment with MRI contrast agents results in the formation
197 of gadolinium-rich nanoparticles in our rodent models [13-15]. Gadolinium-based contrast
198 agent treatment induced various pathological changes in multiple organs of both male
199 and female mice. Herein we provide a detailed atlas of electron microscopic analyses of
200 renal damage from MRI contrast agents with the characterization of gadolinium-rich
201 nanoparticles that form from dechelation and complexation with physiologic elements.

202 Our findings demonstrate that systemic treatment with MRI contrast agents leads
203 to electron-dense intracellular precipitation within the renal tubular epithelium and
204 interstitial cells in males and females. The formation of spiculated nanoparticles is similar
205 to what has been reported to form from gadolinium oxide (Gd_3O_3) in phagolysosomal
206 simulated solutions [24].(There were no differences in pathology between the sexes.)

207 Our results also demonstrate gadolinium precipitation in human kidneys as a result
208 of routine MRI contrast agent use. Gadolinium precipitation into an insoluble mineral form
209 demonstrates Le Chatelier's Principle [25] *in vivo* (herein and [13-15]) and in humans.
210 The principle of A. L. Le Chatelier and F. Braun is that a chemical equilibrium subject to
211 perturbation (e.g., precipitation of gadolinium) will shift to partially oppose the stress.
212 Because gadolinium precipitates into an insoluble metal-salt form, then the relative
213 affinities of the proprietary pharmaceutical chelates ($\log(K_{therm})$)—an *in vitro* measurement
214 [25]) will be perturbed. If gadolinium precipitates out of solution (with phosphate, for
215 example), the equilibrium of this rare earth metal (Gd^{3+}) and the ligand (L^{3-}) will proceed
216 in the following direction,

219 The formation of lanthanide-laden nanoparticles *in vivo* and the sequellae may be the
220 initial step for the rare earth element metalloses nephrogenic systemic fibrosis and
221 multisymptomatic illnesses such as SAGE. This phenomenon raises important questions
222 regarding the safety of MRI contrast agents.

223 *Phosphorus in these gadolinium-rich nanoparticles implies these are a type of*
224 *gadolinium phosphate* ($GdPO_4$). Although gadolinium phosphate is not found in nature, it
225 has been detected intracellularly in gadolinium chloride-treated rats [26].

226 Delicate biologic specimens are subject to decimation from the high energies of
227 scanning transmission electron microscopes purposed for materials science applications.
228 Herein, we report a method for assessing lanthanide-rich nanostructures in biologic

229 specimens that preserves enough contrast to localize subcellular structures. Our model
230 is similar to that reported in patients with the characteristic renal proximal tubule
231 vacuolization of gadolinium-induced nephropathy [27].

232 Rare earth elements, including gadolinium, have unique physical and chemical
233 properties that render them indispensable for critical technologies[28]. Gadolinium usage
234 and indications are rising despite prescribing information boxed warnings of permanent
235 brain retention and sometimes fatal 'nephrogenic' systemic fibrosis. The data presented
236 here demonstrate that gadolinium-based contrast agents are not entirely benign.
237 Gadolinium-based contrast agents induce significant pathologic changes in the kidney
238 [13-15, 20] and skin [15-17, 19]. Dechelation and precipitation are likely related to the
239 multi-symptom illness reported in patients with gadolinium-induced diseases.
240 Localization, identification, and speciation of retained gadolinium are critical to
241 understanding the mechanisms of toxicity. Our findings are a foundation for
242 understanding the mechanisms of gadolinium-induced disorders and the development of
243 therapies. Rather than dismiss patients who may have suffered from complications due
244 to enhanced MRI procedures, pathologic specimens should be examined for evidence of
245 gadolinium-rich deposits.

246 Our results suggest that gadolinium is dechelated from MRI contrast agent
247 formulations *in vivo* and is metabolized into mineralized intracellular nanoparticles. The
248 high concentrations of phosphorus (and oxygen) suggest that the nanoparticles contain
249 insoluble GdPO₄ (and perhaps Gd₂O₃/Gd(OH)₃) or a more complex/heterogenous
250 mineral. The phosphorus reservoir is unknown. The abundance of phosphorus in lipids

251 and systemic response to gadolinium suggest that leaching from intracellular membranes
252 may be a mechanism. Gadolinium is not a physiologic element. It is reasonable to assume
253 that iatrogenic kidney injury, systemic fibrosis, dermal plaques, and SAGE are all part of
254 a spectrum of disorders resulting from the retention of a toxic lanthanide metal.
255 Nanotoxicity is undoubtedly a mediator of MRI contrast agent complications. Differential
256 decomposition of MRI contrast agents may explain susceptibility to complications.

257 METHODS

258 **Animals.** All methods were carried out in compliance with relevant guidelines and the
259 study was approved by the University of New Mexico's Institutional Animal Care and Use
260 Committee (IACUC, protocol 21-201088-HSC, Animal Welfare Assurance # D16-00228,
261 A3350-01, USDA Registration # 85-R-0014). Sex-matched wild-type C57/BL6 mice were
262 randomized by weight into untreated ($n = 10$) or gadolinium-based contrast agent
263 treatment (Omniscan, $n = 10$) groups [13-18, 20, 21]. Male C57/BL6 mice weighed 27 g,
264 whereas female C57/BL6 mice weighed 20 g and were 6-8 weeks of age at the start of
265 the experiment. The contrast agent Omniscan was injected intraperitoneally at a dose of
266 2.5 mmol per kilogram body weight. This dose is equivalent to twice the clinically
267 approved human dose (human equivalent dose) after adjustment for body surface area
268 and is in accordance with the Food and Drug Administration Guidance for Industry [29].
269 Injections were administered 5 days a week for 4 weeks. The experiments adhered to the
270 ARRIVE guidelines.

271 **Human pathological specimens** were obtained from the University of New Mexico
272 Human Tissue Repository (approved by the University of New Mexico Health Sciences
273 Center Institutional Review Board, IRB, protocol #01-313). The experimental protocol was

274 approved by the University of New Mexico Health Sciences Center, Human Research
275 Protections Program/Human Tissue Oversight Committee/Scientific Review Committee
276 (SRC #007-21, de-identified materials, Exempt Category 4 HRP-582; University of New
277 Mexico Health Sciences Center IRB-approved protocol #19-660). All samples were
278 obtained as unidentified in compliance with this protocol. Flash-frozen kidney tissue was
279 obtained from 5 individuals with histories of MRI contrast agent exposure and 5 who were
280 contrast-naïve. The frozen tissue samples with no embedding medium were transported
281 on dry ice from the repository and stored at -80C for further analysis. Pieces (10-15 mg)
282 of frozen tissue were digested and gadolinium concentrations were quantified using
283 PerkinElmer NexION 3000 inductively coupled plasma mass spectrometry with a
284 detection limit of 0.01 ppm. For electron microscopy, flash-frozen tissues were fixed in
285 3% formaldehyde, 2% glutaraldehyde in phosphate-buffered saline for one hour at room
286 temperature then cut into smaller sections with fresh fixative overnight at 4°C. Pieces
287 were washed, stained with 1% tannic acid × 1h, dehydrated, and embedded in epoxy
288 resin. For transmission electron microscopy (TEM), pieces were sectioned at 60-80 nm
289 and placed on copper grids. For darkfield scanning TEM (STEM), pieces were sectioned
290 at 100-200 nm onto holey carbon grids.

291 **Histology.** Tissues were harvested and processed as previously described [14-16, 19].
292 Organs are divided into fixative (10% neutral buffered formalin and electron microscopy
293 as described herein). Kidneys are decapsulated, butterflied, and cortices divided into
294 fixative. Flash-frozen liver tissues were embedded in optimal cutting temperature
295 medium, and cryostat sectioned onto glass slides (70-80 μ m) and subsequently stained
296 with lipid dye, oil red O. Microscopy was performed using a Nikon Eclipse E200

297 microscope coupled with a DS-Fi3 digital camera (Nikon Instruments Inc., Melville, New
298 York). The veterinary pathologist (DK) was blinded to the groups.

299 **Quantification of Hepatic Steatosis.** Oil red O-stained liver sections were imaged using
300 an oil immersion objective lens (100 \times), and the images digitally analyzed. Images were
301 digitally assessed for lipid area in untreated, and gadolinium-based contrast agent treated
302 livers using Nikon NIS-Elements BR software (Nikon Instruments Inc., Melville, New
303 York).

304 **Metabolomics.** Frozen liver samples were processed by Human Metabolome
305 Technologies (HMT, Japan), and capillary electrophoresis mass spectrometry (CE-MS)
306 was performed. Liver metabolites from gadolinium-treated groups that differed from
307 untreated liver using false discovery rate (FDR, Benjamini and Hochberg method), $^*P <$
308 0.05 , $^{**}P < 0.01$, $^{***}P < 0.001$, were selected for inclusion in this study.

309 **Electron Microscopy.** Renal cortices and liver were fixed in glutaraldehyde-containing
310 fixative, post-fixed with 1% tannic acid, embedded in epoxy resin, and sectioned at 200
311 nm. Semithin sections, without secondary staining, were placed onto carbon holey
312 support grids (Supplementary Fig. S15) for scanning transmission electron microscopy.
313 Conventional transmission electron microscopy was performed on 60-80 nm-thick
314 sections using the Hitachi HT7700 with AMT 16-megapixel digital camera operating at 80
315 kV. STEM implemented the use of a JEOL 2010F FEGSTEM 200 kV transmission
316 electron microscope (TEM), with Oxford Analytical AZTec X-ray energy-dispersive
317 spectroscopy system, equipped with an XMax 80N 80mm 2 silicon drift detector (UNM),
318 and the FEI Tecnai G(2) F30 S-Twin 300kV transmission electron microscope equipped
319 with Fischione Instruments HAADF STEM detectors (CINT). Human kidney sections (200

320 nm) were mounted on holey carbon grids and scanned with a JEOL NEOARM 200 kV
321 Aberration Corrected scanning transmission microscope (STEM) equipped with two
322 JEOL 100 mm² EDS detectors controlled by Oxford Instruments AZTec software.

323 **X-ray Energy Dispersive Spectroscopy (XEDS).** Multiple line scan profiles (JEOL
324 2010F FEGSTEM) were performed on regions of interest. Data were collected for
325 elements of interest; gadolinium (Gd), magnesium (Mg), phosphorus (P), calcium (Ca),
326 sulfur (S), oxygen (O), potassium (K), chlorine (Cl), and silicon (Si). Counts were
327 normalized (indexed) for visualization of XEDS line scan data; the location of the line scan
328 was matched to regions of interest. XEDS analysis was performed using a Tecnai F30
329 TEM operating at 300 keV with an EDAX XEDS detector. Secondary XEDS analysis of
330 the electron-dense material was performed using an EDAX Octane Elite T Super (70
331 mm²) detector on a monochromated ThermoFisher Scientific Titan transmission electron
332 microscope (300keV) and the JEOL NEOARM 200 kV Aberration Corrected STEM
333 (described above).

334 **Statistics.** XEDS line scan data for each element were indexed to their total area under
335 the curve. Multiple regression analysis included the index values for elements of
336 comparison, subcellular regions, and sex. Statistical analysis was conducted with RStudio
337 (2022.07.1)/R (version 4.0.3).

338

339 **Acknowledgements.** The research was funded by a Veterans Administration Merit
340 Award (I01 BX001958, BW), a National Institutes of Health R01 grant (DK-102085), and
341 Dialysis Clinic, Inc. This project was supported in part by the Dedicated Health Research
342 Funds of the University of New Mexico School of Medicine allocated to the Signature

343 Program in Cardiovascular and Metabolic Disease (CVMD), National Center for Research
344 Resources and the National Center for Advancing Translational Sciences of the National
345 Institutes of Health through Grant Number UL1TR001449 (CTSC/DCI Kidney Pilot Project
346 CTSC004-12 and CTSC/Environmental Health Signature Program Pilot Project
347 CTSC003-13) and partial support by the University of New Mexico (UNM) Brain and
348 Behavioral Health Institute (BBHI 2018-1008, 2020-21-002), and UNM School of
349 Medicine Research Allocation Committee (C-2459-RAC, New Mexico Medical Trust). BW
350 is an associate member of the Autophagy, Inflammation, and Metabolomics (AIM) Center
351 of Biomedical Research Excellence (NIH grant P20GM121176). AIM Center
352 Metabolomics Studies Vouchers supported some of the work herein. JD is supported by
353 an NIH Diversity Supplement (3UL1TR001449-08S1). Data were generated in the HSC-
354 Electron Microscopy Facility, which is supported by The University of New Mexico Health
355 Science. Scanning transmission electron microscopy was performed, in part, at the
356 Transmission Electron Microscopy Facility in the Department of Earth and Planetary
357 Sciences at the University of New Mexico, a facility supported by the State of New Mexico,
358 NSF, and NASA. The JEOL NEOARM in the Nanomaterials Characterization Facility at
359 the University of New Mexico was supported by NSF MRI grant DMR-1828731. This work
360 was performed, in part, at the Center for Integrated Nanotechnologies, an Office of
361 Science User Facility operated for the U.S. Department of Energy (DOE) Office of
362 Science (BW User Agreements 2019AU0120/#204-01_2014, 2021BC0021/#204-
363 01_2020). Los Alamos National Laboratory, an affirmative action equal opportunity
364 employer, is managed by Triad National Security, LLC for the U.S. Department of
365 Energy's NNSA, under contract 89233218CNA000001. Support for *in vivo* experiments

366 in this paper was provided by the University of New Mexico Cancer Center Animal Models
367 Shared Resource, funded by NCI 2P30 CA118100 (PI Willman, C.) "UNM Cancer Center
368 Support Grant". The research in this paper was supported by the Human Tissue
369 Repository and Tissue Analysis Shared Resource, funded by the Department of
370 Pathology, The University of New Mexico Comprehensive Cancer Center and NCI
371 2P30CA118100.

372

373 **Author Contributions.** B.W. devised the concept of the study. J.D., A.B., S.J., J.D.W.,
374 G.P.E., and B.W. contributed to research design. D.K. performed the pathological
375 analysis. J.D, T.H., A.J.B, J.W., and G.P.E. performed the electron microscopy studies.
376 A.M.A. performed the inductively-coupled plasma mass spectroscopy. J.D., A.J.B.,
377 J.W., and B.W. analyzed data. J.H.D. provided statistical consultation and editing. J.D.
378 and B. Wagner wrote the article. All authors approved the final version of the article.

379 **Competing interests.** All the authors declared have no competing interests.

380

381 **FIGURE LEGENDS**

382 **Fig. 1. Renal proximal tubular changes in MRI contrast agent-treated female mice.**

383 **a**, Renal proximal tubular cell of untreated female, showing a normal dense brush border
384 and histologically-normal round nuclei. Calibration bar = 10 μ m. **b**, Ruptured basement
385 membrane of a renal proximal tubular tubule in a MRI contrast agent-treated female.
386 Calibration bar = 10 μ m. **c**, Proximal tubules contained many lipid-laden vacuoles with
387 electron-dense borders, dysmorphic mitochondria, and increased cytoplasmic vacuoles
388 (many with lipid-like bodies and electron-dense precipitates). Calibration bar = 2 μ m. **d**,
389 Proximal tubule harboring a large, toxic mitochondrion (arrow), lipid-laden vacuoles (often
390 rimmed with electron-dense material), from a MRI contrast agent-treated female.
391 Calibration bar = 2 μ m. **e**, Spiculated, sea urchin-shaped electron densities adjacent to a
392 lipid droplet outside the brush border of a renal proximal tubule. Calibration bar = 1 μ m.
393 **f**, Renal proximal tubules with atypical nuclei, lipid-laden vacuoles (again, rimmed with
394 electron-dense material), from a MRI contrast agent-treated female. Calibration bar = 10
395 μ m. **g**, Magnification of brush border from (f). Note the large lipid droplets and electron-
396 dense nanostructures. Bar = 5 μ m. **h**, Magnified region from (g), highlighting electron-
397 densities surrounding lipid droplets and mitochondria. Calibration bar = 1 μ m. **i**, Increased
398 cytoplasmic vacuolation within the renal proximal tubule and bloated mitochondria from a
399 gadolinium-treated female. Calibration bar = 5 μ m. **j**, Mitochondriopathy (arrows),
400 characterized by matrix expansion and cristae loss in the renal proximal tubule from a
401 treated female. The cell also contains vacuolized lipid concomitant with electron-dense
402 nanoparticles. Calibration bar = 5 μ m. **k**, Unilamellar vesicles within renal epithelium from
403 gadolinium-treated animals frequently are rimmed with electron-dense material and

404 sometimes coincide with sea urchin-appearing, spiculated nanostructures. Calibration bar
405 = 2 μ m. **i**, Proximal tubule cells with large cytoplasmic vesicles containing lipid and
406 electron-dense precipitates. Also featured is an increase in interstitial cellularity from a
407 gadolinium-treated female. Calibration bar = 10 μ m. **m**, Magnification of the complex
408 cytoplasmic vacuole in (l). The arrows indicate mitochondriopathy. Calibration bar = 2.0
409 μ m. **n**, Magnification of a vesicle in (l) showing large lipid droplets and endocytosed
410 electron-dense nanoparticles. Calibration bar = 1 μ m. Hitachi H7700 TEM, AMT 16-
411 megapixel digital camera.

412

413 **Fig. 2. Spiculated electron-dense nanoparticles in the kidney arise from MRI**
414 **contrast agent treatment.** **a**, Transmission electron micrograph of electron-dense
415 spiculated material in a cytoplasmic vesicle, renal proximal tubule cell, from a MRI
416 contrast agent-treated female. The vacuole also contains unilamellar (lipid) vesicles.
417 Calibration bar = 500 nm. Hitachi H7700 TEM, AMT 16-megapixel digital camera. **b**,
418 Darkfield scanning transmission electron microscopic image of cytoplasmic vesicles
419 containing lipid droplets with electron-dense nanoparticles from a MRI contrast agent-
420 treated male. Calibration bar = 500 nm. FEI Tecnai G(2) S-Twin (300 kV) transmission
421 electron microscope equipped with an EDAX ECON X-ray detector. **c**, High magnification
422 of filamented, spiculated, electron-dense nanoparticles in the kidney from a MRI contrast
423 agent-treated male. Scanning transmission electron microscopy. Calibration bar = 50 nm.
424 JEOL 2010F FEGSTEM 200 kV transmission electron microscope with silicon drift
425 detector. **d**, Peri-nuclear unilamellar vesicle and spiculated nanoparticles in a renal
426 epithelial cell from a MRI contrast agent-treated female. Scanning transmission electron

427 microscopy. Calibration bar = 1 μ m. **e**, Magnification of the area in (d). Calibration bar =
428 200 nm. **f**, Magnification of electron-dense nanoparticles in (d). Scanning transmission
429 electron microscopy. Calibration bar = 200 nm. **g**, Dark field scanning transmission
430 electron microscopy image of kidney cortex from a MRI contrast agent-treated male.
431 Multiple intracellular unilamellar vesicles, electron-dense material, and mitochondria are
432 visible. Calibration bar = 2 μ m. **h**, Magnification of the region from (g) demonstrates
433 rounded mitochondria (arrows) and lipid bodies rimmed with electron-dense material.
434 Calibration bar = 500 nm. **i**, A mitochondrion in the renal cortex with electron-dense
435 inclusion, from a MRI contrast agent-treated male. Scanning transmission electron
436 microscopy. Calibration bar = 250 nm. (d-i), FEI Tecnai G(2) S-Twin (300 kV)
437 transmission electron microscope equipped with an EDAX ECON X-ray detector.

438

439 **Fig. 3. Energy-dispersive X-ray spectroscopy (XEDS) line scan profiles through**
440 **sub-cellular regions.** Kidney samples were obtained from a MRI contrast agent-treated
441 male mouse. **a**, (Left) EDS line scan through intracellular lipid droplet avoiding electron-
442 dense precipitates (arrows). XEDS line scan data (X-ray intensity in counts per second
443 vs distance) for phosphorus (P) corresponding to the non-lipid and unilamellar vesicular
444 regions. (Middle panel) Area on the left rotated to illustrate an XEDS line scan profile
445 (arrow), through precipitates (arrowheads), and unilamellar vesicle. The nanoparticles
446 exhibited high amounts gadolinium (Gd) and phosphorus (P). (Right) XEDS line scan data
447 through a single electron-dense nanoparticle and unilamellar vesicle. Electron-dense
448 precipitates had high amounts of gadolinium and phosphorus. Bars = 2.5 μ m. **b**, (Left)
449 XEDS line scan data through electron-dense nanoparticles (arrows), and unilamellar

450 vesicle from a MRI contrast-agent-treated male, and corresponding amounts of
451 gadolinium and phosphorus. (Right) XEDS line scan (grey arrow) through the cytoplasm,
452 vacuole membrane, electron-dense precipitate, and unilamellar vesicle. Bars = 0.1 μ m.
453 Corresponding line scan data for elements of interest from the cytoplasm, nanoparticles,
454 and unilamellar vesicle. JEOL 2010F FEGSTEM 200 kV transmission electron
455 microscope, with Oxford Analytical AZTec XEDS system, equipped with XMax 80N
456 80mm² silicon drift detector.

457

458 **Fig. 4. Elemental composition of nanoparticles differs from other subcellular**
459 **regions.** Renal cortex from a MRI contrast-agent treated mouse was analyzed by
460 darkfield STEM. **a**, (Top panel) Clusters of electron-dense precipitates identified in an
461 epithelial cell from kidney cortex of a MRI contrast agent-treated male mouse. The
462 numerous mitochondria and ellipsoid nucleus suggest a proximal tubular cell. Bar = 0.5
463 μ m. (Middle panel) XEDS line scan through several spiculated electron-dense
464 nanoparticles and mitochondrion. Bar = 50 nm. The XEDS line scan data (X-ray intensity
465 in counts per second vs distance) shows high levels of gadolinium and phosphorus
466 corresponding with the line scan through the nanoparticles. (Lower panel) Mitochondria
467 and cytoplasm do not show elevations in gadolinium. An XEDS line scan through a
468 mitochondrion and cytoplasm (avoiding electron-dense precipitates). Calibration bar = 0.2
469 μ m, JEOL 2010F FEGSTEM 200 kV transmission electron microscope, with Oxford
470 Analytical AZTec XEDS system, equipped with XMax 80N 80mm² silicon drift detector. **b**,
471 Ridgeline plots for calcium (Ca), chlorine (Cl), chromium (Cr), gadolinium (Gd),
472 magnesium (Mg), oxygen (O), phosphorus (P), and silicon (Si) in intracellular precipitates,

473 unilamellar bodies/lipids, mitochondria, and other subcellular regions. The XEDS signals
474 were indexed to the total areas under each curve.

475

476 **Fig. 5. MRI contrast agent-induced nanoparticles are gadolinium rich.** Renal cortex
477 was analyzed from a MRI contrast agent-treated mouse. **a**, Intracellular electron-dense
478 spiculated nanoparticles pepper renal tubular cells (arrows). Bar = 2 μ m. **b**, Magnified
479 region from (a) showing an intracellular cluster of electron-dense, sea urchin-shaped
480 precipitate. Bar = 200 nm. **c**, XEDS data of the precipitate, gadolinium L energy range
481 ($L_{III}M_I$, 5.362 eV; $L_{III}M_V$, 6.058 eV; and L_IM_{II} , 6.690). The L electron shell energies are far
482 from those of physiologic elements, lending these signals to be specific for
483 gadolinium[18]. Mean \pm SE, n = 4 individual precipitates. **d**, 2-dimensional (2D) XEDS
484 map for gadolinium (Gd), phosphorus (P), oxygen (O), carbon (C), silicon (Si), and
485 osmium (Os) of the electron-dense nanostructure featured in panel (b). Tecnai F30 300kv
486 transmission electron microscope equipped with an EDAX detector.

487

488 **Fig. 6. Intracellular gadolinium-rich nanoparticles in human kidneys because of**
489 **routine diagnostic care.** **a**, Electron-dense nanoparticles in a kidney from a patient with
490 a history of magnetic resonance imaging contrast agent exposure. This kidney was
491 procured 17 days after magnetic resonance imaging contrast agent (20 mL). TEM, Hitachi
492 HT7700. **b**, The electron-dense nanoparticles are gadolinium rich. Embedded kidney from
493 (a) (200 μ m sections). XEDS line scanning was performed through an electron-dense
494 nanoparticle. XEDS data revealed gadolinium, oxygen, and phosphorus. JEOL NEOARM

495 200 kV aberration-corrected scanning transmission electron microscope with dual EDS
496 x-ray analysis system.

497

498 **Fig. 7. Routine use of MRI contrast agent resulted in intracellular gadolinium-rich**
499 **nanoparticles. a,** Electron-dense intracellular precipitates (arrows) in human kidney.
500 Hitachi H7700 TEM, AMT 16-megapixel digital camera. Calibration bars = 5 μ m. **b,** (Left)
501 Darkfield scanning transmission electron micrograph of an electron-dense precipitate
502 from the kidney specimen depicted in (a). (Right) 2D XEDS map of the nanoparticle in
503 (b). **c,** 2D XEDS mapping for gadolinium, calcium, phosphorus, sulfur, chlorine, and iron
504 of the nanoparticle shown in (b). **d,** XEDS line scan through the particle shown in (b).
505 JEOL NEOARM 200 kV aberration-corrected scanning transmission electron microscope
506 with dual EDS x-ray analysis system.

507

508 **Fig. 8. STEM XEDS line scanning through a nanoparticle found in human kidney. a,**
509 Dark-field scanning transmission electron microscopy image of a nanoparticle found in
510 human kidney. Insets depict 2D XEDS mapping of the precipitate for gadolinium, oxygen,
511 and phosphorus. Calibration bars = 50 nm. **b,** XEDS line scan data through the
512 nanoparticle in A showing background corrected X-ray counts as a function of distance
513 along the line scan. JEOL NEOARM (JEM ARM200F), probe aberration-corrected STEM
514 with dual EDS X-ray analysis system.

515

516

517

518 **DATA AVAILABILITY**

519 The datasets generated and analyzed during the current study are available in the Kidney

520 Institute of New Mexico repository, (<https://digitalrepository.unm.edu/kinm/>).

521

522

523 **REFERENCES**

524 1. McDonald, R. J., Weinreb, J. C., Davenport, M. S. Symptoms Associated with
525 Gadolinium Exposure (SAGE): A Suggested Term. *Radiology*. 2022;302(2):270-273.
526 Epub 2021/11/17. doi: 10.1148/radiol.2021211349. PubMed PMID: 34783590.

527

528 2. Semelka, R. C., Commander, C. W., Jay, M., Burke, L. M., Ramalho, M. Presumed
529 Gadolinium Toxicity in Subjects With Normal Renal Function: A Report of 4 Cases. *Invest*
530 *Radiol*. 2016;51(10):661-665. doi: 10.1097/RLI.0000000000000318. PubMed PMID:
531 27548344.

532

533 3. Maecker, H. T., Siebert, J. C., Rosenberg-Hasson, Y., Koran, L. M., Ramalho, M.,
534 Semelka, R. C. Acute Chelation Therapy-Associated Changes in Urine Gadolinium, Self-
535 reported Flare Severity, and Serum Cytokines in Gadolinium Deposition Disease. *Invest*
536 *Radiol*. 2021. Epub 2021/01/16. doi: 10.1097/RLI.0000000000000752. PubMed PMID:
537 33449576.

538

539 4. Maecker, H. T., Wang, W., Rosenberg-Hasson, Y., Semelka, R. C., Hickey, J.,
540 Koran, L. M. An initial investigation of serum cytokine levels in patients with gadolinium
541 retention. *Radiol Bras*. 2020;53(5):306-313. Epub 2020/10/20. doi: 10.1590/0100-
542 3984.2019.0075. PubMed PMID: 33071374; PMCID: PMC7545733.

543

544 5. Leyba, K., Wagner, B. Gadolinium-based contrast agents: why nephrologists need
545 to be concerned. *Curr Opin Nephrol Hypertens*. 2019;28(2):154-162. Epub 2018/12/12.
546 doi: 10.1097/MNH.0000000000000475. PubMed PMID: 30531473.

547

548 6. Alwasiyah, D., Murphy, C., Jannetto, P., Hogg, M., Beuhler, M. C. Urinary
549 Gadolinium Levels After Contrast-Enhanced MRI in Individuals with Normal Renal
550 Function: a Pilot Study. *J Med Toxicol*. 2019;15(2):121-127. Epub 2018/12/14. doi:
551 10.1007/s13181-018-0693-1. PubMed PMID: 30543028; PMCID: PMC6441052.

552

553 7. DeBevits, J. J. t., Munbodh, R., Bageac, D., Wu, R., DiCamillo, P. A., Hu, C., Wang,
554 L., Naismith, R. T., Karimeddini, D., Dhib-Jalbut, S., Redko, S., Cook, S. D., Cadavid, D.,
555 Wolansky, L. Gray Matter Nucleus Hyperintensity After Monthly Triple-Dose
556 Gadopentetate Dimegumine With Long-term Magnetic Resonance Imaging. *Invest*
557 *Radiol*. 2020;55(10):629-635. Epub 2020/09/09. doi: 10.1097/RLI.0000000000000663.
558 PubMed PMID: 32898355.

559

560 8. Kanda, T., Fukusato, T., Matsuda, M., Toyoda, K., Oba, H., Kotoku, J., Haruyama,
561 T., Kitajima, K., Furui, S. Gadolinium-based Contrast Agent Accumulates in the Brain
562 Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain
563 Specimens with Inductively Coupled Plasma Mass Spectroscopy. *Radiology*.
564 2015;276(1):228-232. doi: 10.1148/radiol.2015142690. PubMed PMID: 25942417.

565

566 9. Roberts, D. R., Lindhorst, S. M., Welsh, C. T., Maravilla, K. R., Herring, M. N.,
567 Braun, K. A., Thiers, B. H., Davis, W. C. High Levels of Gadolinium Deposition in the Skin

568 of a Patient With Normal Renal Function. *Invest Radiol.* 2016;**51**(5):280-289. doi:
569 10.1097/RLI.0000000000000266. PubMed PMID: 26953564.

570

571 10. Stanescu, A. L., Shaw, D. W., Murata, N., Murata, K., Rutledge, J. C., Maloney,
572 E., Maravilla, K. R. Brain tissue gadolinium retention in pediatric patients after contrast-
573 enhanced magnetic resonance exams: pathological confirmation. *Pediatr Radiol.*
574 2020;**50**(3):388-396. Epub 2020/01/29. doi: 10.1007/s00247-019-04535-w. PubMed
575 PMID: 31989188.

576

577 11. McDonald, R. J., McDonald, J. S., Kallmes, D. F., Jentoft, M. E., Paolini, M. A.,
578 Murray, D. L., Williamson, E. E., Eckel, L. J. Gadolinium Deposition in Human Brain
579 Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial
580 Abnormalities. *Radiology.* 2017;161595. Epub 2017/06/28. doi:
581 10.1148/radiol.2017161595. PubMed PMID: 28653860.

582

583 12. Williams, S., Grimm, H. Gadolinium Toxicity: Shedding light on the effects of
584 retained gadolinium from contrast MRI 2017 [cited 2017 1/5/2022]. Available from:
585 <https://gadoliniumtoxicity.com>.

586

587 13. Do, C., DeAguero, J., Brearley, A., Trejo, X., Howard, T., Escobar, G. P., Wagner,
588 B. Gadolinium-Based Contrast Agent Use, Their Safety, and Practice Evolution.
589 *Kidney360.* 2020;**1**(6):561-568. Epub 2020/06/01. doi: 10.34067/kid.0000272019.
590 PubMed PMID: 34423308; PMCID: PMC8378745.

591

592 14. Do, C., Ford, B., Lee, D. Y., Tan, C., Escobar, P., Wagner, B. Gadolinium-based
593 contrast agents: Stimulators of myeloid-induced renal fibrosis and major metabolic
594 disruptors. *Toxicol Appl Pharmacol.* 2019;**375**:32-45. Epub 2019/05/15. doi:
595 10.1016/j.taap.2019.05.009. PubMed PMID: 31082427, NIHMSID: 1529550.

596

597 15. Do, C., Drel, V., Tan, C., Lee, D., Wagner, B. Nephrogenic Systemic Fibrosis Is
598 Mediated by Myeloid C-C Chemokine Receptor 2. *J Invest Dermatol.* 2019;**139**(10):2134-
599 2143 e2132. Epub 2019/04/13. doi: 10.1016/j.jid.2019.03.1145. PubMed PMID:
600 30978353; PMCID: PMC6756957.

601

602 16. Drel, V. R., Tan, C., Barnes, J. L., Gorin, Y., Lee, D. Y., Wagner, B. Centrality of
603 bone marrow in the severity of gadolinium-based contrast-induced systemic fibrosis.
604 *FASEB J.* 2016;**30**(9):3026-3038. doi: 10.1096/fj.201500188R. PubMed PMID:
605 27221979; PMCID: PMC5001515.

606

607 17. Wagner, B., Drel, V., Gorin, Y. Pathophysiology of gadolinium-associated systemic
608 fibrosis. *Am J Physiol Renal Physiol.* 2016;**311**(1):F1-F11. doi:
609 10.1152/ajprenal.00166.2016. PubMed PMID: 27147669; PMCID: PMC4967166.

610

611 18. Do, C., Barnes, J. L., Tan, C., Wagner, B. Type of MRI contrast, tissue gadolinium,
612 and fibrosis. *Am J Physiol Renal Physiol.* 2014;**307**(7):F844-855. doi:
613 10.1152/ajprenal.00379.2014. PubMed PMID: 25100280; PMCID: 4250231.

614
615 19. Wagner, B., Tan, C., Barnes, J. L., Ahuja, S., Davis, T. L., Gorin, Y., Jimenez, F.
616 Nephrogenic systemic fibrosis: evidence for oxidative stress and bone marrow-derived
617 fibrocytes in skin, liver, and heart lesions using a 5/6 nephrectomy rodent model. *Am J*
618 *Pathol.* 2012;181(6):1941-1952. Epub 2012/10/09. doi: 10.1016/j.ajpath.2012.08.026.
619 PubMed PMID: 23041060.

620
621 20. Bruno, F., DeAguero, J., Do, C., Lee, D. Y., Tan, C., Escobar, G. P., Wagner, B.
622 Overlapping roles of NADPH oxidase 4 for diabetic and gadolinium-based contrast agent-
623 induced systemic fibrosis. *Am J Physiol Renal Physiol.* 2021;320(4):F617-F627. Epub
624 2021/02/23. doi: 10.1152/ajprenal.00456.2020. PubMed PMID: 33615889; PMCID:
625 PMC8083972.

626
627 21. Wagner, B., Tan, C., Barnes, J. L., Ahuja, S. S., Davis, T. L., Gorin, Y., Jimenez, F.
628 Nephrogenic systemic fibrosis: Evidence for bone marrow-derived fibrocytes in skin,
629 liver, and heart lesions using a 5/6 nephrectomy rodent model. *Am J Pathol.*
630 2012;181(6):1941-1952.

631
632 22. DeBevits, J. J., Reshma, M., Bageac, D., Wu, R., DiCamillo, P. A., Hu, C., Wang,
633 L., Naismith, R. T., Karimeddini, D., Dhib-Jalbut, S., Redko, S., Cook, S. D., Cadavid, D.,
634 Wolansky, L. Gray Matter Nucleus Hyperintensity After Monthly Triple-Dose
635 Gadopentetate Dimeglumine With Long-term Magnetic Resonance Imaging (in press).
636 *Invest Radiol.* 2020. doi: doi: 10.1097/RLI.0000000000000663.

637
638 23. Davies, J., Marino, M., Smith, A. P. L., Crowder, J. M., Larsen, M., Lowery, L.,
639 Castle, J., Hibberd, M. G., Evans, P. M. Repeat and single dose administration of
640 gadodiamide to rats to investigate concentration and location of gadolinium and the cell
641 ultrastructure. *Sci Rep.* 2021;11(1):13950. Epub 2021/07/08. doi: 10.1038/s41598-021-
642 93147-2. PubMed PMID: 34230532; PMCID: PMC8260729.

643
644 24. Li, R., Ji, Z., Chang, C. H., Dunphy, D. R., Cai, X., Meng, H., Zhang, H., Sun, B.,
645 Wang, X., Dong, J., Lin, S., Wang, M., Liao, Y. P., Brinker, C. J., Nel, A., Xia, T. Surface
646 interactions with compartmentalized cellular phosphates explain rare earth oxide
647 nanoparticle hazard and provide opportunities for safer design. *ACS nano.*
648 2014;8(2):1771-1783. doi: 10.1021/nn406166n. PubMed PMID: 24417322; PMCID:
649 PMC3988685.

650
651 25. Sherry, A. D., Caravan, P., Lenkinski, R. E. Primer on gadolinium chemistry. *J*
652 *Magn Reson Imaging.* 2009;30(6):1240-1248. Epub 2009/11/26. doi: 10.1002/jmri.21966.
653 PubMed PMID: 19938036; PMCID: 2853020.

654
655 26. Spencer, A. J., Wilson, S. A., Batchelor, J., Reid, A., Rees, J., Harpur, E.
656 Gadolinium chloride toxicity in the rat. *Toxicologic pathology.* 1997;25(3):245-255. Epub
657 1997/05/01. PubMed PMID: 9210255.

658

659 27. Riviello, E. D., Wang, K. C., Hochman, M. E., Sariban, A., Da Rocha, R. C.,
660 Dogaru, G., Christopher, K. Vacuolization of tubules in gadolinium-associated acute renal
661 failure. *Rev Med Chir Soc Med Nat Iasi*. 2009;113(1):108-115. Epub 2009/01/01. PubMed
662 PMID: 21491811.

663

664 28. Rim, K. T., Koo, K. H., Park, J. S. Toxicological evaluations of rare earths and their
665 health impacts to workers: a literature review. *Saf Health Work*. 2013;4(1):12-26. Epub
666 2013/03/22. doi: 10.5491/SHAW.2013.4.1.12. PubMed PMID: 23516020; PMCID:
667 PMC3601293.

668

669 29. Bruno, F., DeAguero, J., Do, C., Lee, D. Y., Tan, C., Escobar, G. P., Wagner, B.
670 Overlapping roles of NAPDH oxidase 4 (Nox4) for diabetic and gadolinium-based contrast
671 agent-induced systemic fibrosis [Digital repository]. Digital Repository: University of New
672 Mexico; 2020 [cited 2020 8/26/2020].

673

674