

2 Draft version January 22, 2024

3 Typeset using L^AT_EX preprint style in AASTeX61

4 INTENSE WHISTLER-MODE WAVES AT FORESHOCK TRANSIENTS: CHARACTERISTICS
5 AND REGIMES OF WAVE-PARTICLE RESONANT INTERACTION

6 Xiaofei Shi,¹ Terry Liu,¹ Anton Artemyev,^{1, 2} Vassilis Angelopoulos,¹ Xiao-Jia Zhang,^{1, 3}
7 and Drew L. Turner⁴

8 ¹Department of Earth, Planetary, and Space Sciences and Institute of Geophysics and Planetary Physics,
9 University of California, Los Angeles, CA, USA

10 ²Space Research Institute of the Russian Academy of Sciences, Moscow, 117997, Russia

11 ³Department of Physics, University of Texas at Dallas, Richardson, TX, USA

12 ⁴The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA

13 (Received January 22, 2024)

14 Submitted to ApJ

15 ABSTRACT

16 Thermalization and heating of plasma flows at shocks result in unstable charged-particle distri-¹⁷
17 butions which generate a wide range of electromagnetic waves. These waves, in turn, can further ¹⁸
18 accelerate and scatter energetic particles. Thus, the properties of the waves and their implication for ¹⁹
19 wave-particle interactions are critically important for modeling energetic particle dynamics in shock ²⁰
20 environments. Whistler-mode waves, excited by the electron heat flux or a temperature anisotropy, ²¹
21 arise naturally near shocks and foreshock transients. As a result, they can often interact with supra-²²
22 thermal electrons. The low background magnetic field typical at the core of such transients and the ²³
23 large wave amplitudes may cause such interactions to enter the nonlinear regime. In this study, we ²⁴
24 present a statistical characterization of whistler-mode waves at foreshock transients around Earth's ²⁵
25 bow shock, as they are observed under a wide range of upstream conditions. We find that a significant ²⁶
26 portion of them are sufficiently intense and coherent (narrowband) to warrant nonlinear treatment. ²⁷
27 Copious observations of background magnetic field gradients and intense whistler wave amplitudes ²⁸
28 suggest that phase trapping, a very effective mechanism for electron acceleration in inhomogeneous ²⁹
29 plasmas, may be the cause. We discuss the implications of our findings for electron acceleration in ³⁰
30 planetary and astrophysical shock environments.

1. INTRODUCTION

31 Collisionless shocks are ubiquitous throughout the universe. The plasma reflected by a collisionless
 32 shock can stream far away from it along the upstream magnetic field lines. When the field lines are 34
 33 quasi-parallel to the shock normal, a foreshock can form (e.g., Treumann 2009). This is a highly 35
 34 dynamic region just upstream of the shock where reflected particles excite many types of waves and 36
 35 transient structures. In particular observations at Earth's foreshock (Eastwood et al. 2005; Gosling 37
 36 et al. 1982) have revealed that the foreshock ions can interact with both the solar wind plasma 38
 37 and discontinuities transported by the wind. These interactions result in many types of foreshock 39
 38 transients, including: foreshock bubbles (FBs)(Omidi et al. 2010, 2020; Turner et al. 2020), hot flow 40
 39 anomalies (HFAs)(Schwartz et al. 2018; Lin 1997, 2002; Omidi & Sibeck 2007), and foreshock cavities 41
 40 (Turner et al. 2013; Liu et al. 2015; Schwartz et al. 1985; Zhang et al. 2022).

42 Shock acceleration is one of the main sources of energetic electrons in astrophysical systems but in 43
 43 order to operate efficiently it requires seed electrons with energies above the injection level (having 44
 44 Larmor radii larger than the shock transition width). However, the pre-acceleration mechanism 45
 45 of electrons to seed-electron energies is still an open question (e.g., Treumann 2009). Previous
 46 observations suggest that foreshock transients may be important for pre-accelerating electrons, and 47
 47 can therefore contribute significantly to shock acceleration (Wilson et al. 2016). They can do so, e.g., 48
 48 by capturing ambient foreshock electrons and further energizing them through betatron acceleration 49
 49 (Liu et al. 2019). As a foreshock transient boundary convects earthward (towards the bow shock), 50
 50 particles inside the core could gain additional energy through Fermi acceleration (Liu et al. 2017b; 51
 51 Turner et al. 2018; Omidi et al. 2021). In fact, a recent statistical study showed that electrons 52
 52 are almost always accelerated inside the core region of foreshock transients (Liu et al. 2017a). For 53
 53 these reasons, it is important to further explore the electron acceleration mechanisms in foreshock 54
 54 transients.

55 Around the bow shock and inside foreshock transients there are many field fluctuations and waves
 56 that could either directly accelerate electrons or modulate other acceleration processes (e.g., Fermi 57
 57 and betatron acceleration) (e.g., Oka et al. 2019; Lichko & Egedal 2020). One of the most effective 58
 58 wave modes for electron scattering and acceleration is electromagnetic whistler-mode waves (Gary 59
 59 2005; Gurnett & Bhattacharjee 2005). These can be generated by a finite heat flux (Gary & 60
 60 Feldman 1977) or by the temperature anisotropy of electron distributions (Sagdeev & 61
 61 Shafranov 1961; Kennel 1966). There is good evidence that both of these types of anisotropy 62
 62 can arise when solar wind electrons interact with the bow shock and foreshock transients (e.g., Vasko 63
 63 et al. 2020; Page et al. 2021, and references therein). The importance of whistler-mode waves for 64
 64 electron scattering and acceleration at the bow shock has been extensively investigated and discussed 65
 65 (Hull et al. 2012; Oka et al. 2017, 2019; Amano et al. 2020). The role of these waves on electron 66
 66 energization around foreshock transients, however, remains to be fully understood. Although previous 67
 67 case studies have shown that whistler waves exist in foreshock transient environments (Wilson et al. 68
 68 2013a) and may effectively scatter and accelerate electrons (Shi et al. 2020; Artemyev et al. 2022), 69
 69 their occurrence rate, spatial distribution, and wave properties (propagation, polarization, intensity) 70
 70 have not yet been studied comprehensively, for a range of events and plasma conditions. It is
 71 clear that a statistical study aimed at determining the properties and the potential contribution of 72
 72 whistler-mode waves for electron acceleration on foreshock environments is timely and important.

73 The desired statistical study of wave properties would ideally distinguish the dominant regime
 74 of wave-particle resonant interactions. Low amplitude, broad-band waves scatter electrons in the 75 diffusive regime of resonant interactions (Kennel 1969; Lyons et al. 1972; Veltri & Zimbardo 1993; 76 Amano et al. 2020), commonly observed in the solar wind (Tong et al. 2019a; Verscharen et al. 2022). 77 Sufficiently intense, narrow band (coherent) waves may resonate with electrons in the nonlinear 78 regime of resonant interactions (Shklyar & Matsumoto 2009; Albert et al. 2013; Artemyev et al. 79 2018). Nonlinear resonant interactions include the phase trapping mechanism (O'Neil 1965; Nunn 80 1971), which is quite effective for electron acceleration in Earth's outer radiation belt (Chernikov 81 et al. 1992; Ucer & Shapiro 2001; Kuramitsu & Krasnoselskikh 2005). Once the regime of nonlinear 82 resonant interactions with electrons can be statistically established for the whistler-mode waves of 83 interest at foreshock transients, then their investigation can proceed using the formalism developed 84 (and statistical studies conducted) in a similarly inhomogeneous magnetic field environment, Earth's 85 inner magnetosphere (Karpman et al. 1974; Inan & Bell 1977; Solovev & Shkliar 1986; Albert 1993). 86

We focus on whistler-mode waves observed around HFAs and FBs, the types of foreshock transients 87 with the most significant plasma and field fluctuations. Whistler-mode waves occur regularly within 88 and around them. Such transients occur at least ten times per day, particularly during conditions 89 of above-average solar wind speed (Lu et al. 2022; Chu et al. 2017). Both transient types have a 90 hot, tenuous core associated with strong plasma deflection. HFAs are surrounded by compressional 91 boundaries on either side, while FBs have an upstream compressional boundary bounded by their 92 own mini-shock. They have a scale of one to several Earth radii (R_E). Figure 1 (a) shows a sketch 93 of an HFA that forms in response to an approaching solar wind discontinuity. The hot plasma 94 generated in the core expands and the large-gyroradius hot foreshock ions at its edge form the 95 core compressional boundaries at its two sides. Whistler-mode waves are observed in the core and 96 compressional boundaries. The HFA moves (slides) anti-sunward along the bow shock (downward in 97 the figure); the dashed blue line shows the spacecraft trajectory relative to the HFA.

98 Because foreshock transients occur frequently, at greater occurrence rates for increasing solar wind
 99 Mach number, and with intense whistler-mode waves within them, such structures are an important
 100 ingredient of shock environments at Earth and by inference in all astrophysical systems which are
 101 expected to harbor high-Mach-number, quasi-parallel shocks. The effect of foreshock transients on
 102 electron pre-acceleration, particularly the large amplitude whistlers within, has yet to be explored.
 103 This study will statistically assess the potential of whistler waves for electron acceleration and scat-
 104 tering in foreshock transients. Comprehensive (multi-instrument, multi-point), in-situ measurements
 105 in Earth's bow-shock allow us to examine these waves in great depth and draw conclusions for their
 106 astrophysical counterparts of similar upstream Mach number, plasma beta, and (duly normalized)
 107 spatial extent conditions.

108 2. DATA AND METHODOLOGY

109 We used data from the Magnetospheric Multiscale (MMS) mission which consists of four identical 110 satellites in a tetrahedral configuration (Burch et al. 2016). The low frequency magnetic field is 111 measured by the fluxgate magnetometer (FGM) (Russell et al. 2016) and the high frequency by the 112 search coil magnetometer (SCM)(Le Contel et al. 2016) at a rate of 128 S/s and 8192 S/s, respectively, 113 while in burst mode (as is the case here). The fast plasma investigation (FPI)(Pollock et al. 2016) 114 instrument provides ion and electron measurements at a resolution of 150ms and 30ms, respectively 115 (also in burst mode).

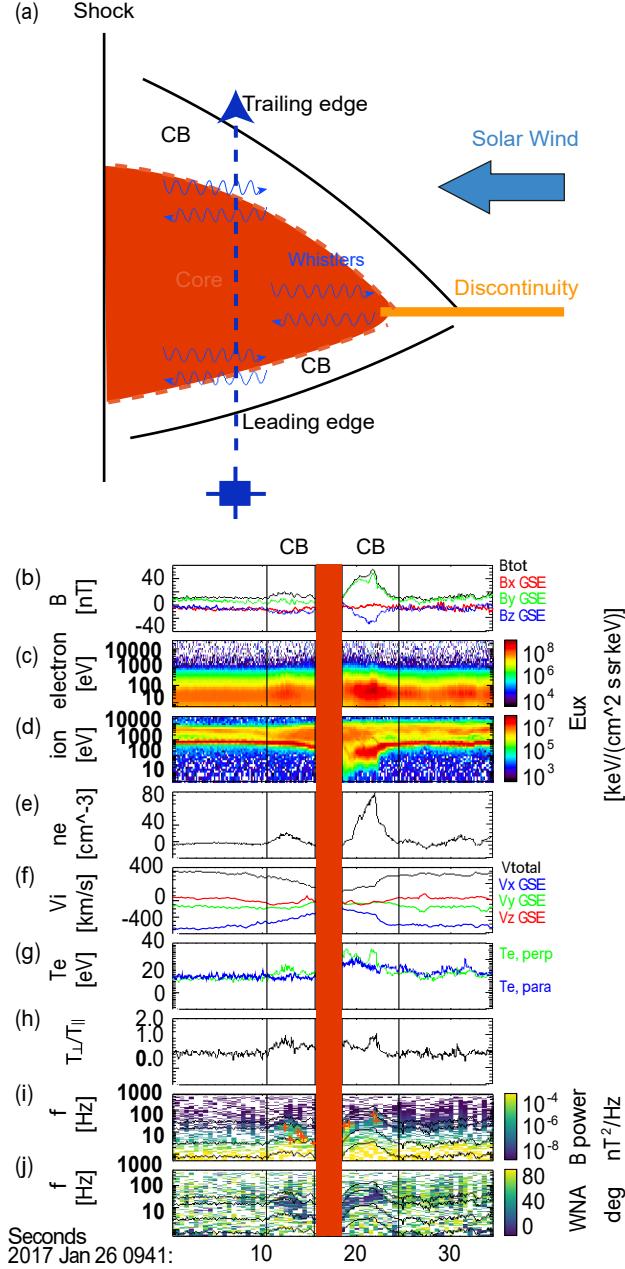


Figure 1. (a) Sketch of an HFA cross-section in the HFA reference frame, at an instant in time as it moves along the shock, past a spacecraft (down). The HFA's hot plasma core is flanked by compressional boundaries (CB). Whistler waves are observed around the edge of the core. The blue dashed line shows the spacecraft trajectory (up) relative to the HFA in this frame. (b) Magnetic field, (c,d) Energy flux of electrons and ions, (e) Electron density, (f) Plasma velocity, (g) Electron perpendicular temperature and parallel temperature, (h) Electron temperature anisotropy ($T_{e\parallel}/T_{e\perp}$), (i) Magnetic field power spectral density (red crosses depict mean frequency determined as discussed in the text), and (j) Wave normal angle. The core of the HFA is demarcated by the orange shaded region.

We identified 208 HFA and FB events in the MMS data collected between 2017 to 2022. They were selected using the following criteria: (1) they have a hot core with one or two compressional boundaries; (2) inside the core, density, velocity, and field strength are reduced, but temperature is increased; (3) compressional boundaries are accompanied by a sharp increase in magnetic field strength and density. Events that are overly complex and lack a clear, singular transient structure are excluded (e.g., multiple HFAs, whose boundaries are unclear). Our criteria, therefore, favor isolated events. Figure 1(b-f) represents an observation of a typical HFA with two compressional boundaries. Quasi-parallel propagating whistler waves, evidenced by an increase in wave power are observed within the compressional boundaries and on the edge of the core (Figures 1i-j). The observed whistler waves coincide with increases in the electron perpendicular temperature anisotropy (Figures 1 (g) and (h)).

We use the power spectral density (PSD) to determine the mean frequency ($\langle f \rangle$) and the frequency width (Δf) of whistler waves:

$$\langle f \rangle = \frac{\int_{f_{low}}^{R} f \cdot PSD_w(f) df}{\int_{f_{low}}^{R} PSD_w(f) df} \quad (1)$$

$$(\Delta f)^2 = \frac{\int_{f_{low}}^{R} PSD_w(f - \langle f \rangle)^2 df}{\int_{f_{low}}^{R} PSD_w(f) df} \quad (2)$$

where $PSD_w(f) = PSD(f) - PSD_b(f)$, and $f_{low} = \max\{4\text{Hz}, f_{lh}\}$. PSD is averaged over every 0.5s and PSD_b is the background power spectrum (partly due to instrument noise), subtracted here in order to detrend the spectrograms and better reveal the waves. This background spectrum was obtained at each frequency by averaging all times when the PSD fell to $< 30\%$ of its average in each event. We used the 0.5-s (corresponding to 2 Hz) time interval for PSD , and therefore, we used 4 Hz ($2 \times 2\text{Hz}$) as the lower frequency limit. Using the wave frequency $\langle f \rangle$ and the frequency width Δf , we compute the average wave amplitude ($\langle B_w \rangle$) and maximum wave amplitude (B_w) from band-pass filter data in each 0.5s wave interval.

Using timing and MVA (minimum variance analysis, see Sonnerup & Cahill (1968); Sonnerup & Scheible (2000)) methods to determine the magnitude and direction of the wave vector (k), we then calculated the wave normal angle and the wave frequency in the plasma frame by correcting for its Doppler-shift relative to the spacecraft frame, where we measured it (note that all wave properties have been averaged at each wave measurement which is defined as the consecutive series of time points when $\int_{f_{low}}^{R} PSD_w(f) df > 0$). MMS provides four-point observations, from close separations. As the plasma frequency (f_{pe}) in foreshock transients is usually around 10^4Hz , the wavelength ($\lambda = 2\pi/k \approx 10\text{s km}$, with $k = \frac{2\pi f_{pe}}{c} \frac{p}{f/(f_{ce} \cos \theta_{kb} - f) - f_{pe}/c}$) is comparable to the average separation between the MMS satellites. Therefore, the timing method can be applied to directly obtain the value and direction of \mathbf{k} (Paschmann & Schwartz 2000a; Turner et al. 2017). For a coherent wave signal, \mathbf{k} obeys the following linear equations:

$$\begin{matrix} \mathbf{R}_{12x} & \mathbf{R}_{12y} & \mathbf{R}_{12z} & k_x & \Delta\phi_{12} \\ \mathbf{R}_{13x} & \mathbf{R}_{13y} & \mathbf{R}_{13z} & k_y & \Delta\phi_{13} \\ \mathbf{R}_{14x} & \mathbf{R}_{14y} & \mathbf{R}_{14z} & k_z & \Delta\phi_{14} \end{matrix} = \begin{matrix} \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} \end{matrix} \quad (3)$$

148 where R is the separation between two satellites; $\Delta\phi = 2\pi\delta t/T$ is the phase difference between two
 149 satellites, where δt is the lag time corresponding to the peak cross-correlation and T is the observed 150
 period of the wave. The peak cross-correlations between the wave fields observed by four satellites 151
 allow us to assess the accuracy of the results. We applied the timing method at each wave 152
 measurement. For the measurements with cross-correlation > 0.8 we then calculated 153
 the mean wave frequency in the plasma frame: $2\pi f = 2\pi\langle f \rangle - k \cdot \vec{v}$, where \vec{v} is 154
 the plasma (ion) velocity. If the cross-correlation is smaller than 0.8, we applied an 155
 alternative method (MVA) to calculate the wave vector.

156 While the timing method, used above, can directly measure the magnitude and absolute direction 157
 of k , it requires coherent four-point measurements of the wave fields. For this reason, we also 158
 used the one-point MVA technique to estimate the orientation of k when the timing method is 159
 not applicable. The MVA method calculates the principal variance directions and their associated 160
 eigenvalues (Paschmann & Schwartz 2000a). The direction of k is the minimum variance direction. To 161
 ensure that the minimum variance direction is well determined and the waves are circularly polarized, 162
 we only kept the points with $\lambda_{\text{int}}/\lambda_{\text{min}} > 10$ (referring to the ratio of intermediate to minimum 163
 eigenvalues). We then used the wave dispersion relation to compute wave number ($|k|$) 164 for 165
 the waves of interest (Wilson et al. 2013b). The 180° ambiguity in the k direction in 166
 the MVA method can be eliminated by using the Poynting vector S to determine the 167
 direction of k even for oblique waves (Verkhoglyadova et al. 2010, 2013) – we computed 168
 S using both electric and magnetic field data, in Appendix A from Wilson et al. (2013b), for all our 169
 events and determined the sign of wave propagation for MVA-computed k values. We then used this 170
 k to compute the Doppler-shifted wave frequency in the plasma frame from the MVA method.

3. STATISTICAL RESULTS

171 Whistler waves were observed in 85% of all foreshock transient events in our database. The wave 172
 spatial distribution within the foreshock transients (in the core or the compressional boundary) is 173
 important because it highlights where the waves are preferentially generated and where they may 174
 interact with electrons. To reveal the spatial distribution of whistler waves, we normalized the time 175
 interval of the core region to $[0, 1]$, based on crossing times specific to each event. The leading 176
 and trailing boundaries were located at normalized times ≤ 0 and ≥ 1 , respectively. As mentioned 177
 previously, the compressional boundary forms along the edge of the foreshock and is characterized by 178
 the enhanced magnetic field and plasma density. We defined the edge of the boundary by where the 179
 magnetic field magnitude equals the background value, where the background field was calculated by 180
 averaging the magnetic field strength in the relatively quiescent region upstream of each foreshock 181
 transient. (For example, in Figure 1 (b), the edges of the compressional boundary are shown by the 182
 vertical lines.) Note that FBs usually only have one trailing boundary. Therefore, the normalized FB 183
 event cores starting at position 0 are typically not preceded by a foreshock compressional boundary. 184
 Figures 2 and 3 depict the superposed epoch analysis of whistler wave properties and their spatial 185
 distribution in foreshock transients versus the normalized time (to be interpreted as the spatial 186
 location within the core, or relative distance from the core boundaries).

187 Figures 2(a,b) show the number histograms of the normalized mean frequency ($\langle f \rangle/f_{\text{ce}}$) in the core 188
 and in the compressional boundary regions of our events, respectively. The median frequency in both 189
 regions is around $0.2f_{\text{ce}}$. The spatial distribution (versus normalized time) of $\langle f \rangle/f_{\text{ce}}$ is shown in 190
 Figure 2(c). The solid and dashed black lines are the mean and median values of $\langle f \rangle/f_{\text{ce}}$; they are

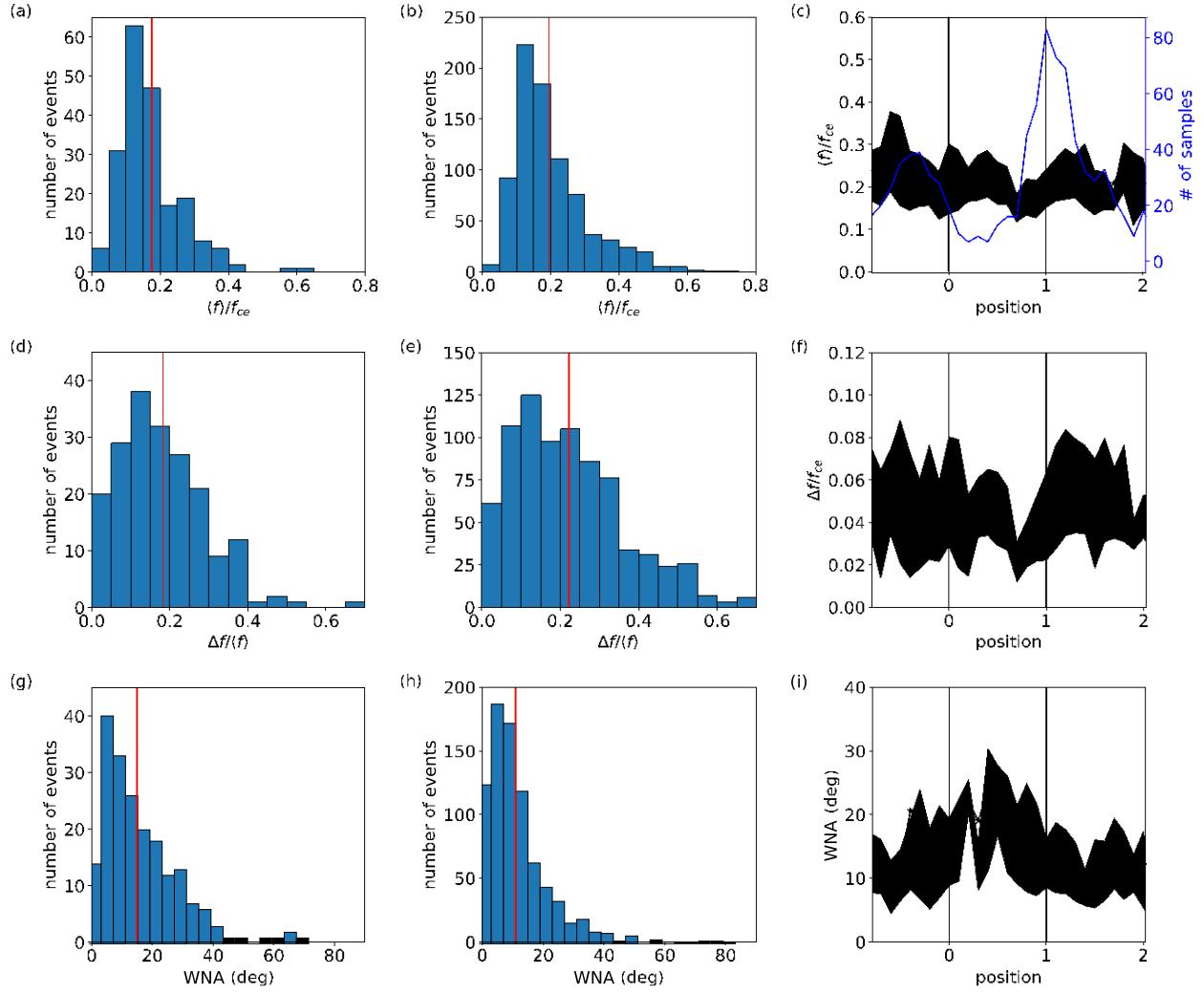


Figure 2. The number histograms and spatial distribution of: (a-c) wave frequency; (d-f) wave frequency width [normalized to mean frequency](#); and (g-i) wave normal angle. The left and middle columns show histograms in the core and in the compressional boundaries, respectively. Dashed red lines are medians. The right column shows average and median values, in solid black lines and dashed black lines, respectively; the lower and upper bound of the shaded region represents the 25th and 75th percentile of the data, respectively; the dashed blue line in Panel (c) is the number of whistler waves observed at different locations.

191 $\approx 0.2f_{ce}$ at all locations, despite the sharp change of the background magnetic field strength and 192 density at the compressional boundary. This indicates a local generation mechanism for most of the 193 observed waves.

194 [There are more waves with \$\langle f \rangle/f_{ce} \geq 0.3\$ observed in the core, than in the boundary](#) 195 [\(compare Figures 2\(a\) and \(b\)\). Although this difference between the core and boundary](#) 196 [\(\$\langle f \rangle/f_{ce}\$ distribution is not large \(less than 15% of total number of observations\), it may](#) 197 [imply that some fraction of the waves observed in the core, especially with \$\langle f \rangle/f_{ce} \approx \[0.3,\$](#) 198 [0.5\], may be generated within the boundaries and then propagate to the core region.](#)

¹⁹⁹ Because the core region is characterized by smaller background magnetic fields, when
²⁰⁰ whistler waves propagate into it, their relative frequency ($\langle f \rangle / f_{ce}$) increases.

²⁰¹ The dashed blue line in Figure 2(c) shows the number of events with whistler waves as a function of
²⁰² position. It is equivalent to the spatial statistical distribution of the waves as a function of location ²⁰³
²⁰⁴ within the foreshock transient. It shows that whistler-mode waves are most probable near the edge ²⁰⁴ of
²⁰⁵ the core where the magnetic field gradient is large. More events are located near position=1 ²⁰⁵
²⁰⁶ versus position=0 mainly due to the following reason: the trailing boundary (at ≥ 1 ²⁰⁶
²⁰⁷ region) is usually stronger (with higher magnetic field strength) than the leading one ²⁰⁷ for
²⁰⁸ foreshock transients. This feature has been shown in previous observations and
²⁰⁹ simulation studies (Liu et al. (2016); Vu et al. (2022)), and Figure 1 is also an example. ²⁰⁹
²¹⁰ As a result, the change of the magnetic field strength is sharp at the region around 1 ²¹⁰ but
²¹¹ smoother around 0. The wave generation is favorable in the region with a large ²¹¹ field
²¹² gradient where magnetic field compression drives the transverse electron heating ²¹² required
²¹³ for wave generation, and therefore, more likely to be observed around position ²¹³
²¹⁴ 1.

²¹⁴ Figures 2 (d-f) show the number histograms and spatial distribution of the normalized wave fre-²¹⁵
²¹⁶ quency width ($\Delta f / \langle f \rangle$) in a similar manner as the frequency panels, Panels (a-c) above. ²¹⁶
²¹⁷ The median value of $\Delta f / \langle f \rangle$ is ≈ 0.2 in the core and in the compressional boundaries. ²¹⁷ A
²¹⁸ large portion of the observed waves are quite narrow-banded, which suggests a narrow ²¹⁸ resonant energy range of electrons responsible for wave generation, i.e. the anisotropic electron pop-²¹⁹
²²⁰ ulation is bounded below and above in energy by isotropic cold and hot electrons, respectively (e.g., Fu
²²¹ et al. 2014; Page et al. 2021; Frantsuzov et al. 2022).

²²¹ The number histograms and the spatial distribution of wave normal angles are shown in Figures ²²²
²²³ 2(g-i) in a similar format as the panels above. Most whistler waves are quasi-parallel propagating, ²²³ and
²²⁴ the waves tend to be more oblique in the core region: the medians increase from 12° in the ²²⁴ boundary
²²⁵ to 16° in the core (Panels (h) and (g)), and this is also evident in the spatial profile of both ²²⁵ the medians
²²⁶ and means in Panel (i). This is likely a result of (1) wave propagation to the core region ²²⁶ from the
²²⁷ boundaries (whistler wave propagation in inhomogeneous magnetic field and plasma results ²²⁷ in a wave
²²⁸ normal angle increase, see Shklyar et al. (2004); Chen et al. (2013); Gu et al. (2021)) or ²²⁸ (2) oblique
²²⁹ wave generation within the core by either cyclotron or Landau resonance thanks to the ²²⁹ suppression
²³⁰ of Landau damping by the large parallel temperature often observed in that region (see ²³⁰ discussion of
²³¹ such oblique wave generation by, e.g., Li et al. (2016)).

²³¹ Number histograms and spatial distribution of the normalized maximum wave amplitude (B_w / B_0) ²³²
²³³ in our events are shown in Figures 3(a-c), in a format similar to Figure 2. Here, B_0 is the background ²³³
²³⁴ magnetic field strength - typically $\approx 5 - 10$ nT in HFAs and FBs. The median value for B_w / B_0 ²³⁴ in
²³⁵ both core and compressional boundaries is larger than 0.01. Thus, the maximum wave amplitude ²³⁵ can
²³⁶ reach 10s - 100s of pT. The mean wave amplitude (not shown here) is about 3 times smaller ²³⁶ than the
²³⁷ maximum value in statistics. Figures 3 (d-f) show the distribution of electron minimum ²³⁷ resonance
²³⁸ energies (E_R) for the mean wave frequencies (we used equation (B1) from Wilson et al. ²³⁸ (2013b) to
²³⁹ calculate the resonance energy). Whistler waves are mainly resonant with electrons which ²³⁹ have 10s -
²⁴⁰ 100s of eV parallel energy. This is the hot solar wind electron halo population, having ²⁴⁰ energies larger
²⁴¹ than the typical solar wind temperature.

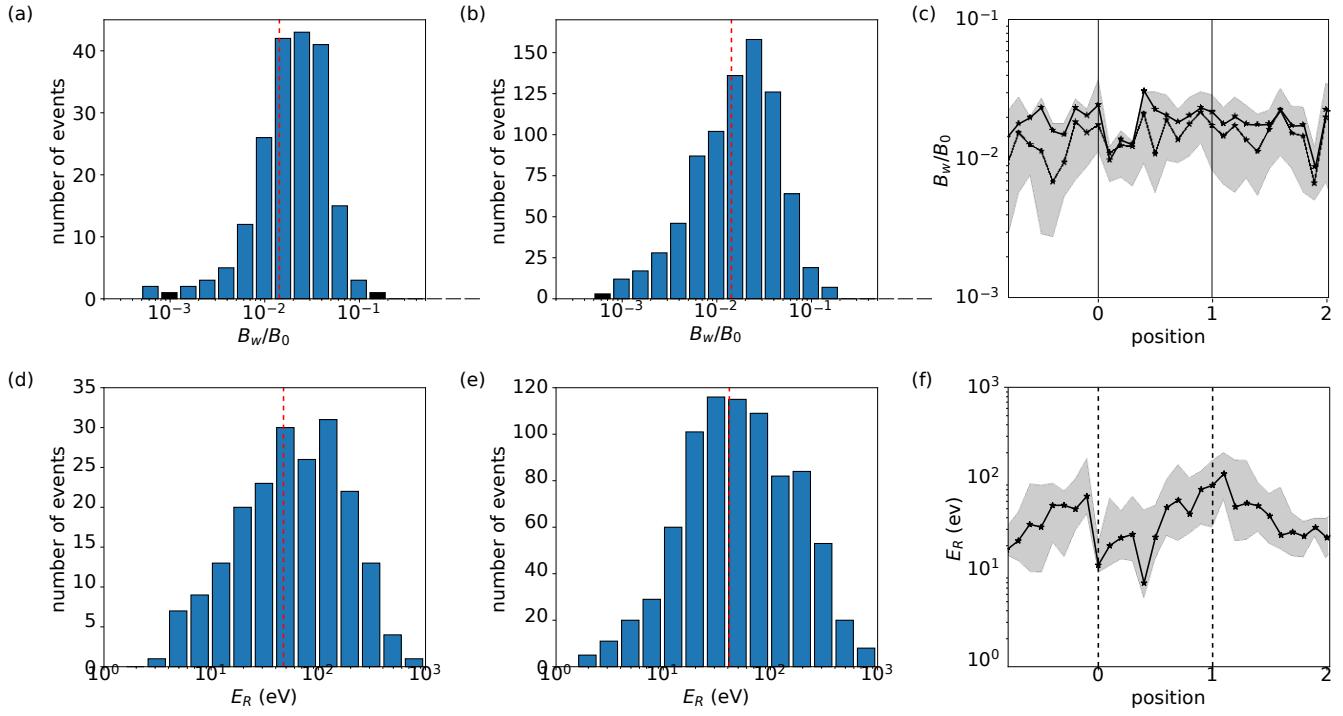


Figure 3. Number histograms and spatial distribution of (a-c) maximum wave amplitude, and (d-f) minimum resonance energy for the mean wave frequency. Dashed red lines show the median value.

241 The electron resonant interaction with whistler-mode waves is controlled by the wave amplitude, 242 wave spectral width Δf , and background field inhomogeneity $\partial B_0/\partial s$. Note that s is the distance 243 along the field, starting from the equator (in our context the latter denotes the location 244 of minimum field magnitude). The same quantity is also used to denote the location of 245 the interaction along the field-line direction. If the wave amplitude is low the waves cannot 246 alter the electron orbit significantly during a single resonant interaction and the interaction remains 247 first-order (linear) and can be described well by zero-order orbit perturbation theory (quasi-linear 248 diffusion is a particular version of this theory see Kennel & Engelmann 1966); If the wave spectral 249 width is too broad relative to the resonance width, nonlinearity from that resonance can also be 250 evaded. These two conditions can be expressed as two criteria for nonlinear interaction. The first 251 assesses the nonlinearity for a pure mode using the inhomogeneity parameter, S , a function of the 252 normalized wave amplitude B_w/B_0 and $\partial B_0/\partial s$. The second criterion on the spectral width Δf 253 addresses the spectral purity (the monochromatic nature) of the wave.

254 For highly coherent (approximately monochromatic, or pure mode) waves in an inhomogeneous 255 magnetic field, the nonlinearity criterion for $S \triangleq (\partial B_0/\partial s)/(B_w/B_0)$ (Omura et al. 2008) is:

$$S = \frac{1}{2} \frac{N^2}{N^2 - 1} \frac{f_{ce} k v_{\perp}^2}{v_{\perp}^2} - \frac{N^2}{N^2} \frac{1}{v_{\perp}^2} \frac{k B_0}{B_w} \frac{\partial B}{\partial s} \frac{B_0}{B_w} \quad (4)$$

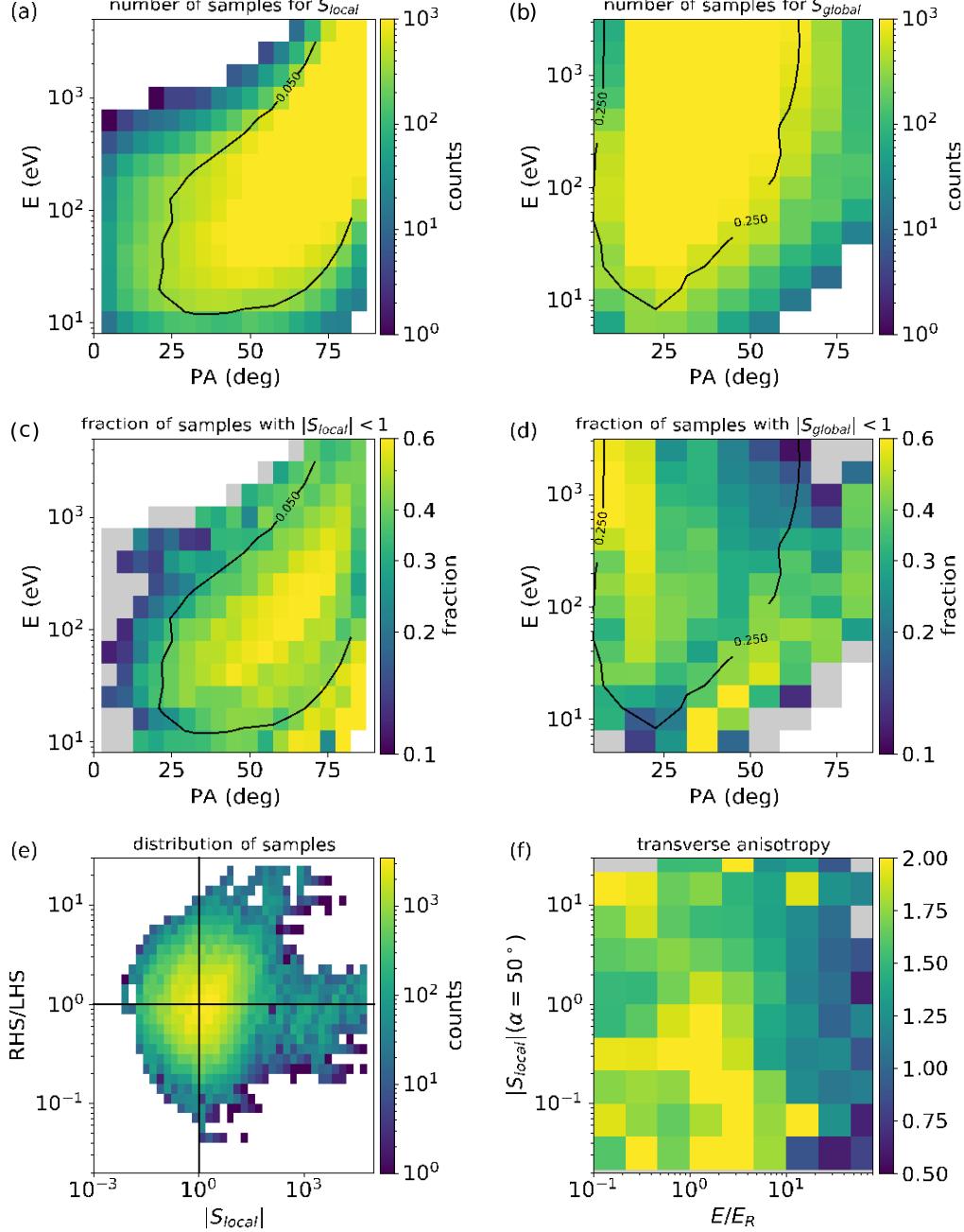
256 with k being the value of wave vector, $N = kc/\omega$ the wave refractive index, $v_{\perp} = \frac{p}{m} \sqrt{\frac{2}{m} \frac{B_0}{B_w}}$ the 257 electron transverse velocity, $v_R = 2\pi(f - f_{ce})/k$ the resonant velocity in km/s (k in this equation is 258 in rads/km), and $\partial/\partial s$ the gradient along magnetic field lines. The inhomogeneity of the background

259 magnetic field ($\partial B / \partial s$) is computed using the linear estimation of the gradient method from four-²⁶⁰ satellite observations (see Chapter 14 of Paschmann & Schwartz (2000b)). When $|S| < 1$ the wave ²⁶¹ is sufficiently strong to locally overcome the mirror force $\partial B_0 / \partial s$ and alter the electron trajectory ²⁶² significantly. This is the regime of nonlinear resonant interactions. S depends on the electron energy ²⁶³ and pitch angle (linked by the resonance condition). For $\partial B_0 / \partial s = 0$, S is finite and can be evaluated ²⁶⁴ in two limits: (1) in the local limit, S_{local} evaluated explicitly shows if electrons with a given energy and ²⁶⁵ pitch angle will interact with waves nonlinearly, and (2) in the global limit, S_{global} can be evaluated by ²⁶⁶ projecting the electron pitch angle (α) from the location s of the wave measurements to the location ²⁶⁷ where B_0 reaches its minimum. In the global limit, S_{global} captures how often along their zero-order, ²⁶⁸ adiabatic trajectory ($\sin^2 \alpha / B_0 = \text{const}$) electrons will interact with the waves nonlinearly.

269 For each wave event in our database, we obtained the 0.5-second averaged value of the wave prop-²⁷⁰ erties (k , $\langle F \rangle$, B_w), electron cyclotron frequency f_{ce} , background field B_0 , background inhomogeneity ²⁷¹ $\partial B / \partial s$, and electron parallel resonant velocity v_R . To compute S , we also need v_{\parallel} ($v \sin \alpha$) ²⁷² which is a function of the (total) resonance energy ($E = 1/2m_e v^2$) and pitch angle α . ²⁷³ (Note that the total energy and α are connected by $\cos \alpha = v_R/v$). We used this to compute S in ²⁷⁴ the local limit, and from it S in the global limit.

275 We computed S_{local} at different energies using the (local) measurements. Combining all the local ²⁷⁶ measurements, we can arrive at the number distribution and the value of S_{local} versus energy and ²⁷⁷ pitch angle in our dataset. Figure 4(a) shows the distribution of the number of measurements used ²⁷⁸ for this computation. The black contour shows the number of samples per bin below which lie just 5% ²⁷⁹ of all observations. The region outside this contour denotes the parameter space where the number ²⁸⁰ density is rather low (interpreted as insignificant) compared to the rest of the parameter space, ²⁸¹ inside that contour. Figure 4(c) shows the fraction of measurements with $|S_{\text{local}}| < 1$; it represents ²⁸² the probability distribution for electrons to interact with waves nonlinearly in the local limit. The ²⁸³ 5% contour of the number of measurements is transferred here from the counts per bin panel above ²⁸⁴ it. It demarcates the region within which the probability distribution is trustworthy. We see that in ²⁸⁵ the region of $\alpha > 45^\circ$ and E in [300, 1000] eV the fractions are high: They are $> 30\%$ and can get ²⁸⁶ up to $\approx 60\%$. In this region of (E, α) space where a sufficient number of measurements exists, there ²⁸⁷ is a large enough probability for $|S_{\text{local}}|$ to be < 1 (for the observed waves to be sufficiently intense) ²⁸⁸ such that the waves interact with electrons nonlinearly.

289 The global limit is obtained under the assumption that electrons are bouncing within a local ²⁹⁰ magnetic field trap. In each event, we projected the local electron pitch angle to the location where ²⁹¹ B_0 reaches its minimum (around the center of the core region), and then obtained S_{global} by mapping ²⁹² S_{local} to a new pitch angle corresponding to that minimum. Such mapping also removes the direct ²⁹³ connection between the electron energy and (mapped) pitch-angle through the resonant condition. ²⁹⁴ The number of measurements in energy versus mapped pitch-angle space is shown in Figure 4(b) in ²⁹⁵ a format similar to that of Figure 4(a), including the contours. The resultant fraction of $|S_{\text{global}}| < 1$ ²⁹⁶ is shown in Figure 4(d), with contours transferred from the panel above it. It shows that $\alpha < 45^\circ$, ²⁹⁷ and > 100 eV electrons will be resonant with whistler-mode waves nonlinearly (note measurements ²⁹⁸ outside of 25% contour are considered not statistically representative).


299 Overall, Figures 4(c,d) demonstrate that in the foreshock transients of our database, quite often ³⁰⁰ the whistler waves are strong enough to cause nonlinear resonant interaction with electrons; the ³⁰¹ background magnetic field inhomogeneity is too weak to suppress this nonlinear behavior. However,

302 the wave spectral width Δf also influences the resonant interactions. The above considerations 303 assume that the waves are sufficiently monochromatic, i.e., Δf is small enough. The criterion for 304 small Δf can be derived from (Karpman 1974; Le Queau & Roux 1987):

$$\langle f \rangle < \frac{B_w v f_{pe}^{1/2}}{B_0 c f_{ce}} \frac{f/f_{ce}}{1 - f/f_{ce}}^{1/4} \quad (5)$$

305 where v is electron velocity determined by the resonance condition ($v = v_R / \cos \alpha$). If this criterion 306 is not satisfied, the wave spectrum is broadband (random phase approximation is valid) to break 307 nonlinear resonance effects. If the criterion is satisfied, the phase of waves in the wave packet can be 308 coherent and prevent random phase mixing. Similar to the S_{local} treatment, we statistically collected 309 the distribution of RHS/LHS versus energy and pitch angles for each local measurement, where RHS 310 and RHS are the right-hand side and left-hand side terms of Eq.(5). Then we rearranged the data to 311 get the distribution of the wave measurements versus ($|S_{local}|$, RHS/LHS) (shown in Figure 4(e)). 312 The region $|S_{local}| < 1$ and $RHS/LHS > 1$ corresponds to that of nonlinear resonant interactions. 313 The requirement of a narrow wave spectrum halves the number of observed waves resonating with 314 electrons nonlinearly, i.e., $\approx 30\%$ of observed waves have $|S_{local}| < 1$, but only half of these waves 315 have 316 RHS/LHS > 1 . But even $\approx 15\%$ of waves populating $|S_{local}| < 1$ and RHS/LHS > 1 region 317 provides 318 a sufficiently large occurrence rate of nonlinear wave-particle interactions. This occurrence 319 rate is comparable to (or even larger than) that of electron nonlinear resonance with whistler-mode 320 waves in the Earth's radiation belts (Zhang et al. 2019) and is much larger than the occurrence rate 321 of electron nonlinear resonance with whistler-mode waves in the solar wind (Tong et al. 2019a).

320 To identify the possible source of such intense whistler-mode waves resonating with electrons non-321 linearly, we examined the electron distribution function (DF) anisotropy by evaluating the transverse-322 to-323 parallel phase space density ratio, otherwise referred to as the transverse anisotropy: $DF_{\parallel}/DF_{\perp}$ (here 324 DF_{\parallel} is the electron phase space density averaged over the pitch-angle range $\approx [80^\circ, 100^\circ]$, 325 whereas DF_{\perp} is the electron phase space density averaged over the pitch-angle range $\approx [0^\circ, 10^\circ]$ and 326 $\approx [170^\circ, 180^\circ]$; both DF_{\parallel} and DF_{\perp} are evaluated in the spacecraft reference frame and thus low-energy 327 part of these distributions can be affected by the solar wind speed). For each local measurement, we 328 computed this quantity at all different energies. We also computed the measurement's S_{local} value 329 assuming a fixed, representative value for $\alpha = 50^\circ$ (corresponding to a significant fraction of waves 330 with $|S_{local}| < 1$, based on Figure 4(c)). Figure 4(f) shows the median of the aforementioned electron 331 transverse anisotropy as a function of normalized energy E/E_R and $|S_{local}|$ value. Near the resonance 332 energy, $E/E_R \approx [0.1, 10]$, the electron anisotropy for intense waves (those with $|S_{local}| < 1$) maximizes 333 and reaches ≈ 2 . Such a high electron anisotropy should result in large whistler-mode wave growth 334 rates and large wave amplitudes. Note a finite electron heat flux (one of the important free energy 335 sources for whistler-mode waves via the heat flux instability (e.g., Gary & Feldman 1977; Tong et al. 336 2019b)) would correspond to $DF_{\parallel}/DF_{\perp} < 1$, and thus $DF_{\parallel}/DF_{\perp} > 1$ should be attributed to the 337 transverse anisotropy of electron temperature. Such anisotropy is the free energy source for wave 338 generation that can be further enhanced by the presence of heat flux (Vasko et al. 2020). Thus, 339 Figure 4(f) shows that intense whistler-mode waves amplified (or directly driven) by a large electron 340 transverse anisotropy (up to 2) may resonate with electrons nonlinearly ($|S_{local}| < 1$). However, it 341 is noteworthy that some of the large transverse anisotropies observed at high energies ($E/E_R \approx 10$) 342 may also be generated by electron nonlinear resonant acceleration by whistler-mode waves.

Figure 4. Panel (a, b) shows the distribution of samples for S_{local} and S_{global} calculation, respectively. The black contour shows the 95% of total samples. Panel (c) shows the sample fraction of whistler waves resonating with electrons in the nonlinear regime ($|S_{local}| < 1$). Panel (d) repeats panel (c), but for the measurements with pitch-angle adiabatically projected to the minimum of the background magnetic field from the wave observation location (S_{global}). Panel (e) shows the number of wave observations versus ($|S_{local}|$, RHS/LHS), where RHS and LHS refer to the right-hand side and left-hand side of Eq (5), respectively. $|S_{local}| < 1$ and $RHS/LHS > 1$ define the region of nonlinear wave-particle interactions (see text for details). Panel (f) shows the distribution of electron flux anisotropy versus $|S_{local}|$ and energy. Energy is normalized to the resonance energy for the observed waves.

342 With such a significant population of whistler-mode waves resonating nonlinearly with electrons,³⁴³ we anticipate the electron distributions to exhibit signatures of these interactions. Motivated by the³⁴⁴ discussion above, we separated the linear and nonlinear wave-particle interactions as follows: (1)³⁴⁵ linear regime with $|S_{\text{local}}| > 1$ or $\text{RHS/LHS} < 1$, and (2) nonlinear regime with $|S_{\text{local}}| < 1$ and³⁴⁶ $\text{RHS/LHS} > 1$.

347 For each wave measurement, we obtained the concurrently measured electron distribution function
 348 $DF(E, \alpha)$. We separated these DF measurements into three categories according to the wave prop-
 349 erties: DF s associated with linear (DF_L) wave particle interactions, DF s associated with nonlinear
 350 (DF_{NL}) interactions, and no-wave DF s (DF_{NW}), those without significant whistler-mode waves ob-
 351 served. All electron distribution functions were normalized to the local plasma density to suppress
 352 any effects related to the strong density variations across the foreshock transients. In each transient
 353 event, we first calculated the median values of DF_{NL} , DF_L , and DF_{NW} , and their ratios (DF_L/DF_{NW}
 354 and DF_{NL}/DF_{NW}). Then we calculated the median values of these ratios. The results are shown
 355 in Figure 5(a,b); they are plotted against energy (normalized to E_R) and pitch angle. There is a
 356 clear phase space density increase around and above the resonance energy and $\alpha \gtrsim 90^\circ$ for DF_L .
 357 This increase may be due to a combination of an initial electron anisotropy driving whistler-mode
 358 wave generation and electron acceleration by waves. A similar increase in phase space density is also
 359 evident for DF_{NL} , except it is much more localized in energy (around E_R) and covers a wider α
 360 range for DF_{NL} . If the strong DF_{NL} peak around $\alpha \gtrsim 90^\circ$ is due to the strong initial anisotropy
 361 needed for intense wave generation, the DF_{NL} increase at small pitch-angles ($\alpha < 45^\circ$ and $\alpha > 135^\circ$)
 362 is most likely due to the effective electron mixing by nonlinear resonances with waves (see discussion
 363 of nonlinear resonant effects in, e.g., [Vainchtein et al. 2018](#)). A weak decrease of DF_L/DF_{NW} and
 364 DF_{NL}/DF_{NW} at energies well below the resonance energy is unlikely to be related to wave-particle
 365 resonant interactions but could be due to preferential wave generation within hot plasma regions
 366 where the cold electron density is reduced. The black lines in Figure 5(a,b) show the contours of
 367 DF_{NW} . Results with $DF_{NW} < 10^{-5}$ are not statistically significant because such a small phase space
 368 density may lead to large errors.

369 To further investigate the difference between the distributions of phase space density associated with³⁷⁰ weak and intense waves, we plot the probability distributions of $DF_L/DF_{NW} > n^\sharp$ (for weak waves)³⁷¹ and $DF_{NL}/DF_{NW} > n^\sharp$ (for intense waves) over all pitch angles, where n^\sharp stands for the value of the³⁷² ratio. Figures 5(c,d) show the percentage of events with $DF_L/DF_{NW} > n^\sharp$ and $DF_{NL}/DF_{NW} > n^\sharp$ ³⁷³ at³⁷⁴ different energies, respectively. There is a clear difference between weak and intense waves. For³⁷⁵ $DF_L/DF_{NW} > n^\sharp$ around the resonance energy ($E/E_R \approx 1$) the probability distribution is reduced³⁷⁶ significantly for $n^\sharp > 2$, i.e. there is nearly negligible probability of observing a phase space density³⁷⁷ increase by a factor of > 2 in association with weak waves. Conversely, for $DF_{NL}/DF_{NW} > n^\sharp$ ³⁷⁸ around the resonance energy the probability distribution remains large even for $n^\sharp \gtrsim 3$, i.e., there is³⁷⁹ a significant probability of observing intense waves in association with resonant phase space density³⁸⁰ increase by a factor of $\gtrsim 3$. Moreover, Figure 5(d) shows that the probability distribution has a³⁸¹ local maximum around the resonance energy. These results are consistent with our assertion that³⁸² nonlinear resonant interactions contribute significantly to electron acceleration.

4. SUMMARY AND DISCUSSION

383 We statistically studied whistler wave properties in foreshock transients, using a database of 208
 384 transient events comprised of HFAs or FBs. We also investigated the regimes of wave particle

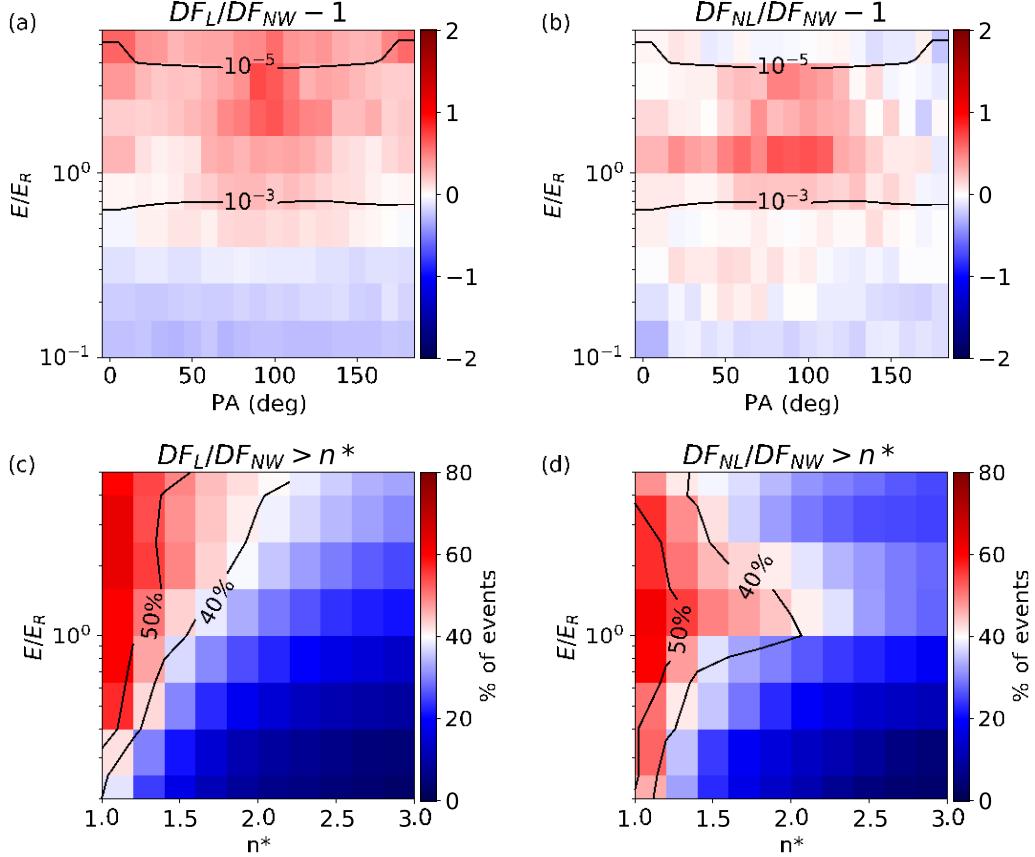


Figure 5. Electron distribution functions (DFs) collected during times when waves were observed, normalized to those collected in the absence of waves. Panels (a) and (b) show electron DFs associated with weak (a) and intense (b) wave observations normalized to the background (measured in absence of waves; subindex NW) electron spectra. Panels (c) and (d) show the probability distributions of $DF_L/DF_{NW} > n^*$ and $DF_{NL}/DF_{NW} > n^*$, respectively. Weak waves correspond to $|S_{local}| > 1$ or $RHS/LHS < 1$ and are marked by subindex L, whereas intense waves correspond to $|S_{local}| < 1$ and $RHS/LHS > 1$ and are marked by subindex N L.

385 interactions and the effects of nonlinear interactions on electron distributions. Specifically, we showed
 386 that:

- 387 1. Whistler waves exist in 85% of the foreshock transients examined. These waves are most often
 388 seen around the edge of the core or the compressional boundary regions of foreshock transients.
- 389 2. The whistler waves in foreshock transients have frequencies around $0.2f_{ce}$, regardless of the
 390 abrupt change of the background magnetic field at their location. This indicates that they are 391 generated locally, i.e., they do not propagate to the satellite from a distinctly different location 392 in the transient or its vicinity. On average, the whistler waves are quasi-parallel. However, the 393 waves in the core region tend to be more oblique than the waves in the compressional boundary.
- 394 3. Intense whistler waves are frequently observed. Their median amplitude is around $0.01B_0$
 395 ($\approx 10s - 100s$ pT). The resonance energy for electrons is around $10s - 100s$ eV, and 15% of

396 the observed whistler waves are sufficiently intense and narrow-band to resonate with electrons
 397 nonlinearly.

398 4. Events with potential nonlinear wave-particle interactions show a clear increase in phase space 399
 density around the resonance energy. This increase is larger than that for observations associ-400 ated
 with low-intensity waves. This suggests that nonlinear resonant interactions can contribute 401
 significantly to electron acceleration.

402 Recent observations of energetic electrons in foreshock transients (e.g., [Wilson et al. 2016](#); [Liu et al. 2017a](#)) 403
 are highly suggestive that such transients can accelerate electrons and may provide a seed 404
 population for further acceleration at the bow shock - the main source of energetic particles at the 405
 dayside. Foreshock transients also exist at other high Mach number quasi-parallel shocks (e.g., at 406
 outer planets, where the solar wind Mach number is high, or occasionally even at Mars, [Collinson et 407
 al. \(2015\)\)](#). The whistler waves studied are therefore, by analogy, likely common and significant for 408
 electron acceleration inside foreshock transients in planets and in other astrophysical contexts (such 409
 as at supernova shocks which can produce cosmic rays). Our statistical results on the whistler-mode 410
 wave intensity demonstrate that a significant portion of the observed waves resonates with electrons 411
 nonlinearly. The nonlinear interactions can play an important role in electron acceleration processes 412
 in the following way:

413 First, nonlinear interactions have diffusion rates that are different from (often faster than) those 414
 found in classical, linear theory. We have shown that intense waves can significantly modify elec-415 tron distributions, which indicates that they can alter electron trajectories. This invalidates the 416
 approximation of unperturbed trajectories for classical scaling of electron pitch-angle diffusion rates 417 D
 $\propto \langle B_w \rangle^2$ ([Kennel & Engelmann 1966](#)), and therefore, classical pitch-angle diffusion theory does 418 not apply in such cases. If the waves propagate in short wave packets (containing only a few wave 419 periods each; see, e.g., such wave packets in the bow shock in [Hull et al. \(2012\)](#); [Oka et al. \(2017, 2019\)](#)), then 420
 the main nonlinear effect will be the change of the diffusion rate scaling, $D \propto \langle B_w \rangle^{1/2}$ 421 (e.g., [Artemyev et al. 2021](#)). In that case, a simple extrapolation of quasi-linear theory scaling, 422 $D \propto \langle B_w \rangle^2$, to high- 423
 intensity waves would significantly overestimate the actual diffusion rate. The 424 diffusion rate is an 425 important element of the stochastic shock drift acceleration model ([Amano et al. 2020](#)), and therefore
 the change in the scaling of D may modify the efficiency of the resultant electron 426 acceleration in this model.

426 Second, intense waves propagating in long wave packets (each containing tens of wave periods) may 427
 result in nonlinear resonant acceleration of electrons in an inhomogeneous magnetic field via phase 428
 trapping (see reviews by [Shklyar & Matsumoto 2009](#); [Albert et al. 2013](#)). To be effective, this accel-429
 eration mechanism should be combined with electron periodic motions in magnetic field traps, i.e., 430
 electrons should experience multiple resonant interactions. The general magnetic field configuration 431 of
 foreshock transients does allow such trapping ([Liu et al. 2019](#)). However, such trapping can be pro-432 vided
 by ultra-low-frequency compressional magnetic field fluctuations (e.g., [Oka et al. 2019](#); [Lichko & Egedal 433 2020](#)) and by the transient-bow shock magnetic field configuration ([Liu et al. 2017b](#); [Turner et al. 2018](#)). 434 Therefore, foreshock transients embedding intense whistler-mode waves (resonating with 435 electrons nonlinearly) may serve as effective electron accelerators, if the interplanetary magnetic field 436
 can trap electrons. Further theoretical analysis of nonlinear wave-particle resonances and observa-437
 tional analysis of energetic electron bursts and whistler waves associated with foreshock transients 438
 may reveal the efficiency of such nonlinear resonant acceleration.

439

ACKNOWLEDGEMENTS

440 A.A. acknowledges the NASA projects 80NSSC21K0581, 80NSSC22K1634. X.-F. S. and T. Z. L. ac-
 441 knowledge NSF award AGS-1941012. MMS data were downloaded from <https://lasp.colorado.edu/mms/sdc/pu>
 442 Data access and processing was done using SPEDAS V4.1, see [Angelopoulos et al. \(2019\)](#).

REFERENCES

443 Albert, J. M. 1993, Physics of Fluids B, 5, 2744,
 444 doi: [10.1063/1.860715](https://doi.org/10.1063/1.860715)

445 Albert, J. M., Tao, X., & Bortnik, J. 2013, in
 446 Dynamics of the Earth's Radiation Belts and
 447 Inner Magnetosphere, ed. D. Summers, I. U.
 448 Mann, D. N. Baker, & M. Schulz, American
 449 Geophysical Union,
 450 doi: [10.1029/2012GM001324](https://doi.org/10.1029/2012GM001324)

451 Amano, T., Katou, T., Kitamura, N., et al. 2020,
 452 PhRvL, 124, 065101,
 453 doi: [10.1103/PhysRevLett.124.065101](https://doi.org/10.1103/PhysRevLett.124.065101)

454 Angelopoulos, V., Cruce, P., Drozdov, A., et al.
 455 2019, SSRv, 215, 9,
 456 doi: [10.1007/s11214-018-0576-4](https://doi.org/10.1007/s11214-018-0576-4)

457 Artemyev, A. V., Neishtadt, A. I., Vainchtein,
 458 D. L., et al. 2018, Communications in Nonlinear
 459 Science and Numerical Simulations, 65, 111,
 460 doi: [10.1016/j.cnsns.2018.05.004](https://doi.org/10.1016/j.cnsns.2018.05.004)

461 Artemyev, A. V., Neishtadt, A. I., Vasiliev, A. A.,
 462 & Mourenas, D. 2021, PhRvE, 104, 055203,
 463 doi: [10.1103/PhysRevE.104.055203](https://doi.org/10.1103/PhysRevE.104.055203)

464 Artemyev, A. V., Shi, X., Liu, T. Z., et al. 2022,
 465 Journal of Geophysical Research (Space
 466 Physics), 127, e29820,
 467 doi: [10.1029/2021JA029820](https://doi.org/10.1029/2021JA029820)

468 Burch, J. L., Moore, T. E., Torbert, R. B., &
 469 Giles, B. L. 2016, SSRv, 199, 5,
 470 doi: [10.1007/s11214-015-0164-9](https://doi.org/10.1007/s11214-015-0164-9)

471 Chen, L., Thorne, R. M., Li, W., & Bortnik, J.
 472 2013, J. Geophys. Res., 118, 1074,
 473 doi: [10.1029/2012JA018343](https://doi.org/10.1029/2012JA018343)

474 Chernikov, A. A., Schmidt, G., & Neishtadt, A. I.
 475 1992, Physical Review Letters, 68, 1507,
 476 doi: [10.1103/PhysRevLett.68.1507](https://doi.org/10.1103/PhysRevLett.68.1507)

477 Chu, C., Zhang, H., Sibeck, D., et al. 2017,
 478 Annales Geophysicae, 35, 443,
 479 doi: [10.5194/angeo-35-443-2017](https://doi.org/10.5194/angeo-35-443-2017)

480 Collinson, G., Halekas, J., Grebowsky, J., et al.
 481 2015, Geophys. Res. Lett., 42, 9121,
 482 doi: [10.1002/2015GL065079](https://doi.org/10.1002/2015GL065079)

483 Eastwood, J. P., Lucek, E. A., Mazelle, C., et al.
 484 2005, SSRv, 118, 41,
 485 doi: [10.1007/s11214-005-3824-3](https://doi.org/10.1007/s11214-005-3824-3)

486 Frantsuzov, V. A., Artemyev, A. V., Shustov,
 487 P. I., & Zhang, X. J. 2022, Physics of Plasmas,
 488 29, 052901, doi: [10.1063/5.0085953](https://doi.org/10.1063/5.0085953)

489 Fu, X., Cowee, M. M., Friedel, R. H., et al. 2014,
 490 Journal of Geophysical Research (Space
 491 Physics), 119, 8288,
 492 doi: [10.1002/2014JA020364](https://doi.org/10.1002/2014JA020364)

493 Gary, S. P. 2005, Theory of Space Plasma
 494 Microinstabilities, Cambridge Atmospheric and
 495 Space (Cambridge University Press)

496 Gary, S. P., & Feldman, W. C. 1977,
 497 J. Geophys. Res., 82, 1087,
 498 doi: [10.1029/JA082i007p01087](https://doi.org/10.1029/JA082i007p01087)

499 Gosling, J. T., Thomsen, M. F., Bame, S. J., et al.
 500 1982, Geophys. Res. Lett., 9, 1333,
 501 doi: [10.1029/GL009i012p01333](https://doi.org/10.1029/GL009i012p01333)

502 Gu, W., Chen, L., Xia, Z., & Horne, R. B. 2021,
 503 Geophys. Res. Lett., 48, e93987,
 504 doi: [10.1029/2021GL093987](https://doi.org/10.1029/2021GL093987)

505 Gurnett, D. A., & Bhattacharjee, A. 2005,
 506 Introduction to Plasma Physics

507 Hull, A. J., Muschietti, L., Oka, M., et al. 2012,
 508 J. Geophys. Res., 117, 12104,
 509 doi: [10.1029/2012JA017870](https://doi.org/10.1029/2012JA017870)

510 Inan, U. S., & Bell, T. F. 1977, J. Geophys. Res.,
 511 82, 2819, doi: [10.1029/JA082i019p02819](https://doi.org/10.1029/JA082i019p02819)

512 Karpman, V. I. 1974, SSRv, 16, 361,
 513 doi: [10.1007/BF00171564](https://doi.org/10.1007/BF00171564)

514 Karpman, V. I., Istomin, J. N., & Shklyar, D. R.
 515 1974, Plasma Physics, 16, 685,
 516 doi: [10.1088/0032-1028/16/8/001](https://doi.org/10.1088/0032-1028/16/8/001)

517 Kennel, C. F. 1966, Physics of Fluids, 9, 2190,
 518 doi: [10.1063/1.1761588](https://doi.org/10.1063/1.1761588)

519 —. 1969, Reviews of Geophysics and Space
 520 Physics, 7, 379, doi: [10.1029/RG007i001p00379](https://doi.org/10.1029/RG007i001p00379)

521 Kennel, C. F., & Engelmann, F. 1966, Physics of
 522 Fluids, 9, 2377, doi: [10.1063/1.1761629](https://doi.org/10.1063/1.1761629)

523 Kuramitsu, Y., & Krasnoselskikh, V. 2005,
 524 *Physical Review Letters*, 94, 031102,
 525 doi: [10.1103/PhysRevLett.94.031102](https://doi.org/10.1103/PhysRevLett.94.031102)

526 Le Contel, O., Retinò, A., Breuillard, H., et al.
 527 2016, *Geophys. Res. Lett.*, 43, 5943,
 528 doi: [10.1002/2016GL068968](https://doi.org/10.1002/2016GL068968)

529 Le Queau, D., & Roux, A. 1987, *SoPh*, 111, 59,
 530 doi: [10.1007/BF00145441](https://doi.org/10.1007/BF00145441)

531 Li, W., Mourenas, D., Artemyev, A. V., et al.
 532 2016, *Geophys. Res. Lett.*, 43, 8867,
 533 doi: [10.1002/2016GL070386](https://doi.org/10.1002/2016GL070386)

534 Lichko, E., & Egedal, J. 2020, *Nature
 535 Communications*, 11, 2942,
 536 doi: [10.1038/s41467-020-16660-4](https://doi.org/10.1038/s41467-020-16660-4)

537 Lin, Y. 1997, *J. Geophys. Res.*, 102, 24265,
 538 doi: [10.1029/97JA01989](https://doi.org/10.1029/97JA01989)

539 —. 2002, *Planet. Space Sci.*, 50, 577,
 540 doi: [10.1016/S0032-0633\(02\)00037-5](https://doi.org/10.1016/S0032-0633(02)00037-5)

541 Liu, T. Z., Angelopoulos, V., Hietala, H., &
 542 Wilson, Lynn B., I. 2017a, *Journal of
 543 Geophysical Research (Space Physics)*, 122,
 544 7197, doi: [10.1002/2017JA024043](https://doi.org/10.1002/2017JA024043)

545 Liu, T. Z., Angelopoulos, V., & Lu, S. 2019,
 546 *Science Advances*, 5, eaaw1368,
 547 doi: [10.1126/sciadv.aaw1368](https://doi.org/10.1126/sciadv.aaw1368)

548 Liu, T. Z., Lu, S., Angelopoulos, V., Hietala, H.,
 549 & Wilson, L. B. 2017b, *Journal of Geophysical
 550 Research (Space Physics)*, 122, 9248,
 551 doi: [10.1002/2017JA024480](https://doi.org/10.1002/2017JA024480)

552 Liu, T. Z., Turner, D. L., Angelopoulos, V., &
 553 Omidi, N. 2016, *Journal of Geophysical
 554 Research*, 121, 5489,
 555 doi: [10.1002/2016JA022461](https://doi.org/10.1002/2016JA022461)

556 Liu, T. Z., Turner, D. L., Angelopoulos, V., & Omidi,
 557 N. 2015, *Geophys. Res. Lett.*, 42, 7860,
 558 doi: [10.1002/2015GL065842](https://doi.org/10.1002/2015GL065842)

559 Lu, X., Zhang, H., Liu, T., et al. 2022, *Journal of
 560 Geophysical Research (Space Physics)*, 127,
 561 e29981, doi: [10.1029/2021JA029981](https://doi.org/10.1029/2021JA029981)

562 Lyons, L. R., Thorne, R. M., & Kennel, C. F.
 563 1972, *J. Geophys. Res.*, 77, 3455,
 564 doi: [10.1029/JA077i019p03455](https://doi.org/10.1029/JA077i019p03455)

565 Nunn, D. 1971, *Journal of Plasma Physics*, 6, 291,
 566 doi: [10.1017/S0022377800006061](https://doi.org/10.1017/S0022377800006061)

567 Oka, M., Wilson, III, L. B., Phan, T. D., et al.
 568 2017, *ApJL*, 842, L11,
 569 doi: [10.3847/2041-8213/aa7759](https://doi.org/10.3847/2041-8213/aa7759)

570 Oka, M., Otsuka, F., Matsukiyo, S., et al. 2019,
 571 *ApJ*, 886, 53, doi: [10.3847/1538-4357/ab4a81](https://doi.org/10.3847/1538-4357/ab4a81)

572 Omidi, N., Eastwood, J. P., & Sibeck, D. G. 2010,
 573 *Journal of Geophysical Research (Space
 574 Physics)*, 115, A06204,
 575 doi: [10.1029/2009JA014828](https://doi.org/10.1029/2009JA014828)

576 Omidi, N., Lee, S. H., & Sibeck, D. G. 2021,
 577 *Journal of Geophysical Research (Space
 578 Physics)*, 126, e28924,
 579 doi: [10.1029/2020JA028924](https://doi.org/10.1029/2020JA028924)

580 Omidi, N., Lee, S. H., Sibeck, D. G., et al. 2020,
 581 *Journal of Geophysical Research (Space
 582 Physics)*, 125, e28058,
 583 doi: [10.1029/2020JA028058](https://doi.org/10.1029/2020JA028058)

584 Omidi, N., & Sibeck, D. G. 2007, *Journal of
 585 Geophysical Research (Space Physics)*, 112,
 586 A01203, doi: [10.1029/2006JA011663](https://doi.org/10.1029/2006JA011663)

587 Omura, Y., Katoh, Y., & Summers, D. 2008,
 588 *J. Geophys. Res.*, 113, 4223,
 589 doi: [10.1029/2007JA012622](https://doi.org/10.1029/2007JA012622)

590 O’Neil, T. 1965, *Physics of Fluids*, 8, 2255,
 591 doi: [10.1063/1.1761193](https://doi.org/10.1063/1.1761193)

592 Page, B., Vasko, I. Y., Artemyev, A. V., & Bale,
 593 S. D. 2021, *ApJL*, 919, L17,
 594 doi: [10.3847/2041-8213/ac2748](https://doi.org/10.3847/2041-8213/ac2748)

595 Paschmann, G., & Schwartz, S. J. 2000a, in *ESA
 596 Special Publication*, Vol. 449, *Cluster-II
 597 Workshop Multiscale / Multipoint Plasma
 598 Measurements*, ed. R. A. Harris, 99

599 Paschmann, G., & Schwartz, S. J. 2000b, in *ESA
 600 Special Publication*, Vol. 449, *Cluster-II
 601 Workshop Multiscale / Multipoint Plasma
 602 Measurements*, ed. R. A. Harris, 99

603 Pollock, C., Moore, T., Jacques, A., et al. 2016,
 604 *SSRv*, 199, 331,
 605 doi: [10.1007/s11214-016-0245-4](https://doi.org/10.1007/s11214-016-0245-4)

606 Russell, C. T., Anderson, B. J., Baumjohann, W.,
 607 et al. 2016, *SSRv*, 199, 189,
 608 doi: [10.1007/s11214-014-0057-3](https://doi.org/10.1007/s11214-014-0057-3)

609 Sagdeev, R. Z., & Shafranov, V. D. 1961, *Soviet
 610 Phys. JETP*, 12, 130

611 Schwartz, S. J., Chaloner, C. P., Christiansen,
 612 P. J., et al. 1985, *Nature*, 318, 269,
 613 doi: [10.1038/318269a0](https://doi.org/10.1038/318269a0)

614 Schwartz, S. J., Avanov, L., Turner, D., et al.
 615 2018, *Geophys. Res. Lett.*, 45, 11,520,
 616 doi: [10.1029/2018GL080189](https://doi.org/10.1029/2018GL080189)

617 Shi, X., Liu, T. Z., Angelopoulos, V., & Zhang,
 618 X.-J. 2020, *Journal of Geophysical Research
 619 (Space Physics)*, 125, e27758,
 620 doi: [10.1029/2019JA027758](https://doi.org/10.1029/2019JA027758)

621 Shklyar, D. R., Chum, J., & Jirícek, F. 2004,
 622 *Annales Geophysicae*, 22, 3589,
 623 doi: [10.5194/angeo-22-3589-2004](https://doi.org/10.5194/angeo-22-3589-2004)

624 Shklyar, D. R., & Matsumoto, H. 2009, *Surveys in*
 625 *Geophysics*, 30, 55,
 626 doi: [10.1007/s10712-009-9061-7](https://doi.org/10.1007/s10712-009-9061-7)

627 Solovev, V. V., & Shkliar, D. R. 1986, *Sov. Phys.*
 628 *JETP*, 63, 272

629 Sonnerup, B. U. Ö., & Cahill, Jr., L. J. 1968,
 630 *J. Geophys. Res.*, 73, 1757,
 631 doi: [10.1029/JA073i005p01757](https://doi.org/10.1029/JA073i005p01757)

632 Sonnerup, B. U. Ö., & Scheible, M. 2000, *ESA*
 633 *Special Publication*, Vol. 449, ISSI Book on
 634 *Analysis Methods for Multi-Spacecraft Data*,
 635 ed. G. Paschmann and Patrick W. D.

636 Tong, Y., Vasko, I. Y., Artemyev, A. V., Bale,
 637 S. D., & Mozer, F. S. 2019a, *ApJ*, 878, 41,
 638 doi: [10.3847/1538-4357/ab1f05](https://doi.org/10.3847/1538-4357/ab1f05)

639 Tong, Y., Vasko, I. Y., Pulupa, M., et al. 2019b,
 640 *ApJL*, 870, L6,
 641 doi: [10.3847/2041-8213/aaf734](https://doi.org/10.3847/2041-8213/aaf734)

642 Treumann, R. A. 2009, *The Astronomy and*
 643 *Astrophysics Review*, 17, 409,
 644 doi: [10.1007/s00159-009-0024-2](https://doi.org/10.1007/s00159-009-0024-2)

645 Turner, D. L., Omidi, N., Sibeck, D. G., &
 646 Angelopoulos, V. 2013, *Journal of Geophysical*
 647 *Research (Space Physics)*, 118, 1552,
 648 doi: [10.1002/jgra.50198](https://doi.org/10.1002/jgra.50198)

649 Turner, D. L., Lee, J. H., Claudepierre, S. G.,
 650 et al. 2017, *Journal of Geophysical Research*
 651 *(Space Physics)*, 122, 11,201,
 652 doi: [10.1002/2017JA024474](https://doi.org/10.1002/2017JA024474)

653 Turner, D. L., Wilson, L. B., Liu, T. Z., et al.
 654 2018, *Nature*, 561, 206,
 655 doi: [10.1038/s41586-018-0472-9](https://doi.org/10.1038/s41586-018-0472-9)

656 Turner, D. L., Liu, T. Z., Wilson, L. B., et al.
 657 2020, *Journal of Geophysical Research (Space*
 658 *Physics)*, 125, e27707,
 659 doi: [10.1029/2019JA027707](https://doi.org/10.1029/2019JA027707)

660 Ucer, D., & Shapiro, V. D. 2001, *Physical Review*
 661 *Letters*, 87, 075001,
 662 doi: [10.1103/PhysRevLett.87.075001](https://doi.org/10.1103/PhysRevLett.87.075001)

663 Vainchtein, D., Zhang, X. J., Artemyev, A. V.,
 664 et al. 2018, *Journal of Geophysical Research*
 665 *(Space Physics)*, 123, 8149,
 666 doi: [10.1029/2018JA025654](https://doi.org/10.1029/2018JA025654)

667 Vasko, I. Y., Kuzichev, I. V., Artemyev, A. V.,
 668 et al. 2020, *Physics of Plasmas*, 27, 082902,
 669 doi: [10.1063/5.0003401](https://doi.org/10.1063/5.0003401)

670 Veltri, P., & Zimbardo, G. 1993, *J. Geophys. Res.*,
 671 98, 13335, doi: [10.1029/93JA01144](https://doi.org/10.1029/93JA01144)

672 Verkhoglyadova, O. P., Tsurutani, B. T., &
 673 Lakhina, G. S. 2010, *Journal of Geophysical*
 674 *Research (Space Physics)*, 115, A00F19,
 675 doi: [10.1029/2009JA014809](https://doi.org/10.1029/2009JA014809)

676 —. 2013, *Journal of Geophysical Research (Space*
 677 *Physics)*, 118, 7695,
 678 doi: [10.1002/2013JA019371](https://doi.org/10.1002/2013JA019371)

679 Verscharen, D., Chandran, B. D. G., Boella, E.,
 680 et al. 2022, *Frontiers in Astronomy and Space*
 681 *Sciences*, 9, 951628,
 682 doi: [10.3389/fspas.2022.951628](https://doi.org/10.3389/fspas.2022.951628)

683 Vu, A., Liu, T. Z., Zhang, H., & Delamere, P.
 684 2022, *Journal of Geophysical Research (Space*
 685 *Physics)*, 127, e29973,
 686 doi: [10.1029/2021JA029973](https://doi.org/10.1029/2021JA029973)

687 Wilson, L. B., Sibeck, D. G., Turner, D. L., et al.
 688 2016, *PhRvL*, 117, 215101,
 689 doi: [10.1103/PhysRevLett.117.215101](https://doi.org/10.1103/PhysRevLett.117.215101)

690 Wilson, L. B., Koval, A., Sibeck, D. G., et al.
 691 2013a, *J. Geophys. Res.*, 118, 957,
 692 doi: [10.1029/2012JA018186](https://doi.org/10.1029/2012JA018186)

693 Wilson, L. B., Koval, A., Szabo, A., et al. 2013b,
 694 *J. Geophys. Res.*, 118, 5,
 695 doi: [10.1029/2012JA018167](https://doi.org/10.1029/2012JA018167)

696 Zhang, H., Zong, Q., Connor, H., et al. 2022,
 697 *SSRv*, 218, 40,
 698 doi: [10.1007/s11214-021-00865-0](https://doi.org/10.1007/s11214-021-00865-0)

699 Zhang, X. J., Mourenas, D., Artemyev, A. V.,
 700 et al. 2019, *Geophys. Res. Lett.*, 46, 7182,
 701 doi: [10.1029/2019GL083833](https://doi.org/10.1029/2019GL083833)