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Analytical model of foreshock ion interaction with a discontinuity: a statistical study
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Key points

1. We derive a model that describes foreshock ion — discontinuity interaction, which is consistent
with local hybrid simulations.

2. We obtain moderate correlations between the model expansion speed and (a) magnetic field
variations, and (b) dynamic pressure depletions.

3. Our model can potentially predict strong dynamic pressure depletion caused by foreshock ion-

discontinuity interaction.

Abstract

When a solar wind discontinuity interacts with foreshock ions, foreshock transients such as
hot flow anomalies and foreshock bubbles can form. These create significant dynamic pressure
perturbations disturbing the bow shock, magnetopause, and magnetosphere-ionosphere system.
However, presently these phenomena are not predictable. In the accompanying paper, we derived
analytical equations of foreshock ion partial gyration around a discontinuity and the resultant
current density. In this study, we utilize the derived current density strength to model the energy
conversion from the foreshock ions, which drives the outward motion or expansion of the solar
wind plasma away from the discontinuity. We show that the model expansion speeds match those
from local hybrid simulations for varying foreshock ion parameters. Using MMS, we conduct a

statistical study showing that the model expansion speeds are moderately correlated with the
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magnetic field strength variations and the dynamic pressure decreases around discontinuities with
correlation coefficients larger than 0.5. We use conjunctions between ARTEMIS and MMS to
show that the model expansion speeds are typically large for those already-formed foreshock
transients. Our results show that our model can be reasonably successful in predicting significant
dynamic pressure disturbances caused by foreshock ion-discontinuity interactions. We discuss

ways to improve the model in the future.

1. Introduction

When foreshock ions interact with a solar wind discontinuity, a hot flow anomaly (HFA) (e.g.,
Schwartz et al., 1985, 2018; Lin, 1997, 2002; Omidi and Sibeck, 2007; Zhang et al., 2010) or a
foreshock bubble (FB) (e.g., Omidi et al., 2010, 2020; Turner et al., 2013, 2020; Liu et al., 2015;
Wang C.-P. et al., 2021a, b) may form. These foreshock transients are characterized by a core
region with field strength decrease, density decrease, temperature increase, and flow deflection,
on a spatial scale of a few Rg (see review by Eastwood et al. (2005), Facsko et al. (2010), and
Zhang et al. (2022)). Because the dynamic pressure inside them is extremely low, they can cause
the local bow shock and magnetopause to move outward, leading to disturbances in the
magnetosphere and ionosphere, including magnetospheric ULF waves, field aligned currents,
traveling convection vortices, and auroral brightening (e.g., Sibeck et al., 1999; Eastwood et al.,
2011; Fillingim et al., 2011; Hartinger et al., 2013; Archer et al., 2014, 2015; Shi et al., 2013, 2017;
Zhao et al., 2017; Wang B. et al., 2019, 2020, 2021; Shen et al., 2018; Shi et al., 2020; Liu et al.,
2022a), from dayside to far tail (Facsko et al., 2015; Wang C.-P. et al., 2018, 2020, 2021b; Liu et

al., 2020a, 2021).

However, these foreshock phenomena and the associated magnetosphere-ionosphere

disturbances are not yet predictable. Contrary to the solar wind potential drivers of magnetospheric
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activity (e.g., interplanetary shocks) that can be predicted and monitored in advance, foreshock
transients cannot, partly because they are rather localized near the bow shock and have been hard
to recognize, identify, and study with previous single spacecraft missions. The situation has
improved drastically with the advent of Cluster, THEMIS, and MMS missions. It has been possible
to confirm many expectations from simulations, such as the scale-size, evolution, and other
characteristics of foreshock transients (e.g., Lucek et al., 2004; Facsko et al., 2009, 2010; Liu et
al., 2016; Lee et al., 2021), as well as the physical mechanism leading to their formation, namely
the interaction of the foreshock ions with the approaching discontinuity (Liu et al., 2020b). Given
this level of physical understanding, one is tempted to take the next step to formulate a predictive
model of a transient’s formation and impacts based on pristine upstream solar wind conditions.
Based on previous simulations (e.g., Thomas et al, 1991; Lin, 2002; Omidi and Sibeck, 2007;
Omidi et al., 2010; Wang C.-P. et al., 2021b), it is commonly thought that the concentration and
thermalization of foreshock ions at a discontinuity increases the local thermal pressure causing the
formation and expansion of an HFA or FB. However, this understanding is too qualitative and

cannot be used to model the formation process.

Recently, a kinetic model has been proposed based on PIC simulations (An et al., 2020) and
MMS observations (Liu et al., 2020b). When foreshock ions encounter a solar wind discontinuity,
as their gyroradii are comparable to the discontinuity thickness, they perform partial gyration. In
the accompanying paper (Liu et al., 2022 submitted to JGR), we derived the analytical equations
of foreshock ion motion across a discontinuity. Because electrons are magnetized, the motion
difference between the foreshock ions and electrons leads to a current. If this current tends to
decrease the field strengths at the discontinuity, more foreshock ions can cross the discontinuity

which strengthen the current resulting in positive feedback. The magnetic field variation by the
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current induces an electric field, which drives cold plasma to ExB drift outward away from the
discontinuity, i.e., the expansion process. The energy conversion to the expansion energy of solar
wind plasma is through the foreshock ion current against the induced electric field. Such a
formation and expansion process has been further examined by local hybrid simulations by Vu et
al. (2022a). Based on the energy conversion, Liu et al. (2023) derived an expansion speed model.
These modeling successes show that it has become increasingly possible to quantitatively describe

the formation and expansion process of foreshock transients.

In this study, we take yet another step in the quantitative description of foreshock transients
and their effects by combining the foreshock ion motion model (Liu et al., 2022 submitted to JGR)
and the expansion speed model (Liu et al., 2023) to quantitatively describe the expansion speed of
the transient due to the foreshock ion — discontinuity interaction. This model describes the early
interaction between the foreshock ions and a discontinuity, which generates small perturbations
that may or may not evolve into an FB, an HFA, or a structure that belongs to neither. We test how
well it works by comparing with local hybrid simulations and observations. In Section 2, we
introduce the model and compare it with local hybrid simulations. In Section 3, we introduce the
database and describe how we conduct a statistical study and case studies to test the model. The

results are presented in Section 4 and summarized in Section 5.

2. Model description

The expansion speed model by Liu et al. (2023) showed that the foreshock ions transfer
energy to the solar wind plasma through the current density driven by the foreshock ions j against
the induced electric field £ in the solar wind rest frame. The solar wind plasma gains energy and
moves away from the discontinuity at a speed E X B, i.e., the expansion of the transient. The

expansion speed can be expressed as
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Vexp = j/qngy - Q;At (1),

where ¢ is the unit charge, n,, is solar wind density, and (); is ion gyrofrequency. Based on local
hybrid simulations by Vu et al., (2023), Q;At in Eq. (1) should be modified as (Q;At)?, due to the
positive feedback from the field variation which can further enhance the current. However, in
observations it is nearly impossible to determine how long the structure has been evolving. Thus,
we do not include the time dependence in this study and simplify Eq. (1) as V,x, = mj/qny, to

represent a typical expansion speed for each observation event.

In the accompanying paper (Liu et al., 2022 submitted to JGR), we have derived that
. 1 0o V)2 . .
JE)~any (2 fy exp (= FH)(ViAsin e cos a(x) + (Vyo — €) sin a(x) Ap)VidV, (2)

assuming that foreshock ions follow Maxwellian distributions, where n; is foreshock ion density,

@. s the initial gyrophase of foreshock ions that can reach position x within a discontinuity along
o : : o d

the normal direction, a is the shear angle of discontinuity, parameter C = (); ﬁ, and for easy

application in observations, we simplify that the foreshock ions approximately follow Maxwellian
distributions. When j(x) < 0, the field strength decreases at the discontinuity, which favors
further growth of the transient structure. Thus, for each observation event when the negative peak
of j(x) is stronger than the positive peak, we substitute the maximum of |j(x)|, jmax, INtO

simplified Eq. (1) and have
Vexp = Tmax/qMsw 3).

We thus obtain a model that can predict the expansion speed of foreshock transients due to the

interaction of the foreshock ions with the discontinuity, given the foreshock ion parameters
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(thermal speed, parallel speed, and density), solar wind density, interplanetary magnetic field (IMF)

strength, and discontinuity parameters (shear angle and thickness).

To test this model, we first use the local hybrid simulation results by Vu et al. (2023). In the
simulations, foreshock ions are injected from the simulation boundary (which acts as a bow shock)
and interact with a tangential discontinuity (TD) with shear angle of 90°, forming an FB. The FB
expansion speed was measured at a fixed distance from the “bow shock™ and fixed time after the
FB’s initial formation. We scanned the parameter space of foreshock ion density, thermal speed,
and parallel speed by varying each parameter while fixing others (TD shear angle and thickness,
however, still need further tests). We transform the simulation parameters to the solar wind rest
frame in which the model was derived and put them into the model. Figure 1 compares the model
expansion speeds using Eq. (3) and the simulated expansion speeds. We see that they are linearly
correlated, although the slope does not match the diagonal because the time dependence of the
model is simplified, so the slope is determined by when the expansion speeds are measured in the

simulations. Therefore, our model indeed captures the major physics.

Note that for varying foreshock ion parallel speed V}, we need to time a term V},o/V} to the
simulated expansion speed to match the model, where V|4 is the fixed foreshock ion parallel speed
when the foreshock ion thermal speed and density are varied. This is because due to the simulation
setup, the transient forms simultaneously while the foreshock ions are injected from the simulation
boundary. The top of the structure is determined by how far the foreshock ions have reached
upstream and the bottom is the simulation boundary or the “bow shock”. The expansion speed
spatially increases from 0 at the top to maximum at the bottom. At a fixed position in the simulation
box where the expansion speed is measured, the distance to the structure top is VAt. We thus use

term VoAt/V, At to scale all the measured position to be the same relative to the transient structure.
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As discussed above, the expansion speed is a function of both time and space, but in
observations it is impossible to determine when and where the expansion speed is measured. So,
the simplified model only provides a characteristic expansion speed for each observation event.
Therefore, it is expected that the statistical results would be very scattered, but as shown in Section

4 our model is still good enough to show a moderate correlation with the observations.

This model describes the general foreshock perturbations due to foreshock ions interacting
with a discontinuity. Because it is not a self-consistent model, i.e., the feedback of the magnetic
field variations to the foreshock ion-driven current is not included, this model can only describe
the early interaction before the magnetic field profile is significantly disturbed. Depending on how
significant the expansion speed is, the configuration of the foreshock ion-driven currents, and other
possible factors, the foreshock perturbations due to this early interaction may or may not evolve
into an HFA, an FB, or a structure that does not satisfy the criteria of either of them. But as shown
later, if our model can directly predict the magnetic field disturbances and dynamic pressure
disturbances, it is not necessary to distinguish what phenomena they will become, especially
because the physical differences between HFAs and FBs are still a puzzle and beyond the scope

of this study.

3. Data and Methods

For the statistical study of foreshock ion-discontinuity interaction, we use the Magnetospheric
Multiscale (MMS) mission (Burch et al., 2016) to observe discontinuities in the foreshock. We
analyze DC magnetic field data from the fluxgate magnetometer (Russell et al., 2016) and plasma
data from the fast plasma investigation (FPI) instrument suite (Pollock et al., 2016). We use time
intervals when MMS is upstream of the bow shock from 2015 to 2019 identified by Vu et al.

(2022b).
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To automatically identify discontinuities, we calculate the magnitude of magnetic field vector
change across 10 seconds normalized to its 4 min average; the resultant quantity, termed the
normalized partial variance of increments (PVI) (e.g., Greco et al., 2008), |B(t + 10s) — B(t)|?/
(IB(t + 10s) — B(t)|?)4 min, is shown in Figure 2b. For each PVI > 5, i.e., there is a large
magnetic field vector variation across 10 seconds relative to the 4 min average, we use 30s
averaged magnetic field before and after as the background magnetic field and require the shear
angle to be larger than 25°. Events with smaller shear angles are often contaminated by local
fluctuations (especially steepened foreshock ULF waves) and therefore excluded. The
discontinuity normal is calculated through the cross product method (Schwartz, 1998). For each
discontinuity, we automatically calculate the discontinuity thickness by fitting them with a Harris

current sheet (discontinuities that are too complicated to be fitted are removed).

Whenever the angle between the magnetic field and the bow shock normal (using the Merka
et al. (2005) model scaled to the MMS position with 1on bulk velocity, density, and magnetic field
from MMS as input), Oz, 1s less than 60° either before or after the discontinuity, we calculate the
ambient foreshock ion parameters (density, thermal speed, and parallel speed) by removing the
solar wind ions from the ion distributions (see detailed method in Liu et al. (2017) and Liu et al.
(2022b)). Due to the uncertainty of model bow shock normal and thus 65, some pristine solar
wind time could be included, and sometimes the foreshock ion density is too low causing the
calculated foreshock ion parameters to be dominated by noises. Therefore, the calculated
foreshock ion density is required to be more than 0.05 cm™ based on a statistical test in Liu et al.
(2022b) about whether the calculated density shows a reasonable dependence on the distance to
the model bow shock. We thus obtain enough parameters to calculate Eq. (2) on the side of the

discontinuity where 65, < 60° (so when both sides have 8, < 60°, there can be two model
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values for one discontinuity). If the negative peak of j(x) is stronger than the positive peak, we
then calculate Eq. (3), the transient expansion speed, as shown in Figure 2c. The discontinuity list

can be found in the supporting information.

Because the expansion of solar wind plasma can pile up magnetic field and density and
deviate velocity direction, it is expected that faster expansion should be associated with stronger
magnetic field disturbances and dynamic pressure disturbances. We thus test the model with the
observed disturbances. For each discontinuity, we measured the minimum and maximum field
strengths within 1 min and the variance and mean values of the field strengths within 5 min from
MMS. As introduced in Section 2, our model can only describe the disturbances by foreshock ions
at nearly pristine discontinuities, but the PVI method can also automatically identify significant
foreshock disturbances like SLAMS (see review by Wilson, 2016), HFAs, and FBs. To remove
them, we set a criterion that the variance relative to the mean field strength should be less than
0.15 based on some case studies. We also require that the maximum and minimum field strengths
relative to the mean field strength should be larger than the variance, otherwise the disturbances
could just be background waves. Like for the field strengths, we also calculate the dynamic
pressure variations around the discontinuities along the GSE-X direction and along the local bow
shock normal direction (using the Merka et al. (2005) model) using total ion bulk velocity and

density measured by MMS.

In summary, we first use magnetic fields measured by MMS to automatically identify
discontinuities using the PVI method whenever MMS was in the upstream region. For each
discontinuity, we calculate the model values using foreshock ion moments after the removal of

solar wind ions from ion distribution functions measured by MMS. We then examine the
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correlation between the model values and the disturbances of magnetic field strengths and total

ion dynamic pressures locally measured by MMS at each discontinuity.

We also conduct case studies for fully formed HFAs and FBs, because maybe large model
expansion speeds during early formation stage favor further evolution into significant foreshock
transients. To observe the pristine discontinuities that drive those HFAs and FBs, we use the two
probes of the Acceleration Reconnection Turbulence & Electrodynamics of Moon’s Interaction
with the Sun (ARTEMIS) mission (Angelopoulos, 2010), a spin-off of the THEMIS mission, in
conjunction with MMS observations. We measure the solar wind ion moments using the THEMIS
electrostatic analyzer (ESA) (McFadden et al., 2008) and the IMF using the THEMIS fluxgate
magnetometer (Auster et al., 2008). Using the HFA/FB event list in Liu et al. (2022) and requiring
ARTEMIS to be in the Fast Survey (high-time resolution) mode during its conjunction with MMS,
we select 9 events for case studies (Table 1). We use ARTEMIS to calculate the discontinuity and
solar wind parameters and use MMS to measure the ambient foreshock ion parameters to calculate

the model for each HFA/FB.

4. Model vs. Observations

In Figure 3a, the upper (lower) half of the plot shows the comparison between the model
expansion speeds and the measured maximum (minimum) field strength normalized to the
background field strength. There are ~1000 events in this plot. There is a moderate correlation that
larger model values tend to be associated with stronger field strength increases (decreases) at the
upper (lower) half, with absolute Pearson correlation coefficient of 0.55 (0.51). In the lower half
of the plot, there are many scattered dots indicating very significant field strength decreases (and
thus weaker correlation than the upper half), partly because many solar wind discontinuities are

naturally associated with low field strengths regardless of foreshock ions.
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To examine whether the correlation in Figure 3a may be obtained simply because more
foreshock ions cause stronger disturbances, Figure 3b compares the field strength disturbances
with the density ratio of foreshock ions to solar wind ions. There is a similar trend as in Figure 3a
except that the correlation is weak (absolute correlation coefficients ~ 0.3 — 0.5). Figure 3¢ shows
the comparison after the density ratio is removed from the model. We see that the similar trend
remains, and the correlation coefficients are weaker or comparable to those in Figure 3b. Therefore,
our model of the foreshock ion — discontinuity interaction, which was derived by calculating the
foreshock ion gyrovelocity within discontinuities, indeed captures more of the physics than simply
the density ratio, because it correlates better with the observations of the magnetic field strength

increases and decreases.

Figures 4a-e show the comparison with all the other parameters involved in the model. All of
them exhibits a very weak correlation (absolute correlation coefficients ~0.1 — 0.3). There are only
very weak trends suggestive that perhaps very large foreshock ion thermal speeds (Figure 4b), very
thin discontinuities (Figure 4d), and very low field strengths (Figure 4e) may favor large field
strength variation. (And together, these quantities may indicate a large foreshock ion gyroradius
relative to the discontinuity thickness, which is already physically described in Eq. (2)). These
results suggest that our model can combine many parameters that show a very weak or weak
correlation with field strength variation in such a physically justified function that has a moderate
correlation (absolute correlation coefficients slightly larger than 0.5) with the field strength change.
Figure 4f checks the model expansion speed normalized to the Alfvén speed against the data in the
same way. It too shows that the model expansion Mach number does not have a better correlation

than that in Figure 3a. Testing the solar wind speed and density, we also find that they do not show
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any correlations with the field strength variations either (not shown). In sum, our model shows the

strongest correlation coefficients among all the tested parameters.

Figure 5 compares the model expansion speeds with the solar wind dynamic pressure
disturbances along the GSE-X direction. There is a very weak correlation with the dynamic
pressure increases but there is a moderate correlation with the dynamic pressure decreases with an
absolute correlation coefficient greater than 0.5. Because a flow deflection only decreases the
dynamic pressure while a density variation leads to both, it is reasonable to see a clearer dynamic
pressure decrease than increase. Because some events are around the bow shock flank, Figure S1
compares the solar wind dynamic pressure disturbances along the local bow shock normal

direction (using the Merka et al. (2005) model), which shows similar results as Figure 5.

Figure 5 suggests that our model can potentially be used to predict the significance of dynamic
pressure disturbances driven by the foreshock ion-discontinuity interaction. For example, when
the model value is large, e.g., larger than 10, there will be high probability of strong dynamic
pressure decreases by more than 20%. When the model value is intermediate, e.g., 3 to 10, the
dynamic pressure decreases are mostly around 20%. When the model value is small, e.g., below 3,

the dynamic pressure decreases are mostly below 20% and negligible.

To further examine this, we applied case studies using ARTEMIS to observe the pristine
discontinuities and MMS to observe the foreshock ion properties around HFAs/FBs that already
show significant dynamic pressure disturbances. Table 1 shows the observed foreshock ion and
discontinuity parameters and the calculated expansion speed for 9 events. Their model expansion
speeds are mostly around and above 10. However, a large model value does not necessarily denote
the presence of an HFA or FB. For example, in Figure 2 at ~15:20-15:30 UT, the model value is

above 10 and there is indeed a significant dynamic pressure decrease (first vertical shaded region
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in Figure 2g). However, the density decrease is not significant, which may not satisfy the criteria
of HFAs or FBs. Similarly, at ~15:50-16:00 UT, the density depletion is large resulting in a strong
dynamic pressure decrease (second vertical shaded region in Figure 2g), but the deflection is weak.
Nevertheless, we do not have to predict the presence of HFAs or FBs if we can directly predict the
dynamic pressure disturbances (one important input of space weather models). We will further

discuss this in Section 5.

Naturally, our model cannot describe all the foreshock disturbances, as we only considered
here the scenario of a localized foreshock ion interaction with a single discontinuity. For example,
at 15:40-15:50 UT in Figure 2, there is a foreshock cavity (e.g., Sibeck et al., 2002; Omidi et al.,
2013a) or traveling foreshock (Kajdi€ et al., 2017) with a large-scale low dynamic pressure region
compared to the ambient solar wind, which is not described by our model. Additionally, other
types of foreshock transients, like spontaneous hot flow anomalies (Omidi et al., 2013b; Zhang et
al., 2013) that are not associated with solar wind discontinuities, also cannot be described by our
model. More effort will be needed in the future to fully model these complex or alternate types of

foreshock disturbances.

When calculating the model, we required that the negative peak of j(x) should be stronger
than the positive peak to ensure that the direction of foreshock ion-driven current decreases field
strengths at discontinuities in order to sustain the expansion. To test whether this requirement is
necessary, Figure 6 shows the comparison when we set up an opposite requirement. We see that
the correlation to both the field strength disturbances and dynamic pressure disturbances is very
weak with absolute correlation coefficients smaller than 0.3. But there is still a trend, since
foreshock ion-driven current in the opposite direction should still be able to cause some

disturbances, but we do not expect them to develop into significant HFAs or FBs. Local hybrid
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simulations are needed to further investigate this. Overall, Figure 6 indicates that our requirement

of j(x) direction is necessary to enhance the model performance.

One reason for our interest in predicting HFAs and FBs is to forecast their significant dynamic
pressure depletions. However, the identification criteria of HFAs and FBs in observations are
mostly empirical (e.g., density depletion, field strength depletion, and flow deflection by a certain
percent). As a result, even if the foreshock ion-discontinuity interaction can result in strong
dynamic pressure disturbances, they may not be strong enough to result in an HFA or FB
immediately. For example, when an HFA or FB just starts to form, it is in an intermediate stage of
evolution that may not meet all the selection criteria. These transients may also not be able to finish
the formation, e.g., because the background ULF waves disturbed the needed background
environment, or the driver discontinuity has convected out of the foreshock. Or they can finish the
formation, but the ambient foreshock ion parameters are not strong enough to ensure the formed
structures satisfy all the criteria. (Such structures are categorized as density holes by Lu et al.
(2022).) Therefore, it is more practical and efficient to directly predict whether there will be

dynamic pressure disturbances than predict whether there will be a well-defined HFA or FB.



310 Table 1. The density ratio of foreshock ions to solar wind ions, foreshock ion thermal speed,

311  parallel speed relative to the solar wind, discontinuity shear angle, thickness, IMF strength, and

312 the calculated model value using Eq. (3) of 9 case study events. Based on whether they have two

313  compressional boundaries or only an upstream shock, we categorize them as an HFA-like or FB-

314  like event. Because when the foreshock ion density is low, it can be affected by the 1-count noise

315  (~0.0075 cm> calculated during non-foreshock time), we thus include the uncertainty of foreshock

316  ion density ratio (dn ratio).

. . . Vth . Thickness Model
Time (UT) Type n ratio dn ratio [km/s] Vpara [km/s] | Shear [°] [km] Bt [nT] [km/s]

2017-12-18/12:01 FB 0.1 0.003 750 -998 35.6 1641 2.7 37
2017-12-18/12:09 HFA 0.24 0.003 612 -965 44.8 30259 3.1 31
2017-12-18/12:56 FB 0.087 0.003 622 -1056 26.9 1319 2.8 25
2017-12-18/13:58 HFA 0.077 0.003 758 -611 22.6 666 3.2 17
2017-12-18/14:11 HFA 0.031 0.003 970 -737 20.7 3322 3.3 8
2018-01-12/01:51 FB 0.034 0.001 524 -524 93.8 1401 2.6 11
2018-12-10/05:48 HFA 0.043 0.003 920 456 22 6954 4.1 8
2018-12-10/07:45 HFA 0.08 0.003 838 193 -61 3147 3.7 20
2019-01-08/01:47 FB 0.035 0.001 719 422 -63.9 733 2.9 14
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5. Summary and Discussion

In summary, we evaluate the efficacy of a quantitative model describing the expansion speed
of foreshock transients driven by foreshock ion interaction with a solar wind discontinuity. We
find that the model is consistent with local hybrid simulations. Comparing the model with a
statistical database of observations, we find a moderate correlation between model predictions and
data for the field strength variations and the dynamic pressure decreases around discontinuities.
This correlation (absolute correlation coefficients >0.5) is better than the correlation between all
other possible observed parameters and the above data quantities. Through case studies, we show
that numerous fully formed HFAs and FBs are typically associated with large model expansion
speed values. Our results suggest that given foreshock ion parameters at specific bow shock
positions and solar wind discontinuity parameters (e.g., at lunar distance or at L1), the proposed
model can predict with reasonable success probability the field strength variations and dynamic

pressure decreases driven by foreshock ion — discontinuity interactions.

Next, we discuss the limitations and possible future improvements of our model. (1) The
model only considers the motion of foreshock ions arriving from only one side of the discontinuity.
When a discontinuity is embedded within the foreshock, the interaction of foreshock ions arriving
from both sides should be considered and compared with local hybrid simulations. (2) What could
happen when the foreshock ion-driven current has an unfavorable direction requires further studies.
For example, a foreshock compressional boundary may form, which could still result in some
disturbances. (3) Our model assumes a stable background field. But in the foreshock, there is
typically significant wave activity. How these waves might affect the foreshock ion — discontinuity
interaction, including the possibility of suppressing the transient expansion by potentially

decorrelating the gyromotion of the ions, should be further studied. (4) Our model assumes
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constant background foreshock ion parameters, but in reality they are a function of space and time.
The model may need to be modified into the form of integral. (5) Even if after including the time
dependence into our model (~At?> based on Vu et al. (2023)), we cannot compare the model with
observations, because it is extremely difficult for observations to determine when the interaction
starts to occur. Global hybrid simulations may help. (6) We assume foreshock ions are field aligned
and follow Maxwellian distributions, but foreshock ions can also be ring distributions or gyrophase
bunched. These effects complicate the analytical treatment and may invalidate some of our results
but need to be considered, at least numerically. (7) The foreshock ion parameters are not yet
predictable. Foreshock ion models should be established in the future, in order to provide the

necessary input to model foreshock transient formation and evolution.

Because previous studies have established a large database of HFAs and FBs as a function of
various upstream conditions, including both observations (e.g., Schwartz et al., 2000; Facsko et
al., 2008, 2009, 2010; Chu et al., 2017; Liu et al., 2017, 2022b; Vu et al., 2022b) and simulations
(e.g., Omidi et al., 2020; Vu et al., 2023), it could be possible to also establish data-based models,
e.g., by training a machine learning model using above database. It is also feasible to combine the
physics-based equations and the database to improve the efficiency and accuracy of the model

training.
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376  Figure 1. The comparison between the model expansion speeds calculated using Eq. (3) and the
377  measured expansion speeds from the local hybrid simulations using varying foreshock ion parallel
378  speed, thermal speed, and density ratio relative to the solar wind (Vu et al., 2023). The expansion
379  speeds are normalized to the Alfvén speed (V). The solid line indicates the linear fitting, and the

380  dotted line indicates the diagonal.
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expansion speeds using Eq. (3), (d) ion energy spectrum, (e) ion density, (f) ion bulk velocity, (g)
dynamic pressure along GSE-X. The two yellow shaded regions indicate the dynamic pressure

decreases associated with large model values.
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the model values divided by the density ratio, respectively. The Pearson correlation coefficients
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