

1 **Analytical model of foreshock ion interaction with a discontinuity: a statistical study**

2 Terry Z. Liu¹, Andrew Vu¹, Vassilis Angelopoulos¹, and Hui Zhang²

3 ¹Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles,

4 USA. ²Geophysical Institute, University of Alaska Fairbanks, USA

5 **Key points**

6 1. We derive a model that describes foreshock ion – discontinuity interaction, which is consistent
7 with local hybrid simulations.

8 2. We obtain moderate correlations between the model expansion speed and (a) magnetic field
9 variations, and (b) dynamic pressure depletions.

10 3. Our model can potentially predict strong dynamic pressure depletion caused by foreshock ion-
11 discontinuity interaction.

12 **Abstract**

13 When a solar wind discontinuity interacts with foreshock ions, foreshock transients such as

14 hot flow anomalies and foreshock bubbles can form. These create significant dynamic pressure
15 perturbations disturbing the bow shock, magnetopause, and magnetosphere-ionosphere system.

16 However, presently these phenomena are not predictable. In the accompanying paper, we derived
17 analytical equations of foreshock ion partial gyration around a discontinuity and the resultant

18 current density. In this study, we utilize the derived current density strength to model the energy
19 conversion from the foreshock ions, which drives the outward motion or expansion of the solar

20 wind plasma away from the discontinuity. We show that the model expansion speeds match those
21 from local hybrid simulations for varying foreshock ion parameters. Using MMS, we conduct a

22 statistical study showing that the model expansion speeds are moderately correlated with the

23 magnetic field strength variations and the dynamic pressure decreases around discontinuities with
24 correlation coefficients larger than 0.5. We use conjunctions between ARTEMIS and MMS to
25 show that the model expansion speeds are typically large for those already-formed foreshock
26 transients. Our results show that our model can be reasonably successful in predicting significant
27 dynamic pressure disturbances caused by foreshock ion-discontinuity interactions. We discuss
28 ways to improve the model in the future.

29 **1. Introduction**

30 When foreshock ions interact with a solar wind discontinuity, a hot flow anomaly (HFA) (e.g.,
31 Schwartz et al., 1985, 2018; Lin, 1997, 2002; Omidi and Sibeck, 2007; Zhang et al., 2010) or a
32 foreshock bubble (FB) (e.g., Omidi et al., 2010, 2020; Turner et al., 2013, 2020; Liu et al., 2015;
33 Wang C.-P. et al., 2021a, b) may form. These foreshock transients are characterized by a core
34 region with field strength decrease, density decrease, temperature increase, and flow deflection,
35 on a spatial scale of a few R_E (see review by Eastwood et al. (2005), Facskó et al. (2010), and
36 Zhang et al. (2022)). Because the dynamic pressure inside them is extremely low, they can cause
37 the local bow shock and magnetopause to move outward, leading to disturbances in the
38 magnetosphere and ionosphere, including magnetospheric ULF waves, field aligned currents,
39 traveling convection vortices, and auroral brightening (e.g., Sibeck et al., 1999; Eastwood et al.,
40 2011; Fillingim et al., 2011; Hartinger et al., 2013; Archer et al., 2014, 2015; Shi et al., 2013, 2017;
41 Zhao et al., 2017; Wang B. et al., 2019, 2020, 2021; Shen et al., 2018; Shi et al., 2020; Liu et al.,
42 2022a), from dayside to far tail (Facskó et al., 2015; Wang C.-P. et al., 2018, 2020, 2021b; Liu et
43 al., 2020a, 2021).

44 However, these foreshock phenomena and the associated magnetosphere-ionosphere
45 disturbances are not yet predictable. Contrary to the solar wind potential drivers of magnetospheric

46 activity (e.g., interplanetary shocks) that can be predicted and monitored in advance, foreshock
47 transients cannot, partly because they are rather localized near the bow shock and have been hard
48 to recognize, identify, and study with previous single spacecraft missions. The situation has
49 improved drastically with the advent of Cluster, THEMIS, and MMS missions. It has been possible
50 to confirm many expectations from simulations, such as the scale-size, evolution, and other
51 characteristics of foreshock transients (e.g., Lucek et al., 2004; Facskó et al., 2009, 2010; Liu et
52 al., 2016; Lee et al., 2021), as well as the physical mechanism leading to their formation, namely
53 the interaction of the foreshock ions with the approaching discontinuity (Liu et al., 2020b). Given
54 this level of physical understanding, one is tempted to take the next step to formulate a predictive
55 model of a transient's formation and impacts based on pristine upstream solar wind conditions.
56 Based on previous simulations (e.g., Thomas et al., 1991; Lin, 2002; Omidi and Sibeck, 2007;
57 Omidi et al., 2010; Wang C.-P. et al., 2021b), it is commonly thought that the concentration and
58 thermalization of foreshock ions at a discontinuity increases the local thermal pressure causing the
59 formation and expansion of an HFA or FB. However, this understanding is too qualitative and
60 cannot be used to model the formation process.

61 Recently, a kinetic model has been proposed based on PIC simulations (An et al., 2020) and
62 MMS observations (Liu et al., 2020b). When foreshock ions encounter a solar wind discontinuity,
63 as their gyroradii are comparable to the discontinuity thickness, they perform partial gyration. In
64 the accompanying paper (Liu et al., 2022 submitted to JGR), we derived the analytical equations
65 of foreshock ion motion across a discontinuity. Because electrons are magnetized, the motion
66 difference between the foreshock ions and electrons leads to a current. If this current tends to
67 decrease the field strengths at the discontinuity, more foreshock ions can cross the discontinuity
68 which strengthen the current resulting in positive feedback. The magnetic field variation by the

69 current induces an electric field, which drives cold plasma to $E \times B$ drift outward away from the
70 discontinuity, i.e., the expansion process. The energy conversion to the expansion energy of solar
71 wind plasma is through the foreshock ion current against the induced electric field. Such a
72 formation and expansion process has been further examined by local hybrid simulations by Vu et
73 al. (2022a). Based on the energy conversion, Liu et al. (2023) derived an expansion speed model.
74 These modeling successes show that it has become increasingly possible to quantitatively describe
75 the formation and expansion process of foreshock transients.

76 In this study, we take yet another step in the quantitative description of foreshock transients
77 and their effects by combining the foreshock ion motion model (Liu et al., 2022 submitted to JGR)
78 and the expansion speed model (Liu et al., 2023) to quantitatively describe the expansion speed of
79 the transient due to the foreshock ion – discontinuity interaction. This model describes the early
80 interaction between the foreshock ions and a discontinuity, which generates small perturbations
81 that may or may not evolve into an FB, an HFA, or a structure that belongs to neither. We test how
82 well it works by comparing with local hybrid simulations and observations. In Section 2, we
83 introduce the model and compare it with local hybrid simulations. In Section 3, we introduce the
84 database and describe how we conduct a statistical study and case studies to test the model. The
85 results are presented in Section 4 and summarized in Section 5.

86 **2. Model description**

87 The expansion speed model by Liu et al. (2023) showed that the foreshock ions transfer
88 energy to the solar wind plasma through the current density driven by the foreshock ions j against
89 the induced electric field E in the solar wind rest frame. The solar wind plasma gains energy and
90 moves away from the discontinuity at a speed $E \times B$, i.e., the expansion of the transient. The
91 expansion speed can be expressed as

92

$$V_{exp} = j/qn_{sw} \cdot \Omega_i \Delta t \quad (1),$$

93 where q is the unit charge, n_{sw} is solar wind density, and Ω_i is ion gyrofrequency. Based on local
 94 hybrid simulations by Vu et al., (2023), $\Omega_i \Delta t$ in Eq. (1) should be modified as $(\Omega_i \Delta t)^2$, due to the
 95 positive feedback from the field variation which can further enhance the current. However, in
 96 observations it is nearly impossible to determine how long the structure has been evolving. Thus,
 97 we do not include the time dependence in this study and simplify Eq. (1) as $V_{exp} = \pi j/qn_{sw}$ to
 98 represent a typical expansion speed for each observation event.

99 In the accompanying paper (Liu et al., 2022 submitted to JGR), we have derived that

100 $j(x) \sim qn_f \left(\frac{1}{\pi v_{th\perp}^2} \right) \int_0^\infty \exp \left(-\frac{(V_\perp)^2}{v_{th\perp}^2} \right) (-V_\perp \Delta \sin \varphi_c \cos \alpha(x) + (V_{\parallel 0} - C) \sin \alpha(x) \Delta \varphi_c) V_\perp dV_\perp \quad (2),$

101 assuming that foreshock ions follow Maxwellian distributions, where n_f is foreshock ion density,
 102 φ_c is the initial gyrophase of foreshock ions that can reach position x within a discontinuity along
 103 the normal direction, α is the shear angle of discontinuity, parameter $C = \Omega_i \frac{dx}{d\alpha}$, and for easy
 104 application in observations, we simplify that the foreshock ions approximately follow Maxwellian
 105 distributions. When $j(x) < 0$, the field strength decreases at the discontinuity, which favors
 106 further growth of the transient structure. Thus, for each observation event when the negative peak
 107 of $j(x)$ is stronger than the positive peak, we substitute the maximum of $|j(x)|$, j_{max} , into
 108 simplified Eq. (1) and have

109 $V_{exp} = \pi j_{max}/qn_{sw} \quad (3).$

110 We thus obtain a model that can predict the expansion speed of foreshock transients due to the
 111 interaction of the foreshock ions with the discontinuity, given the foreshock ion parameters

112 (thermal speed, parallel speed, and density), solar wind density, interplanetary magnetic field (IMF)
113 strength, and discontinuity parameters (shear angle and thickness).

114 To test this model, we first use the local hybrid simulation results by Vu et al. (2023). In the
115 simulations, foreshock ions are injected from the simulation boundary (which acts as a bow shock)
116 and interact with a tangential discontinuity (TD) with shear angle of 90° , forming an FB. The FB
117 expansion speed was measured at a fixed distance from the “bow shock” and fixed time after the
118 FB’s initial formation. We scanned the parameter space of foreshock ion density, thermal speed,
119 and parallel speed by varying each parameter while fixing others (TD shear angle and thickness,
120 however, still need further tests). We transform the simulation parameters to the solar wind rest
121 frame in which the model was derived and put them into the model. Figure 1 compares the model
122 expansion speeds using Eq. (3) and the simulated expansion speeds. We see that they are linearly
123 correlated, although the slope does not match the diagonal because the time dependence of the
124 model is simplified, so the slope is determined by when the expansion speeds are measured in the
125 simulations. Therefore, our model indeed captures the major physics.

126 Note that for varying foreshock ion parallel speed V_{\parallel} , we need to time a term $V_{\parallel 0}/V_{\parallel}$ to the
127 simulated expansion speed to match the model, where $V_{\parallel 0}$ is the fixed foreshock ion parallel speed
128 when the foreshock ion thermal speed and density are varied. This is because due to the simulation
129 setup, the transient forms simultaneously while the foreshock ions are injected from the simulation
130 boundary. The top of the structure is determined by how far the foreshock ions have reached
131 upstream and the bottom is the simulation boundary or the “bow shock”. The expansion speed
132 spatially increases from 0 at the top to maximum at the bottom. At a fixed position in the simulation
133 box where the expansion speed is measured, the distance to the structure top is $V_{\parallel}\Delta t$. We thus use
134 term $V_{\parallel 0}\Delta t/V_{\parallel}\Delta t$ to scale all the measured position to be the same relative to the transient structure.

135 As discussed above, the expansion speed is a function of both time and space, but in
136 observations it is impossible to determine when and where the expansion speed is measured. So,
137 the simplified model only provides a characteristic expansion speed for each observation event.
138 Therefore, it is expected that the statistical results would be very scattered, but as shown in Section
139 4 our model is still good enough to show a moderate correlation with the observations.

140 This model describes the general foreshock perturbations due to foreshock ions interacting
141 with a discontinuity. Because it is not a self-consistent model, i.e., the feedback of the magnetic
142 field variations to the foreshock ion-driven current is not included, this model can only describe
143 the early interaction before the magnetic field profile is significantly disturbed. Depending on how
144 significant the expansion speed is, the configuration of the foreshock ion-driven currents, and other
145 possible factors, the foreshock perturbations due to this early interaction may or may not evolve
146 into an HFA, an FB, or a structure that does not satisfy the criteria of either of them. But as shown
147 later, if our model can directly predict the magnetic field disturbances and dynamic pressure
148 disturbances, it is not necessary to distinguish what phenomena they will become, especially
149 because the physical differences between HFAs and FBs are still a puzzle and beyond the scope
150 of this study.

151 **3. Data and Methods**

152 For the statistical study of foreshock ion-discontinuity interaction, we use the Magnetospheric
153 Multiscale (MMS) mission (Burch et al., 2016) to observe discontinuities in the foreshock. We
154 analyze DC magnetic field data from the fluxgate magnetometer (Russell et al., 2016) and plasma
155 data from the fast plasma investigation (FPI) instrument suite (Pollock et al., 2016). We use time
156 intervals when MMS is upstream of the bow shock from 2015 to 2019 identified by Vu et al.
157 (2022b).

158 To automatically identify discontinuities, we calculate the magnitude of magnetic field vector
159 change across 10 seconds normalized to its 4 min average; the resultant quantity, termed the
160 normalized partial variance of increments (PVI) (e.g., Greco et al., 2008), $|\mathbf{B}(t + 10s) - \mathbf{B}(t)|^2 /$
161 $\langle |\mathbf{B}(t + 10s) - \mathbf{B}(t)|^2 \rangle_{4\ min}$, is shown in Figure 2b. For each $\text{PVI} > 5$, i.e., there is a large
162 magnetic field vector variation across 10 seconds relative to the 4 min average, we use 30s
163 averaged magnetic field before and after as the background magnetic field and require the shear
164 angle to be larger than 25° . Events with smaller shear angles are often contaminated by local
165 fluctuations (especially steepened foreshock ULF waves) and therefore excluded. The
166 discontinuity normal is calculated through the cross product method (Schwartz, 1998). For each
167 discontinuity, we automatically calculate the discontinuity thickness by fitting them with a Harris
168 current sheet (discontinuities that are too complicated to be fitted are removed).

169 Whenever the angle between the magnetic field and the bow shock normal (using the Merka
170 et al. (2005) model scaled to the MMS position with ion bulk velocity, density, and magnetic field
171 from MMS as input), θ_{Bn} , is less than 60° either before or after the discontinuity, we calculate the
172 ambient foreshock ion parameters (density, thermal speed, and parallel speed) by removing the
173 solar wind ions from the ion distributions (see detailed method in Liu et al. (2017) and Liu et al.
174 (2022b)). Due to the uncertainty of model bow shock normal and thus θ_{Bn} , some pristine solar
175 wind time could be included, and sometimes the foreshock ion density is too low causing the
176 calculated foreshock ion parameters to be dominated by noises. Therefore, the calculated
177 foreshock ion density is required to be more than 0.05 cm^{-3} based on a statistical test in Liu et al.
178 (2022b) about whether the calculated density shows a reasonable dependence on the distance to
179 the model bow shock. We thus obtain enough parameters to calculate Eq. (2) on the side of the
180 discontinuity where $\theta_{Bn} < 60^\circ$ (so when both sides have $\theta_{Bn} < 60^\circ$, there can be two model

181 values for one discontinuity). If the negative peak of $j(x)$ is stronger than the positive peak, we
182 then calculate Eq. (3), the transient expansion speed, as shown in Figure 2c. The discontinuity list
183 can be found in the supporting information.

184 Because the expansion of solar wind plasma can pile up magnetic field and density and
185 deviate velocity direction, it is expected that faster expansion should be associated with stronger
186 magnetic field disturbances and dynamic pressure disturbances. We thus test the model with the
187 observed disturbances. For each discontinuity, we measured the minimum and maximum field
188 strengths within 1 min and the variance and mean values of the field strengths within 5 min from
189 MMS. As introduced in Section 2, our model can only describe the disturbances by foreshock ions
190 at nearly pristine discontinuities, but the PVI method can also automatically identify significant
191 foreshock disturbances like SLAMS (see review by Wilson, 2016), HFAs, and FBs. To remove
192 them, we set a criterion that the variance relative to the mean field strength should be less than
193 0.15 based on some case studies. We also require that the maximum and minimum field strengths
194 relative to the mean field strength should be larger than the variance, otherwise the disturbances
195 could just be background waves. Like for the field strengths, we also calculate the dynamic
196 pressure variations around the discontinuities along the GSE-X direction and along the local bow
197 shock normal direction (using the Merka et al. (2005) model) using total ion bulk velocity and
198 density measured by MMS.

199 In summary, we first use magnetic fields measured by MMS to automatically identify
200 discontinuities using the PVI method whenever MMS was in the upstream region. For each
201 discontinuity, we calculate the model values using foreshock ion moments after the removal of
202 solar wind ions from ion distribution functions measured by MMS. We then examine the

203 correlation between the model values and the disturbances of magnetic field strengths and total
204 ion dynamic pressures locally measured by MMS at each discontinuity.

205 We also conduct case studies for fully formed HFAs and FBs, because maybe large model
206 expansion speeds during early formation stage favor further evolution into significant foreshock
207 transients. To observe the pristine discontinuities that drive those HFAs and FBs, we use the two
208 probes of the Acceleration Reconnection Turbulence & Electrodynamics of Moon's Interaction
209 with the Sun (ARTEMIS) mission (Angelopoulos, 2010), a spin-off of the THEMIS mission, in
210 conjunction with MMS observations. We measure the solar wind ion moments using the THEMIS
211 electrostatic analyzer (ESA) (McFadden et al., 2008) and the IMF using the THEMIS fluxgate
212 magnetometer (Auster et al., 2008). Using the HFA/FB event list in Liu et al. (2022) and requiring
213 ARTEMIS to be in the Fast Survey (high-time resolution) mode during its conjunction with MMS,
214 we select 9 events for case studies (Table 1). We use ARTEMIS to calculate the discontinuity and
215 solar wind parameters and use MMS to measure the ambient foreshock ion parameters to calculate
216 the model for each HFA/FB.

217 **4. Model vs. Observations**

218 In Figure 3a, the upper (lower) half of the plot shows the comparison between the model
219 expansion speeds and the measured maximum (minimum) field strength normalized to the
220 background field strength. There are ~1000 events in this plot. There is a moderate correlation that
221 larger model values tend to be associated with stronger field strength increases (decreases) at the
222 upper (lower) half, with absolute Pearson correlation coefficient of 0.55 (0.51). In the lower half
223 of the plot, there are many scattered dots indicating very significant field strength decreases (and
224 thus weaker correlation than the upper half), partly because many solar wind discontinuities are
225 naturally associated with low field strengths regardless of foreshock ions.

226 To examine whether the correlation in Figure 3a may be obtained simply because more
227 foreshock ions cause stronger disturbances, Figure 3b compares the field strength disturbances
228 with the density ratio of foreshock ions to solar wind ions. There is a similar trend as in Figure 3a
229 except that the correlation is weak (absolute correlation coefficients $\sim 0.3 - 0.5$). Figure 3c shows
230 the comparison after the density ratio is removed from the model. We see that the similar trend
231 remains, and the correlation coefficients are weaker or comparable to those in Figure 3b. Therefore,
232 our model of the foreshock ion – discontinuity interaction, which was derived by calculating the
233 foreshock ion gyrovelocity within discontinuities, indeed captures more of the physics than simply
234 the density ratio, because it correlates better with the observations of the magnetic field strength
235 increases and decreases.

236 Figures 4a-e show the comparison with all the other parameters involved in the model. All of
237 them exhibits a very weak correlation (absolute correlation coefficients $\sim 0.1 - 0.3$). There are only
238 very weak trends suggestive that perhaps very large foreshock ion thermal speeds (Figure 4b), very
239 thin discontinuities (Figure 4d), and very low field strengths (Figure 4e) may favor large field
240 strength variation. (And together, these quantities may indicate a large foreshock ion gyroradius
241 relative to the discontinuity thickness, which is already physically described in Eq. (2)). These
242 results suggest that our model can combine many parameters that show a very weak or weak
243 correlation with field strength variation in such a physically justified function that has a moderate
244 correlation (absolute correlation coefficients slightly larger than 0.5) with the field strength change.
245 Figure 4f checks the model expansion speed normalized to the Alfvén speed against the data in the
246 same way. It too shows that the model expansion Mach number does not have a better correlation
247 than that in Figure 3a. Testing the solar wind speed and density, we also find that they do not show

248 any correlations with the field strength variations either (not shown). In sum, our model shows the
249 strongest correlation coefficients among all the tested parameters.

250 Figure 5 compares the model expansion speeds with the solar wind dynamic pressure
251 disturbances along the GSE-X direction. There is a very weak correlation with the dynamic
252 pressure increases but there is a moderate correlation with the dynamic pressure decreases with an
253 absolute correlation coefficient greater than 0.5. Because a flow deflection only decreases the
254 dynamic pressure while a density variation leads to both, it is reasonable to see a clearer dynamic
255 pressure decrease than increase. Because some events are around the bow shock flank, Figure S1
256 compares the solar wind dynamic pressure disturbances along the local bow shock normal
257 direction (using the Merka et al. (2005) model), which shows similar results as Figure 5.

258 Figure 5 suggests that our model can potentially be used to predict the significance of dynamic
259 pressure disturbances driven by the foreshock ion-discontinuity interaction. For example, when
260 the model value is large, e.g., larger than 10, there will be high probability of strong dynamic
261 pressure decreases by more than 20%. When the model value is intermediate, e.g., 3 to 10, the
262 dynamic pressure decreases are mostly around 20%. When the model value is small, e.g., below 3,
263 the dynamic pressure decreases are mostly below 20% and negligible.

264 To further examine this, we applied case studies using ARTEMIS to observe the pristine
265 discontinuities and MMS to observe the foreshock ion properties around HFAs/FBs that already
266 show significant dynamic pressure disturbances. Table 1 shows the observed foreshock ion and
267 discontinuity parameters and the calculated expansion speed for 9 events. Their model expansion
268 speeds are mostly around and above 10. However, a large model value does not necessarily denote
269 the presence of an HFA or FB. For example, in Figure 2 at ~15:20-15:30 UT, the model value is
270 above 10 and there is indeed a significant dynamic pressure decrease (first vertical shaded region

271 in Figure 2g). However, the density decrease is not significant, which may not satisfy the criteria
272 of HFAs or FBs. Similarly, at \sim 15:50-16:00 UT, the density depletion is large resulting in a strong
273 dynamic pressure decrease (second vertical shaded region in Figure 2g), but the deflection is weak.
274 Nevertheless, we do not have to predict the presence of HFAs or FBs if we can directly predict the
275 dynamic pressure disturbances (one important input of space weather models). We will further
276 discuss this in Section 5.

277 Naturally, our model cannot describe all the foreshock disturbances, as we only considered
278 here the scenario of a localized foreshock ion interaction with a single discontinuity. For example,
279 at 15:40-15:50 UT in Figure 2, there is a foreshock cavity (e.g., Sibeck et al., 2002; Omidi et al.,
280 2013a) or traveling foreshock (Kajdič et al., 2017) with a large-scale low dynamic pressure region
281 compared to the ambient solar wind, which is not described by our model. Additionally, other
282 types of foreshock transients, like spontaneous hot flow anomalies (Omidi et al., 2013b; Zhang et
283 al., 2013) that are not associated with solar wind discontinuities, also cannot be described by our
284 model. More effort will be needed in the future to fully model these complex or alternate types of
285 foreshock disturbances.

286 When calculating the model, we required that the negative peak of $j(x)$ should be stronger
287 than the positive peak to ensure that the direction of foreshock ion-driven current decreases field
288 strengths at discontinuities in order to sustain the expansion. To test whether this requirement is
289 necessary, Figure 6 shows the comparison when we set up an opposite requirement. We see that
290 the correlation to both the field strength disturbances and dynamic pressure disturbances is very
291 weak with absolute correlation coefficients smaller than 0.3. But there is still a trend, since
292 foreshock ion-driven current in the opposite direction should still be able to cause some
293 disturbances, but we do not expect them to develop into significant HFAs or FBs. Local hybrid

294 simulations are needed to further investigate this. Overall, Figure 6 indicates that our requirement
295 of $j(x)$ direction is necessary to enhance the model performance.

296 One reason for our interest in predicting HFAs and FBs is to forecast their significant dynamic
297 pressure depletions. However, the identification criteria of HFAs and FBs in observations are
298 mostly empirical (e.g., density depletion, field strength depletion, and flow deflection by a certain
299 percent). As a result, even if the foreshock ion-discontinuity interaction can result in strong
300 dynamic pressure disturbances, they may not be strong enough to result in an HFA or FB
301 immediately. For example, when an HFA or FB just starts to form, it is in an intermediate stage of
302 evolution that may not meet all the selection criteria. These transients may also not be able to finish
303 the formation, e.g., because the background ULF waves disturbed the needed background
304 environment, or the driver discontinuity has convected out of the foreshock. Or they can finish the
305 formation, but the ambient foreshock ion parameters are not strong enough to ensure the formed
306 structures satisfy all the criteria. (Such structures are categorized as density holes by Lu et al.
307 (2022).) Therefore, it is more practical and efficient to directly predict whether there will be
308 dynamic pressure disturbances than predict whether there will be a well-defined HFA or FB.

309

310 **Table 1.** The density ratio of foreshock ions to solar wind ions, foreshock ion thermal speed,
 311 parallel speed relative to the solar wind, discontinuity shear angle, thickness, IMF strength, and
 312 the calculated model value using Eq. (3) of 9 case study events. Based on whether they have two
 313 compressional boundaries or only an upstream shock, we categorize them as an HFA-like or FB-
 314 like event. Because when the foreshock ion density is low, it can be affected by the 1-count noise
 315 ($\sim 0.0075 \text{ cm}^{-3}$ calculated during non-foreshock time), we thus include the uncertainty of foreshock
 316 ion density ratio (dn ratio).

Time (UT)	Type	n ratio	dn ratio	Vth [km/s]	Vpara [km/s]	Shear [°]	Thickness [km]	Bt [nT]	Model [km/s]
2017-12-18/12:01	FB	0.1	0.003	750	-998	35.6	1641	2.7	37
2017-12-18/12:09	HFA	0.24	0.003	612	-965	44.8	30259	3.1	31
2017-12-18/12:56	FB	0.087	0.003	622	-1056	26.9	1319	2.8	25
2017-12-18/13:58	HFA	0.077	0.003	758	-611	22.6	666	3.2	17
2017-12-18/14:11	HFA	0.031	0.003	970	-737	20.7	3322	3.3	8
2018-01-12/01:51	FB	0.034	0.001	524	-524	93.8	1401	2.6	11
2018-12-10/05:48	HFA	0.043	0.003	920	456	22	6954	4.1	8
2018-12-10/07:45	HFA	0.08	0.003	838	193	-61	3147	3.7	20
2019-01-08/01:47	FB	0.035	0.001	719	422	-63.9	733	2.9	14

317

318

319

320 **5. Summary and Discussion**

321 In summary, we evaluate the efficacy of a quantitative model describing the expansion speed
322 of foreshock transients driven by foreshock ion interaction with a solar wind discontinuity. We
323 find that the model is consistent with local hybrid simulations. Comparing the model with a
324 statistical database of observations, we find a moderate correlation between model predictions and
325 data for the field strength variations and the dynamic pressure decreases around discontinuities.
326 This correlation (absolute correlation coefficients >0.5) is better than the correlation between all
327 other possible observed parameters and the above data quantities. Through case studies, we show
328 that numerous fully formed HFAs and FBs are typically associated with large model expansion
329 speed values. Our results suggest that given foreshock ion parameters at specific bow shock
330 positions and solar wind discontinuity parameters (e.g., at lunar distance or at L1), the proposed
331 model can predict with reasonable success probability the field strength variations and dynamic
332 pressure decreases driven by foreshock ion – discontinuity interactions.

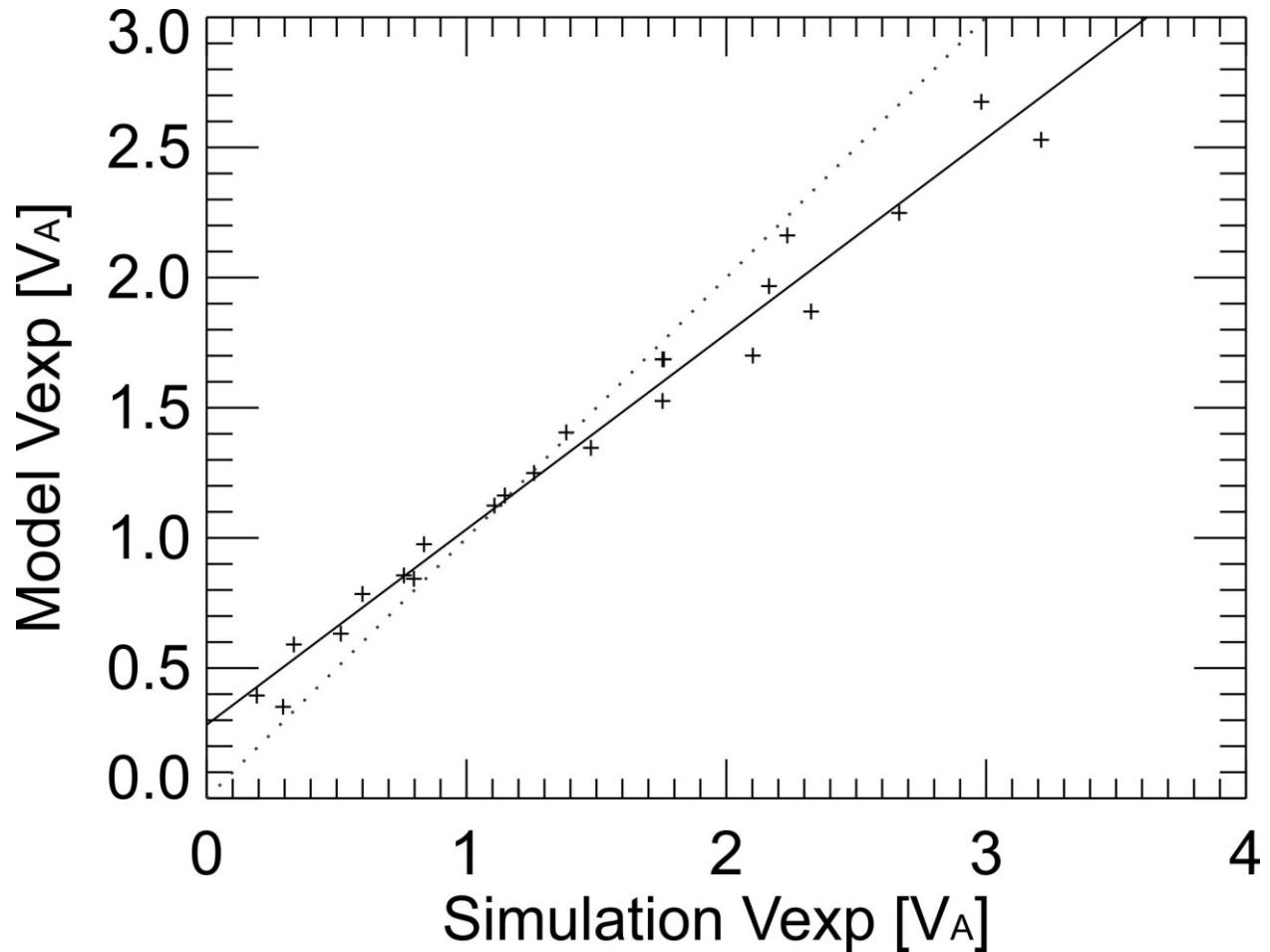
333 Next, we discuss the limitations and possible future improvements of our model. (1) The
334 model only considers the motion of foreshock ions arriving from only one side of the discontinuity.
335 When a discontinuity is embedded within the foreshock, the interaction of foreshock ions arriving
336 from both sides should be considered and compared with local hybrid simulations. (2) What could
337 happen when the foreshock ion-driven current has an unfavorable direction requires further studies.
338 For example, a foreshock compressional boundary may form, which could still result in some
339 disturbances. (3) Our model assumes a stable background field. But in the foreshock, there is
340 typically significant wave activity. How these waves might affect the foreshock ion – discontinuity
341 interaction, including the possibility of suppressing the transient expansion by potentially
342 decorrelating the gyromotion of the ions, should be further studied. (4) Our model assumes

343 constant background foreshock ion parameters, but in reality they are a function of space and time.
344 The model may need to be modified into the form of integral. (5) Even if after including the time
345 dependence into our model ($\sim \Delta t^2$ based on Vu et al. (2023)), we cannot compare the model with
346 observations, because it is extremely difficult for observations to determine when the interaction
347 starts to occur. Global hybrid simulations may help. (6) We assume foreshock ions are field aligned
348 and follow Maxwellian distributions, but foreshock ions can also be ring distributions or gyrophase
349 bunched. These effects complicate the analytical treatment and may invalidate some of our results
350 but need to be considered, at least numerically. (7) The foreshock ion parameters are not yet
351 predictable. Foreshock ion models should be established in the future, in order to provide the
352 necessary input to model foreshock transient formation and evolution.

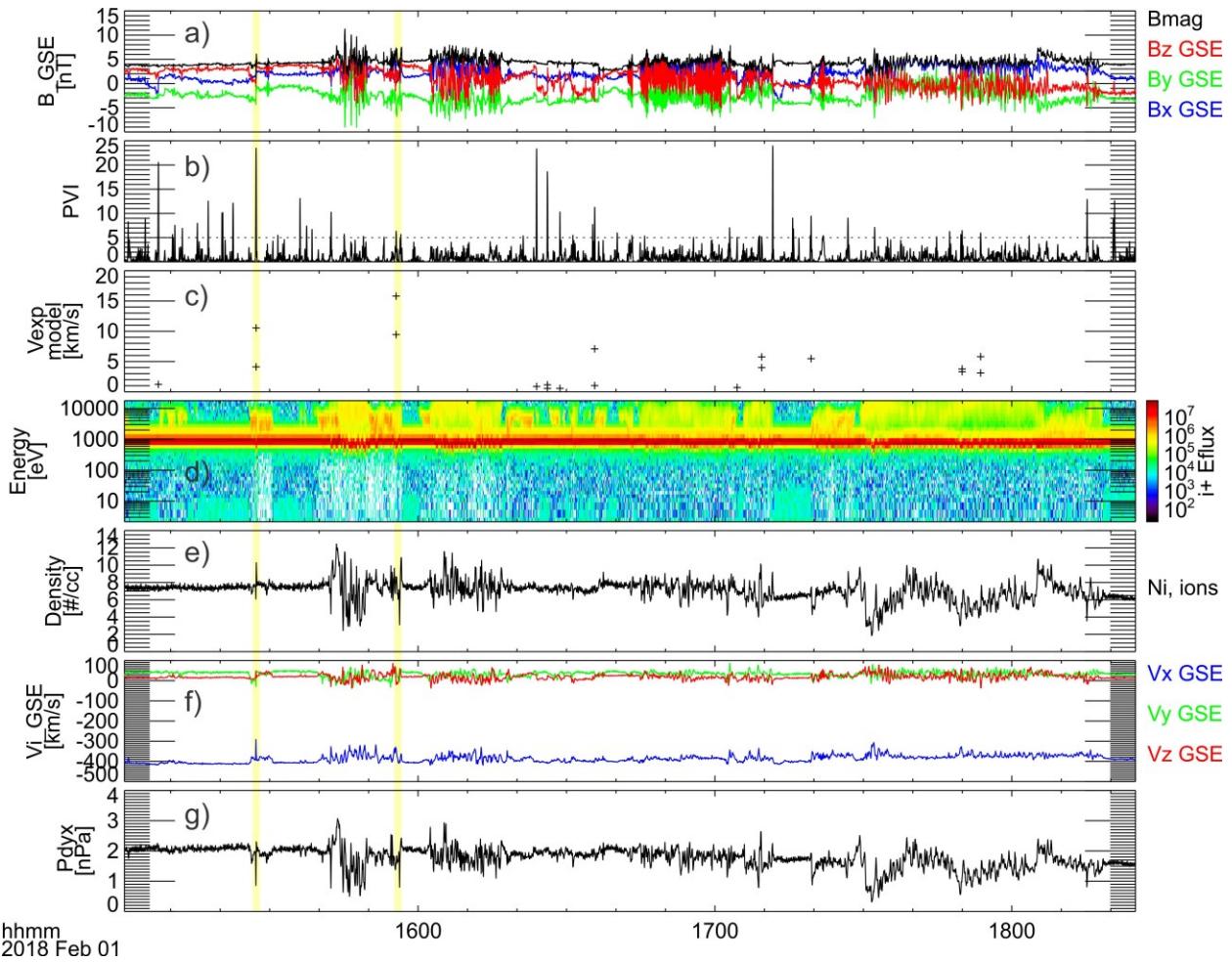
353 Because previous studies have established a large database of HFAs and FBs as a function of
354 various upstream conditions, including both observations (e.g., Schwartz et al., 2000; Facskó et
355 al., 2008, 2009, 2010; Chu et al., 2017; Liu et al., 2017, 2022b; Vu et al., 2022b) and simulations
356 (e.g., Omidi et al., 2020; Vu et al., 2023), it could be possible to also establish data-based models,
357 e.g., by training a machine learning model using above database. It is also feasible to combine the
358 physics-based equations and the database to improve the efficiency and accuracy of the model
359 training.

360 **Acknowledgements**

361 T. Z. L. acknowledges the ISSI team, Foreshocks Across The Heliosphere: System Specific
362 Or Universal Physical Processes? led by H. Hietala & F. Plaschke for the meaningful discussion.
363 T. Z. L. is partially supported by NSF award AGS-1941012/2210319, NASA grant
364 80NSSC21K1437/80NSSC22K0791, and NASA grant 80NSSC23K0086. H. Z. is partially

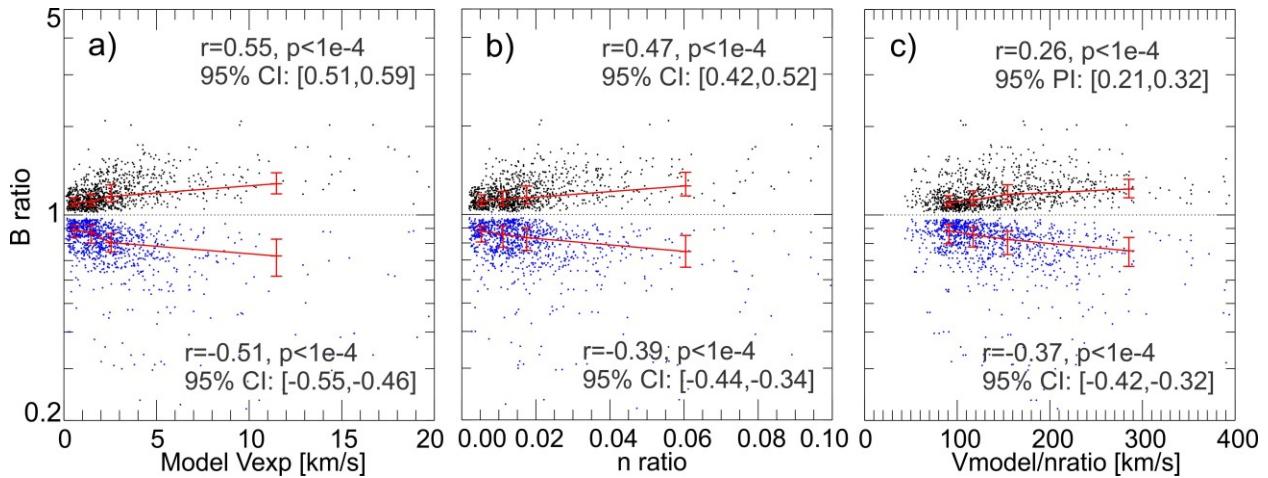

365 supported by NSF AGS-1352669 and NASA grant 80NSSC18K1376. We acknowledge the NASA
366 THEMIS contract NAS5-02099, the SPEDAS team and NASA's Coordinated Data Analysis Web.

367 **Data availability**

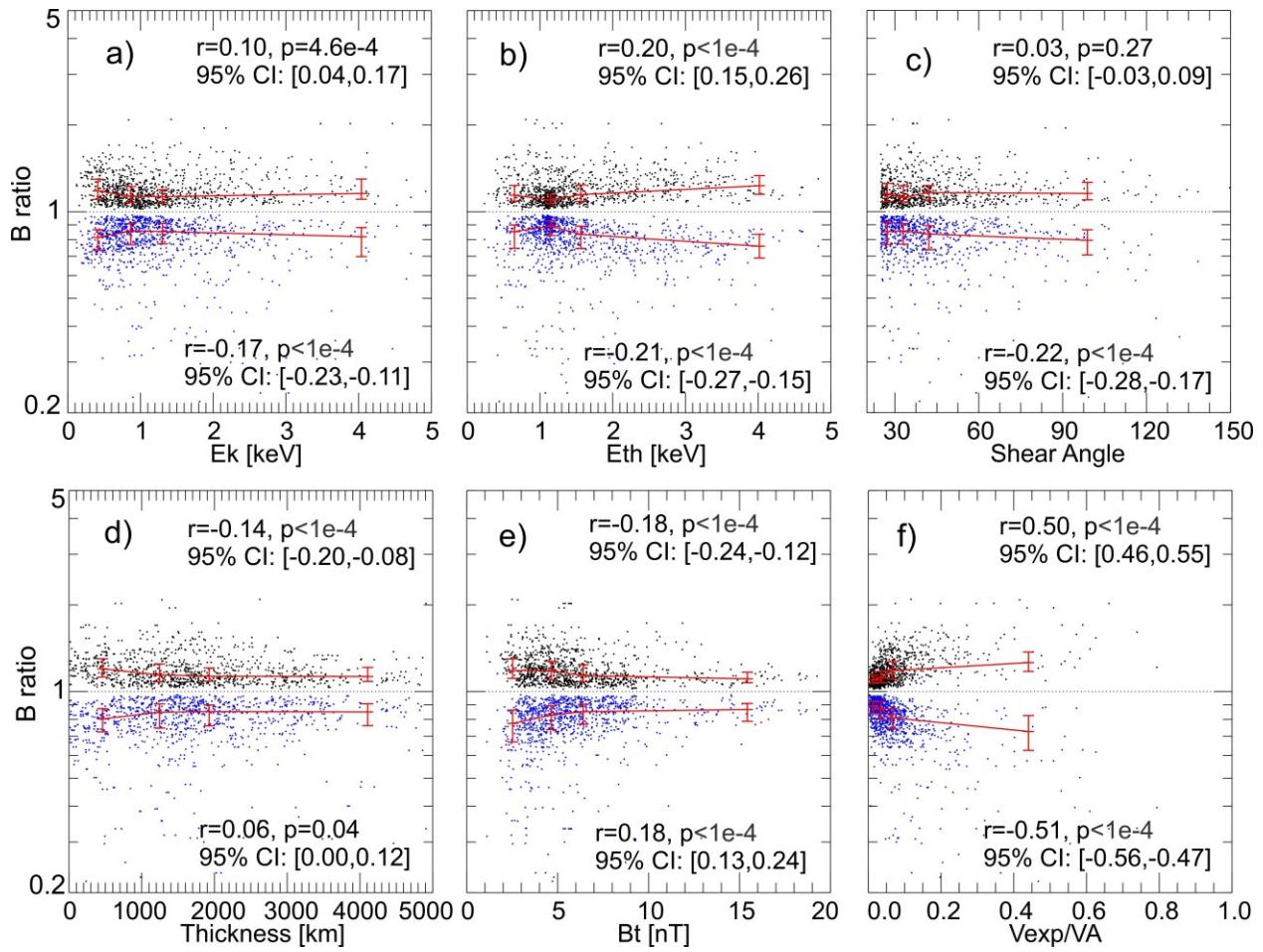

368 MMS data are available at MMS Science Data Center (<https://lasp.colorado.edu/mms/sdc/>).
369 THEMIS dataset are available at NASA's Coordinated Data Analysis Web (CDAWeb,
370 <http://cdaweb.gsfc.nasa.gov/>). The SPEDAS software (see Angelopoulos et al. (2019)) is available
371 at <http://themis.ssl.berkeley.edu>. The discontinuity list is in the supporting information.

372

373

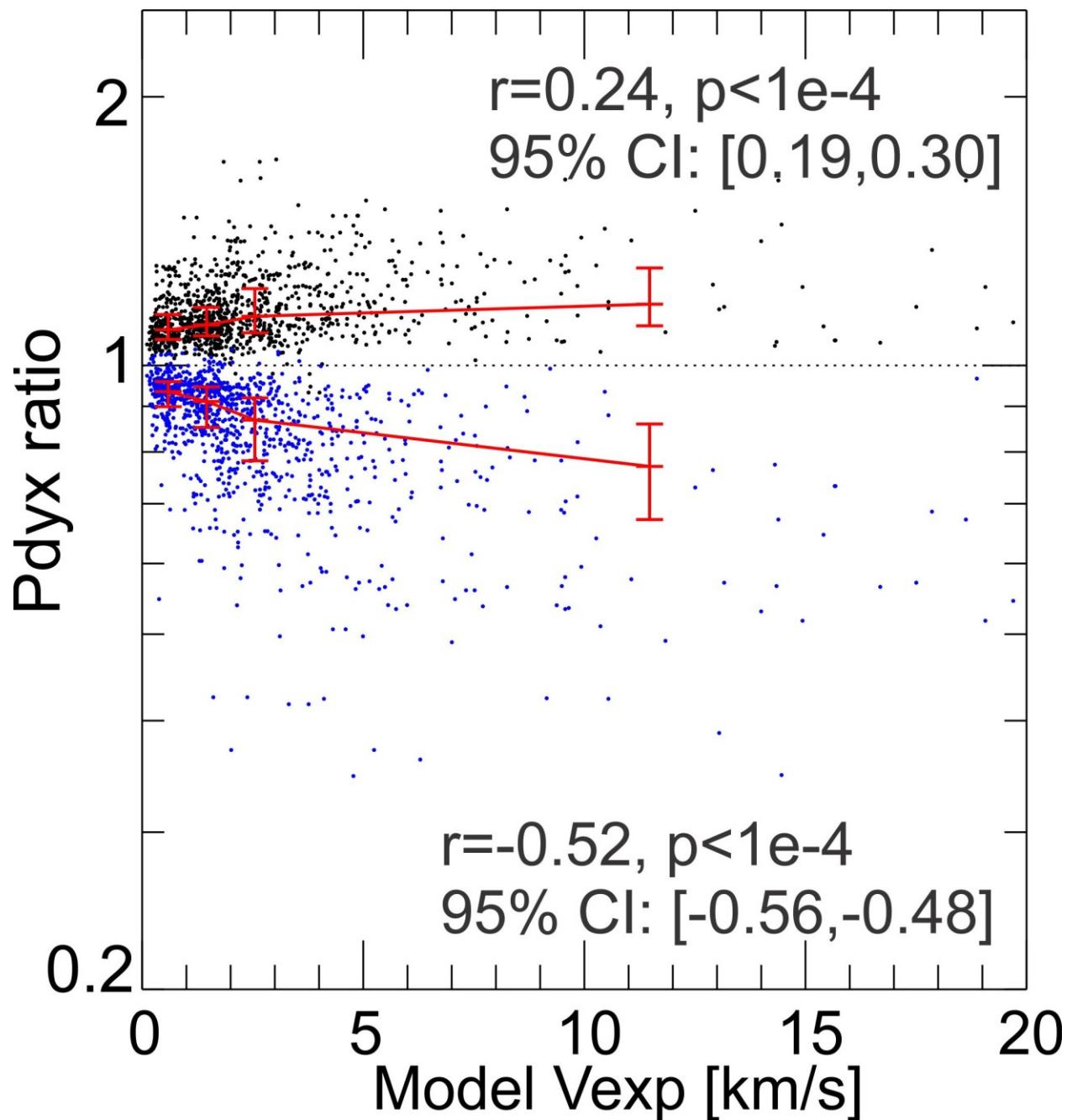

376 **Figure 1.** The comparison between the model expansion speeds calculated using Eq. (3) and the
 377 measured expansion speeds from the local hybrid simulations using varying foreshock ion parallel
 378 speed, thermal speed, and density ratio relative to the solar wind (Vu et al., 2023). The expansion
 379 speeds are normalized to the Alfvén speed (V_A). The solid line indicates the linear fitting, and the
 380 dotted line indicates the diagonal.

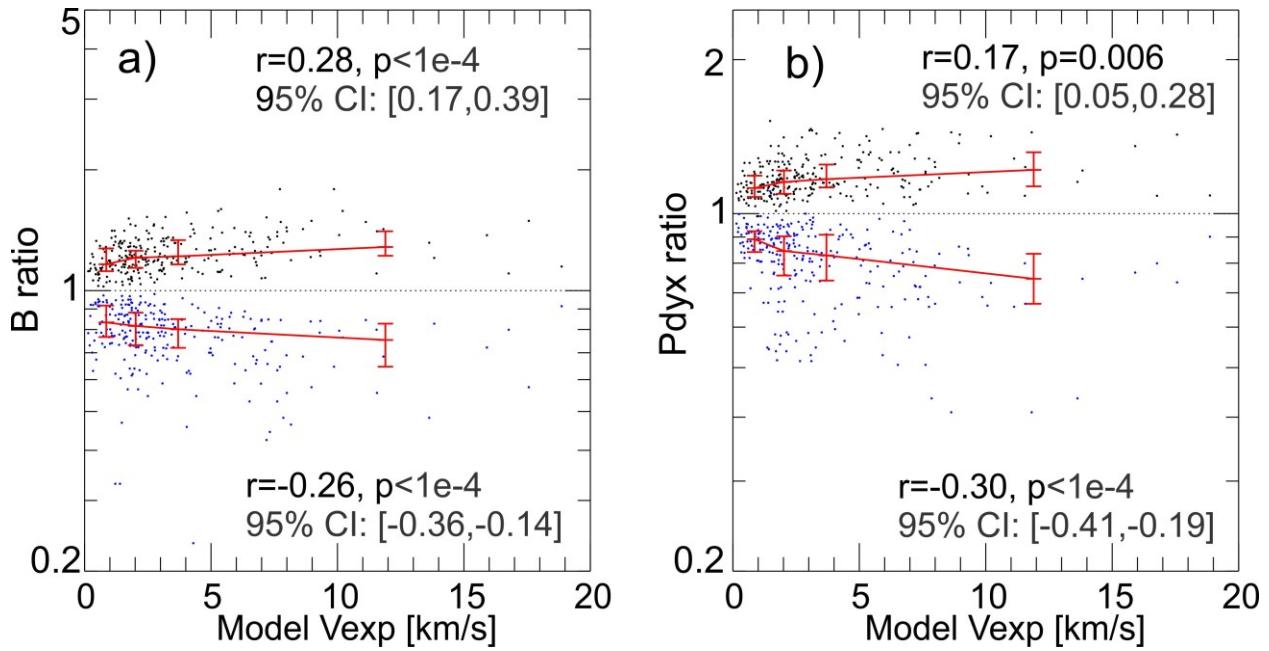
382 hhmm
2018 Feb 01


383 **Figure 2.** An example time interval demonstrating the statistical study analysis. From top to
 384 bottom: (a) magnetic field, (b) PVI (horizontal dotted line indicate the threshold), (c) the model
 385 expansion speeds using Eq. (3), (d) ion energy spectrum, (e) ion density, (f) ion bulk velocity, (g)
 386 dynamic pressure along GSE-X. The two yellow shaded regions indicate the dynamic pressure
 387 decreases associated with large model values.

388

389 **Figure 3.** (a) The model expansion speeds vs. the maximum (upper half) and minimum (lower
 390 half) field strength normalized to the background field strength. (b) and (c) are in the same format
 391 as (a) except that the horizontal axis is the density ratio of foreshock ions to solar wind ions and
 392 the model values divided by the density ratio, respectively. The Pearson correlation coefficients
 393 (r), p-values (p) calculated from t-tests, and 95% confidence intervals (CI) calculated from Fisher
 394 transformation are shown in each panel. Red bars indicate the median values, lower quartiles, and
 395 upper quartiles, with event number equally distributed.
 396


397



398

399 **Figure 4.** The same format as Figure 3 except that the horizontal axis is (a) the foreshock ion
400 kinetic energy relative to the solar wind, (b) foreshock ion thermal energy, (c) discontinuity shear
401 angle, (d) discontinuity thickness, (e) magnetic field strength, and (f) the model expansion speed
402 normalized to the Alfvén speed.

403

408

409 **Figure 6.** Same format as Figure 3a and Figure 5, except that the model is calculated when the
 410 foreshock ion-driven current direction is in an unfavorable way ($j(x) > 0$).

411 **References**

- 412 An, X., T. Z. Liu, J. Bortnik, A. Osmane, V. Angelopoulos (2020). Formation of foreshock
413 transients and associated secondary shocks. *ApJ*, 901:73 (16pp), <https://doi.org/10.3847/1538-4357/abaf03>
- 415 Angelopoulos, V. (2010). The ARTEMIS Mission. In: Russell, C., Angelopoulos, V. (eds) The
416 ARTEMIS Mission. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9554-3_2
- 417 Angelopoulos, V., Cruce, P., Drozdov, A. et al. *Space Sci Rev* (2019) 215: 9.
418 <https://doi.org/10.1007/s11214-018-0576-4>
- 419 Archer, M. O., Turner, D. L., Eastwood, J. P., Horbury, T. S., & Schwartz, S. J. (2014). The role
420 of pressure gradients in driving sunward magnetosheath flows and magnetopause motion. *Journal*
421 *of Geophysical Research: Space Physics*, 119, 8117–8125. <https://doi.org/10.1002/2014JA020342>
- 422 Archer, M. O., D. L. Turner, J. P. Eastwood, S. J. Schwartz, and T. S. Horbury (2015), Global
423 impacts of a foreshock bubble: Magnetosheath, magnetopause and ground-based observations,
424 *Planet. Space Sci.*, 106, 56–66, doi:10.1016/j.pss.2014.11.026.
- 425 Auster, H. U., et al. (2008), The THEMIS fluxgate magnetometer, *Space Sci. Rev.*, 141, 235–264,
426 doi:10.1007/s11214-008-9365-9.
- 427 Burch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. (2016). Magnetospheric multiscale
428 overview and science objectives. *Space Science Reviews*, 199(1 - 4), 5 – 21.
429 <https://doi.org/10.1007/s11214-015-0164-9>

- 430 Burgess, D. (1989). On the effect of a tangential discontinuity on ions specularly reflected at an
431 oblique shock. *Journal of Geophysical Research*, 94, 472–478.
- 432 <https://doi.org/10.1029/JA094iA01p00472>
- 433 Burgess, D., E. Möbius, M. Scholer (2012), Ion acceleration at the Earth's bow shock. *Space Sci.*
434 *Rev.* 173(1–4), 5–47. doi:10.1007/s11214-012-9901-5
- 435 Chu, C., H. Zhang, D. Sibeck, A. Otto, Q. Zong, N. Omidi, J. P. McFadden, D. Fruehauff, and V.
436 Angelopoulos (2017), THEMIS satellite observations of hot flow anomalies at Earth's bow shock, *Ann.*
437 *Geophys.*, 35, 3, 443–451, doi:10.5194/angeo-35-443-2017.
- 438 Eastwood, J. P., E. A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, and R. A. Treumann
439 (2005), The Foreshock, *Space. Sci. Rev.*, 118, 41–94, <https://doi.org/10.1007/s11214-005-3824-3>.
- 440 Eastwood, J., Schwartz, S., Horbury, T., Carr, C., Glassmeier, K.-H., Richter, I., et al. (2011).
441 Transient Pc3 wave activity generated by a hot flow anomaly: Cluster, Rosetta, and ground-based
442 observations. *Journal of Geophysical Research*, 116, A08224.
- 443 <https://doi.org/10.1029/2011JA016467>
- 444 Facskó, G., Kecskem'ety, K., Erd"os, G., T'atrallyay, M., Daly, P. W., and Dandouras, I.: A
445 statistical study of hot flow anomalies using Cluster data, *Advances in Space Research*, 41, 1286–
446 1291, doi: 10.1016/j.asr.2008.02.005, 2008.
- 447 Facskó, G., J.G. Trotignon, I. Dandouras, E.A. Lucek, P.W. Daly, Study of hot flow anomalies
448 using Cluster multi-spacecraft measurements, *Advances in Space Research*,
449 10.1016/j.asr.2009.08.011, 45, 4, (541-552), (2010).

- 450 Facskó, G.; Opitz, A.; Lavraud, B.; Luhmann, J. G.; Russell, C. T.; Sauvaud, J. -A.; Fedorov, A.;
451 Kis, A.; Wesztergom, V., Hot flow anomaly remnant in the far geotail?, *Journal of Atmospheric*
452 and *Solar-Terrestrial Physics*, Volume 124, p. 39-43., 2015, doi:10.1016/j.jastp.2015.01.011
- 453 Facskó, G.; Nemeth, Z.; Erdos, G.; Kis, A.; Dandouras, I., A global study of hot flow anomalies
454 using Cluster multi-spacecraft measurements, *Annales Geophysicae*, Volume 27, Issue 5, 2009,
455 pp.2057-2076, 2009, doi:10.5194/angeo-27-2057-2009
- 456 Fillingim, M. O., Eastwood, J. P., Parks, G. K., Angelopoulos, V., Mann, I. R., Mende, S. B., &
457 Weatherwax, A. T. (2011). Polar UVI and THEMIS GMAG observations of the ionospheric
458 response to a hot flow anomaly. *Journal of Atmospheric and Solar-Terrestrial Physics*, 73(1), 137–
459 145. <https://doi.org/10.1016/j.jastp.2010.03.001>
- 460 Kajdič, P., Blanco-Cano, X., Omidi, N., Rojas-Castillo, D., Sibeck, D. G., & Billingham, L. (2017).
461 Traveling foreshocks and transient foreshock phenomena. *Journal Geophysical Research: Space*
462 *Physics*, 122, 9148– 9168, <https://doi.org/10.1002/2017JA023901>
- 463 Greco, A., Chuaychai, P., Matthaeus, W. H., Servidio, S., & Dmitruk, P. (2008). Intermittent MHD
464 structures and classical discontinuities. *Geophysical Research Letters*.
465 <https://doi.org/10.1029/2008GL035454>
- 466 Hartinger, M. D., D. L. Turner, F. Plaschke, V. Angelopoulos, and H. Singer (2013), The role of
467 transient ion foreshock phenomena in driving Pc5 ULF wave activity, *J. Geophys. Res. Space*
468 *Physics*, 118, doi:10.1029/2012JA018349.
- 469 Lee, S. H., Sibeck, D. G., Omidi, N., Silveira, M. V. D., Giles, B. L., Torbert, R. B., et al. (2021).
470 Comparison of MMS observations of foreshock bubbles with a global hybrid simulation. *Journal*

471 of Geophysical Research: Space Physics, 126, e2020JA028848.

472 <https://doi.org/10.1029/2020JA028848>

473 Lin, Y. (1997), Generation of anomalous flows near the bow shock by its interaction with
474 interplanetary discontinuities, *J. Geophys. Res.*, 102 (A11), 24265– 24281,
475 doi:10.1029/97JA01989.

476 Lin, Y. (2002), Global hybrid simulation of hot flow anomalies near the bow shock and in the
477 magnetosheath, *Planetary and Space Science*, 50, 577 – 591

478 Liu, Z., Turner, D. L., Angelopoulos, V., & Omidi, N. (2015). THEMIS observations of tangential
479 discontinuity-driven foreshock bubbles. *Geophysical Research Letters*, 42, 7860–7866.
480 <https://doi.org/10.1002/2015GL065842>

481 Liu, T. Z., D. L. Turner, V. Angelopoulos, and N. Omidi (2016), Multipoint observations of the
482 structure and evolution of foreshock bubbles and their relation to hot flow anomalies, *J. Geophys.
483 Res. Space Physics*, 121, doi:10.1002/2016JA022461.

484 Liu, T. Z., Angelopoulos, V., Hietala, H., & Wilson, L. B. III (2017). Statistical study of particle
485 acceleration in the core of foreshock transients. *Journal of Geophysical Research: Space Physics*,
486 122, 7197–7208. <https://doi.org/10.1002/2017JA024043>

487 Liu, T. Z., Wang, C.-P., Wang, B., Wang, X., Zhang, H., Lin, Y., et al. (2020a). ARTEMIS
488 observations of foreshock transients in the midtail foreshock. *Geophysical Research Letters*, 47,
489 e2020GL090393. <https://doi.org/10.1029/2020GL090393>

- 490 Liu, T. Z., X. An, H. Zhang, and D. Turner (2020b), Magnetospheric Multiscale (MMS)
491 observations of foreshock transients at their very early stage, *ApJ*, 902:5 (15pp),
492 <https://doi.org/10.3847/1538-4357/abb249>
- 493 Liu, T. Z., Zhang, H., Wang, C.-P., Angelopoulos, V., Vu, A., Wang, X., & Lin, Y. (2021).
494 Statistical study of foreshock transients in the midtail foreshock. *Journal of Geophysical Research:*
495 *Space Physics*, 126, e2021JA029156. <https://doi.org/10.1029/2021JA029156>
- 496 Liu, T. Z., Wang, C.-P., Wang, X., Angelopoulos, V., Zhang, H., Lu, X., & Lin, Y. (2022a).
497 Magnetospheric field-aligned current generation by foreshock transients: Contribution by flow
498 vortices and pressure gradients. *Journal of Geophysical Research: Space Physics*, 127,
499 e2022JA030700. <https://doi.org/10.1029/2022JA030700>
- 500 Liu, T. Z., H. Zhang, D. Turner, A. Vu, and V. Angelopoulos (2022b). Statistical study of favorable
501 foreshock ion properties for the formation of hot flow anomalies and foreshock bubbles, *Journal*
502 *of Geophysical Research: Space Physics*, 127, e2022JA030273.
503 <https://doi.org/10.1029/2022JA030273>
- 504 Liu, T. Z., A. Vu, H. Zhang, X. An, and V. Angelopoulos (2023). Predictive expansion speed
505 model for foreshock bubbles. *Journal of Geophysical Research: Space Physics*, 128,
506 e2022JA030814. <https://doi.org/10.1029/2022JA030814>
- 507 Liu, T. Z., V. Angelopoulos, A. Vu, and H. Zhang (2022). Foreshock ion motion across
508 discontinuities: formation of foreshock transients. Submitted to JGR.
- 509 Lu, X., Zhang, H., Liu, T., Vu, A., Pollock, C., & Wang, B. (2022). Statistical study of foreshock
510 density holes. *Journal of Geophysical Research: Space Physics*, 127, e2021JA029981.
511 <https://doi.org/10.1029/2021JA029981>

- 512 Lucek, E. A., Horbury, T. S., Balogh, A., Dandouras, I., and Rème, H. (2004), Cluster observations
513 of hot flow anomalies, *J. Geophys. Res.*, 109, A06207, doi:10.1029/2003JA010016.
- 514 McFadden, J. P., C. W. Carlson, D. Larson, V. Angelopoulos, M. Ludlam, R. Abiad, B. Elliott, P.
515 Turin, and M. Marckwardt (2008), The THEMIS ESA plasma instrument and in-flight calibration,
516 *Space Sci Rev.*, 141, 277–302, doi:10.1007/s11214-008-9440-2.
- 517 Merka, J., A. Szabo, J. A. Slavin, and M. Peredo (2005), Three-dimensional position and shape of
518 the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field
519 orientation, *J. Geophys. Res.*, 110 A04202, doi:10.1029/2004JA010944.
- 520 Omidi, N. and D. G. Sibeck (2007), Formation of hot flow anomalies and solitary shocks, *J.*
521 *Geophys. Res.*, 112, A10203, doi:10.1029/2006JA011663.
- 522 Omidi, N., J. P. Eastwood, and D. G. Sibeck (2010), Foreshock bubbles and their global
523 magnetospheric impacts, *J. Geophys. Res.*, 115, A06204, doi:10.1029/2009JA014828.
- 524 Omidi, N., Sibeck, D., Blanco-Cano, X., Rojas-Castillo, D., Turner, D., Zhang, H., and Kajdič, P.
525 (2013a), Dynamics of the foreshock compressional boundary and its connection to foreshock
526 cavities, *J. Geophys. Res. Space Physics*, 118, 823– 831, doi:10.1002/jgra.50146.
- 527 Omidi, N., H. Zhang, D. Sibeck, and D. Turner (2013b), Spontaneous hot flow anomalies at quasi-
528 parallel shocks: 2. Hybrid simulations, *J. Geophys. Res.*, VOL. 118, 173–180,
529 doi:10.1029/2012JA018099.
- 530 Omidi, N., Lee, S. H., Sibeck, D. G., Turner, D. L., Liu, T. Z., & Angelopoulos, V. (2020).
531 Formation and topology of foreshock bubbles. *Journal of Geophysical Research: Space Physics*,
532 125, e2020JA028058. <https://doi.org/10.1029/2020JA028058>

- 533 Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., et al. (2016). Fast plasma
534 investigation for magnetospheric multiscale. *Space Science Reviews*, 199(1 - 4), 331 – 406.
- 535 <https://doi.org/10.1007/s11214-016-0245-4>
- 536 Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., et
537 al. (2016). The magnetospheric multiscale magnetometers. *Space Science Reviews*, 199(1-4),
538 189–256. <https://doi.org/10.1007/s11214-014-0057-3>
- 539 Schwartz, S. J., et al. (1985), An active current sheet in the solar wind, *Nature*, 318, 269-271.
- 540 Schwartz, S. J. (1998), Shock and discontinuity normal, Mach numbers, and related parameters,
541 in *Analysis Methods for Multi-Spacecraft Data*, ISSI Sci. Rep. SR-001, edited by G. Paschmann
542 and P. W. Daly, pp. 249–270, ISSI/ESA, Noordwijk, Netherlands.
- 543 Schwartz, S. J., Paschmann, G., Sckopke, N., Bauer, T. M., Dunlop, M., Fazakerley, A. N., and
544 Thomsen, M. F. (2000), Conditions for the formation of hot flow anomalies at Earth's bow shock, *J.*
545 *Geophys. Res.*, 105(A6), 12639– 12650, doi:10.1029/1999JA000320.
- 546 Schwartz S. J., Avanov, L., Turner, D., Zhang, H., Gingell, I., Eastwood, J. P., et al. (2018). Ion
547 kinetics in a hot flow anomaly: MMS observations. *Geophysical Research Letters*. 45.
548 <https://doi.org/10.1029/2018GL080189>
- 549 Shen, X.-C., Shi, Q., Wang, B., Zhang, H., Hudson, M. K., Nishimura, Y., et al. (2018). Dayside
550 magnetospheric and ionospheric responses to a foreshock transient on 25 June 2008: 1. FLR
551 observed by satellite and ground-based magnetometers. *Journal of Geophysical Research: Space*
552 *Physics*, 123, 6335– 6346. <https://doi.org/10.1029/2018JA025349>

- 553 Shi, F., Y. Lin, and X. Wang (2013), Global hybrid simulation of mode conversion at the dayside
554 magnetopause, *J. Geophys. Res. Space Physics*, 118, 6176–6187, doi:10.1002/jgra.50587.
- 555 Shi, F., Cheng, L., Lin, Y., and Wang, X. (2017), Foreshock wave interaction with the
556 magnetopause: Signatures of mode conversion, *J. Geophys. Res. Space Physics*, 122, 7057–7076,
557 doi:10.1002/2016JA023114.
- 558 Shi, X., Hartinger, M. D., Baker, J. B. H., Ruohoniemi, J. M., Lin, D., Xu, Z., et al. (2020).
559 Multipoint conjugate observations of dayside ULF waves during an extended period of radial IMF.
560 *Journal of Geophysical Research: Space Physics*, 125, e2020JA028364.
561 <https://doi.org/10.1029/2020JA028364>
- 562 Sibeck, D. G., et al. (1999), Comprehensive study of the magnetospheric response to a hot flow
563 anomaly, *J. Geophys. Res.*, 104(A3), 4577–4593, doi:10.1029/1998JA900021.
- 564 Thomas, V. A., Winske, D., Thomsen, M. F., and Onsager, T. G. (1991), Hybrid simulation of the
565 formation of a hot flow anomaly, *J. Geophys. Res.*, 96(A7), 11625–11632,
566 doi:10.1029/91JA01092.
- 567 Turner D. L., N. Omidi, D. G. Sibeck, and V. Angelopoulos (2013), First observations of foreshock
568 bubbles upstream of Earth's bow shock: Characteristics and comparisons to HFAs, *J. Geophys.*
569 *Res.*, VOL. 118, 1552–1570, doi:10.1002/jgra.50198.
- 570 Turner, D. L., Liu, T. Z., Wilson, L. B., Cohen, I. J., Gershman, D. G., Fennell, J. F., et al (2020).
571 Microscopic, multipoint characterization of foreshock bubbles with Magnetospheric Multiscale
572 (MMS). *Journal of Geophysical Research: Space Physics*, 125, e2019JA027707.
573 <https://doi.org/10.1029/2019JA027707>

- 574 Vu, A., Liu, T., Zhang, H., Delamere, P. (2022a). Hybrid Simulations of a Tangential
575 Discontinuity-Driven Foreshock Bubble Formation in Comparison with a Hot Flow Anomaly
576 Formation, *Journal of Geophysical Research: Space Physics*, 127, e2021JA029973, DOI:
577 10.1029/2021JA029973
- 578 Vu, A., Liu, T. Z., Zhang, H., & Pollock, C. (2022b). Statistical Study of Foreshock Bubbles, Hot
579 Flow Anomalies, and Spontaneous Hot Flow Anomalies and their Substructures Observed by
580 MMS. *Journal of Geophysical Research: Space Physics*, 127, e2021JA030029.
581 <https://doi.org/10.1029/2021JA030029>
- 582 Vu, A., Liu, T., Zhang, H., Delamere, P. (2023). Parameter Dependencies of Early-Stage
583 Tangential Discontinuity-Driven Foreshock Bubbles in Local Hybrid Simulations. *Journal of
584 Geophysical Research: Space Physics*, 128, e2022JA030815.
585 <https://doi.org/10.1029/2022JA030815>
- 586 Wang, B., Nishimura, Y., Hietala, H., Shen, X.-C., Shi, Q., Zhang, H., et al. (2018). Dayside
587 magnetospheric and ionospheric responses to a foreshock transient on 25 June 2008: 2. 2-D
588 evolution based on dayside auroral imaging. *Journal of Geophysical Research: Space Physics*, 123,
589 6347–6359. <https://doi.org/10.1029/2017JA024846>
- 590 Wang, B., Liu, T., Nishimura, Y., Zhang, H., Hartinger, M., Shi, X., et al. (2020). Global
591 propagation of magnetospheric Pc5 ULF waves driven by foreshock transients. *Journal of
592 Geophysical Research: Space Physics*, 125, e2020JA028411.
593 <https://doi.org/10.1029/2020JA028411>

- 594 Wang, B., Zhang, H., Liu, Z., Liu, T., Li, X., & Angelopoulos, V. (2021). Energy modulations of
595 magnetospheric ions induced by foreshock transient-driven ultralow-frequency waves.
596 *Geophysical Research Letters*, 48, e2021GL093913. <https://doi.org/10.1029/2021GL093913>
- 597 Wang, C.-P., Liu, T. Z., Xing, X., & Masson, A. (2018). Multispacecraft observations of tailward
598 propagation of transient foreshock perturbations to midtail magnetosheath. *Journal of Geophysical*
599 *Research: Space Physics*, 123, 9381–9394. <https://doi.org/10.1029/2018JA025921>
- 600 Wang, C.-P., Wang, X., Liu, T. Z., & Lin, Y. (2020). Evolution of a foreshock bubble in the
601 midtail foreshock and impact on the magnetopause: 3D global hybrid simulation. *Geophysical*
602 *Research Letters*, 47, e2020GL089844. <https://doi.org/10.1029/2020GL089844>
- 603 Wang C-P, Wang X, Liu TZ, and Lin Y (2021a). Impact of Foreshock Transients on the Flank
604 Magnetopause and Magnetosphere and the Ionosphere. *Front. Astron. Space Sci.* 8:751244. doi:
605 10.3389/fspas.2021.751244
- 606 Wang, C.-P., Wang, X., Liu, T. Z., & Lin, Y. (2021b). A foreshock bubble driven by an IMF
607 tangential discontinuity: 3D global hybrid simulation. *Geophysical Research Letters*, 48,
608 e2021GL093068. <https://doi.org/10.1029/2021GL093068>
- 609 Wilson, L.B., III (2016). Low Frequency Waves at and Upstream of Collisionless Shocks. In *Low-*
610 *Frequency Waves in Space Plasmas* (eds A. Keiling, D. - H. Lee and V. Nakariakov).
611 doi:10.1002/9781119055006.ch16
- 612 Zhang, H., et al. (2010), Time history of events and macroscale interactions during substorms
613 observations of a series of hot flow anomaly events, *J. Geophys. Res.*, 115, A12235,
614 doi:10.1029/2009JA015180.

- 615 Zhang H., D. G. Sibeck, Q.-G. Zong, N. Omidi, D. Turner, and L. B. N. Clausen (2013),
616 Spontaneous hot flow anomalies at quasi-parallel shocks: 1. Observations, *J. Geophys. Res.*, VOL.
617 118, 3357–3363, doi:10.1002/jgra.50376
- 618 Zhang, H., Zong, Q.-G., Connor, H. et al. Dayside transient phenomena and their impact on the
619 magnetosphere and ionosphere. *Space Sci Rev* (2022). DOI: 10.1007/s11214-021-00865-0
- 620 Zhao, L. L., Zhang, H., and Zong, Q. G. (2017), Global ULF waves generated by a hot flow
621 anomaly, *Geophys. Res. Lett.*, 44, 5283– 5291, doi:10.1002/2017GL073249.
- 622
- 623
- 624
- 625