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Abstract

Many real-world systems modeled using differential equations involve unknown or
uncertain parameters. Standard approaches togaddress parameter estimation inverse
problems in this setting typically focus on estilmating:coristants; yet some unobservable
system parameters may vary with time without known evolution models. In this work,
we propose a novel approximation method inspired by the Fourier series to estimate
time-varying parameters in deterministie, dynamical systems modeled with ordinary
differential equations. Using ensemble Kalman filtering in conjunction with Fourier
series-based approximation mddelsy we detailitwo possible implementation schemes for
sequentially updating the time-varying, parameter estimates given noisy observations
of the system states. Weidemonstrate the capabilities of the proposed approach in
estimating periodic parameters, both when the period is known and unknown, as well
as non-periodic time-varying parameters of different forms with several computed ex-
amples using a forced harmenic oscillator. Results emphasize the importance of the
frequencies and numbersof,approximation model terms on the time-varying parameter
estimates and corresponding dynamical system predictions.

Keywords: Nonstationary inverse problems; parameter estimation; approximation
models; Bayesian.inference; Fourier series; ensemble Kalman filter; dynamical systems.

1 Introductien

Many real-world preblems in science and engineering involve unknown model parameters of
interest that may vary with time but cannot be directly observed. For example, forced har-
monic osgillators used in modeling gear systems [1,2], RLC circuits [3], and cantilever motion
in atemic forcée microscopy [4] may involve time-dependent stiffness, mass, and/or external
forcing parameters. Examples in biology and medicine include time-dependent transmission
parameter§ in modeling epidemic dynamics [5-7], external stimuli in modeling neuron dy-
namics [8-10], and tissue optical properties in modeling laser-tissue interactions [11,12]. The
work in this paper aims to address the estimation of such time-varying parameters (TVPs)
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in deterministic dynamical systems, when the parameters are not observable and there is
not a known (or available) model governing their time evolution.

While TVPs may appear in different types of mechanistic models, here we focus on
deterministic dynamical systems modeled using differential equations.@ In particular, we
assume an ordinary differential equation (ODE) model of the form

dx

dt
where ¢t € R denotes time, z = z(t) € R? is the vector of model states, § € RP is the
vector of unknown model parameters, and f : R x R? x R? — R%is_a'known mapping
representing the state dynamics. The ODE model in (1) may invelve unknown constant
parameters (including the initial conditions zg), but here we focus'our attention primarily on
estimating the unknown time-varying parameters of interest. Burther, while such problems
may generally include more than one parameter changing with time, we restrict our examples
in this work to estimate a single, univariate TVP, 6 = 0(t) € Ryfor each system. The inverse
problem considered is therefore to estimate 6(t), along withuthe system states z(t), at some
discrete times ¢; given noisy, sequential observations of the system states (which may be fully
or partially observed). Note that we can extend the inversé problem to include estimation
of additional constant parameters, including initial conditions, as needed.

To address the inverse problem at hand, in this/work we propose an approximation
method inspired by the Fourier series, where we represent 6(¢) as a linear combination of
a finite number of sine and cosine functions,and estimate the unknown coefficients of the
approximation model using ensemble Kalman filtering. Fourier series-based approaches have
been used in previous work for approximating smooth, periodic functions and trajectories in
control systems [13,14], for linear function approximation in reinforcement learning [15], and
for approximating solutions to differential équations via spectral methods [16,17]. Fourier
series expansion has also been used for estimating smooth, periodic TVPs in the setting of
adaptive control [18-21], wherethe period of the parameter is assumed to be known. We aim
to approximate more generals6(t) imthis work, specifically periodic parameters for which the
period is not known and parameters that are time-varying but not periodic over the time
interval of available system ebservations.

The proposed method. introduces a new way of embedding Fourier series-based function
approximation into.the setting of parameter estimation inverse problems to estimate time-
dependent physical parameters of the governing ODE system. Use of a Bayesian filtering
approach such as ensemble Kalman filtering provides a flexible framework for addressing this
inverse problem and allows for the unknown approximation model coefficients to be updated
sequentially aleng with the system states as new data arrive, without relying on the full
time seriessof data in advance. Ensemble-based methods also provide a natural measure of
uncertainty in the resulting parameter estimates, generally taken as +2 standard deviations
around the,sample mean at each time. While originally developed for state estimation of
partially observed systems, ensemble Kalman methods have been successfully used to solve
a variety of inverse problems [22-26], including constant parameter estimation in ODEs [27].
In thesetting of TVP estimation, previous studies have used Bayesian filtering approaches
torestimate the constant coefficients of piecewise functional representations of periodic pa-
rameters [28,29], constant parameters for linear TVP models [30], and in conjunction with

= f(t,z,0), x(0) =z (1)

2
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parameter tracking schemes to estimate more general time-varying forms [10,31-35]. Recent
works have also addressed the related problems of approximating hidden physies,and /or
latent system dynamics through use of data-driven and machine learning techniques [36--38].

1.1 Contributions

The approach presented in this work focuses on recovering unknown and. unmeasured dy-
namical system parameters with time-dependent behavior, updatingsthe parameterization
of the physical model through use of a sinusoidal representation of the underlying TVP.
In essence, this method utilizes a dictionary of sinusoidal functions imspired by the Fourier
series terms and weighted with coefficients estimated online by ensemble Kalman filtering to
sequentially update the TVP approximation. The main contributions of this work include:

e A new method for estimating TVPs in dynamical systems, wherein sinusoidal functions
inspired by Fourier series terms are used in a dictionary:to generate an approximation
model for the TVP, thereby transforming the TVP estimation into a constant coefficient
estimation inverse problem:;

e Two implementation options for sequentiallyupdating the TVP approximations, both
using an ensemble Kalman filtering framewerk to track the system states and estimate
the unknown TVP approximation model coeffigiénts; and

e Strategies for using this method to estimate périodic parameters both when the period
is known and unknown, as well astextensions to estimate TVPs that are not periodic
over the time interval of availablesdata.

In a set of numerical examples considering a forced mass-spring system, we first estab-
lish the ability of the proposed Fourier series-based approximation approach to estimate a
periodic forcing parameter with known' period, then extend the estimation to include the
period of the TVP as an additional unknown. We further demonstrate the capability of the
proposed method in estimating T.VPs that are not periodic (and potentially not continuous)
over the time interval of observed data and show that the resulting parameter approxima-
tion models can be used,to make reasonably accurate predictions of the system dynamics for
different initial conditions. In.the appendix, we include additional numerical results compar-
ing the proposed approach with a standard augmented ensemble Kalman filtering algorithm
and parameter tracking techniques, as well as an example considering a periodically-forced,
partially observed Lorenz system with chaotic behavior.

We remark that the foetus of this work does not immediately lie on application to large-
scale problems using small ensemble sizes or on systems with chaotic dynamics (as is common
in the data assimilation literature) but rather on establishing a method to well estimate the
functional form/(shape and magnitude) of the underlying TVP. Even for small systems (e.g.,
wheré'd = 2'or 3), the number of unknown coefficients grows with the number of terms used
in the TVP approximation model, thereby requiring use of an ensemble size larger than the
numberyof system states. We discuss considerations including the choice of the number of
approximation model terms needed to well represent the underlying TVP in this work.
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Figure 1: Ilustration of the EnKF two-step updating scheime. In the model prediction step,
the ensemble members (represented as black circles, with samplefvariance in gray) at time j
are propagated forward (shown with black dashed arrows)te.time j+ 1 by solving the model
in (13). In the observation update, the ensemble predictions (green circles) are corrected
(green arrows) using the observed system data agstime j4'1. The process continues using
the corrected sample at time j + 1 (black eircles) untiliall available data are assimilated.

1.2 Paper Organization

The remainder of the paper is organizeédwas follows: Section 2 briefly reviews ensemble
Kalman filtering for constant parameterestimation. Section 3 details the proposed Fourier
series-based TVP approximation models, providing two implementation approaches that can
be used together with ensemble Kalman filtering to estimate the unknown model coefficients.
Section 4 provides the main reSultg,of, the numerical experiments (with some additional
results provided in the appendix), and Section 5 gives conclusions and future work.

2 Review: Enseémble Kalman Filtering for Sequential
Estimationof Constant Parameters

In this section, we briefly. review the main ideas behind ensemble Kalman filtering for com-
bined state and constant parameter estimation. While the method was originally established
for tracking unobserved model states [39,40], the augmented approach outlined below has
been successfully used to,estimate constant parameters in a variety of models, including
systems oftODES27]. For a recent review of ensemble Kalman filtering, we refer interested
readers to [41].

The Ensemble Kalman Filter (EnKF) is a sequential Bayesian approach that employs
ensémble statistics within the framework of the classic Kalman filter to track unknown
model variables given observed time series data. The incorporation of a statistical sample,
which represents an underlying probability distribution of the unknowns conditioned on the
available data, accommodates the use of nonlinear and possibly non-Gaussian models. The

Page 4 of 33



Page 5 of 33 AUTHOR SUBMITTED MANUSCRIPT - IP-103935.R2

1
2
2 Algorithm 1: EnKF for Combined State and Constant Parameter Estimation
5 Input: Initial sample Sy drawn from prior distribution (g, 6p)
6 Output: Posterior sample Sy and corresponding ensemble statistics
; 1 Initialize time index 7 =0
9 2 while 57 < T do
10 /* Prediction Step */
11 3 forn=1,..., Ndo
; : L ritn = F?. 6% + o, ol ~ N0
14 5 g = (251 05"]
12 /* Observation Update */
17 6 forn=1,..., Ndo
18 7 L ?Jj('ﬂ =Yjnt w]('i)p w](‘i)1 ~ N(0,D)
19 n n n n
20 8 Zg(‘+)1 = ZJ('+)1 +Kjn (3/]('+)1 - G(ZJ('+)1))
21 /* Compute Posterior Ensemble Statistics */
22 _ 1 N (n)
23 9 “iHl =N Zn:l Zj+1 : (

N n — n _
24 10 | Tin= 55 T (3 — Za) (251 — 2 )%
25 /* Update Time Index */
26 =i
27 o J=J
28
29
3(1) EnKF can estimate unobserved (or'unobservable) model states along with unknown constant
22 parameters through use of an augmentedidynamical system
33 dr
34 -

dz dt z(0)

35 — = ; 2(0) = € R4 2
36 dt do (©) l 6(0) @)
37 E
38
39 where dz/dt describes the&ystem dynamics, as given in (1), while df/dt represents the
40 dynamics of the parameters {22, 27]. In particular, df/dt = 0 when the parameters are
2; constant (i.e., time-invariant).
43 Given a discrete sample of the model states and parameters at time j,
44 1) 4 N) (N
45 S = {0, (@65} 3)
46
47 the EnKF waorks as a two-step updating scheme: First, each pair of states and parameters
48 is predicted, at time j + 1 using the evolution model in (2); then, the augmented vectors
49 are corrected using the Kalman filter observation updating equation, which incorporates the
g? observed ‘data@t time j + 1. This process is illustrated in Figure 1, and the steps of the
52 algorithm for combined state and constant parameter estimation are outlined in Algorithm 1.
53 When working with ODE models, the operator F' in the prediction step of Algorithm 1
54 (line 4)'denotes the numerical solution to the differential equations model in (1) at time j+1;
55 theyparameter values are not updated during this step. In the observation update, y;;; in
g? line 7/denotes the vector of observed model states, with dimension m < d, which is perturbed
58
59 )
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to help avoid too low a covariance in the resulting sample [40]. The updating equation‘in line
8 corrects the joint predicted sample for each n using the Kalman gain matrix K;gpand the
difference between the perturbed observation y(i)l and predicted observation G( ) 1), where
G is the observation model. For linear observations, G(z; +1) = sz( 41, Where P € Rmx(dﬂ))
is a projection matrix whose entries corresponding to observed states are lyand entries
corresponding to unobserved states and parameters are 0. The posterior, ensemble statistics
computed in lines 9 and 10 give the mean and covariance, respectively,of the resulting
sample at time j 4+ 1. The posterior mean for each parameter is taken as its estimate, with
uncertainty commonly represented using +2 standard deviations around ‘the mean. The
process repeats sequentially until all available data in the time’series are assimilated. In
this procedure, the parameter values are artificially evolved with theéaim of converging to a
constant.

3 Fourier Series-Based Approximation'Models for Time-

Varying Parameters

While the EnKF algorithm reviewed in Section 2 s formulated for estimating constant
parameters, our goal in this work is to estimate time-varying system parameters for which
no evolution model is known (or available);yi.e., werdo not have a known form of df/dt
for 6 = 0(t). To address this problem, we propese a novel approximation method inspired
by the Fourier series, where 6(t) is;zepresented as a linear combination of sine and cosine
functions with different frequencies. We deseribe this approach below, detailing formulations
for estimating periodic parameters when'the period of #(¢) is both known and unknown, as
well as for approximating more general TVPs that are not periodic over the time interval
of observed data. We provide two, possible implementation strategies using the EnKF for
coefficient estimation.

3.1 Fourier Series and \Approximation Model Formulation

Recall that the Qth order Fourier series of a univariate function h(t) is given by

h(t)= % +§; (aq cos (?) + b, sin <@>) (4)

where a, and b4 are the expansion coefficients and P is the period. If h(t) is known, the
coefficients_a, and.b, can be computed explicitly using the formulas

_2 / W)dt (5)

= —/ t) sin Qth)dt (6)

and
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Figure 2: Fourier series approximations of the sinusoidal function h(t) = 2sin(t) —

0.5 cos(2t/3) using different values of @), which dictates the number ofterms used in the
approximation. In each plot, the Fourier series approximation issshown in dashed blue,
while the true function is shown in solid black. The integrals.in (5) and (6) were computed
numerically using adaptive quadrature via the integral function in MATLAB [42].

respectively. For example, Figure 2 shows the Fourier/series approximations of the periodic
function h(t) = 2sin(t) — 0.5 cos(2t/3) with known period P'= 6 for different choices of Q.
However, when using Fourier series for function approximation, the function h(t) is generally
unknown and the coefficients a, and b, must beestimated [15, 18,20].

Inspired by use of the Fourier series for approximating unknown functions, we propose
to represent the unknown, univariate time-varying parameters 6(t) in this work as linear
combinations of sine and cosine pairs, such that the’estimate of each 6(t) is determined by
the approximation model

s
Or(t).= g + Z (ai Sin(w;t) + B; COS(WJ)) (7)
i=1
with coefficients «;, 5; and fixeéd values of w; for each ¢« = 1,..., M. Moving forward, we

denote the 2M + 1 coeflicients by cx, k= 0,...,2M, such that the model in (7) becomes
Orr(t) = co + ¢ sin(wit) H.co cos(wit) + - - - + copr—1 sin(wast) + cans cos(wprt) (8)

for some fixed M. Our goalin approximating 6(t) is therefore is to estimate the 2M + 1
coefficients ¢, that providéthe best fit between the model in (8) and the true time-varying
parameter given the observed system data. This essentially transforms the inverse problem at
hand into a constant parameter estimation problem, and we can utilize the EnKF algorithm
described in Seetion 2 toestimate these coefficients. We remark that this problem is similar in
spirit to dictionary learning; where writing the TVP approximation model in (8) equivalently
as

Or(t) =[ 1 sin(wit) cos(wit) --- sin(wyt) cos(wut) |c (9)

highlights the dictionary of sinusoidal functions, inspired by the Fourier series terms, and
c €/R™+! is a vector containing the unknown coefficients c;. The coefficient estimation
thereby determines which of these functions make meaningful contributions in representing
the underlying shape and magnitude of 6(¢) given the available system observations.

To. apply the TVP approximation model in (8), one must specify the value of M, which
sets the number of terms in the approximation, and the values of w;, i = 1,..., M, which
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act as the angular frequencies of the sinusoidal functions. When 6(t) is periodic, we consider
two different approaches in assigning the w; values: If we know the period of the underlying
0(t) in advance of the estimation process, we explicitly define w; using the formula

wi:%, i=1,..., M (10)
where P is the known period of 6(t); this form of w; follows from the terms in the Fourier
series in (4) for approximating a periodic function with known pefied. If the period of
() is unknown or uncertain, we set w; as in (10) and treat the period P as an additional
unknown constant parameter to be jointly estimated along with _the coefficients of the TVP
approximation model. In more general cases, i.e., when 6(t) is nettknown to be periodic
over the time interval of available data, we instead choose a.fixed ingrement w and define
w; = wt for each © = 1,..., M, systematically incorporating sine and cosine pairs with
different frequencies into the approximation. Following thistapproach, appropriate choice of
the increment w becomes an important factor in the estimationprocess.

3.2 Alternative Implementation: Derivative-Based Augmentation
of System States

In the previous section, we propose an approximationmmmodel for 6(¢) that we can use directly
within the ODE model in (1) in place of the TVP. As an alternative means of implementation,
much in the spirit of state augmentation, we can use the approximation model in (8) to
prescribe a model for df/dt and défine a coupled ODE system of the form

dx

d_t = f(thae)a ZL’(O):ZL‘O (11)
i , B

. ) fu(®), 0(0) =t (12)

which we can write equivalently as the augmented system

dz

dZ_ E . f(t,l’,e) . . To

At de _[ 0 (1) ] Z(O)_Z°_lﬁo] "
dt

where z = 2(t) € R4, In'this representation, § = 0(t) is treated as an unobserved state of
the system in (13)«The equation for df/dt in (13) follows from taking the derivative of the
approximation model 0y(t) in (8), which gives

01#(t) = 1wy cos(wit) — cowy sin(wit) + - - + conr_1war cos(wart) — capway sin(wart) — (14)

with 20 _aimknown coefficients, ci,...,cop. Note that the additive constant ¢y no longer
explicitly appears in the system equations; instead, we estimate the initial condition 6, as
an additional constant parameter playing a similar role.

Page 8 of 33
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4 Numerical Results

In this section, we detail the results of several numerical experiments demonstrating the
effectiveness of the proposed methodology under different scenarios for 0(#); more specifically,
we consider examples where (t) is a periodic TVP, in cases assuming both /& known period
and an unknown period, and where () is a non-periodic TVP over the timeninterval of
available system data. Results were obtained using MATLAB (The MathWorks, Inc., Natick,
MA) programming language.

As a test system in the computed examples that follow, we congider a\forced harmonic
oscillator, classically modeled using the second-order ODE

mp” + bp' + kp = 0(¢t) (15)

where p = p(t) commonly denotes the position (or displacement)ief/a mass at time ¢, m > 0
is the constant mass, b > 0 is the damping coefficient, and k> 0 is the spring constant; see,
e.g., [43,44]. Here 0(t) represents external forcing appliéd.to the system, which we treat as
our time-varying parameter of interest. Letting v(t) = p/(t) deriote the velocity of the mass,
we can rewrite (15) as a first-order ODE system of the form

dp
£ _ 16
7 v (16)
dv 1
= = E(-kp—zw+9<t)) (17)
or, equivalently, as
0 1 0
i "
e LINUN B U <
m m m

where z(t) = [p(t);v(t)] € R? s the vector of model states at time t. Assuming that the
constants m, k, and b are kfiown, our goal is to estimate () using the Fourier series-based
approximation methods deseribed in Section 3. (We note that additional results, including
an example using a periodically=forced Lorenz system with chaotic behavior, are provided in
the appendix.)

To test the effectiveness of the proposed estimation techniques, we generate data from the
mass-spring system in (18) using the initial condition z(0) = [2;0], fixed constants m = 10,
k =5, and b = 3; andydifferent forms of the time-varying forcing parameter 0(t), as detailed
for each experiment, below., We initialize the EnKF with a sample size of N = 100 and
draw the priorénsemble of state values from a multivariate Gaussian distribution with mean
[1;1] € R*and covariance matrix (0.5)%ly, where |y denotes the 2 x 2 identity matrix. We
draw the prior ensemble of values for each of the unknown coefficients ¢, uniformly over the
interval [=2y10]. Further, we use MATLAB’s ode15s to solve the ODE system in (18) at
each time step of the filter and prescribe C = (0.02)2ly as the model innovation covariance
matrix and D = (0.08)%l, as the observation covariance matrix, assuming observations of
both position and velocity.
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Figure 3: Position and velocity data generated from the mass-spring system in (18) with
sinusoidal forcing parameter (t) = 2sin(t) — 0.5 cos(2t/3).

4.1 Example: Periodic Time-Varying Paraimeter

In this example, we consider a sinusoidal forcing parameéter of the form 6(t) = 2sin(t) —
0.5cos(2t/3) with period P = 67 as the underlying truth. Utilizing MATLAB’s ode45 to
solve the ODE system in (18), we record observations everyn0.5 time units over the interval
[0,60], spanning just over three periods of 6(t), and ¢ortupt the observations using Gaussian
noise with zero mean and standard deviation takem to be 20% of the standard deviation
of the true system states. Figure 3 shows the simulated data. In the experiments that
follow, we consider two cases for the estimation precedure: (i) when the period of (¢) is
known, and (ii) when the period of () is unknown. Results focus on use of the TVP
approximation model approach described in Section 3.1. Appendix A.1 shows an example of
the corresponding numerical results when using the derivative-based augmentation approach
described in Section 3.2 for the known period case.

4.1.1 Estimation with Known Period

Assuming a known period of P .= 67 for 6(t), we apply the formula in (10) to set w; = i/3,
i =1,...,M, and employ the TVPsapproximation model in (8) with increasing values of
M, ranging from M =1 (which involves three coefficients) through M =5 (11 coefficients).
In each case, the EnKFE tracks.the model states and estimates the unknown coefficients
comprising the Fourier series-based model approximation of #(¢). As an example, Figure 4
shows the resulting EnKF time series estimates of position, velocity, and the seven TVP
model coefficients when M = 3. We then use the posterior sample mean of each coefficient,
¢k, k=0,...,2M e congtruct an approximation of #(t), such that

Or(t) = cd + ¢ sin(wit) + ¢o cos(wit) + -+ - + Copr—1 sin(wpst) + Capr cos(wprt) (19)

for each M. Table 1 lists the posterior sample mean of each coefficient for each M value,
and Figure 5 shows the resulting 6,;(¢) approximations in each case compared with the true
0(t). Lo further compare the approximations with the true (), we use a scaled version of
theroot mean square error (RMSE), where

Scaled RMSE = RMSE, RMSE =

o7}

(0(t;) — ()’ (20)

T
=1

Nl =

J

10
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Page 11 of 33

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-103935.R2

and oy is the standard deviation of §(¢). Note that the plots in Figure 5 and corresponding
scaled RMSE values in Table 1 were computed at ¢; values taken every 0.1 time.units over
[0,60], a finer time discretization than used during the filtering process.

As illustrated in Figure 4, the filter well tracks the model states for@oth p(€),and v(t),
and the coefficient estimates converge to constant values after assimilating approximately
one period of data (here, one period occurs at time 67 ~ 18.85), withithe +2,standard
deviation curves representing uncertainty around the mean estimate shrinking significantly.
In comparing the results for different values of M, we note that theslowest ' RMSE occurs
when M = 3 and is similar when M = 4, with a small increasein error when M = 5;
however, all three of these M values result in reasonably close model approximations to the
true 0(t), as shown in Figure 5. Further, the EnKF posterior/sample means for the TVP
approximation model coefficients when M = 3, 4, and 5 are quite similar to the Fourier series
coefficients obtained when using the formulas in (5) and (6) te approximate the function
h(t) = 2sin(t) — 0.5cos(2t/3) when @ = 3, 4, and 5, assuming that both h(t) and P = 67
are known (i.e., ¢y = —0.5, ¢5 = 2, and ¢, = 0 for all other coeffidients).

Figure 6 shows the mass-spring system model ptedictions using 0,,(t) as the forcing
parameter in (18) for each M with the initial conditien z(0) = [1;—1], a different initial
condition than used in generating the simulated data, along with the corresponding scaled
RMSE values for each model state. As might be expected given the TVP approximation
results, the model predictions when using M = 1 and'2 are less accurate than when using
M = 3, 4, and 5, which all provide similarlynaccurate predictions of both position and
velocity.  While not shown, similar results hold for other initial conditions in this range.
For predictions using initial conditionsilarger in magnitude with this system, e.g., x(0) =
[100; —100], a similar pattern holds where the approximation models with M = 3, 4, and
5 provide the best results (ie., lowest RMSE values), but the overall error is lower for
predictions using any of the M walues considered.

4.1.2 Estimation with Unknown Period

Given the same simulated data, we now assume that the period P of 6(t) is also unknown and
estimate P along with theinknown approximation model coefficients for different choices
of M. We draw an imitial sample of P values from a uniform distribution over [15, 20],
supposing that we have some' reasonable prior information on a range of likely values (the
true period being 67 ~18.8496 in this case). As an example for comparison, Figure 7 shows
the resulting EnKF,time Series estimates of the seven TVP model coefficients and period P
when M = 3., Table 2lists the posterior sample mean of the estimated coefficients and P
values for ea¢h A/, and Figure 8 shows the resulting 6,,(¢) approximations and time series
estimates of Pieompared with the true 6(¢) and P, respectively, when M =1, 3, and 5.
Similar to the results obtained using M = 3 with a known period (shown in Figure 4), we
see in Figure 7/that most of the coefficient estimates converge after assimilating about one
perigd of data; the uncertainty encoded in the 2 standard deviations around the mean is a
bit wider but continues to decrease as more data are sequentially incorporated. The estimate
of P takes more time to converge but, after assimilating about two periods of data, converges
elosely to the true underlying period (with a relative error of approximately 8.6124 x 10~%).
While not shown, the resulting time series estimates for both position and velocity are similar

11



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-103935.R2

--True —EnKF Mean - - EnKF Uncertainty

) 20 40 60 R 20 40 60 "o 20 40 60
time time time

Figure 4: EnKF time series estimates of position, velocity, and the seven unknown coefficients
in the TVP approximation modely(8) of the sinusoidal forcing parameter 6(¢) = 2sin(t) —
0.5cos(2t/3) in (18) when M = 3, using'the data in Figure 3 and assuming a known period
for 6(¢). On each plot, the solidted line denotes the EnKF sample mean and the dashed red
lines show £2 standard deyiations around the mean. The plot for each coefficient, ¢, ..., cg,
also shows the resulting histogram of the posterior sample at time ¢t = 60.

to those obtained insthe knewn period case.

The results in, Table 2 and plots in Figure 8 emphasize that, again for this case, M = 3
gives the best overallbapproximation to 6(t) (with smallest scaled RMSE) as well as the best
estimate of P{with reasonably small uncertainty in this estimate by the end of the filtering
process. When/M = 1 and M = 2, the period estimates somewhat diverge from the truth
and resultwin under-approximations. The results when M = 4, while not shown graphically,
are similar to M = 3 but with more uncertainty in the posterior estimate of P and an increase
in the scaled RMSE of the TVP approximation. When M = 5, the increasing uncertainty in
the posterior estimate of P becomes more clear (as seen in Figure 8), along with increased
erron.in the TVP approximation. Following from these results, the corresponding mass-
spring model predictions using different initial conditions with these TVP approximation
niodels.for 0(t) are most accurate when M = 3. However, if directly using the models when
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;g Figure 5: Resulting Fourier series-based approximations of the sinusoidal forcing parameter
24 0(t) = 2sin(t) — 0.5cos(2t/3) in (18) for differentgvaluesiof’ M, using the data in Figure 3
25 and assuming a known period for 6(t). On each plotythe solid red line denotes the TVP
26 approximation ;(t) computed using thé posterior. mean coefficient values in Table 1 and
;; the dashed black line shows the true underlying.6(t).

29

2(1) M = 4 or M = 5 in this case, the mcreased uncertainty in the period and corresponding
32 increased error in the TVP approximations lead to increased error in the model predictions.
33 This can be addressed by using the posterior mean estimate of P, fixing the period to this
34 known value, and re-running the filtering process (now assuming a known period) to obtain
22 improved TVP approximation model eoefficient estimates.

37

38 4.2 Example: Non-Periodic Time-Varying Parameters

39

40 In the previous simulations,»weé demonstrate the effectiveness of the proposed estimation
41 method when approximating a periodic TVP, addressing situations when we know (and fix)
jé and when we don’t know, (and estimate) the underlying period. Here we extend this approach
44 to approximate mere general TVP, in particular, considering cases when 6(t) is not periodic
45 over the time intervabof/available data. As discussed in Section 3.1, this prevents use of a
46 direct formula for setting the w; values in our sinusoidal approximation model terms. Instead,
47 here we choosela fixed increment w and let w; = wi, i = 1,..., M, in order to systematically
jg include sine and eosine pairs with different frequencies in the approximation.

50 Using the same procedure as before, we simulate data from (18) over the time interval
51 0,60 -with three different non-periodic forcing parameters:

gg (i).a lingar polynomial, where

54 0(t) = —0.07t + 2; (21)
55

56

57

58

59 13



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-103935.R2

Table 1: EnKF posterior sample means of the TVP model coefficients for different walues
of M when approximating the sinusoidal forcing parameter 6(t) = 2sin(¢) — 0.5 cos(2t/3)nin
(18), using the data in Figure 3 and assuming a known period for §(¢). Numbers are rounded
to four decimal places. Note that the Fourier series coefficients obtainedmusing the formulas
in (5) and (6) to approximate the known function for orders 3 and abovéncorrespond to
cy = —0.5, ¢5 = 2, and ¢, = 0 for all other coefficients.

Coefficient M=1 M=2 M=3 M=4 M=5

Co -0.1328 -0.0306  0.0303 -0.0083 | -0.0552
c1 -0.2106 -0.3373 -0.0013 -0.0000. “0:0255
Co 0.3387 -0.2012 -0.0927 -0.0624 -0.0784
C3 - 0.1689  0.0545 70.0195 =0.0035
C4 - -0.2770  -0.5236"°=0.5032" -0.4689
Cs - - 2.0299, 2.0047 2.0538
Cé - - 0:0594 -0.0032 -0.0533
cr - - — 0.1099  0.1303
cs - - - 0.0431  0.0053
Co - Q > - -0.1584
10 - X - - 0.1012

Scaled RMSE  1.02111.0087 0.0645 0.0657 0.1282

(ii) a cubic polynomial, where

(t) = 0:0001(t — 25)* — 0.001¢* + 3; (22)
and
(iii) a step functionjwhere
-2 t<30
0(t) = - 23
Q { 2 t>30 (23)

Figure 9 shows_the simulated data in each case.

In building the TVP approximation models as in (8), we set an increment of w = 0.01
and define w;'= 0.01% for each i = 1,..., M. Since each of the underlying 6(¢) have different
levels of omplexity, we test a variety of M values in each case. Figure 10 shows the best
resulting approximations (i.e., those with the smallest corresponding scaled RMSEs) for each
non-periodieforcing parameter. For the linear forcing parameter, the best fit occurs when
M =1 (with scaled RMSE =~ 0.0239), needing only three terms in the TVP approximation
model.to ebtain an accurate approximation. Here, increasing M to somewhat larger values
(e.g., M = 4 or 5) increases the approximation error and number of unknowns but still
permits reasonable approximations with convergent coefficients.

14
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Figure 6: Top row: Predictions of pesition (left) and velocity (right) using initial condition
p(0) = 1, v(0) = —1 and the TVP approximations for #(¢) computed with the estimated
coefficients in Table 1 for different M. Bottom row: Scaled RMSE comparing the predictions
of position (left) and velocity/(right) with the true solutions for each M.

More terms are needed when approximating the cubic forcing parameter, and it is im-
portant to note that, for this, example, using too small an M value results in coefficient
estimates that do not converge over the time interval of available data. More specifically, the
coefficients do not converge when M = 1, 2 or 3, but convergence improves beginning with
M = 4. The best fit forithe cubic forcing parameter occurs when M = 6 (with scaled RMSE
~ 0.1596), but with-assimilarly good fit when M =5 (scaled RMSE = 0.1614) requiring the
estimation of two_less coefficients.

Estimating thestep forcing parameter presents the most difficult challenge of the three,
given the jump discontinuity in the function halfway through the time interval of available
data. For this/example, the TVP approximation model coefficients do not converge for
smaller Movaluesybut a significant increase in M leads to reasonable fits with convergent
coefficients. The TVP approximations yield similar scaled RMSE values for M between
15 and 22y with the lowest occurring when M = 21 (scaled RMSE ~ 0.2737). While not
capturing .the exact shape, the TVP approximations in this case are able to capture the
jump, point between constant parameter values in the underlying step function. The mass-
spring model predictions for different initial conditions follow as expected using the best TVP
approximation results over the time interval [0,60], but it becomes more difficult to accurately
predi¢t the behavior of the system after this time frame for non-periodic TVPs, since the
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Figure 7: EnKF time series @stimates of the seven unknown coefficients and period P in
the TVP approximation model (8). of the sinusoidal forcing parameter 0(t) = 2sin(t) —
0.5cos(2t/3) in (18) when M = 3, using the data in Figure 3 and treating the period of
6(t) as an additional unknown."©n each plot, the solid red line denotes the EnKF sample
mean and the dashed red dines show +2 standard deviations around the mean. Each plot
also shows the resulting histogram of the posterior sample at time ¢t = 60.

parameters themselves,will eontinue to dynamically change over time without updating their
approximation models.
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Figure 8: Resulting Fourier series-basedsapproximations of the sinusoidal forcing parameter
6(t) = 2sin(t) — 0.5 cos(2t/3) imy(18) and corresponding time series estimates of the period
P for different values of M7 using the data in Figure 3 and treating the period of 6(t)
as an additional unknown. /Top/row: On each plot, the solid red line denotes the TVP
approximation 6, (t)\computediising the posterior mean coefficient values in Table 2 and
the dashed black line 'shows the true underlying 6(¢). Bottom row: On each plot, the solid
red line denotes the'EnKF sample mean, the dashed red lines show £2 standard deviations
around the meangand the dashed black line shows the true underlying P.
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Table 2: EnKF posterior sample means of the TVP model /eoefficients and period P
for different values of M when approximating the sinusoidal feréing parameter 6(t) =
2sin(t) — 0.5cos(2¢/3) in (18), using the data in Figure 3 amd treating the period of 6(¢)

as an additional unknown.

Numbers are rounded to four decimal places. Note that the

Fourier series coefficients obtained using the formulas i1 (5) and (6) to approximate the

known function for orders 3 and above correspond to €=

other coeflicients.

—0.5, ¢5 = 2, and ¢, = 0 for all

Coefficient M=1 M=2/M=3 M=4 M=5
Co -0.3468  0.1705-0.0053  0.0962  0.0014

c1 0.5621 -0.0454, -0.0043 -0.0709 -0.1448

Co 0.2776  0.0085 -0.0760  0.0274 -0.1032

3 £ 17142, -0.0479 -0.0343  0.0747

4 — -0:0627  -0.5039 -0.5476 -1.3471

Cs — - 2.0026  1.9663  2.4455

Ce — — 0.0926 -0.4897 -0.8694

c7 - — - 0.0487  0.3266

cs . - - -0.2534  0.4760

o - — - — -0.0178

C10 - - - - 0.3467

P 10.0386 12.5959 18.8658 18.8024 18.9363
Scaled RMSE  1.0373  0.3170  0.0554  0.2288  0.8050
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Figure 9: Position and velocity data generated from the mass-spring system in (18) with
the linear forcing parameter in (21) (top row); cubic forcing parameter in (22) (middle row);
and step forcing parameter in (23) (bottom row).

M=1 M=6 M=21 --True
—Estimate

~o 20 40 60 0 20 40 60 ~o 20 40 60
time time time

Figure 10 Resulting Fourier series-based approximations of three non-periodic forcing pa-
rameters 6(t) in (18) for the values of M yielding the smallest scaled RMSE, using the data
in Figure 9uand setting w; = 0.017 for ¢ = 1,..., M in the TVP approximation models.
From left to right: the linear polynomial in (21); the cubic polynomial in (22); and the step
function in (23). On each plot, the solid red line denotes the TVP approximation 6y ()
computed using the posterior mean coefficient values and the dashed black line shows the
truemunderlying 0(1).
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5 Conclusions and Future Work

In this work, we present a novel Fourier series-based approximation method for estimating
time-varying parameters in deterministic dynamical systems, where wegepresent, 0(¢) as a
linear combination of sine and cosine functions and estimate the unknownapproximation
model coefficients using ensemble Kalman filtering. This approach allows us te,construct
accurate TVP approximations #y;(t), dependent on the integer paraméter M (which dic-
tates the number of approximation model terms) and posterior EnKE mean,estimates for
the model coefficients. With several numerical examples using a forced mass-spring system
(see Appendix A.3 for an additional example using a periodically-foreed Lorenz system with
chaotic behavior), we illustrate the effectiveness of this approach in approximating TVPs of
different forms, including cases when 60(t) is periodic with a known period, periodic with an
unknown period (which is jointly estimated), and non-periodiéioversthe time interval of ob-
served data. Compared to a standard augmented EnKF orgparameter tracking approach (see
Appendix A.2), the proposed Fourier series-based approximatien/techniques show improved
performance in capturing the shape and magnitude of thesunderlying TVP, also providing
an approximation model for 0(t) (or df/dt) that can'be used in making model predictions
with the ODE system.

One important aspect to consider in successfully applying this method is how to best
select M in advance of running the estimation procedure. Our goal in practice is to choose
the smallest integer M that will result in a reasonable TVP approximation and corresponding
ODE system predictions, in order to keep the number of unknowns to a minimum as well
as to reduce approximation errors ffommincluding additional terms that may not be needed.
Another important consideration is how, to appropriately set the angular frequencies w;, i =
1,..., M, of the sinusoidal terms in the TVP approximation models. When 6(¢) is periodic,
we are able to set w; directly using the formula in (10) and either fix or estimate P, depending
on what information is availables Hewever, when estimating TVPs that are not periodic (or
not known to be periodic), we select’ a fixed increment w and set w; = wi; the choice of
this increment is vital in the resulting TVP approximation and also can affect which M is
most appropriate for the problem. Future work will include incorporating model selection
techniques [45,46] and potefitial pre-processing steps to select M and w systematically for a
given problem.

Further, in the examples.estimating periodic parameters with sinusoidal form, it is clear
from the resulting T'VP approximation model coefficient estimates (as well as in the Fourier
series coefficients'of the true parameter functions) that only a few terms in the approximation
model have significant impact in well representing the underlying parameter dynamics, while
a majority of the terms make small contributions that can instead introduce approximation
errors. To._promete a sparse representation emphasizing the most significant terms in the
approximation model, in future work we aim to modify the proposed approach to incorporate
sparsity preservation techniques; see, e.g., [47,48]. We anticipate that employing sparse
dictionary learning will contribute to the robustness of the approach and potentially reduce
some of the aforementioned concerns about the choice of M.

While application of EnKF-type methods for data assimilation in practice tend to favor
use.of small ensemble sizes for large-scale problems (with a large number of system states),
here the number of unknown coefficients grows with M and quickly surpasses the number
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of system states. Since our main goal in employing the method in this work is toe, well
approximate the underlying 0(t), we present results using a relatively large (compared to the
number of system states) ensemble size, i.e., N = 100 for the numerical examples discussed.
We remark that it is possible to obtain similar results using smaller enseibles; but. we must
be careful not to choose too small an ensemble size (i.e., less than numberiof unknewns)
to avoid potential issues with filter divergence and degraded performance of the/filter in
approximating 6(t). Future work will explore application of these techniques to large-scale
inverse problems, including problems with multiple TVPs to estimate (thereby increasing
the number of unknown approximation model coefficients), and possible avenueés for reducing
the ensembles sizes in the approximation.

We note that the proposed approach is not limited to thefuse.of EnKF in estimating
the unknown coefficients and could also be implemented using different nonlinear filtering
methods (e.g., particle filters [49]) with sequentially-arriving/data or non-sequential Bayesian
approaches (e.g., MCMC methods [50]) if the full time séries of data is available at once.
However, our results show that we are able to reasonably appreximate the unknown TVPs
of interest using the EnKF with a relatively small sample size compared to those generally
needed for particle filtering or MCMC-based approaches. While the examples in this work
each focus on estimating a single, univariate TVP for thersystem considered, future work
will examine the feasibility of this approach in simultaneously estimating multiple TVPs for
a given system (increasing the number of unknowns and complexity of the problem, as the
different TVPs for the same system might have different periods, different known or unknown
period information, and would likely require different M values for each approximation
model), as well as introducing model-datamismatch as we move toward real-data application.
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AppendixryA ““Additional Numerical Results

A.1 Example Using Derivative-Based Augmentation

In this seetion, we apply the derivative-based augmentation approach described in Section 3.2
to estimate the sinusoidal forcing parameter 6(¢) = 2sin(t) — 0.5 cos(2t/3) in (18) using the
same data‘as in Figure 3 and assuming a known period for 6(¢). Compared to the approach
used in,Section 4.1.1, the difference with this implementation is that we now treat 6(¢) as
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unobserved system state, where

do

L =00, 00) = b, (A1)
with 0,(t) defined as in (14), and we track it along with p(t) and v(t), estimatingythé 2M
coefficients ¢y, . .., copr plus the TVP initial value 6 for a total of 2M + 1 unknewn constant

parameters. Figure A.1 shows the resulting EnKF time series estimates of position, velocity,
and 6(t), along with the six unknown coefficients in (14) and the initial condition 6y, when
M = 3. Table A.1 lists the posterior sample mean of each coefficient and 6, for each M
value, and Figure A.2 shows the corresponding EnKF time series estimates of 6(t) in each
case compared with the true (¢).

The results in Figure A.1 highlight the differences between this derivative-based aug-
mented systems implementation and the direct approximation model/ (with corresponding
results shown in Figure 4), where here 0(t) is treated as _an unebserved system state and
tracked along with position and velocity. The six coefficients converge after assimilating
about one period of data, which is also reflected in theé'tracking of 6(¢), while the estimate
of 0y continues to improve over the remaining timepintervaliof observations. As the plots
in Figure A.2 illustrate, the filter is not able to well tragk 6(¢) when M = 1 and 2, notice-
ably under-estimating the dynamics with a damping effect/beginning close to the one period
mark (i.e., around time ¢t = 19). The estimation significantly improves when M = 3, where
the EnKF mean estimate very well captures the behavior of the true underlying parameter
after assimilating one period of data, with fairly tight uncertainty bounds around the mean
estimate. Similar behavior occurs when M = 4 and 5, although there is more initial error
in the approximation over the first period andislightly wider uncertainty bounds after the
coefficients converge. The results in TablevA.1 paint a similar picture for the posterior mean
estimates of y, where the estimate when M = 3 yields the smallest relative error (=~ 0.1440)
when compared to the true initiabwalue 6, = —0.5.

A.2 Comparison of Fourier Series-Based Approach with Standard
Augmented EnKF)\and Parameter Tracking

In this section, we demonstrate the performance when applying the standard augmented
EnKF algorithm describedyin/Section 2 to estimate the sinusoidal forcing parameter 6(t) =
2sin(t) — 0.5cos(2t/3)in (18) using the same data as in Figure 3. Since the standard
augmented EnKFlis meant for estimating constant parameters, we anticipate that applying
this algorithm_te,estimate the time-varying forcing parameter will not capture its dynamic
behavior. Aslexpected, Figure A.3 shows that the standard augmented EnKF indeed fails to
capture the dynamics of 6(¢) and instead converges to a constant that represents somewhat
of an avérage value. Note that the filter still reasonably well tracks both states p(¢) and
v(t); however, some of the behavior towards the end of the time series is not captured as the
estimate is somewhat damped down (corresponding to the underestimated forcing).

To account for time-varying behavior in the parameter estimate, we can modify the
augmented EnKF algorithm to include parameter tracking (see, e.g., [10]) by incorporating
a random walk model for the parameter in the filter prediction step, such that

0 =0 €, e~ N(0,07) (A.2)
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45 Figure A.1: EnKF time’series estimates of position, velocity, and the forcing parameter
46 0(t), along with' the six mknown coefficients in (14) and the initial condition 6, of the
sinusoidal foreing parameter 0(t) = 2sin(¢) — 0.5cos(2t/3) in (18) using the derivative-
based augmentation approach when M = 3, given the data in Figure 3 and assuming a
50 known period for 6(t). On each plot, the solid red line denotes the EnKF sample mean
51 and the dashed red lines show +2 standard deviations around the mean. The plots for each
52 coefficient,\cq, . . ., cg, and for Ay also show the resulting histograms of the posterior samples
>3 at time.t.= 60.
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Figure A.2: EnKF time series estimates of the sinusoidal forcing parameter 6(¢) = 2sin(t) —
0.5cos(2t/3) in (18) when using the derivative-based augmentation approach with different
values of M, given the data in Figure 3 andiassuming a 'known period for (). On each plot,
the solid red line denotes the EnKF sample mean, the dashed red lines show 42 standard
deviations around the mean, and the dashed,blackiline shows the true underlying 6(t).

for each ensemble member, n =1, ..., N, 'where & ](.1)1 defines the parameter perturbation from
time j to j 4+ 1. The success of parameter tracking with the EnKF relies significantly on the
choice of the parameter noise model variance o [10], which must be manually selected before
running the filter. Figure A.4 ghowsithe resulting estimates of 6(¢) when using parameter
tracking with four different choices of g (namely, when o = 0.1, 0.5, 1, and 5) and keeping all
other filter settings (ensemble size, etc.) the same as in the previous numerical experiments.
When o = 0.1, we see that the underlying form and magnitude of §(t) are not well captured.
When o = 0.5, the approximation improves but the form is still not well captured and the
dynamics of the estimate lag behind the truth. For the larger values when o = 1 and o = 5,
note that the overall dynamics of 6(t) are generally captured (with more error as o increases)
but the functionalform ismot well approximated in any case and the uncertainty bounds grow
increasingly with 0. 'While some of these parameter estimates may be reasonable overall,
note that this algorithmifails to well approximate the underlying functional form of 6(t).
Further, sinceig is fixed, we do not see a decrease in the EnKF uncertainty bounds over time.
Comparing these results with those using the Fourier series-based approaches presented in
this work (perhaps most visually comparable with the derivative-based augmentation results
shownsin Appendix A.1), we see that the Fourier series-based approximations have improved
performange in capturing the functional form of the underlying TVP and by design give an
approximation formula for 6(t) (or df/dt) that can be used in making forward predictions
with the system. We also see a decrease in uncertainty in the TVP approximation model
coefficient estimates over time, as well as in the 0(¢) approximations shown in Figure A.2
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Table A.1: EnKF posterior sample means of the TVP model coefficients and initial,value
Oy for different values of M when using the derivative-based augmentation approachito
estimate the sinusoidal forcing parameter 6(t) = 2sin(t) — 0.5cos(2t/3) in (18) given the
data in Figure 3 and assuming a known period for 6(¢). Numbers are rounded to four
decimal places. Note that the Fourier series coefficients obtained using the/formulasiin (5)
2 and (6) to approximate the known function for orders 3 and above correspond torey= —0.5,
cs = 2, and ¢, = 0 for all other coefficients.

oNOYTULT D WN =

13 Coefficient M =1 M=2 M=3 M=4 M=5
14 1 0.1410 -0.0439 -0.0134 0.0590. -0:0324
16 Co 20.0073  0.1723 -0.0814 -0.0612 <010894
17 cs ~ -0.0865 0.0034 -00505 ~0-0073
19 Ca ~ -0.1852 -0.4840 40.4655 9-0.5573
Cs - - 2.0026+. 2.0152 1.9659
22 Co - ~  -0.0818 00115 0.0038
" o - - - 0.1162  0.1577
25 cs - , F 0.1301  0.1571
57 Co - \ - ~-0.2124
C1o - - / - 0.1677
30 6o -0.06483m0:3544. -0.5720 -0.4168 -0.2902

32 --True —EnKF Mean -- EnKF Uncertainty
33 _) PR LR R

2 15

10

o(t)

41 ) 20 40 60 0 20 40 60 o 20 40 60
time time time

Figure A.3: EnKE time series estimates of position, velocity, and the forcing parameter 6(t)
when estimating thesinugoidal forcing parameter 6(t) = 2sin(¢) — 0.5 cos(2t/3) in (18) using
46 a standard aggmented EnKF. On each plot, the solid red line denotes the EnKF sample
47 mean and the dashed red lines show 42 standard deviations around the mean.

50 with the best fits resulting when M = 3, 4, and 5.
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--True —EnKF Mean -- EnKF Uncertainty

c=0.1 =05
10 10

time time

Figure A.4: EnKF time series estimates of positions veloeity, and the forcing parameter 6(t)
when estimating the sinusoidal forcing parametet 6(f)= 2sin(¢) — 0.5 cos(2¢/3) in (18) using
an augmented EnKF with parameter tracking. On each plot, the solid red line denotes the
EnKF sample mean and the dashed red lines show +2 standard deviations around the mean.
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A.3 Example Using Periodically-Forced Lorenz System with Chaotic

Dynamics

As an additional test system, weconsider a modified version of the Lorenz-63 equations [51],
commonly studied in data assimilation, as a simplified model for atmospheric convection
that exhibits chaotic dynamics under certain parameterizations. In particular, we consider
a periodically-forced Lorenzssystemrof the type in [52] with governing equations given by

dz
_dtl = o(xe —11) (A.3)
dz
d—; = pO(t)xy — 2123 — X9 (A.4)
dz
_dt3 = 1179 — B3 (A.5)

where the constant parameters o = 10, p = 28, and 5 = 8/3 are chosen so that the system
exhibits chaotie'behavior and 6(t) is a periodic forcing function. Assuming that o, p, and 3
are known, ourjgoal is to estimate 6(¢) using the Fourier series-based TVP approximation
technique.y, While in the previous examples the TVP of interest was additive with respect
to the system states, note that here 6(t) is a multiplicative TVP. Further, here we assume
thatithe system is partially observed, such that we are able to obtain observations of x(t)
and z3(#) (relating to the temperature variations) at some discrete times, but we cannot
observesr,(t) (relating to convection) and thereby must track the behavior of z;(¢) along
with estimating the unknown TVP. Letting 0(t) = 1 + e cos(wt) (as studied in [52]) with
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o(t)

0 10 20 30 40 50
time

Figure A.5: Lorenz butterfly of the reference solutions for the forced Lorenz system in (A.3)—
(A.5) with sinusoidal forcing parameter (t) = 1 + 0.5 cos(0.5t).

e = 0.5 and w = 0.5 (corresponding to period P = 47 ~ 1247), wessitnulate data from the
forced Lorenz system in (A.3)—(A.5) by taking observations of the states xo and x3 every
0.02 time units over the interval [0,50] (covering about 4 pexiods of 6(t)) and corrupting
with Gaussian noise (zero mean and variance taken t@ ben20% of the standard deviation of
the true states, as before). Figure A.5 shows the Lorenz butterfly of the reference solutions
(uncorrupted) and the forcing parameter 6(t).

Assuming a known period for 6(t), we apply the method in Section 3.1 using the formula
in (10) to set w; = 0.54, ¢ = 1,..., M, and employ the TVP approximation model in (8)
with increasing values of M, ranging from A/ =1 (which involves three coefficients) through
M =5 (11 coeflicients). Note that the Fourier seri¢s coefficients obtained when using the
formulas in (5) and (6) to approxingate.the function h(t) = 1 4 0.5 cos(0.5¢), assuming that
both h(t) and P = 47 are known, gives,a close approximation when ) = 1 with coefficients
co =1, =0, and ¢ = 0.5 (and using higher @) values yields similar approximations with
¢ = 0 for the additional coefficients), so we expect comparable results using the Fourier
series-based TVP approximation-with a known period to estimate 6(t). We apply the EnKF
similarly as before with an ensemble size of N = 100, with the aim of tracking the model
states and estimating the unknown coefficients comprising the Fourier series-based model
approximation of 6(t) for each value of M. Table A.2 lists the posterior sample mean of each
coefficient for each M valu¢, and Figure A.6 shows the resulting () approximations in
each case compared with the true 6(¢).

As demonstrated in Table A.2, the filter well estimates the TVP approximation model
coefficients, resulting in similar values to those expected from Fourier series expansion (with
small approximagion errors) for each M value. While not shown, the filter also well tracks
all three modelsstates (iicluding the unobserved state x;) for each M value. As shown in
Figure A.6, while the lowest RMSE occurs when M = 4 for this example, all of these M
values result inzeasonably close model approximations to the true 6(t) in this case. While we
used an ensemble of size N = 100 to compute the results as shown, we remark that similar
results can be obtained using smaller ensembles (e.g., N = 20 and above when M = 1) but
the performance degrades for too small an ensemble relative to the number of unknowns.
Though these initial results are promising, in future work we will perform additional studies
to verifyrthe feasibility of the proposed technique for TVP estimation on larger-scale forced
chaotic systems with more unknowns.
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M=1 M=2 M=3 --True
2 2 R — Estimate
1.5 A 1.5 1.5
g 1 g1 g1
0.5 0.5 0.5
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Figure A.6: Resulting Fourier series-based approximations of the sinusoidal forcing parame-
ter 6(t) = 1+ 0.5cos(0.5¢)in (A.3)-(A.5) for different values of M assuming a known period
for (t). On each plat, thesolid/red line denotes the TVP approximation #,,(t) computed
using the posterior mean. coefficient values in Table A.2 and the dashed black line shows the
true underlying 6(t).
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oNOYTULT D WN =

16 Table A.2: EnKF posterior sample means of the TVP model coefficients for different values
of M when approximating the sinusoidal forcing parameter 6(t) = 1.40.5 cos(0.5t) in (A.3)-
(A.5) assuming a known period for #(¢). Numbers are rounded terfour decimal places. Note
20 that the Fourier series coefficients obtained using the formulag.in (5) and (6) to approximate
21 the known function for orders 1 and above correspond fo'¢yp.= 1, ¢; =0, co = 0.5, and ¢, = 0
22 for all other coefficients.

Coefficient M=1 M=2/M=3, M=4 M=5
26 co 0.9903 0:9930 " 1.0004 0.9971 0.9917
¢ 0.0060 -000173. -0.0177 -0.0001 -0.0076
29 Co 0.4771  0.5056 0.4845 0.4913  0.4781
31 c3 - 0.0076.  0.0130 -0.0040 -0.0027
32 c4 = 00041  0.0077 -0.0155 -0.0022
32 cs - - 0.0143  0.0046 -0.0044
Co - ~-0.0004 -0.0023 0.0035
37 r _ - - 0.0038  0.0128
38 cs - - ~-0.0002 0.0026
40 Coy - - - - 0.0017
piS C1o - - - - 0.0024
43 Scaled RMSE  0.0545 0.0452 0.0630  0.0392  0.0600
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