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Abstract

Many real-world systems modeled using differential equations involve unknown or
uncertain parameters. Standard approaches to address parameter estimation inverse
problems in this setting typically focus on estimating constants; yet some unobservable
system parameters may vary with time without known evolution models. In this work,
we propose a novel approximation method inspired by the Fourier series to estimate
time-varying parameters in deterministic dynamical systems modeled with ordinary
differential equations. Using ensemble Kalman filtering in conjunction with Fourier
series-based approximation models, we detail two possible implementation schemes for
sequentially updating the time-varying parameter estimates given noisy observations
of the system states. We demonstrate the capabilities of the proposed approach in
estimating periodic parameters, both when the period is known and unknown, as well
as non-periodic time-varying parameters of different forms with several computed ex-
amples using a forced harmonic oscillator. Results emphasize the importance of the
frequencies and number of approximation model terms on the time-varying parameter
estimates and corresponding dynamical system predictions.

Keywords: Nonstationary inverse problems; parameter estimation; approximation
models; Bayesian inference; Fourier series; ensemble Kalman filter; dynamical systems.

1 Introduction

Many real-world problems in science and engineering involve unknown model parameters of
interest that may vary with time but cannot be directly observed. For example, forced har-
monic oscillators used in modeling gear systems [1,2], RLC circuits [3], and cantilever motion
in atomic force microscopy [4] may involve time-dependent stiffness, mass, and/or external
forcing parameters. Examples in biology and medicine include time-dependent transmission
parameters in modeling epidemic dynamics [5–7], external stimuli in modeling neuron dy-
namics [8–10], and tissue optical properties in modeling laser-tissue interactions [11,12]. The
work in this paper aims to address the estimation of such time-varying parameters (TVPs)

1

Page 1 of 33 AUTHOR SUBMITTED MANUSCRIPT - IP-103935.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



in deterministic dynamical systems, when the parameters are not observable and there is
not a known (or available) model governing their time evolution.

While TVPs may appear in different types of mechanistic models, here we focus on
deterministic dynamical systems modeled using differential equations. In particular, we
assume an ordinary differential equation (ODE) model of the form

dx

dt
= f(t, x, θ), x(0) = x0 (1)

where t ∈ R denotes time, x = x(t) ∈ Rd is the vector of model states, θ ∈ Rp is the
vector of unknown model parameters, and f : R × Rd × Rp → Rd is a known mapping
representing the state dynamics. The ODE model in (1) may involve unknown constant
parameters (including the initial conditions x0), but here we focus our attention primarily on
estimating the unknown time-varying parameters of interest. Further, while such problems
may generally include more than one parameter changing with time, we restrict our examples
in this work to estimate a single, univariate TVP, θ = θ(t) ∈ R, for each system. The inverse
problem considered is therefore to estimate θ(t), along with the system states x(t), at some
discrete times tj given noisy, sequential observations of the system states (which may be fully
or partially observed). Note that we can extend the inverse problem to include estimation
of additional constant parameters, including initial conditions, as needed.

To address the inverse problem at hand, in this work we propose an approximation
method inspired by the Fourier series, where we represent θ(t) as a linear combination of
a finite number of sine and cosine functions and estimate the unknown coefficients of the
approximation model using ensemble Kalman filtering. Fourier series-based approaches have
been used in previous work for approximating smooth, periodic functions and trajectories in
control systems [13,14], for linear function approximation in reinforcement learning [15], and
for approximating solutions to differential equations via spectral methods [16, 17]. Fourier
series expansion has also been used for estimating smooth, periodic TVPs in the setting of
adaptive control [18–21], where the period of the parameter is assumed to be known. We aim
to approximate more general θ(t) in this work, specifically periodic parameters for which the
period is not known and parameters that are time-varying but not periodic over the time
interval of available system observations.

The proposed method introduces a new way of embedding Fourier series-based function
approximation into the setting of parameter estimation inverse problems to estimate time-
dependent physical parameters of the governing ODE system. Use of a Bayesian filtering
approach such as ensemble Kalman filtering provides a flexible framework for addressing this
inverse problem and allows for the unknown approximation model coefficients to be updated
sequentially along with the system states as new data arrive, without relying on the full
time series of data in advance. Ensemble-based methods also provide a natural measure of
uncertainty in the resulting parameter estimates, generally taken as ±2 standard deviations
around the sample mean at each time. While originally developed for state estimation of
partially observed systems, ensemble Kalman methods have been successfully used to solve
a variety of inverse problems [22–26], including constant parameter estimation in ODEs [27].
In the setting of TVP estimation, previous studies have used Bayesian filtering approaches
to estimate the constant coefficients of piecewise functional representations of periodic pa-
rameters [28, 29], constant parameters for linear TVP models [30], and in conjunction with
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parameter tracking schemes to estimate more general time-varying forms [10,31–35]. Recent
works have also addressed the related problems of approximating hidden physics and/or
latent system dynamics through use of data-driven and machine learning techniques [36–38].

1.1 Contributions

The approach presented in this work focuses on recovering unknown and unmeasured dy-
namical system parameters with time-dependent behavior, updating the parameterization
of the physical model through use of a sinusoidal representation of the underlying TVP.
In essence, this method utilizes a dictionary of sinusoidal functions inspired by the Fourier
series terms and weighted with coefficients estimated online by ensemble Kalman filtering to
sequentially update the TVP approximation. The main contributions of this work include:

• A new method for estimating TVPs in dynamical systems, wherein sinusoidal functions
inspired by Fourier series terms are used in a dictionary to generate an approximation
model for the TVP, thereby transforming the TVP estimation into a constant coefficient
estimation inverse problem;

• Two implementation options for sequentially updating the TVP approximations, both
using an ensemble Kalman filtering framework to track the system states and estimate
the unknown TVP approximation model coefficients; and

• Strategies for using this method to estimate periodic parameters both when the period
is known and unknown, as well as extensions to estimate TVPs that are not periodic
over the time interval of available data.

In a set of numerical examples considering a forced mass-spring system, we first estab-
lish the ability of the proposed Fourier series-based approximation approach to estimate a
periodic forcing parameter with known period, then extend the estimation to include the
period of the TVP as an additional unknown. We further demonstrate the capability of the
proposed method in estimating TVPs that are not periodic (and potentially not continuous)
over the time interval of observed data and show that the resulting parameter approxima-
tion models can be used to make reasonably accurate predictions of the system dynamics for
different initial conditions. In the appendix, we include additional numerical results compar-
ing the proposed approach with a standard augmented ensemble Kalman filtering algorithm
and parameter tracking techniques, as well as an example considering a periodically-forced,
partially observed Lorenz system with chaotic behavior.

We remark that the focus of this work does not immediately lie on application to large-
scale problems using small ensemble sizes or on systems with chaotic dynamics (as is common
in the data assimilation literature) but rather on establishing a method to well estimate the
functional form (shape and magnitude) of the underlying TVP. Even for small systems (e.g.,
where d = 2 or 3), the number of unknown coefficients grows with the number of terms used
in the TVP approximation model, thereby requiring use of an ensemble size larger than the
number of system states. We discuss considerations including the choice of the number of
approximation model terms needed to well represent the underlying TVP in this work.
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Model 
Prediction

Observation
Update

tj tj+1 tj+2

Figure 1: Illustration of the EnKF two-step updating scheme. In the model prediction step,
the ensemble members (represented as black circles, with sample variance in gray) at time j
are propagated forward (shown with black dashed arrows) to time j+1 by solving the model
in (13). In the observation update, the ensemble predictions (green circles) are corrected
(green arrows) using the observed system data at time j + 1. The process continues using
the corrected sample at time j + 1 (black circles) until all available data are assimilated.

1.2 Paper Organization

The remainder of the paper is organized as follows: Section 2 briefly reviews ensemble
Kalman filtering for constant parameter estimation. Section 3 details the proposed Fourier
series-based TVP approximation models, providing two implementation approaches that can
be used together with ensemble Kalman filtering to estimate the unknown model coefficients.
Section 4 provides the main results of the numerical experiments (with some additional
results provided in the appendix), and Section 5 gives conclusions and future work.

2 Review: Ensemble Kalman Filtering for Sequential

Estimation of Constant Parameters

In this section, we briefly review the main ideas behind ensemble Kalman filtering for com-
bined state and constant parameter estimation. While the method was originally established
for tracking unobserved model states [39, 40], the augmented approach outlined below has
been successfully used to estimate constant parameters in a variety of models, including
systems of ODEs [27]. For a recent review of ensemble Kalman filtering, we refer interested
readers to [41].

The Ensemble Kalman Filter (EnKF) is a sequential Bayesian approach that employs
ensemble statistics within the framework of the classic Kalman filter to track unknown
model variables given observed time series data. The incorporation of a statistical sample,
which represents an underlying probability distribution of the unknowns conditioned on the
available data, accommodates the use of nonlinear and possibly non-Gaussian models. The
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Algorithm 1: EnKF for Combined State and Constant Parameter Estimation

Input: Initial sample S0 drawn from prior distribution π(x0, θ0)
Output: Posterior sample ST and corresponding ensemble statistics

1 Initialize time index j = 0
2 while j < T do

/* Prediction Step */

3 for n = 1, . . . , N do

4 x
(n)
j+1 = F (x

(n)
j , θ

(n)
j ) + v

(n)
j+1, v

(n)
j+1 ∼ N (0,C)

5 z
(n)
j+1 =

[
x
(n)
j+1; θ

(n)
j

]
/* Observation Update */

6 for n = 1, . . . , N do

7 y
(n)
j+1 = yj+1 + w

(n)
j+1, w

(n)
j+1 ∼ N (0,D)

8 z
(n)
j+1 = z

(n)
j+1 + Kj+1

(
y
(n)
j+1 −G(z

(n)
j+1)

)
/* Compute Posterior Ensemble Statistics */

9 z̄j+1 =
1
N

∑N
n=1 z

(n)
j+1

10 Γj+1 =
1

N−1

∑N
n=1(z

(n)
j+1 − z̄j+1)(z

(n)
j+1 − z̄j+1)

T

/* Update Time Index */

11 j = j + 1

EnKF can estimate unobserved (or unobservable) model states along with unknown constant
parameters through use of an augmented dynamical system

dz

dt
=


dx

dt

dθ

dt

 , z(0) =

[
x(0)

θ(0)

]
∈ Rd+p (2)

where dx/dt describes the system dynamics, as given in (1), while dθ/dt represents the
dynamics of the parameters [22, 27]. In particular, dθ/dt = 0 when the parameters are
constant (i.e., time-invariant).

Given a discrete sample of the model states and parameters at time j,

Sj =
{
(x

(1)
j , θ

(1)
j ), . . . , (x

(N)
j , θ

(N)
j )

}
(3)

the EnKF works as a two-step updating scheme: First, each pair of states and parameters
is predicted at time j + 1 using the evolution model in (2); then, the augmented vectors
are corrected using the Kalman filter observation updating equation, which incorporates the
observed data at time j + 1. This process is illustrated in Figure 1, and the steps of the
algorithm for combined state and constant parameter estimation are outlined in Algorithm 1.

When working with ODE models, the operator F in the prediction step of Algorithm 1
(line 4) denotes the numerical solution to the differential equations model in (1) at time j+1;
the parameter values are not updated during this step. In the observation update, yj+1 in
line 7 denotes the vector of observed model states, with dimension m ≤ d, which is perturbed
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to help avoid too low a covariance in the resulting sample [40]. The updating equation in line
8 corrects the joint predicted sample for each n using the Kalman gain matrix Kj+1 and the

difference between the perturbed observation y
(n)
j+1 and predicted observation G(z

(n)
j+1), where

G is the observation model. For linear observations, G(z
(n)
j+1) = Pz

(n)
j+1, where P ∈ Rm×(d+p)

is a projection matrix whose entries corresponding to observed states are 1 and entries
corresponding to unobserved states and parameters are 0. The posterior ensemble statistics
computed in lines 9 and 10 give the mean and covariance, respectively, of the resulting
sample at time j + 1. The posterior mean for each parameter is taken as its estimate, with
uncertainty commonly represented using ±2 standard deviations around the mean. The
process repeats sequentially until all available data in the time series are assimilated. In
this procedure, the parameter values are artificially evolved with the aim of converging to a
constant.

3 Fourier Series-Based Approximation Models for Time-

Varying Parameters

While the EnKF algorithm reviewed in Section 2 is formulated for estimating constant
parameters, our goal in this work is to estimate time-varying system parameters for which
no evolution model is known (or available); i.e., we do not have a known form of dθ/dt
for θ = θ(t). To address this problem, we propose a novel approximation method inspired
by the Fourier series, where θ(t) is represented as a linear combination of sine and cosine
functions with different frequencies. We describe this approach below, detailing formulations
for estimating periodic parameters when the period of θ(t) is both known and unknown, as
well as for approximating more general TVPs that are not periodic over the time interval
of observed data. We provide two possible implementation strategies using the EnKF for
coefficient estimation.

3.1 Fourier Series and Approximation Model Formulation

Recall that the Qth order Fourier series of a univariate function h(t) is given by

h(t) =
a0
2

+

Q∑
q=1

(
aq cos

(2πqt
P

)
+ bq sin

(2πqt
P

))
(4)

where aq and bq are the expansion coefficients and P is the period. If h(t) is known, the
coefficients aq and bq can be computed explicitly using the formulas

aq =
2

P

ˆ P

0

h(t) cos
(2πqt

P

)
dt (5)

and

bq =
2

P

ˆ P

0

h(t) sin
(2πqt

P

)
dt (6)
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Figure 2: Fourier series approximations of the sinusoidal function h(t) = 2 sin(t) −
0.5 cos(2t/3) using different values of Q, which dictates the number of terms used in the
approximation. In each plot, the Fourier series approximation is shown in dashed blue,
while the true function is shown in solid black. The integrals in (5) and (6) were computed
numerically using adaptive quadrature via the integral function in MATLAB [42].

respectively. For example, Figure 2 shows the Fourier series approximations of the periodic
function h(t) = 2 sin(t)− 0.5 cos(2t/3) with known period P = 6π for different choices of Q.
However, when using Fourier series for function approximation, the function h(t) is generally
unknown and the coefficients aq and bq must be estimated [15,18,20].

Inspired by use of the Fourier series for approximating unknown functions, we propose
to represent the unknown, univariate time-varying parameters θ(t) in this work as linear
combinations of sine and cosine pairs, such that the estimate of each θ(t) is determined by
the approximation model

θM(t) = α0 +
M∑
i=1

(
αi sin(ωit) + βi cos(ωit)

)
(7)

with coefficients αi, βi and fixed values of ωi for each i = 1, . . . ,M . Moving forward, we
denote the 2M + 1 coefficients by ck, k = 0, . . . , 2M , such that the model in (7) becomes

θM(t) = c0 + c1 sin(ω1t) + c2 cos(ω1t) + · · ·+ c2M−1 sin(ωM t) + c2M cos(ωM t) (8)

for some fixed M . Our goal in approximating θ(t) is therefore is to estimate the 2M + 1
coefficients ck that provide the best fit between the model in (8) and the true time-varying
parameter given the observed system data. This essentially transforms the inverse problem at
hand into a constant parameter estimation problem, and we can utilize the EnKF algorithm
described in Section 2 to estimate these coefficients. We remark that this problem is similar in
spirit to dictionary learning, where writing the TVP approximation model in (8) equivalently
as

θM(t) =
[
1 sin(ω1t) cos(ω1t) · · · sin(ωM t) cos(ωM t)

]
c (9)

highlights the dictionary of sinusoidal functions, inspired by the Fourier series terms, and
c ∈ R2M+1 is a vector containing the unknown coefficients ck. The coefficient estimation
thereby determines which of these functions make meaningful contributions in representing
the underlying shape and magnitude of θ(t) given the available system observations.

To apply the TVP approximation model in (8), one must specify the value of M , which
sets the number of terms in the approximation, and the values of ωi, i = 1, . . . ,M , which

7

Page 7 of 33 AUTHOR SUBMITTED MANUSCRIPT - IP-103935.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



act as the angular frequencies of the sinusoidal functions. When θ(t) is periodic, we consider
two different approaches in assigning the ωi values: If we know the period of the underlying
θ(t) in advance of the estimation process, we explicitly define ωi using the formula

ωi =
2πi

P
, i = 1, . . . ,M (10)

where P is the known period of θ(t); this form of ωi follows from the terms in the Fourier
series in (4) for approximating a periodic function with known period. If the period of
θ(t) is unknown or uncertain, we set ωi as in (10) and treat the period P as an additional
unknown constant parameter to be jointly estimated along with the coefficients of the TVP
approximation model. In more general cases, i.e., when θ(t) is not known to be periodic
over the time interval of available data, we instead choose a fixed increment ω and define
ωi = ωi for each i = 1, . . . ,M , systematically incorporating sine and cosine pairs with
different frequencies into the approximation. Following this approach, appropriate choice of
the increment ω becomes an important factor in the estimation process.

3.2 Alternative Implementation: Derivative-Based Augmentation
of System States

In the previous section, we propose an approximation model for θ(t) that we can use directly
within the ODE model in (1) in place of the TVP. As an alternative means of implementation,
much in the spirit of state augmentation, we can use the approximation model in (8) to
prescribe a model for dθ/dt and define a coupled ODE system of the form

dx

dt
= f(t, x, θ), x(0) = x0 (11)

dθ

dt
= θ′M(t), θ(0) = θ0 (12)

which we can write equivalently as the augmented system

dz

dt
=


dx

dt

dθ

dt

 =

[
f(t, x, θ)

θ′M(t)

]
, z(0) = z0 =

[
x0

θ0

]
(13)

where z = z(t) ∈ Rd+1. In this representation, θ = θ(t) is treated as an unobserved state of
the system in (13). The equation for dθ/dt in (13) follows from taking the derivative of the
approximation model θM(t) in (8), which gives

θ′M(t) = c1ω1 cos(ω1t)− c2ω1 sin(ω1t) + · · ·+ c2M−1ωM cos(ωM t)− c2MωM sin(ωM t) (14)

with 2M unknown coefficients, c1, . . . , c2M . Note that the additive constant c0 no longer
explicitly appears in the system equations; instead, we estimate the initial condition θ0 as
an additional constant parameter playing a similar role.
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4 Numerical Results

In this section, we detail the results of several numerical experiments demonstrating the
effectiveness of the proposed methodology under different scenarios for θ(t); more specifically,
we consider examples where θ(t) is a periodic TVP, in cases assuming both a known period
and an unknown period, and where θ(t) is a non-periodic TVP over the time interval of
available system data. Results were obtained using MATLAB (The MathWorks, Inc., Natick,
MA) programming language.

As a test system in the computed examples that follow, we consider a forced harmonic
oscillator, classically modeled using the second-order ODE

mp′′ + bp′ + kp = θ(t) (15)

where p = p(t) commonly denotes the position (or displacement) of a mass at time t, m > 0
is the constant mass, b > 0 is the damping coefficient, and k > 0 is the spring constant; see,
e.g., [43, 44]. Here θ(t) represents external forcing applied to the system, which we treat as
our time-varying parameter of interest. Letting v(t) = p′(t) denote the velocity of the mass,
we can rewrite (15) as a first-order ODE system of the form

dp

dt
= v (16)

dv

dt
=

1

m

(
− kp− bv + θ(t)

)
(17)

or, equivalently, as

dx

dt
=

 0 1

− k

m
− b

m

 x+

 0

θ(t)

m

 (18)

where x(t) = [p(t); v(t)] ∈ R2 is the vector of model states at time t. Assuming that the
constants m, k, and b are known, our goal is to estimate θ(t) using the Fourier series-based
approximation methods described in Section 3. (We note that additional results, including
an example using a periodically-forced Lorenz system with chaotic behavior, are provided in
the appendix.)

To test the effectiveness of the proposed estimation techniques, we generate data from the
mass-spring system in (18) using the initial condition x(0) = [2; 0], fixed constants m = 10,
k = 5, and b = 3, and different forms of the time-varying forcing parameter θ(t), as detailed
for each experiment below. We initialize the EnKF with a sample size of N = 100 and
draw the prior ensemble of state values from a multivariate Gaussian distribution with mean
[1; 1] ∈ R2 and covariance matrix (0.5)2I2, where I2 denotes the 2 × 2 identity matrix. We
draw the prior ensemble of values for each of the unknown coefficients ck uniformly over the
interval [−2, 10]. Further, we use MATLAB’s ode15s to solve the ODE system in (18) at
each time step of the filter and prescribe C = (0.02)2I2 as the model innovation covariance
matrix and D = (0.08)2I2 as the observation covariance matrix, assuming observations of
both position and velocity.
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Figure 3: Position and velocity data generated from the mass-spring system in (18) with
sinusoidal forcing parameter θ(t) = 2 sin(t)− 0.5 cos(2t/3).

4.1 Example: Periodic Time-Varying Parameter

In this example, we consider a sinusoidal forcing parameter of the form θ(t) = 2 sin(t) −
0.5 cos(2t/3) with period P = 6π as the underlying truth. Utilizing MATLAB’s ode45 to
solve the ODE system in (18), we record observations every 0.5 time units over the interval
[0,60], spanning just over three periods of θ(t), and corrupt the observations using Gaussian
noise with zero mean and standard deviation taken to be 20% of the standard deviation
of the true system states. Figure 3 shows the simulated data. In the experiments that
follow, we consider two cases for the estimation procedure: (i) when the period of θ(t) is
known, and (ii) when the period of θ(t) is unknown. Results focus on use of the TVP
approximation model approach described in Section 3.1. Appendix A.1 shows an example of
the corresponding numerical results when using the derivative-based augmentation approach
described in Section 3.2 for the known period case.

4.1.1 Estimation with Known Period

Assuming a known period of P = 6π for θ(t), we apply the formula in (10) to set ωi = i/3,
i = 1, . . . ,M , and employ the TVP approximation model in (8) with increasing values of
M , ranging from M = 1 (which involves three coefficients) through M = 5 (11 coefficients).
In each case, the EnKF tracks the model states and estimates the unknown coefficients
comprising the Fourier series-based model approximation of θ(t). As an example, Figure 4
shows the resulting EnKF time series estimates of position, velocity, and the seven TVP
model coefficients when M = 3. We then use the posterior sample mean of each coefficient,
c̄k, k = 0, . . . , 2M , to construct an approximation of θ(t), such that

θ̄M(t) = c̄0 + c̄1 sin(ω1t) + c̄2 cos(ω1t) + · · ·+ c̄2M−1 sin(ωM t) + c̄2M cos(ωM t) (19)

for each M . Table 1 lists the posterior sample mean of each coefficient for each M value,
and Figure 5 shows the resulting θ̄M(t) approximations in each case compared with the true
θ(t). To further compare the approximations with the true θ(t), we use a scaled version of
the root mean square error (RMSE), where

Scaled RMSE =
RMSE

σθ

, RMSE =

√√√√ 1

T

T∑
j=1

(
θ(tj)− θ̄M(tj)

)2
(20)
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and σθ is the standard deviation of θ(t). Note that the plots in Figure 5 and corresponding
scaled RMSE values in Table 1 were computed at tj values taken every 0.1 time units over
[0,60], a finer time discretization than used during the filtering process.

As illustrated in Figure 4, the filter well tracks the model states for both p(t) and v(t),
and the coefficient estimates converge to constant values after assimilating approximately
one period of data (here, one period occurs at time 6π ≈ 18.85), with the ±2 standard
deviation curves representing uncertainty around the mean estimate shrinking significantly.
In comparing the results for different values of M , we note that the lowest RMSE occurs
when M = 3 and is similar when M = 4, with a small increase in error when M = 5;
however, all three of these M values result in reasonably close model approximations to the
true θ(t), as shown in Figure 5. Further, the EnKF posterior sample means for the TVP
approximation model coefficients when M = 3, 4, and 5 are quite similar to the Fourier series
coefficients obtained when using the formulas in (5) and (6) to approximate the function
h(t) = 2 sin(t) − 0.5 cos(2t/3) when Q = 3, 4, and 5, assuming that both h(t) and P = 6π
are known (i.e., c4 = −0.5, c5 = 2, and ck = 0 for all other coefficients).

Figure 6 shows the mass-spring system model predictions using θ̄M(t) as the forcing
parameter in (18) for each M with the initial condition x(0) = [1;−1], a different initial
condition than used in generating the simulated data, along with the corresponding scaled
RMSE values for each model state. As might be expected given the TVP approximation
results, the model predictions when using M = 1 and 2 are less accurate than when using
M = 3, 4, and 5, which all provide similarly accurate predictions of both position and
velocity. While not shown, similar results hold for other initial conditions in this range.
For predictions using initial conditions larger in magnitude with this system, e.g., x(0) =
[100;−100], a similar pattern holds where the approximation models with M = 3, 4, and
5 provide the best results (i.e., lowest RMSE values), but the overall error is lower for
predictions using any of the M values considered.

4.1.2 Estimation with Unknown Period

Given the same simulated data, we now assume that the period P of θ(t) is also unknown and
estimate P along with the unknown approximation model coefficients for different choices
of M . We draw an initial sample of P values from a uniform distribution over [15, 20],
supposing that we have some reasonable prior information on a range of likely values (the
true period being 6π ≈ 18.8496 in this case). As an example for comparison, Figure 7 shows
the resulting EnKF time series estimates of the seven TVP model coefficients and period P
when M = 3. Table 2 lists the posterior sample mean of the estimated coefficients and P
values for each M , and Figure 8 shows the resulting θ̄M(t) approximations and time series
estimates of P compared with the true θ(t) and P , respectively, when M = 1, 3, and 5.

Similar to the results obtained using M = 3 with a known period (shown in Figure 4), we
see in Figure 7 that most of the coefficient estimates converge after assimilating about one
period of data; the uncertainty encoded in the ±2 standard deviations around the mean is a
bit wider but continues to decrease as more data are sequentially incorporated. The estimate
of P takes more time to converge but, after assimilating about two periods of data, converges
closely to the true underlying period (with a relative error of approximately 8.6124× 10−4).
While not shown, the resulting time series estimates for both position and velocity are similar
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Figure 4: EnKF time series estimates of position, velocity, and the seven unknown coefficients
in the TVP approximation model (8) of the sinusoidal forcing parameter θ(t) = 2 sin(t) −
0.5 cos(2t/3) in (18) when M = 3, using the data in Figure 3 and assuming a known period
for θ(t). On each plot, the solid red line denotes the EnKF sample mean and the dashed red
lines show ±2 standard deviations around the mean. The plot for each coefficient, c0, . . . , c6,
also shows the resulting histogram of the posterior sample at time t = 60.

to those obtained in the known period case.
The results in Table 2 and plots in Figure 8 emphasize that, again for this case, M = 3

gives the best overall approximation to θ(t) (with smallest scaled RMSE) as well as the best
estimate of P , with reasonably small uncertainty in this estimate by the end of the filtering
process. When M = 1 and M = 2, the period estimates somewhat diverge from the truth
and result in under-approximations. The results when M = 4, while not shown graphically,
are similar toM = 3 but with more uncertainty in the posterior estimate of P and an increase
in the scaled RMSE of the TVP approximation. When M = 5, the increasing uncertainty in
the posterior estimate of P becomes more clear (as seen in Figure 8), along with increased
error in the TVP approximation. Following from these results, the corresponding mass-
spring model predictions using different initial conditions with these TVP approximation
models for θ(t) are most accurate when M = 3. However, if directly using the models when
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Figure 5: Resulting Fourier series-based approximations of the sinusoidal forcing parameter
θ(t) = 2 sin(t) − 0.5 cos(2t/3) in (18) for different values of M , using the data in Figure 3
and assuming a known period for θ(t). On each plot, the solid red line denotes the TVP
approximation θ̄M(t) computed using the posterior mean coefficient values in Table 1 and
the dashed black line shows the true underlying θ(t).

M = 4 or M = 5 in this case, the increased uncertainty in the period and corresponding
increased error in the TVP approximations lead to increased error in the model predictions.
This can be addressed by using the posterior mean estimate of P , fixing the period to this
known value, and re-running the filtering process (now assuming a known period) to obtain
improved TVP approximation model coefficient estimates.

4.2 Example: Non-Periodic Time-Varying Parameters

In the previous simulations, we demonstrate the effectiveness of the proposed estimation
method when approximating a periodic TVP, addressing situations when we know (and fix)
and when we don’t know (and estimate) the underlying period. Here we extend this approach
to approximate more general TVP, in particular, considering cases when θ(t) is not periodic
over the time interval of available data. As discussed in Section 3.1, this prevents use of a
direct formula for setting the ωi values in our sinusoidal approximation model terms. Instead,
here we choose a fixed increment ω and let ωi = ωi, i = 1, . . . ,M , in order to systematically
include sine and cosine pairs with different frequencies in the approximation.

Using the same procedure as before, we simulate data from (18) over the time interval
[0,60] with three different non-periodic forcing parameters:

(i) a linear polynomial, where
θ(t) = −0.07t+ 2; (21)
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Table 1: EnKF posterior sample means of the TVP model coefficients for different values
of M when approximating the sinusoidal forcing parameter θ(t) = 2 sin(t)− 0.5 cos(2t/3) in
(18), using the data in Figure 3 and assuming a known period for θ(t). Numbers are rounded
to four decimal places. Note that the Fourier series coefficients obtained using the formulas
in (5) and (6) to approximate the known function for orders 3 and above correspond to
c4 = −0.5, c5 = 2, and ck = 0 for all other coefficients.

Coefficient M = 1 M = 2 M = 3 M = 4 M = 5

c0 -0.1328 -0.0306 0.0303 -0.0083 -0.0552

c1 -0.2106 -0.3373 -0.0013 -0.0000 0.0255

c2 0.3387 -0.2012 -0.0927 -0.0624 -0.0784

c3 – 0.1689 0.0545 0.0195 -0.0035

c4 – -0.2770 -0.5236 -0.5032 -0.4689

c5 – – 2.0299 2.0047 2.0538

c6 – – 0.0594 -0.0032 -0.0533

c7 – – – 0.1099 0.1303

c8 – – – 0.0431 0.0053

c9 – – – – -0.1584

c10 – – – – 0.1012

Scaled RMSE 1.0211 1.0087 0.0645 0.0657 0.1282

(ii) a cubic polynomial, where

θ(t) = 0.0001(t− 25)3 − 0.001t2 + 3; (22)

and

(iii) a step function, where

θ(t) =

{
−2 t ≤ 30

2 t > 30
. (23)

Figure 9 shows the simulated data in each case.
In building the TVP approximation models as in (8), we set an increment of ω = 0.01

and define ωi = 0.01i for each i = 1, . . . ,M . Since each of the underlying θ(t) have different
levels of complexity, we test a variety of M values in each case. Figure 10 shows the best
resulting approximations (i.e., those with the smallest corresponding scaled RMSEs) for each
non-periodic forcing parameter. For the linear forcing parameter, the best fit occurs when
M = 1 (with scaled RMSE ≈ 0.0239), needing only three terms in the TVP approximation
model to obtain an accurate approximation. Here, increasing M to somewhat larger values
(e.g., M = 4 or 5) increases the approximation error and number of unknowns but still
permits reasonable approximations with convergent coefficients.
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Figure 6: Top row: Predictions of position (left) and velocity (right) using initial condition
p(0) = 1, v(0) = −1 and the TVP approximations for θ(t) computed with the estimated
coefficients in Table 1 for different M . Bottom row: Scaled RMSE comparing the predictions
of position (left) and velocity (right) with the true solutions for each M .

More terms are needed when approximating the cubic forcing parameter, and it is im-
portant to note that, for this example, using too small an M value results in coefficient
estimates that do not converge over the time interval of available data. More specifically, the
coefficients do not converge when M = 1, 2 or 3, but convergence improves beginning with
M = 4. The best fit for the cubic forcing parameter occurs when M = 6 (with scaled RMSE
≈ 0.1596), but with a similarly good fit when M = 5 (scaled RMSE ≈ 0.1614) requiring the
estimation of two less coefficients.

Estimating the step forcing parameter presents the most difficult challenge of the three,
given the jump discontinuity in the function halfway through the time interval of available
data. For this example, the TVP approximation model coefficients do not converge for
smaller M values, but a significant increase in M leads to reasonable fits with convergent
coefficients. The TVP approximations yield similar scaled RMSE values for M between
15 and 22, with the lowest occurring when M = 21 (scaled RMSE ≈ 0.2737). While not
capturing the exact shape, the TVP approximations in this case are able to capture the
jump point between constant parameter values in the underlying step function. The mass-
spring model predictions for different initial conditions follow as expected using the best TVP
approximation results over the time interval [0,60], but it becomes more difficult to accurately
predict the behavior of the system after this time frame for non-periodic TVPs, since the
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Figure 7: EnKF time series estimates of the seven unknown coefficients and period P in
the TVP approximation model (8) of the sinusoidal forcing parameter θ(t) = 2 sin(t) −
0.5 cos(2t/3) in (18) when M = 3, using the data in Figure 3 and treating the period of
θ(t) as an additional unknown. On each plot, the solid red line denotes the EnKF sample
mean and the dashed red lines show ±2 standard deviations around the mean. Each plot
also shows the resulting histogram of the posterior sample at time t = 60.

parameters themselves will continue to dynamically change over time without updating their
approximation models.
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Figure 8: Resulting Fourier series-based approximations of the sinusoidal forcing parameter
θ(t) = 2 sin(t) − 0.5 cos(2t/3) in (18) and corresponding time series estimates of the period
P for different values of M , using the data in Figure 3 and treating the period of θ(t)
as an additional unknown. Top row: On each plot, the solid red line denotes the TVP
approximation θ̄M(t) computed using the posterior mean coefficient values in Table 2 and
the dashed black line shows the true underlying θ(t). Bottom row: On each plot, the solid
red line denotes the EnKF sample mean, the dashed red lines show ±2 standard deviations
around the mean, and the dashed black line shows the true underlying P .
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Table 2: EnKF posterior sample means of the TVP model coefficients and period P
for different values of M when approximating the sinusoidal forcing parameter θ(t) =
2 sin(t) − 0.5 cos(2t/3) in (18), using the data in Figure 3 and treating the period of θ(t)
as an additional unknown. Numbers are rounded to four decimal places. Note that the
Fourier series coefficients obtained using the formulas in (5) and (6) to approximate the
known function for orders 3 and above correspond to c4 = −0.5, c5 = 2, and ck = 0 for all
other coefficients.

Coefficient M = 1 M = 2 M = 3 M = 4 M = 5

c0 -0.3468 0.1705 -0.0053 0.0962 0.0014

c1 0.5621 -0.0454 -0.0043 -0.0709 -0.1448

c2 0.2776 0.0085 -0.0760 0.0274 -0.1032

c3 – 1.7142 -0.0479 -0.0343 0.0747

c4 – -0.0627 -0.5039 -0.5476 -1.3471

c5 – – 2.0026 1.9663 2.4455

c6 – – 0.0926 -0.4897 -0.8694

c7 – – – 0.0487 0.3266

c8 – – – -0.2534 0.4760

c9 – – – – -0.0178

c10 – – – – 0.3467

P 10.0386 12.5959 18.8658 18.8024 18.9363

Scaled RMSE 1.0373 0.3170 0.0554 0.2288 0.8050
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Figure 9: Position and velocity data generated from the mass-spring system in (18) with
the linear forcing parameter in (21) (top row); cubic forcing parameter in (22) (middle row);
and step forcing parameter in (23) (bottom row).
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Figure 10: Resulting Fourier series-based approximations of three non-periodic forcing pa-
rameters θ(t) in (18) for the values of M yielding the smallest scaled RMSE, using the data
in Figure 9 and setting ωi = 0.01i for i = 1, . . . ,M in the TVP approximation models.
From left to right: the linear polynomial in (21); the cubic polynomial in (22); and the step
function in (23). On each plot, the solid red line denotes the TVP approximation θ̄M(t)
computed using the posterior mean coefficient values and the dashed black line shows the
true underlying θ(t).
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5 Conclusions and Future Work

In this work, we present a novel Fourier series-based approximation method for estimating
time-varying parameters in deterministic dynamical systems, where we represent θ(t) as a
linear combination of sine and cosine functions and estimate the unknown approximation
model coefficients using ensemble Kalman filtering. This approach allows us to construct
accurate TVP approximations θ̄M(t), dependent on the integer parameter M (which dic-
tates the number of approximation model terms) and posterior EnKF mean estimates for
the model coefficients. With several numerical examples using a forced mass-spring system
(see Appendix A.3 for an additional example using a periodically-forced Lorenz system with
chaotic behavior), we illustrate the effectiveness of this approach in approximating TVPs of
different forms, including cases when θ(t) is periodic with a known period, periodic with an
unknown period (which is jointly estimated), and non-periodic over the time interval of ob-
served data. Compared to a standard augmented EnKF or parameter tracking approach (see
Appendix A.2), the proposed Fourier series-based approximation techniques show improved
performance in capturing the shape and magnitude of the underlying TVP, also providing
an approximation model for θ(t) (or dθ/dt) that can be used in making model predictions
with the ODE system.

One important aspect to consider in successfully applying this method is how to best
select M in advance of running the estimation procedure. Our goal in practice is to choose
the smallest integerM that will result in a reasonable TVP approximation and corresponding
ODE system predictions, in order to keep the number of unknowns to a minimum as well
as to reduce approximation errors from including additional terms that may not be needed.
Another important consideration is how to appropriately set the angular frequencies ωi, i =
1, . . . ,M , of the sinusoidal terms in the TVP approximation models. When θ(t) is periodic,
we are able to set ωi directly using the formula in (10) and either fix or estimate P , depending
on what information is available. However, when estimating TVPs that are not periodic (or
not known to be periodic), we select a fixed increment ω and set ωi = ωi; the choice of
this increment is vital in the resulting TVP approximation and also can affect which M is
most appropriate for the problem. Future work will include incorporating model selection
techniques [45,46] and potential pre-processing steps to select M and ω systematically for a
given problem.

Further, in the examples estimating periodic parameters with sinusoidal form, it is clear
from the resulting TVP approximation model coefficient estimates (as well as in the Fourier
series coefficients of the true parameter functions) that only a few terms in the approximation
model have significant impact in well representing the underlying parameter dynamics, while
a majority of the terms make small contributions that can instead introduce approximation
errors. To promote a sparse representation emphasizing the most significant terms in the
approximation model, in future work we aim to modify the proposed approach to incorporate
sparsity preservation techniques; see, e.g., [47, 48]. We anticipate that employing sparse
dictionary learning will contribute to the robustness of the approach and potentially reduce
some of the aforementioned concerns about the choice of M .

While application of EnKF-type methods for data assimilation in practice tend to favor
use of small ensemble sizes for large-scale problems (with a large number of system states),
here the number of unknown coefficients grows with M and quickly surpasses the number
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of system states. Since our main goal in employing the method in this work is to well
approximate the underlying θ(t), we present results using a relatively large (compared to the
number of system states) ensemble size, i.e., N = 100 for the numerical examples discussed.
We remark that it is possible to obtain similar results using smaller ensembles, but we must
be careful not to choose too small an ensemble size (i.e., less than number of unknowns)
to avoid potential issues with filter divergence and degraded performance of the filter in
approximating θ(t). Future work will explore application of these techniques to large-scale
inverse problems, including problems with multiple TVPs to estimate (thereby increasing
the number of unknown approximation model coefficients), and possible avenues for reducing
the ensembles sizes in the approximation.

We note that the proposed approach is not limited to the use of EnKF in estimating
the unknown coefficients and could also be implemented using different nonlinear filtering
methods (e.g., particle filters [49]) with sequentially-arriving data or non-sequential Bayesian
approaches (e.g., MCMC methods [50]) if the full time series of data is available at once.
However, our results show that we are able to reasonably approximate the unknown TVPs
of interest using the EnKF with a relatively small sample size compared to those generally
needed for particle filtering or MCMC-based approaches. While the examples in this work
each focus on estimating a single, univariate TVP for the system considered, future work
will examine the feasibility of this approach in simultaneously estimating multiple TVPs for
a given system (increasing the number of unknowns and complexity of the problem, as the
different TVPs for the same system might have different periods, different known or unknown
period information, and would likely require different M values for each approximation
model), as well as introducing model-data mismatch as we move toward real-data application.
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Appendix A Additional Numerical Results

A.1 Example Using Derivative-Based Augmentation

In this section, we apply the derivative-based augmentation approach described in Section 3.2
to estimate the sinusoidal forcing parameter θ(t) = 2 sin(t)− 0.5 cos(2t/3) in (18) using the
same data as in Figure 3 and assuming a known period for θ(t). Compared to the approach
used in Section 4.1.1, the difference with this implementation is that we now treat θ(t) as
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unobserved system state, where

dθ

dt
= θ′M(t), θ(0) = θ0 (A.1)

with θ′M(t) defined as in (14), and we track it along with p(t) and v(t), estimating the 2M
coefficients c1, . . . , c2M plus the TVP initial value θ0 for a total of 2M +1 unknown constant
parameters. Figure A.1 shows the resulting EnKF time series estimates of position, velocity,
and θ(t), along with the six unknown coefficients in (14) and the initial condition θ0, when
M = 3. Table A.1 lists the posterior sample mean of each coefficient and θ0 for each M
value, and Figure A.2 shows the corresponding EnKF time series estimates of θ(t) in each
case compared with the true θ(t).

The results in Figure A.1 highlight the differences between this derivative-based aug-
mented systems implementation and the direct approximation model (with corresponding
results shown in Figure 4), where here θ(t) is treated as an unobserved system state and
tracked along with position and velocity. The six coefficients converge after assimilating
about one period of data, which is also reflected in the tracking of θ(t), while the estimate
of θ0 continues to improve over the remaining time interval of observations. As the plots
in Figure A.2 illustrate, the filter is not able to well track θ(t) when M = 1 and 2, notice-
ably under-estimating the dynamics with a damping effect beginning close to the one period
mark (i.e., around time t = 19). The estimation significantly improves when M = 3, where
the EnKF mean estimate very well captures the behavior of the true underlying parameter
after assimilating one period of data, with fairly tight uncertainty bounds around the mean
estimate. Similar behavior occurs when M = 4 and 5, although there is more initial error
in the approximation over the first period and slightly wider uncertainty bounds after the
coefficients converge. The results in Table A.1 paint a similar picture for the posterior mean
estimates of θ0, where the estimate when M = 3 yields the smallest relative error (≈ 0.1440)
when compared to the true initial value θ0 = −0.5.

A.2 Comparison of Fourier Series-Based Approach with Standard
Augmented EnKF and Parameter Tracking

In this section, we demonstrate the performance when applying the standard augmented
EnKF algorithm described in Section 2 to estimate the sinusoidal forcing parameter θ(t) =
2 sin(t) − 0.5 cos(2t/3) in (18) using the same data as in Figure 3. Since the standard
augmented EnKF is meant for estimating constant parameters, we anticipate that applying
this algorithm to estimate the time-varying forcing parameter will not capture its dynamic
behavior. As expected, Figure A.3 shows that the standard augmented EnKF indeed fails to
capture the dynamics of θ(t) and instead converges to a constant that represents somewhat
of an average value. Note that the filter still reasonably well tracks both states p(t) and
v(t); however, some of the behavior towards the end of the time series is not captured as the
estimate is somewhat damped down (corresponding to the underestimated forcing).

To account for time-varying behavior in the parameter estimate, we can modify the
augmented EnKF algorithm to include parameter tracking (see, e.g., [10]) by incorporating
a random walk model for the parameter in the filter prediction step, such that

θ
(n)
j+1 = θ

(n)
j + ξ

(n)
j+1, ξ

(n)
j+1 ∼ N (0, σ2) (A.2)
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Figure A.1: EnKF time series estimates of position, velocity, and the forcing parameter
θ(t), along with the six unknown coefficients in (14) and the initial condition θ0 of the
sinusoidal forcing parameter θ(t) = 2 sin(t) − 0.5 cos(2t/3) in (18) using the derivative-
based augmentation approach when M = 3, given the data in Figure 3 and assuming a
known period for θ(t). On each plot, the solid red line denotes the EnKF sample mean
and the dashed red lines show ±2 standard deviations around the mean. The plots for each
coefficient, c1, . . . , c6, and for θ0 also show the resulting histograms of the posterior samples
at time t = 60.
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Figure A.2: EnKF time series estimates of the sinusoidal forcing parameter θ(t) = 2 sin(t)−
0.5 cos(2t/3) in (18) when using the derivative-based augmentation approach with different
values of M , given the data in Figure 3 and assuming a known period for θ(t). On each plot,
the solid red line denotes the EnKF sample mean, the dashed red lines show ±2 standard
deviations around the mean, and the dashed black line shows the true underlying θ(t).

for each ensemble member, n = 1, . . . , N , where ξ
(n)
j+1 defines the parameter perturbation from

time j to j +1. The success of parameter tracking with the EnKF relies significantly on the
choice of the parameter noise model variance σ2 [10], which must be manually selected before
running the filter. Figure A.4 shows the resulting estimates of θ(t) when using parameter
tracking with four different choices of σ (namely, when σ = 0.1, 0.5, 1, and 5) and keeping all
other filter settings (ensemble size, etc.) the same as in the previous numerical experiments.
When σ = 0.1, we see that the underlying form and magnitude of θ(t) are not well captured.
When σ = 0.5, the approximation improves but the form is still not well captured and the
dynamics of the estimate lag behind the truth. For the larger values when σ = 1 and σ = 5,
note that the overall dynamics of θ(t) are generally captured (with more error as σ increases)
but the functional form is not well approximated in any case and the uncertainty bounds grow
increasingly with σ. While some of these parameter estimates may be reasonable overall,
note that this algorithm fails to well approximate the underlying functional form of θ(t).
Further, since σ is fixed, we do not see a decrease in the EnKF uncertainty bounds over time.
Comparing these results with those using the Fourier series-based approaches presented in
this work (perhaps most visually comparable with the derivative-based augmentation results
shown in Appendix A.1), we see that the Fourier series-based approximations have improved
performance in capturing the functional form of the underlying TVP and by design give an
approximation formula for θ(t) (or dθ/dt) that can be used in making forward predictions
with the system. We also see a decrease in uncertainty in the TVP approximation model
coefficient estimates over time, as well as in the θ(t) approximations shown in Figure A.2
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Table A.1: EnKF posterior sample means of the TVP model coefficients and initial value
θ0 for different values of M when using the derivative-based augmentation approach to
estimate the sinusoidal forcing parameter θ(t) = 2 sin(t) − 0.5 cos(2t/3) in (18) given the
data in Figure 3 and assuming a known period for θ(t). Numbers are rounded to four
decimal places. Note that the Fourier series coefficients obtained using the formulas in (5)
and (6) to approximate the known function for orders 3 and above correspond to c4 = −0.5,
c5 = 2, and ck = 0 for all other coefficients.

Coefficient M = 1 M = 2 M = 3 M = 4 M = 5

c1 0.1410 -0.0439 -0.0134 0.0590 -0.0324

c2 -0.0073 0.1723 -0.0814 -0.0612 -0.0894

c3 – -0.0865 0.0034 -0.0505 0.0073

c4 – -0.1852 -0.4840 -0.4655 -0.5573

c5 – – 2.0026 2.0152 1.9659

c6 – – -0.0318 0.0115 0.0038

c7 – – – 0.1162 0.1577

c8 – – – 0.1301 0.1571

c9 – – – – -0.2124

c10 – – – – 0.1677

θ0 -0.0643 0.3544 -0.5720 -0.4168 -0.2902
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Figure A.3: EnKF time series estimates of position, velocity, and the forcing parameter θ(t)
when estimating the sinusoidal forcing parameter θ(t) = 2 sin(t)−0.5 cos(2t/3) in (18) using
a standard augmented EnKF. On each plot, the solid red line denotes the EnKF sample
mean and the dashed red lines show ±2 standard deviations around the mean.

with the best fits resulting when M = 3, 4, and 5.
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Figure A.4: EnKF time series estimates of position, velocity, and the forcing parameter θ(t)
when estimating the sinusoidal forcing parameter θ(t) = 2 sin(t)−0.5 cos(2t/3) in (18) using
an augmented EnKF with parameter tracking. On each plot, the solid red line denotes the
EnKF sample mean and the dashed red lines show ±2 standard deviations around the mean.

A.3 Example Using Periodically-Forced Lorenz System with Chaotic
Dynamics

As an additional test system, we consider a modified version of the Lorenz-63 equations [51],
commonly studied in data assimilation as a simplified model for atmospheric convection
that exhibits chaotic dynamics under certain parameterizations. In particular, we consider
a periodically-forced Lorenz system of the type in [52] with governing equations given by

dx1

dt
= σ(x2 − x1) (A.3)

dx2

dt
= ρθ(t)x1 − x1x3 − x2 (A.4)

dx3

dt
= x1x2 − βx3 (A.5)

where the constant parameters σ = 10, ρ = 28, and β = 8/3 are chosen so that the system
exhibits chaotic behavior and θ(t) is a periodic forcing function. Assuming that σ, ρ, and β
are known, our goal is to estimate θ(t) using the Fourier series-based TVP approximation
technique. While in the previous examples the TVP of interest was additive with respect
to the system states, note that here θ(t) is a multiplicative TVP. Further, here we assume
that the system is partially observed, such that we are able to obtain observations of x2(t)
and x3(t) (relating to the temperature variations) at some discrete times, but we cannot
observe x1(t) (relating to convection) and thereby must track the behavior of x1(t) along
with estimating the unknown TVP. Letting θ(t) = 1 + ε cos(ωt) (as studied in [52]) with
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Figure A.5: Lorenz butterfly of the reference solutions for the forced Lorenz system in (A.3)–
(A.5) with sinusoidal forcing parameter θ(t) = 1 + 0.5 cos(0.5t).

ε = 0.5 and ω = 0.5 (corresponding to period P = 4π ≈ 12.57), we simulate data from the
forced Lorenz system in (A.3)–(A.5) by taking observations of the states x2 and x3 every
0.02 time units over the interval [0,50] (covering about 4 periods of θ(t)) and corrupting
with Gaussian noise (zero mean and variance taken to be 20% of the standard deviation of
the true states, as before). Figure A.5 shows the Lorenz butterfly of the reference solutions
(uncorrupted) and the forcing parameter θ(t).

Assuming a known period for θ(t), we apply the method in Section 3.1 using the formula
in (10) to set ωi = 0.5i, i = 1, . . . ,M , and employ the TVP approximation model in (8)
with increasing values of M , ranging from M = 1 (which involves three coefficients) through
M = 5 (11 coefficients). Note that the Fourier series coefficients obtained when using the
formulas in (5) and (6) to approximate the function h(t) = 1 + 0.5 cos(0.5t), assuming that
both h(t) and P = 4π are known, gives a close approximation when Q = 1 with coefficients
c0 = 1, c1 = 0, and c2 = 0.5 (and using higher Q values yields similar approximations with
ck = 0 for the additional coefficients), so we expect comparable results using the Fourier
series-based TVP approximation with a known period to estimate θ(t). We apply the EnKF
similarly as before with an ensemble size of N = 100, with the aim of tracking the model
states and estimating the unknown coefficients comprising the Fourier series-based model
approximation of θ(t) for each value of M . Table A.2 lists the posterior sample mean of each
coefficient for each M value, and Figure A.6 shows the resulting θ̄M(t) approximations in
each case compared with the true θ(t).

As demonstrated in Table A.2, the filter well estimates the TVP approximation model
coefficients, resulting in similar values to those expected from Fourier series expansion (with
small approximation errors) for each M value. While not shown, the filter also well tracks
all three model states (including the unobserved state x1) for each M value. As shown in
Figure A.6, while the lowest RMSE occurs when M = 4 for this example, all of these M
values result in reasonably close model approximations to the true θ(t) in this case. While we
used an ensemble of size N = 100 to compute the results as shown, we remark that similar
results can be obtained using smaller ensembles (e.g., N = 20 and above when M = 1) but
the performance degrades for too small an ensemble relative to the number of unknowns.
Though these initial results are promising, in future work we will perform additional studies
to verify the feasibility of the proposed technique for TVP estimation on larger-scale forced
chaotic systems with more unknowns.
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Figure A.6: Resulting Fourier series-based approximations of the sinusoidal forcing parame-
ter θ(t) = 1+0.5 cos(0.5t) in (A.3)–(A.5) for different values of M assuming a known period
for θ(t). On each plot, the solid red line denotes the TVP approximation θ̄M(t) computed
using the posterior mean coefficient values in Table A.2 and the dashed black line shows the
true underlying θ(t).
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Table A.2: EnKF posterior sample means of the TVP model coefficients for different values
of M when approximating the sinusoidal forcing parameter θ(t) = 1+0.5 cos(0.5t) in (A.3)–
(A.5) assuming a known period for θ(t). Numbers are rounded to four decimal places. Note
that the Fourier series coefficients obtained using the formulas in (5) and (6) to approximate
the known function for orders 1 and above correspond to c0 = 1, c1 = 0, c2 = 0.5, and ck = 0
for all other coefficients.

Coefficient M = 1 M = 2 M = 3 M = 4 M = 5

c0 0.9903 0.9930 1.0004 0.9971 0.9917

c1 0.0060 -0.0173 -0.0177 -0.0001 -0.0076

c2 0.4771 0.5056 0.4845 0.4913 0.4781

c3 – 0.0076 0.0130 -0.0040 -0.0027

c4 – 0.0041 0.0077 -0.0155 -0.0022

c5 – – 0.0143 0.0046 -0.0044

c6 – – -0.0004 -0.0023 0.0035

c7 – – – 0.0038 0.0128

c8 – – – -0.0002 0.0026

c9 – – – – 0.0017

c10 – – – – 0.0024

Scaled RMSE 0.0545 0.0452 0.0630 0.0392 0.0600
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