

1 **Biomarker evidence for an MIS M2 glacial-pluvial in the**
2 **Mojave Desert before warming and drying in the late Pliocene**

3 Mark D. Peaple^{1*}, Tripti Bhattacharya², Jessica E. Tierney³, Jeffrey R. Knott⁴, Tim K.
4 Lowenstein⁵, Sarah J. Feakins¹

5 ¹Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA.

6 ²Department of Earth and Environmental Sciences, Syracuse University, Syracuse NY 13210, USA.

7 ³Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA.

8 ⁴Department of Geological Sciences, California State University–Fullerton, Fullerton, California 92834,
9 USA

10 ⁵Department of Geological Sciences and Environmental Studies, State University of New York,
11 Binghamton, New York 13902, USA

12 Correspondence to: M.D. Peaple, peaple@usc.edu

13 **Key points**

- 14 • Lacustrine sediments in Mojave Desert sediment core span 3.373–2.706 Ma.
15 • Microbial biomarkers record deep, fresh lake during cool period 3.373–3.268 Ma.
16 • Lake salinity increases after 3.268 Ma, associated with warming.

17 **Abstract**

18 Ancient lake deposits in the Mojave Desert indicate that the water cycle in this currently
19 dry place was radically different under past climates. Here we revisit a 700 m core drilled
20 55 years ago from Searles Valley, California, that recovered evidence for a lacustrine
21 phase during the late Pliocene. We update the paleomagnetic age model and extract new
22 biomarker evidence for climatic conditions from lacustrine deposits (3.373–2.706 Ma).

23 The MBT'_{5Me} temperature proxy detects present-day conditions (21 ± 3 °C, n = 2)
24 initially, followed by warmer-than-present conditions (25 ± 3 °C, n = 17) starting at 3.268
25 and ending at 2.734 Ma. Bacterial and archaeal biomarkers reveal lake salinity increased
26 after 3.268 Ma likely reflecting increased evaporation in response to higher temperatures.
27 The $\delta^{13}\text{C}$ values of plant waxes ($-30.7 \pm 1.4\text{‰}$, n = 28) are consistent with local C₃ taxa,
28 likely expanded conifer woodlands during the pluvial with less C₄ than the Pleistocene.

29 δD values ($-174 \pm 5\%$, $n = 25$) of plant waxes indicate precipitation δD values ($-89 \pm$
30 5% , $n = 25$) in the late Pliocene are within the same range as the late Pleistocene
31 precipitation δD . Microbial biomarkers identify a deep, freshwater lake and a cooling that
32 corresponds to the onset of major Northern Hemisphere glaciation at marine isotope stage
33 MIS M2 (3.3 Ma). A more saline lake persisted for ~ 0.6 Ma across the subsequent
34 warmth of the late Pliocene (3.268 to 2.734 Ma) before the lake desiccated at the
35 Pleistocene intensification of Northern Hemisphere Glaciation.

36 **Plain Language Summary**

37 During a generally warm period three million years ago, there were large lakes in the
38 Mojave Desert, California. We measured organic matter preserved in ancient lake mud
39 below today's salt flat in Searles Valley to investigate the climate changes that sustained
40 these three-million-year-old lakes. We compiled evidence for a freshwater lake, increased
41 rainfall, and woody plants around the lake during a cooler interval, with similar-to-
42 modern temperatures, that interrupted what was generally a warm period between five
43 and three million years ago. Today the valley contains a saltpan, the evaporated remains
44 of the former lake, surrounded by open desert shrubland. We compare the evidence from
45 the lake with other climate reconstructions and find the wetter conditions coincided with
46 cooling both locally and at higher latitudes.

47 **1. Introduction**

48 Multiple lines of evidence suggest that southwestern North America has become drier in
49 recent decades and that this trend may be exacerbated by the further rise in CO₂
50 concentrations over 400 ppmv this century (Seager et al., 2007; Williams et al., 2020).

51 The Pliocene was the last time greenhouse gas concentrations were above 400 ppmv
52 (Martínez-Botí et al., 2015) and the climate at that time may help contextualize current
53 and future anthropogenic warming. The late Pliocene (Piacenzian) was the focus of
54 PlioMIP Phase 1 (Haywood et al., 2013) and Phase 2 (Haywood et al., 2020) experiments
55 that simulated climate during the mid-Piacenzian warm period (mPWP) between 3.264
56 and 3.025 Ma (De Schepper et al., 2013). Earth system models estimate global
57 temperatures were 3.2 °C warmer than preindustrial on average (range: 1.7–5.2 °C), with
58 on average 4.3 °C warming over land and drying or modest wetting for southwestern
59 North America (Haywood et al., 2013, 2020). The same climate models disagree about
60 the sign of precipitation change associated with future warming in southwestern North
61 America (Almazroui et al., 2021; Choi et al., 2016; Solomon et al., 2009).

62 Geological evidence for former lakes across the arid landscape of southwestern North
63 America has long been of interest as they document wetter climate states (e.g., Russell,
64 1885). Lake shoreline features preserved on the landscape are typically those of the last
65 highstand and recessional shorelines with only rare examples of multiple shorelines
66 preserved (Jayko et al., 2008). In the Searles Valley basin, which includes both Searles
67 and Indian Wells valleys, Pleistocene shorelines delineate the margins of a lake extending
68 over 995 km² with a volume of 79.4 x 10⁹ m³ (Smith, 2009). Lake sediment cores from
69 several valleys have revealed a continuous time series of fluctuations in sedimentary
70 geochemistry, however all but one core retrieve sediments that are Pleistocene age (e.g.,
71 Smith, 1991).

72 Pliocene lake sediments crop out to a limited extent in several valleys east of the Sierra
73 Nevada, California, including Death Valley (Knott et al., 2008), Searles Valley (Rittase et

74 al., 2020), Fish Lake Valley (Reheis et al., 1993), and Eureka Valley (Knott et al., 2019)

75 (**Figure 1**). From this same region, Pliocene sediment cores are only available from the

76 KM-3 core of Searles Valley (Liddicoat et al., 1980; Smith et al., 1983). Interpretation of

77 the core sediments indicate that Searles Valley experienced several lake highstands that

78 overflowed the sill several times since the Pliocene (Jannik et al., 1991). Searles Valley

79 contains a dry lake bed with evaporite deposits spanning the Holocene, atop deposits of

80 lake muds deposited during Pleistocene pluvials and evaporites formed during drier

81 periods (Knott et al., 2021; Olson et al., 2023; Olson & Lowenstein, 2021; Smith, 2009).

82 The wettest times of the last 200 ka coincided with terminations T2 and T1 following the

83 last two glacial maxima of marine isotope stages (MIS) 6 and 2 (Peaple et al., 2022;

84 Stroup et al., 2023). Plant wax δ D data (Peaple et al., 2022) corroborate independent

85 evidence from cave carbonate $\delta^{18}\text{O}$ for precipitation isotopes (Lachniet et al., 2014;

86 Moseley et al., 2016), lending confidence to these archives of past precipitation change.

87 Archaeal and bacterial biomarkers captured late Pleistocene evidence for changing lake

88 salinity in Searles Lake (Peaple et al., 2021, 2022) and nearby Lake Elsinore (Feehins et

89 al., 2019). These salinity indicators have not yet been applied to Pliocene deposits,

90 although they were first developed in Miocene deposits (Turich & Freeman, 2011).

91 Temperature reconstructions using bacterial lipids are more commonly applied to lake

92 sediments and have been successfully used in Pliocene reconstructions from Lake

93 El'gygytgyn, northeastern Russia (Keisling et al., 2017), but not yet to any North

94 American lacustrine deposits of Pliocene age.

95 In this study, we return to the late Pliocene sediments drilled from Searles Valley,

96 previously studied for geochronology, mineralogy, and sedimentology (Liddicoat et al.,

97 1980; Smith et al., 1983) long before these biomarker methods were established. Deep
98 drilling (~1 km) within Searles Valley reached late Pliocene deposits and identified
99 lacustrine conditions (Smith et al., 1983), making this one of the few continuous records
100 on land in western North America capable of resolving temporal variability within the
101 Pliocene (Thompson, 1991). Although the late Pliocene (Piancenzian) was globally
102 warmer than today, a substantial cooling event was initially described from a benthic
103 foraminifera oxygen isotope increase in deep sea sediments (Shackleton & Opdyke,
104 1977). This notable glacial event is named MIS M2 based on its timing in (and below)
105 the Mammoth subchron (3.330–3.207 Ma; Ogg, 2020). The global benthic oxygen
106 isotope increases, Icelandic margin marine evidence for ice-rafted debris, and glacial till
107 in Canada, all appear in the lower Gauss subchron by 3.4 Ma (De Schepper et al., 2013),
108 with cooling events MIS MG4 and MG2 preceding the deeper cooling of the M2
109 glaciation. Ice sheet modelling (Berends et al., 2019) and glacial deposits (Gao et al.,
110 2012) indicate that a substantial ice sheet was present over the modern-day Hudson Bay
111 and a smaller ice sheet was in place over the northern Cordillera but did not reach the
112 Pacific coast (Sánchez-Montes et al., 2020). Although the glacial extent and degree of
113 cooling has been debated, the M2 glaciation is now recognized to be a major glacial,
114 redefined as the onset of Northern Hemisphere Glaciation before the later intensification
115 at the Pleistocene boundary (McClymont et al., 2023). The extensive Laurentide ice sheet
116 (LIS) during MIS M2 likely affected southwest North American climate, as ice cover has
117 been shown to affect both winter and summer hydroclimate there (Oster et al., 2015; Lora
118 et al., 2017; Bhattacharya et al., 2018). As originally noted by Liddicoat et al., (1980) the
119 timing of the MIS M2 glaciation coincides with a perennial lake in Searles Valley, as

120 well as lacustrine deposition in nearby Death Valley based on outcrop studies (Knott et
121 al., 2018).

122 We sampled the continuous lacustrine sedimentary sequence from Searles Valley
123 spanning the time corresponding to the MIS M2 glaciation and the extended warmth of
124 the mPWP. We measured branched glycerol dialkyl glycerol tetraether (brGDGT) and
125 isoprenoidal GDGT (isoGDGT) proxies to constrain changes in air temperature and lake
126 salinity, and plant-derived biomarkers to reconstruct the δD of precipitation. We then
127 compared the new data for the late Pliocene to prior reconstructions of the last two glacial
128 and interglacial cycles (Peaple et al., 2022). With a few exceptions, we were able to
129 measure the same suite of proxies, in sediments geologically over ten times older and
130 collected 50 years before. This new record from Searles Lake constitutes a continuous
131 terrestrial paleoclimate sequence of the late Pliocene, yielding evidence for temperature
132 and hydroclimate in southwestern North America for comparison to regional and global
133 climate change.

134 **2. Study Location**

135 **2.1. Searles Valley tectonic context**

136 Searles Valley episodically received inflow from the eastern flank of the Sierra Nevada
137 via the Owens River during the late Pleistocene, and the same connectivity is thought to
138 have persisted since the Pliocene (Blackwelder, 1933; Smith, 2009; Smith et al., 1983;
139 **Figure S1**). Tectonics and topography are important both for orographic rainfall and
140 drainage that form lakes. The Sierra Nevada may have uplifted at a fairly steady rate from
141 the Oligocene to the Pliocene, with high rates of incision dated to before ~ 3 Ma by

142 thermochronometry (Hammond et al., 2012; McPhillips & Brandon, 2010; Stock et al.,
143 2004), perhaps explained by high runoff during a Pliocene pluvial. Cosmogenic nuclide
144 dating, however, puts the incision later, primarily after 2.7 Ma (Stock et al., 2004), which
145 could allow for incision primarily by glacial scouring in the Pleistocene. Uplift continued
146 in the Pleistocene with the fastest rates in the northern Sierra Nevada (Hammond et al.,
147 2012). The timing of uplift matters for the leeward sedimentary archives, such as Searles
148 Lake, because later uplift scenarios could explain a drying trend unrelated to climate
149 change in the Pliocene. A late uplift scenario could allow up to 50% more precipitation if
150 the mountains were 1 km lower (Smith et al., 1983). However much global evidence for
151 recent uplift (e.g., cooling, incision) may have been conflated with late Cenozoic climatic
152 cooling (Molnar & England, 1990) and as such fluvial or glacial erosion may well
153 explain Plio-Pleistocene Sierra Nevada incision. The consensus from precipitation
154 isotopes in plant wax, carbonate, and tephra hydration is that an isotopic rainshadow (D-
155 depletion) was in place by the middle Miocene (Hren et al., 2010; Mix et al., 2016, 2019;
156 Mulch et al., 2008). Today, such D-depleted precipitation is associated with northerly
157 moisture sources distilled by orographic processes crossing the northern and central
158 Sierra Nevada (Friedman et al., 2002).

159 Tectonics within Searles Valley and adjacent basins may have also affected Pliocene
160 basin connectivity. Lateral motion along the Marine Gate Fault (parallel to the now more
161 active Garlock Fault, **Figure 1c**) resulted in several km of horizontal displacement
162 between the deposition of the lacustrine facies and their present position (Rittase et al.,
163 2020). During the Pliocene there is thought to have been some inflow from the south
164 although the catchment may not have greatly expanded. At the eastern margin of Searles

165 Valley, radiometric evidence indicates rapid exhumation of the Slate Range from 6–4 Ma
166 (Walker et al., 2014), with motion on the Searles Valley Fault (Rittase et al., 2020;
167 **Figure 1c**). The deepening of the lake floor may have accompanied the uplift of the basin
168 sides, although the resulting increased accommodation space would have been
169 counteracted by the infilling of 300 m of lake sediment that accumulated between 3.4 to 2
170 Ma (**Figure 2**). If deepening and infilling were not smoothly aligned, this may have
171 affected the lake storage capacity and potential for spillover into downstream basins.
172 While the deep Pliocene Searles Lake sediments were interpreted as perennial lake
173 deposits with persistent outflow (Smith et al., 1983), geomorphological evidence is
174 inconclusive on whether outflow from Searles occurred in the Pliocene and what lake
175 depth and volume could be contained within the evolving Pliocene basin (Knott et al.,
176 2008). Although local tectonics may have had a transient influence on the potential
177 volume of Pliocene Searles Lake, large contemporaneous lakes on the regional landscape
178 robustly indicate a wet climate state (Knott et al., 2018; **Figure S1**).

179 2.2. Mojave Desert hydroclimate and vegetation

180 Today Searles Valley in the Mojave Desert has mean annual precipitation <100 mm/year,
181 with sporadic rainfall dominantly occurring in the winter season (Western Regional
182 Climate Center, 2022). High potential evaporation (~2,000 mm/year) in hot, dry and
183 windy conditions means there is little to no surface water. Precipitation isotopes (δD_{precip})
184 reported from long-term sampling in Owens Valley (winter = -106‰, summer = -71‰),
185 and modern groundwater in Owens Valley indicate dominantly winter recharge
186 (Friedman et al., 1992, 2002), likely from spring melting of montane snowpack (Carrol et
187 al., 2019). In southern Nevada, studies tracing the amount and isotopic composition of

188 precipitation and groundwater indicate that in the lowlands too, winter precipitation
189 contributes 90% of modern groundwater even though only 66% of precipitation occurs in
190 winter (Winograd et al., 1998). As a result, most woody shrubs and trees across the
191 region are deeply rooted to access consistent groundwater year-round rather than episodic
192 rain. For example, *Juniperus osteosperma*, preferentially uses groundwater rather than
193 summer rain (West et al., 2007). Combined ecohydrology and plant wax studies found
194 that winter-recharge dominated groundwater is reflected in the δD of plant wax of most
195 shrubs and trees across a coast-to-inland transect including the Mojave (Feehins and
196 Sessions., 2010).

197 The vegetation of the lowlands is mostly desert shrubs with montane woodlands and
198 forests on the Sierra Nevada. Packrat middens containing macrofossils allow for species
199 level identification and show that *Juniperus osteosperma* woodlands expanded across the
200 Mojave lowlands during Pleistocene pluvials (Holmgren et al., 2010; Koehler et al.,
201 2005). Additionally, phreatophytic shrubs likely increased in Searles Valley during
202 glacial periods (Peaple et al., 2022) possibly exploiting elevated groundwater levels.
203 There are no published reports of Mojave paleovegetation for the Pliocene. At coastal
204 marine core DSDP Site 467, 400 km to the west of Searles Valley, late Pliocene pollen
205 record a similar-to-modern mixture of species including coastal oak-pine woodlands and
206 chaparral vegetation (Balog and Malloy, 1981; Heusser, 1981).

207 2.3. Sediment core and age model

208 We studied the Searles Lake sediment core KM-3 (USGS U234, well KM-3, 35.73371°N,
209 117.32566°W, 493 m asl) collected in 1968 by the Kerr-McGee Corporation and
210 transferred to the US Geological Survey in 1976 (Liddicoat et al., 1980) and archived for

211 50 years in ambient, dry storage (USGS Core Research Center, Denver). We generated a
212 Bayesian age model (Blaauw & Christen, 2011) for sediments from depths of 200–693 m
213 (**Figure 2**) using previously identified paleomagnetic reversals (Liddicoat et al., 1980)
214 and updated age estimates (Channell et al., 2020); dataset available at NOAA: Peaple et
215 al., 2023) on the GPTS2020 timescale (Ogg, 2020).

216 The KM-3 core contains alluvial fill deposits above bedrock (Smith et al., 1983),
217 suggesting that tectonics of the Slate range (Walker et al., 2014) allowed for basin
218 development and fluvial deposition before the lacustrine phase. Using our updated age
219 model, we studied Pliocene age sediments (3.373–2.706 Ma, 693–541 m depth, **Figure 2**)
220 comprised of grey/brown thinly bedded mudstone (Hay et al., 1991; Smith et al., 1983)
221 previously interpreted to be deep perennial lake facies (Unit I) (Smith et al., 1983). Here
222 we investigate lacustrine changes using biomarker geochemistry evidence. From 3.373–
223 2.706 Ma, the sediments had a relatively uniform sedimentation rate (0.22 m/ka),
224 although the Mammoth and Kaena subchrons were characterised by higher sedimentation
225 rates (0.26 and 0.32 m/ka, respectively). The onset of lacustrine conditions has coeval
226 timing, within Pliocene dating uncertainties, in other basins of the Mojave Desert
227 consistent with a wetter regional climate (Knott et al., 2018). Two regionally distributed
228 tuffs (tuffs of Mesquite Flat and Zabriskie Wash) have been correlated with tuff deposits
229 in the KM-3 core (681.5 m and 693.4 m respectively) (Knott et al., 2018), which provide
230 a time-equivalent marker to link the lakes in Death Valley and Searles Valley and provide
231 a secure basis for the timing of both lakes close to the Mammoth/lower Gauss boundary
232 at 3.330 Ma.

233 Four paleomagnetic age boundaries between 3.330 and 3.032 Ma make this section well-
234 dated (1 date/100 ka) compared to the rest of core KM-3, which aids comparison to proxy
235 syntheses and model experiments for 3.264–3.025 Ma as part of PRISM (Pliocene
236 Research Interpretation and Synoptic Mapping), PlioMIP (Pliocene Model
237 Intercomparison Project) and PlioMIP2 (Haywood et al., 2016). In the Searles Lake
238 paleomagnetic chronostratigraphy, there are three paleomagnetic tie points within the
239 PRISM/PlioMIP window: Upper Kaena or C2An.1n(o) (616.2 m, 3.032 Ma GTS2020,
240 7.5 ka 1σ), Lower Kaena or C2An.1r9(o) (643.1 m, 3.116 Ma, 7.5 ka 1σ) and the Upper
241 Mammoth or C2An.2r(y) (651.7 m, 3.207 Ma, 2 ka 1σ). In sediments younger than 2.9
242 Ma elevated lake salinity is implied by the diagenetic mineral anhydrite (which replaced
243 the evaporite mineral gypsum). Beyond the extent of this study, soils sporadically formed
244 in the basin 2.71–2.1 Ma (Smith et al., 1983). After 2.1 Ma fluctuating water availability
245 led to interspersed deposition of evaporites and lacustrine muds (Smith et al., 1983).

246 **3. Methods**

247 **3.1. Lipid extraction and separation**

248 Lipids were extracted from 29 samples (~20 g) of freeze dried and homogenized
249 sediments from core KM-3 by Accelerated Solvent Extraction (Dionex, ASE 350) using
250 9:1 dichloromethane (DCM):methanol (MeOH) at 100°C and 1500 psi for 2 x 15 minute
251 extraction cycles. Lipids were separated and purified following standard methods
252 previously reported in detail for late Pleistocene sediments at Searles (Peaple et al.,
253 2021). Briefly, the neutral and acid fractions were separated over aminopropyl supra, the
254 neutral fraction was separated into alkanes and GDGT fraction and further purified. The
255 acid fraction was methylated overnight in methanol of known isotopic composition with

256 HCl to yield methyl esters and these were further separated by liquid-liquid extraction
257 and purified by additional column chemistry prior to analysis.

258 3.2. Microbial biomarkers

259 The neutral polar fractions (containing GDGTs) were dissolved in hexane:isopropanol
260 (99:1) and filtered through 0.45 μ m polytetrafluoroethylene filters prior to analysis at the
261 University of Arizona. GDGTs were separated using an Agilent 1260 High-Performance
262 Liquid Chromatograph (HPLC) coupled to an Agilent 6120 mass spectrometer equipped
263 with two Ethylene Bridged Hybrid (BEH) Hydrophilic Interaction (HILIC) silica
264 columns (2.1 mm \times 150 mm, 1.7 μ m; Waters) following the method of Hopmans et al.
265 (2016). Single Ion Monitoring (SIM) of the protonated molecules $(M + H)^+$ was used to
266 detect and quantify GDGTs relative to a C₄₆ internal standard (Huguet et al., 2006).
267 Replicates were run to monitor reproducibility, to confirm that replicate precision is a
268 trivial source of uncertainty. The largest uncertainty arises from the relative response
269 factors between internal standard and analytes, which are unconstrained, thus
270 concentrations should be considered semi-quantitative.

271 We quantified GDGTs, including the brGDGTs, derived from bacterial membrane lipids,
272 and the isoGDGTs derived from archaea. Replicate analyses representing instrument
273 precision indicate that uncertainty on quantification is less than 1%. In Pliocene
274 sediments some peaks are below detection, and indices are not reported where the major
275 components are not identifiable or the total peak area of the numerator or denominator
276 falls below 3000. In addition to the concentration of individual compounds and summed
277 totals (Σ) for each compound class, we calculate ratios that are informative about aspects
278 of microbial production and limnological conditions. The relative abundance of

279 individual compounds can be useful as indicators of microbial community and limnologic
280 conditions. Crenarchaeol is produced uniquely by Thaumarchaeota (e.g., Sinninghe
281 Damsté et al., 2002; Schouten et al., 2013) and is often abundant in oxic lakes (Baxter et
282 al., 2021). While caldarchaeol (GDGT-0) is also produced by Thaumarchaeota (e.g.,
283 Sinninghe Damsté et al., 2012b; Schouten et al., 2013), GDGT-0 without crenarchaeol
284 implies water column anoxia and other producers including anaerobic methane-oxidizing
285 archaea (Pancost et al., 2001; Schouten et al., 2001) and methanogenic Euryarchaeota
286 (Schouten et al., 2013, and references therein). Although production of caldarchaeol in
287 lake sediments has also been reported (Blaga et al., 2009), and as sediments are typically
288 anoxic, anoxia cannot be confidently ascribed to the water column.

289 We calculate the archaeol caldarchaeol ecometric (ACE), a salinity index (Turich and
290 Freeman, 2011), where:

$$291 \text{ACE} = \frac{[\text{archaeol}]}{[\text{archaeol}] + [\text{GDGT-0}]} \times 100 \quad (1)$$

292 As archaeol is dominantly produced by halophilic archaea, a higher ACE index is
293 interpreted to represent more saline lake conditions (Turich and Freeman, 2011).

294 For the bacterial brGDGTs, the numbers I, II, and III refer to brGDGTs with four, five,
295 and six methyl groups, and a, b, and c include zero, one, and two rings, respectively, the
296 one two and three prime symbols (') denote structural isomers with the methyl group at
297 different positions. We calculate $\text{IR}_{6+7\text{Me}}$, an index sensitive to changes in lake salinity (H.
298 Wang 2021)

$$299 \text{IR}_{6+7\text{Me}} = \left[\frac{\text{IIa}' + \text{IIb}' + \text{IIc}' + \text{IIIa}' + \text{IIIb}' + \text{IIIc}'}{\text{IIa} + \text{IIb} + \text{IIc} + \text{IIIa} + \text{IIIb} + \text{IIIc} + \text{IIa}' + \text{IIb}' + \text{IIc}' + \text{IIIa}' + \text{IIIb}' + \text{IIIc}'} \right] \times 0.5 \\ 300 + \frac{\text{IIIa}'' + \text{IIa}''}{\text{IIIa} + \text{IIIa}' + \text{IIIa}'' + \text{IIa} + \text{IIa}' + \text{IIa}''} \quad (2)$$

301 The temperature-sensitive MBT'5_{Me} index (De Jonge et al., 2014) is the relative
302 methylation of the 5-methyl brGDGTs, where:

$$303 MBT'_{5Me} = \frac{[Ia+Ib+Ic]}{[Ia+Ib+Ic+IIa+IIb+IIc+IIIa]} \quad (3)$$

304 We use the Bayesian BayMBT₀ calibration of a global lake dataset (Martínez-Sosa et al.,
305 2021) to convert MBT'5_{Me} to the mean temperature of the months above freezing. We
306 compare temperature and salinity reconstructions to examine the salinity-sensitivity of
307 temperature reconstructions as high salinity in some lakes has been associated with a
308 warm bias in the MBT'5_{Me} proxy (Martínez-Sosa et al., 2021; Wang et al., 2021).

309 3.3. Plant wax biomarkers

310 The plant wax-derived *n*-alkanoic acids (analyzed as methyl esters from C₁₆ to C₃₂ carbon
311 chain length), were quantified using an Agilent Gas Chromatograph Mass Spectrometer
312 (GC-MS). We report concentrations for the individual *n*-alkanoic acids and compute the
313 summed C₂₂-C₃₂ *n*-alkanoic acid concentrations (Σ alkanoic acid abundance) as well as
314 carbon preference index (CPI) and the average chain length (ACL) calculated as:

$$315 CPI = \frac{2[C_n]}{[C_{n-1}] + [C_{n+1}]} \quad (4)$$

$$316 ACL = \sum(n \times [C_n]) \sum[C_n] \quad (5)$$

317 where the chain length (n) refers to the C₂₂ to C₃₂ *n*-alkanoic acids.

318 The *n*-alkanoic acid methyl esters were analyzed by Thermo GC equipped with a Triplus
319 autosampler and a 30 m column (0.25 mm internal diameter, with a 0.25 μ m type 5
320 coating) coupled via an Isolink (1000/1400°C) for combustion or pyrolysis and Conflo IV
321 to an isotope ratio mass spectrometer (GC-IRMS) and analyzed for C and H isotopic
322 composition. Samples were injected with bracketing CO₂ and H₂ reference gases for

323 comparison between sample and standard runs. Normalization of measured $\delta^{13}\text{C}$ and δD
324 values to the international reference standards Vienna Pee Dee Belemnite and Vienna
325 Standard Mean Ocean Water respectively was achieved with a multi-point organic
326 reference standard containing C₁₆-C₃₀ *n*-alkanes of known isotopic compositions (A6 mix
327 supplied by A. Schimmelmann, University of Indiana; $\delta^{13}\text{C}$ values from -25.9 to $-33.7\text{\textperthousand}$
328 and δD values from -17 to $-256\text{\textperthousand}$). The RMS uncertainty for measured to known
329 standard values for $\delta^{13}\text{C}$ and δD analyses was better than $0.1\text{\textperthousand}$ and 5\textperthousand respectively.
330 Duplicate sample analyses have on average $0.03\text{\textperthousand}$ and 2\textperthousand instrument precision.
331 Linearity was assessed daily across 1–8 V, for $\delta^{13}\text{C}$ ($\sigma = 0.07\text{\textperthousand}$), and for δD the linearity
332 is applied as a correction (H_3^+ factor averaged 9.89 ppm/mV) the latter applied as a
333 correction within Isodat. Reported $\delta^{13}\text{C}$ and δD values for *n*-alkanoic acids were
334 corrected to account for the contribution of the methyl group (Lee et al., 2017).
335 Plant wax $\delta^{13}\text{C}$ and δD values were used to reconstruct vegetation and precipitation
336 isotopic composition similar to previous applications to the late Pleistocene Searles Lake
337 core studying both the *n*-alkanoic acids and *n*-alkanes (Peaple et al., 2022), as well as
338 regional applications to Pleistocene (Bhattacharya et al., 2018; Feakins et al., 2019) and
339 Pliocene sediments (Bhattacharya et al., 2022) all performed on *n*-alkanoic acids. Peaple
340 et al., (2022) tested three different approaches to constrain possible vegetation effects on
341 changing the appropriate fractionation ($\varepsilon_{\text{wax/precip}}$) in late Pleistocene Searles Lake
342 including using pollen assemblages, machine learning on plant wax abundance
343 distributions and the $\delta^{13}\text{C}$ of plant wax. The three methods of determining a varying
344 $\varepsilon_{\text{wax/precip}}$ produced similar $\delta\text{D}_{\text{precipitation}}$ compared to the use of a constant $\varepsilon_{\text{wax/precip}}$ (Peaple
345 et al., 2022), and therefore vegetation effects were not found to be a significant

346 uncertainty in the late Pleistocene. In the Pliocene we have no constraints on vegetation
347 change other than carbon isotopes. Large changes in the proportion of C₃ and C₄ grasses
348 (and thus $\varepsilon_{\text{wax/precip}}$) are not supported by regional pollen studies (Balog and Malloy,
349 1981; Heusser, 1981) and did not occur during Pleistocene glacial or interglacial periods
350 (Peaple et al., 2022). C₄ and woody C₃ vegetation also have similar $\varepsilon_{\text{wax/precip}}$ (Sachse et
351 al., 2012) and thus changes in the landscape proportion of these two plant groups is
352 unlikely to significantly affect our δD precipitation reconstruction. Thus we applied the
353 constant $\varepsilon_{\text{wax/precip}}$ of -93‰ (Feeakins et al., 2014, 2019; Feeakins & Sessions, 2010), where:

$$354 \quad \delta D_{\text{precip}} = \frac{\delta D_{\text{wax}} + 1}{\varepsilon_{\text{wax/precip}} + 1} - 1 \quad (6)$$

355 This constant $\varepsilon_{\text{wax/precip}}$ is robust across different plant communities and aridity levels in
356 modern environments in the region (Feeakins and Sessions, 2010). While wetter climate
357 states of the past may have resulted in larger $\varepsilon_{\text{wax/precip}}$ the transition point for any such
358 changes are unconstrained, and this remains an uncertainty on δD_{precip} reconstructions.

359 The *n*-alkane fraction contains an uncharacterized complex mixture indicating a mature
360 hydrocarbon contribution from degradation in situ, sedimentary migration of petrogenic
361 hydrocarbons or contamination during drilling. The dominance of mature hydrocarbons
362 in Pliocene sediments from KM-3 precludes consideration of plant wax *n*-alkanes, which
363 has been the preferred plant wax precipitation isotope indicator in the late Pleistocene
364 sediments (Peaple et al., 2022).

365 3.4. Pollen

366 Following standard pollen methodology as in a study of the late Pleistocene in this basin,
367 we screened 1 cc of sediment from two initial samples selected at random from the 29

368 samples studied for biomarkers. While pollen was well-preserved in late Pleistocene
369 sediments drilled in 2017 (Peaple et al., 2022), Pliocene-age samples from core KM-3
370 were barren of pollen. We have since learned that pollen was not found in initial surveys
371 of the KM-3 core in 1976 as well during a second attempt in the late 1990s. We thus
372 conclude core storage is not the issue, but rather degradation in situ in the last 3 Ma. We
373 report the null result to save additional fruitless effort at palynology in core KM-3.

374 3.5. Statistics

375 3.5.1. Breakpoint analysis

376 We used the offline Power of the Pruned Exact Linear Time (PELT) (Wambui et al.,
377 2015) method implemented in the Ruptures Python library (Truong et al., 2020). PELT is
378 an exact search algorithm that uses a least squares deviation cost function to detect mean
379 changes (changepoints) in our time series.

380 3.5.2. Intergroup differences

381 In order to determine if there are statistically significant differences between groups of
382 samples, we used a two-sided non-parametric Kolmogorov-Smirnov test. Taking into
383 account age uncertainty, we calculated the p value for the Kolmogorov-Smirnov for each
384 Bacon age ensemble member to generate a distribution of p values. We then calculated
385 the median p value of this distribution to establish whether groups are statistically
386 different ($p < 0.05$).

387 4. Results

388 We present the biomarker results for the late Pliocene lacustrine deposits from the KM-3
389 core at Searles Lake (**Figure 3**) in the context of the limnological interpretation of Smith
390 et al., (1983) (**Figure 3a**).

391

392 4.1. GDGTs

393 4.2. Concentrations

394 Σ isoGDGTs (2.01 ± 3.86 ng/g, n = 29) far exceed the concentrations of Σ brGDGTs (0.07 ± 0.13 ng/g, n = 29) (**Figure 3c**), showing dominance of archaeal rather than bacterial
395 production. Downcore spikes in abundance in both compound classes could be due to
396 production, preservation or most likely reduced sedimentary dilution. While GDGTs
397 were measured on all 29 samples, some compounds, especially some of the brGDGTs
398 and crenarchaeol, were absent in some samples, limiting the availability of some of the
399 derived indices.

401 4.3. Salinity indicators

402 Both salinity indicators are low from 3.373–3.268 Ma (**Figure 3d**) with ACE ($40.6 \pm 17.6\%$, n = 6) and IR_{6+7Me} (0.33 ± 0.04 , n = 2) denoting lower salinities and fresh to
403 brackish conditions. Higher ACE ($57.3 \pm 6.5\%$, n = 23) and IR_{6+7Me} (0.52 ± 0.02 , n = 17)
404 indicate saline conditions, including hypersalinity, from 3.268 to 2.706 Ma. In order to
405 statistically evaluate if there are salinity differences between these two periods across
406 both proxies, we calculated a two-sided Kolmogorov-Smirnov test for each age ensemble
407 member generated from Bacon and then calculated the median p value from this
408 ensemble. The median p values from the resultant p value ensembles for ACE and

410 $\text{IR}_{6+7\text{Me}}$ (0.033 and 0.012) indicate that the salinity differences for these two intervals are
411 statistically significant for both indicators, one bacterial, one archaeal, providing robust
412 evidence for the salinity change.

413 4.4. Temperature proxies

414 $\text{MBT}'_{5\text{Me}}$ indicates temperatures of 20 to 30 °C from 3.319 to 2.706 Ma using the
415 BayMBT₀ lakes calibration (MAF, months above freezing) (Martínez-Sosa et al., 2021)
416 (**Figure 3e**). Absence of brGDGTs IIa, Iib, Iic and IIIa in some samples precludes
417 calculation of the bacterial temperature index $\text{MBT}'_{5\text{Me}}$ especially in the early part of the
418 record where brGDGTs concentrations are lowest. This may be because of low bacterial
419 production or subsequent degradation. Although the data are sparse, the first two
420 temperature estimates, dated to 3.319 and 3.268 Ma, yielded a mean temperature of $21 \pm$
421 3°C (compound 1 σ uncertainty, n = 2), followed by a warming of 4 °C after 3.268 Ma to
422 a mean temperature of 25 ± 3 °C (n = 17) across 3.246–2.734 Ma. The temperatures from
423 these periods are significantly different following our age uncertain Kolmogorov-
424 Smirnov approach (Section 3.4.3).

425 4.5. Plant wax

426 4.6. Concentrations

427 Summed *n*-alkanoic acid (C₂₂-C₃₂) concentrations (Σ alkanoic acid) averaged 11.0 ± 9.2
428 ng/g (n = 28). Σ alkanoic acid concentrations are low (0.9 ± 0.5 ng/g, n = 6) before 3.221
429 Ma, thereafter, increasing to higher concentrations (13.8 ± 8.4 ng/g, n = 22) (**Figure 3f**).
430 Visual inspection of smear slides showed a shift from coarser grains (sand) to finer
431 grained (silt/clay) lithology at 3.221 Ma. Although not a quantitative comparison, coarse
432 grained materials result in volumetric dilution of biomarkers, whereas finer grains

433 provide more surface area for the preservation of organic matter. The carbon preference
434 index (CPI) was consistently low (3.3 ± 0.3 , $n = 28$). The average chain length (ACL) of
435 the C₂₂-C₃₂ alkanoic acids was slightly longer (27.4 ± 0.3 , $n = 4$) before 3.268 Ma
436 compared to after 3.268 Ma (26.1 ± 0.4 , $n = 24$). Reduced ACL after 3.268 Ma may
437 reflect a shift in aquatic macrophyte production or the terrestrial plant community (Peaple
438 et al., 2021) and/or may suggest more microbial degradation in soils (Brittingham et al.,
439 2017; M. S. Wu et al., 2019) during the warmer and drier climate.

440 4.7. Carbon isotopic composition

441 $\delta^{13}\text{C}$ values for the C₂₈ *n*-alkanoic acids range from -31.6 to -27.0‰ ($-29.2 \pm 1.2\text{‰}$, $n =$
442 28) and for the C₃₀ *n*-alkanoic acids -34.0 to -28.4‰ ($-30.7 \pm 1.4\text{‰}$, $n = 28$) (**Figure 3g**).
443 The $\delta^{13}\text{C}$ values of the C₃₀ *n*-alkanoic acids range from a high of -29.6‰ at 3.478 Ma, to
444 a low of -34.0‰ at 3.200 Ma and then return to generally high values from 3.0-2.7 Ma
445 with a high of -28.4‰ at 2.891 Ma.

446 4.8. Hydrogen isotopic composition

447 The δD values of the C₂₈ *n*-alkanoic acids ($-174 \pm 6\text{‰}$, $n = 26$) and the C₃₀ *n*-alkanoic
448 acids ($-174 \pm 5\text{‰}$, $n = 25$), are the same within uncertainty, however the individual
449 samples show variable offsets for the C₂₈-C₃₀ (+10 to -17‰), perhaps source differences,
450 or analytical noise. Applying the $\varepsilon_{\text{wax/precip}}$ regionally defined fractionation for plant wax
451 *n*-alkanoic acids (Feakins et al., 2014, 2019), the measured δD values for C₂₈ yield
452 precipitation isotopic composition ($\delta\text{D}_{\text{precip}}$) estimates for the Pliocene interval ($-89 \pm$
453 6‰, $n = 26$) and values calculated from C₃₀ are equivalent ($-89 \pm 5\text{‰}$, $n = 25$). Downcore
454 variations of 22‰ (**Figure 3h**) do not covary with plant wax $\delta^{13}\text{C}$ or abundance
455 distributions so appear robust to plant type and preservation. The δD values may thus

456 carry signals of hydroclimate or heterogeneous catchment erosional inputs.

457 **5. Discussion**

458 **5.1. Lake depth reconstruction**

459 Lake depth in terminal lakes is inversely related to water salinity, as evaporation leaves
460 behind the salts delivered by river inflow. Smith et al. (1983) originally depicted
461 lacustrine sedimentation as evidence for a consistently deep lake from 3.4 to 2.6 Ma
462 (dates updated to the current timescale; **Figure 3a**). However, this was apparently a
463 simplification as they also described the diagenetic mineral anhydrite (which replaced
464 gypsum) at depths of 681.8 to 546.2 m, indicating the precipitation of evaporite minerals
465 in sediments younger than 2.9 Ma (**Figure 3a**), which implies saline lake conditions.

466 Anhydrite-rich sandstones, indicating saline waters, were also reported by Hay &
467 Guldman (1987) at depths of 656.6 to 640.2 m. We report new biomarker evidence for
468 saline lake waters (**Figure 3d**) that lead to a revised interpretation (**Figure 3a**) consistent
469 with adjacent lake basins. These biomarker-based salinity reconstructions are derived
470 from different microbial lineages: the ACE and the IR_{6+7Me} salinity proxies and are
471 calculated from the lipids of archaea and bacteria respectively, known for detection of
472 hypersaline and brackish water lakes respectively (Turich and Freeman, 2011; H. Wang
473 et al., 2021) and applied to Pleistocene salinity variations in this lake basin (Peaple et al.,
474 2022). While the bacterial and archaeal communities are unknown for the (former)
475 Searles Lake, each has its own salinity tolerance ranges and environmental sensitivities,
476 based on paleoenvironmental comparisons in the Pleistocene sediments in the SLAPP-
477 SRLS17 core (Peaple et al., 2022) and the sampling of modern conditions in Asian lakes
478 (H. Wang et al., 2021). Here, during the cool-temperature phase (**Figures 4e**) both ACE

479 and IR_{6+7Me} proxies (**Figures 4f-g**) are low consistent with lower salinity and brackish,
480 perennial lake conditions. We detect increases in the IR_{6+7Me} at 3.268 Ma and this
481 coincides with local warming detected by BayMBT₀ (**Figure 4e**) and global warming into
482 the late Pliocene warm period (**Figure 4a and b**). The ACE salinity index has a step
483 change increase after 3.14 Ma (**Figure 4f**), which lags the change observed in the IR_{6+7Me}
484 record (**Figure 4g**) possibly due to the low sensitivity of ACE at low salinities (Peaple et
485 al., 2022; H. Wang et al., 2021) or some temperature sensitivity in the IR_{6+7Me}. The dual
486 archaeal and bacterial biomarker evidence for increasing salinity reported here, together
487 with the anhydrite noted by Smith et al., (1983), each provide independent confirmation
488 for a saline lake during the mPWP.

489 In this late Pliocene reconstruction we found crenarchaeol to be at vanishingly low
490 abundance, being undetectable in many samples, with just 3 samples having crenarchaeol
491 as more than 1% of the ΣisoGDGTs ($0.5 \pm 1.1\%$, $n = 29$; **Figure S2**). However, GDGT-0
492 was high, thus Searles Lake was likely mostly anoxic and stratified, similar to the
493 majority of the last 200-ka reconstruction (Peaple et al., 2022). In contrast, during
494 Termination 2 at the end of MIS 6, crenarchaeol relative abundance peaked at 16% of
495 ΣisoGDGTs and GDGT-0 was low, which was interpreted as a vigorously overturning
496 deep lake phase (Peaple et al., 2022). That interpretation is supported by geomorphic
497 evidence for spillover into downstream Panamint Valley (Jayko et al., 2008). This
498 suggests that the Termination 2 pluvial was wetter than the MIS M2 pluvial. One caveat
499 about the late Pliocene and late Pleistocene comparison is that microbial communities
500 may have changed over the intervening 3 Ma and there is some evidence for this.
501 Alkalinity increased in the basin following hydrothermal activity in the vicinity of the

502 Long Valley volcanic center (Lowenstein et al., 2016) and this was associated with a
503 change in the microbial community at Searles Lake as evidenced by carotenoids before
504 and after 1.4 Ma (Winters et al., 2013).

505 5.2. Mojave pluvial associated with MIS M2 glaciation

506 The evidence for a deep lake in Searles Valley associated with the MIS M2 glacial was
507 first described and dated by Liddicoat et al. (1980). Here we updated the timing of the
508 paleomagnetic datums (**Figure 2**) and sampled the lacustrine phase to refine
509 interpretations with new biomarker evidence. We find that older sediments (3.373–3.268
510 Ma) associated with the MIS M2 glacial (3.312–3.264 Ma) capture relatively cool
511 conditions (**Figure 4e**), and relatively fresh lake waters as detected by semi-quantitative,
512 independent bacterial and archaeal indicators (**Figure 4f, g**), compared to the relative
513 warmth (mean 25 °C) and salinity rise of the subsequent mPWP (**Table 1**). There are
514 significant differences ($p < 0.05$) for temperature and salinity between periods 3.370–3.264
515 Ma and 3.264–2.950 Ma which broadly align with the high latitude MIS M2 cooling
516 (cooling includes the precursor cooling of MG 4 and 2, **Figure 4b**, as identified by
517 changepoint analysis here) and extended mPWP warm periods respectively.

518 Corroboration of pluvial conditions associated with the extended MIS M2 glacial cooling
519 comes from regional comparison. The onset of lacustrine deposition at 3.4 Ma at Searles
520 Lake, corresponds to a perennial lake in nearby Death Valley (**Figure 4a**), together
521 indicating a considerable P-E increase (Knott et al., 2018). Searles Lake records a climate
522 (MAF mean = $20.7 \text{ }^{\circ}\text{C} \pm 0.3 \text{ }^{\circ}\text{C}$, $n = 2$; **Figure 5**) similar to or slightly warmer than the
523 modern (MAF = $20 \text{ }^{\circ}\text{C}$; **Figure 5**), and much warmer than Pleistocene glacial maximum
524 periods (MAF = 17.4 ± 1.8 , $n = 11$; Peaple et al., 2022; **Figure 5**). Compared to the past

525 two glacial maxima, the higher potential evaporation during M2 implies much more
526 precipitation was a necessary condition for the lake to fill. The fresh, deep lake is robust
527 evidence for cooler and wetter conditions in southwestern North America associated with
528 the extended cooling including the late Pliocene MIS M2 glaciation, that we refer to as
529 the “M2 pluvial”, compared to drier conditions during the mid-Pliocene warmth.

530 We note that changes in salinity have the potential to impact $\text{MBT}'_{5\text{Me}}$ based temperature
531 reconstructions (Martinez-Sosa et al., 2021; Wang et al., 2021). Modern observational
532 studies of the nearby Mono Lake have found that the core top $\text{MBT}'_{5\text{Me}}$ based temperature
533 reconstructions are too warm when compared to modern temperatures (25.5 °C versus
534 10.6 °C respectively), possibly due to low production of lake derived brGDGTs
535 (Martinez-Sosa et al., 2021) or differing ecological communities relative to the
536 calibration. However, $\text{MBT}'_{5\text{Me}}$ was found to be relatively insensitive to changes in
537 salinity in Searles Lake over the past 200 ka (People et al., 2022). BayMBT₀ temperature
538 interpretations were corroborated by independent evidence from the Brillouin approach
539 applied to evaporite minerals across the last 40 ka (Olson et al., 2023). We also note that
540 BayMBT₀ temperatures discern reasonable glacial and interglacial temperature offsets as
541 well as Pliocene M2 glacial and mPWP offsets (**Figure 5**) compared to the modern
542 months above freezing mean temperature. These observations and plausible temperature
543 reconstructions support the assumption that $\text{MBT}'_{5\text{Me}}$ is dominated by changes in
544 temperature in the Pliocene and Pleistocene. We cannot rule out that changes in salinity
545 have had a secondary effect on temperature reconstruction, or that changes in salinity
546 influenced $\text{IR}_{6+7\text{Me}}$, as there is some similarity between the structure of the $\text{IR}_{6+7\text{Me}}$
547 salinity and the BayMBT₀ temperature reconstructions for the Pliocene, both derived

548 from bacterial brGDGTs (**Figure 3c and d**). In particular, the inferred warming into the
549 mPWP coincides with an inferred salinity increase such that warm-bias in saltier
550 conditions is a concern, although these two phenomena should be related as warming
551 likely led to increased evaporation and salinity.

552 5.3. Understanding climate and drivers of the M2 pluvial

553 A limitation with understanding the climate response to the MIS M2 glacial is the sparse
554 terrestrial evidence available to date. Additional terrestrial reconstruction efforts would
555 ideally add evidence in future, however Pliocene lacustrine sedimentary accumulations
556 persist only in rare basins on land. Arguably, the best terrestrial archive of this time is
557 Lake El'gygytgyn (northeastern Russia). There, a 10 °C cooling from peak mid-Pliocene
558 warmth to near-Holocene temperatures from 3.39 to 2.64 Ma (**Figure 4c**) was inferred
559 from pollen evidence for a shift from boreal forest to tundra (Brigham-Grette et al.,
560 2013). That cooling in northeastern Russia is detected by change-point analysis here
561 (**Figure 4b**) coincident with a cooling detected in marine benthic $\delta^{18}\text{O}$ into MIS MG4
562 about 0.1 Ma prior to the MIS M2 glaciation (Westerhold et al., 2020).

563 Marine sedimentary records spanning the Pliocene are more readily available, and nearby
564 to the Lake El'gygytgyn record, alkenones capture a 6 °C cooling of SSTs from the Gulf
565 of Alaska (**Figure 4d**) with the cooling also beginning at 3.4 Ma and reaching a
566 minimum during MIS M2. The absence of ice-rafted debris, however, indicates that the
567 Cordilleran ice sheet did not reach all the way to the coast (Sánchez-Montes et al., 2020).
568 The cooling is most pronounced in high latitudes, closer to the locus of terrestrial
569 glaciation, but the California Current propagates the signal southward to Site 1012
570 (32.2°N, offshore the US-Mexico border) with a 4 °C cooling recorded by alkenones

571 (Brierley et al., 2009). The magnitude of cooling along the coastal ocean is consistent
572 with terrestrial cooling of 4 °C at Searles Lake (35.7°N) – the cooling here is relative to
573 the later mPWP, as our record begins in the cool interval.

574 Globally, the MIS M2 glacial from 3.312–3.264 Ma was accompanied by a $\delta^{18}\text{O}$ increase
575 of 1.1‰ according to the latest estimates (Westerhold et al., 2020; **Figure 4b**) revised
576 upwards from the initial evidence of 0.4‰ (Shackleton & Opdyke, 1977) and 0.5‰
577 (Lisiecki & Raymo, 2005). Estimates of a 20–60 m sea level drop relative to today were
578 associated with the smaller $\delta^{18}\text{O}$ shifts, whereas lower sea levels are likely associated
579 with the 1.1‰ increase. However, Mg/Ca and clumped isotope temperature
580 reconstructions of the Atlantic and Pacific indicate that a large 4°C drop in bottom water
581 temperature occurred during the M2 glacial (Braaten et al., 2023), which indicates that
582 ice volume increases were reduced compared to Pleistocene glacial maximums. The main
583 uncertainties on these foraminiferal estimates of glacial magnitude arise from diagenesis
584 concerns (Raymo et al., 2018), although foraminiferal preservation improved in samples
585 from MIS M2 (De La Vega et al., 2020).

586 The MIS M2 glacial cooling was accompanied by a 100 ppmv decrease in atmospheric
587 carbon dioxide similar to that of late Pleistocene glacials, with evidence from $\delta^{11}\text{B}$ of
588 foraminifera indicating a drop from 400 ppmv to 300 ppmv (De La Vega et al., 2020).
589 The high-resolution record finds that the drop in pCO_2 lagged the orbital and $\delta^{18}\text{O}$
590 oscillation, thus another mechanism for the initiation of the glacial event is required. That
591 trigger may have been the re-opening of the shallow Central American Seaway altering
592 circulation between the Pacific and Atlantic and thus the heat flux to the high latitude
593 Atlantic Ocean (De Schepper et al., 2014; Tan et al., 2017).

594 Model experiments to test sensitivity during the MIS M2 glaciation find only the large ice
595 sheet scenario produces a measurable change in precipitation and drying in southwestern
596 North America (Dolan et al., 2015). The modelled drying is at odds with the evidence for
597 a pluvial presented here. Given that late Pleistocene glacial conditions are associated with
598 pluvials in the southwest, we posit that similar mechanisms could have operated in the
599 Pliocene (Fu, 2023; Lofverstrom, 2020; McGee et al., 2018a). Further elucidation of the
600 climate dynamics will have to await additional MIS M2 simulations that succeed in
601 representing the glacial-pluvial conditions.

602 5.4. Drying and warming into the mPWP

603 After the MIS M2 glacial, we find evidence for warming and drying at the start of an
604 extended warm phase, the mPWP (**Figure 4d**). The warm period spanning 3.264–3.025
605 Ma (MIS M1 through MIS G21) is the focus of PRISM and a series of PlioMIP model
606 and proxy intercomparisons. We report new terrestrial brGDGT-based paleothermometry
607 evidence that Searles Valley was 4 °C warmer during the mPWP than during the M2
608 event. Mean Searles Valley temperatures were slightly warmer during the mPWP
609 compared to the last interglacial (MAF = 24.3 °C vs 22.4 °C respectively; **Figure 5**),
610 indicating that Searles must have been receiving much more precipitation than modern,
611 given the presence of a perennial lake.

612 Globally, annual mean temperatures were around 3.5 °C higher in the mPWP warm
613 period than today (Burke et al., 2018; Dowsett & Caballero Gill, 2010; Haywood et al.,
614 2020; Ravelo et al., 2004). Consistent with global warmth during the mPWP, we find
615 mean reconstructed mPWP MAF temperatures at Searles Lake (24 ± 3 °C, $n = 5$).
616 Although terrestrial quantitative temperature estimates remain rare, supporting evidence

617 for warming comes from diatom assemblage studies from Tule Lake, northern California
618 (**Figure 1**), that found *Aulacoseira solida* abundances increased coincident with the
619 mPWP before an increase in *Fragilaria* spp. denoting cooling likely associated with the
620 intensification of Pleistocene Northern Hemisphere glaciation (Thompson, 1991).
621 A local warming of 4 °C from M2 into the mPWP would imply a higher evaporation rate
622 than currently exists in Searles Valley. Today Searles Valley lowland receives 100
623 mm/year precipitation, with ~2000 mm/year potential evaporation. During pluvials with
624 inflowing Owens River, the catchment included the eastern Sierra Nevada which has
625 modern precipitation of around 400 mm/year (Lake Sabrina, Western Regional Climate
626 Center., 2022). Menemenlis et al. (2022) performed calculations for the southern Great
627 Basin region; in their wettest scenario they estimate that sustaining a 18.6% lake
628 coverage would require 1.0 mm/day (2.5x) more rainfall across the broad region, given a
629 similar-to-modern temperature regime. As the spatial heterogeneity of a mountain
630 catchment is not well represented by such a calculation, and as the large regional areas of
631 lakes in the northern reaches of their study area are beyond the scope of this study, we
632 cannot directly relate their calculations to Searles Lake. We do not attempt lake water
633 balance calculations for Searles Lake as the volume of the Pliocene basin is unclear, but a
634 doubling of modern precipitation to fill a deep lake seems plausible.
635 Referring again to the southern Great Basin calculations for the dry and intermediate
636 scenario of Menemenlis et al. (2022), with 1.6 and 3.6% lake coverage, then a saline lake
637 could imply up to 0.4 mm/day (1.2x) more precipitation over the broad region compared
638 to today. Downscaling quantitative reconstructions of basin water balance and climate for
639 Searles Lake must await refinement of the basin size as well as a realistic treatment of

640 precipitation change across the topography of the catchment in climate models. However,
641 the Searles Lake proxy data are consistent with wetter-than-modern conditions during the
642 mPWP to produce the intermittent/saline lake, under elevated temperatures, however
643 conditions were drier than in the M2 pluvial.

644 5.5. Carbon isotopic reconstructions

645 $\delta^{13}\text{C}$ values for the *n*-alkanoic acids indicate a trend of ^{13}C -depletion across chain lengths
646 from C_{24} to C_{30} . The isotopic spread likely relates to shifting proportions of various
647 producers of long-chain *n*-alkanoic acids, with measured variations among terrestrial
648 plants in the region, as well as possible macrophyte inputs (Peaple et al., 2021). We show
649 the C_{28} *n*-alkanoic acids (-31.6 to -27.0‰) and C_{30} *n*-alkanoic acids -34.0 to -28.4‰ (-
650 $30.7 \pm 1.4\text{‰}$, $n = 28$; **Figure 3g**), with C_{30} being most ^{13}C -depleted and most likely
651 indicative of terrestrial plants.

652 These carbon isotopic values are consistent with the trees and shrubs sampled in the
653 modern catchment, with *n*-alkanoic acid production likely dominated by the coniferous
654 taxa, with $\delta^{13}\text{C}$ values of -29.7‰ for *Juniperus occidentalis*, -24.7‰ for *Abies concolor*,
655 and -25‰ for *Pinus jeffreyi* (Peaple et al., 2022). Coniferous taxa tend to produce plant
656 wax with a high proportion of *n*-alkanoic acid to *n*-alkanes (Diefendorf et al., 2011), as
657 also measured in local trees (Peaple et al., 2021) and fluvial runoff (Feakins et al., 2019).
658 Conifers expanded their lowland range in cooler, wetter times of the Pleistocene based on
659 macro- and microfossils (Wolfenden, 2003; Holmgren et al., 2010; Koehler et al., 2005;
660 Peaple et al., 2022). However, the $\delta^{13}\text{C}$ values of the *n*-alkanoic acids were not
661 significantly different between the last glacial maximum and interglacial of the late
662 Pleistocene. While conifers may have also expanded into the lowlands during the M2

663 pluvial, the $\delta^{13}\text{C}$ values of the *n*-alkanoic acids are not significantly different from that of
664 the mPWP, with both high and low values in each interval. Overall, the $\delta^{13}\text{C}$ values of the
665 *n*-alkanoic acids are lower in this late Pliocene record than the late Pleistocene (Peaple et
666 al., 2022).

667 The *n*-alkanes and pollen together provided evidence for varying proportions of
668 C₄ phreatophytic shrubs (including Atriplex) during the Pleistocene (Peaple et al., 2022).
669 However *n*-alkanes and pollen are not preserved in these Pliocene sediments rendering
670 vegetation largely unknown for the Pliocene in this basin. We note the M2 glacial drop in
671 pCO₂ was from 400 to 300 ppmv (De La Vega et al., 2020). Thus atmospheric conditions
672 would have been less favorable for C₄ than during the late Pleistocene glacials, which
673 were another 100 ppmv lower at 180 ppmv (Petit et al., 1999).

674 Coeval with warming and drying into the mPWP, we find an increase in *n*-alkanoic acid
675 $\delta^{13}\text{C}$ (from -34 to -28‰) across 3.4–2.9 Ma. We note a positive correlation between lake
676 salinity, as measured by ACE and $\delta^{13}\text{C}_{\text{wax}}$ (C₃₀ r = 0.51, p = 0.05 and C₂₈ r = 0.45, p =
677 0.15) accounting for serial correlation (Ebisuzaki, 1997). The range of values is
678 consistent with open C₃ vegetation in the region today (Peaple et al., 2022), and so the
679 shift may indicate range changes among those species: perhaps Pinus expansion into
680 higher elevations after the M2 glacial, and a reduction in Juniper in the lowlands due to
681 drying. In addition, the $\delta^{13}\text{C}$ increase may indicate an increase in moisture stress among
682 C₃ plants (Diefendorf et al., 2010). Alternatively, the trend could indicate C₄ plant
683 contributions. Similar carbon isotope enrichment trends in the late Pliocene have been
684 reported from soil carbonates, from Camp Rice, New Mexico (Mack et al., 1994), and
685 from St. David, Arizona, where the trend represents C₄ grassland expansion reflecting

686 warming and summer (North American Monsoon; NAM) rainfall (Y. Wang et al., 1993).
687 Recent proxy and modeling work suggest that the NAM may have expanded into
688 southern California during the mPWP (Fu et al., 2022; Bhattacharya et al., 2022), which
689 could lead to C₄ expansion. However, the vegetation of the Mojave lowlands and Sierra
690 Nevada watershed remains an open question until in situ Pliocene paleobotanical macro
691 or microfossil clues are found.

692 5.6. Precipitation isotope reconstructions

693 The δD_{precip} reconstruction for Searles Lake in the late Pliocene does not show any
694 change between the M2 glacial pluvial and the mPWP, nor from the Pleistocene (**Figure**
695 **3h**). δD_{precip} reconstructions based on *n*-alkanoic acids for 3.373 to 2.706 Ma from KM-3
696 (-89 \pm 5‰, n = 25, this study) are 10‰ more D-depleted than reconstructions from
697 SLAPP-SRLS17 spanning 200 to 4 ka (-77 \pm 18‰, n = 112; Peaple et al., 2022). These
698 reconstructions are the same within uncertainties given the different sample size,
699 temporal variability and sampling resolution. Each of these Searles Lake *n*-alkanoic acid
700 δD_{precip} reconstructions fall within the seasonal means of the modern climatology. In the
701 late Pleistocene δD reconstruction, the *n*-alkanes were the preferred compound class,
702 reflecting the expected pattern of glacial D-depletion and interglacial D-enrichment seen
703 in the *n*-alkanes and in other regional reconstructions (Peaple et al., 2022). Whereas the
704 *n*-alkanoic acid evidence was deemed less useful through comparisons in the Pleistocene
705 (Peaple et al., 2022), with downcore variability perhaps confounded by changes in
706 conifer elevation and macrophyte inputs (Peaple et al., 2021), the Pliocene plant wax
707 reconstructions therefore must remain tentative.

708 Independent evidence for δD_{precip} values during the MIS M2 glaciation, has previously

709 been reported from the Owens River watershed (Mulch et al., 2008), part of the Searles
710 Valley catchment. Using the waters of hydration extracted from the Nomlaki Tuff (ca.
711 3.30 Ma; Knott et al., 2018) sampled in Fish Lake Valley, Mulch et al. (2008) estimated
712 δD_{precip} was -144‰ when the Nomlaki Tuff was deposited. Mulch et al. (2008)
713 hypothesize that the hydration rinds of the volcanic glass shards formed within 10^3 - 10^4
714 years after eruption and deposition, and thus the δD values integrate MIS M2 glacial
715 precipitation. The δD_{precip} from hydration of tephra indicates winter-precipitation
716 dominated the MIS M2 glacial adjacent to the Searles Valley catchment. The -144‰
717 value of the hydrated glass shards is more D-depleted than modern mean annual
718 precipitation, but is similar to values recorded during high precipitation winter storms in
719 the Southern Great Basin (Friedman et al., 1992, 2002).

720 Today the Searles Lake catchment receives dominantly winter orographic precipitation
721 passing over or leaking to the south of the Sierra Nevada with rare summer rain much of
722 which is lost to evaporation (Friedman et al., 2002). In the Pliocene evidence indicates
723 precipitation was also dominated by winter storms distilled over the Sierra Nevada
724 (Mulch et al., 2008) and tentatively corroborated by our plant wax *n*-alkanoic acid
725 evidence. Although regional summer monsoonal rains increased in intensity
726 (Bhattacharya et al., 2022), they likely reflected a minor contribution to the Searles Lake
727 catchment. The isotopic evidence east of the Sierra Nevada (tephra, plant wax) requires
728 only an increase in the number rather than seasonality or trajectory of storm tracks
729 delivering the P-E excess filling large lakes during the MIS M2 glacial pluvial. The M2
730 pluvial was followed by relatively drier conditions during the mPWP although still
731 requiring more rain than today to sustain a perennial lake. In the modern climate of

732 California, inter-annual variability is linked to a few extra extreme storms, with the
733 wettest 5% of days explaining 1/3 of the annual precipitation but 2/3 of the variance with
734 most of this falling on the Sierra Nevada (Dettinger, 2016). Similarly, the receipt of a few
735 more extreme storms each year, could explain a pluvial phase that filled Searles Lake,
736 lasting 150 ka around the MIS M2 glacial cooling.

737 Further south, in what is now the Anza Borrego Desert (31.4°N), 400 km south of Searles
738 and 100 km inland from the Gulf of California and Pacific Ocean, a petrified laurel-
739 willow-walnut forest of late Pliocene age required increased precipitation and incursions
740 of coastal fog (Remeika et al., 1988). However, ODP Site 1012 (**Figure 1**) marine core
741 isotopic evidence suggests summer rather than the originally proposed winter-season
742 precipitation increase (Bhattacharya et al., 2022). In that study, plant wax reconstructions
743 from marine core sites ODP Site 1012 and DSDP Site 475 (**Figure 1**) found δD_{precip}
744 values were 20‰ heavier than modern across 3.5–3 Ma, consistent with a strengthened
745 North American Monsoon (NAM) (Bhattacharya et al., 2022). They linked strengthened
746 NAM to reduced subtropical to equatorial eastern Pacific SSTs in the warmer background
747 state of the late Pliocene (that study did not have the temporally resolution to detect any
748 perturbation associated with the MIS M2 glacial cooling). A strengthened NAM would
749 likely have increased summer precipitation over Searles Lake at the northwestern edge of
750 the modern NAM region (Western Regional Climate Center., 2023). Currently, the
751 Searles Catchment receives only 10% of its mean annual precipitation during the NAM
752 months of July, June, and August (Western Regional Climate Center., 2023) and much of
753 this is lost to evaporation, not reaching groundwater or plants (Carroll et al., 2020).
754 However, modeling of the NAM expansion (Fu et al., 2022; Bhattacharya et al., 2022)

755 suggests a substantial incursion of summer rainfall is possible for the mPWP, suggesting
756 that summer rain could have contributed to the higher Searles lake levels. In addition, if
757 summer humidity increased substantially, summer evaporative losses would decrease and
758 the water may have become more available to plants and groundwater recharge.

759 5.7. Climate dynamics during the MIS M2 glacial pluvial

760 Although ice sheet extent is not well constrained for the Pliocene MIS M2 glaciation
761 globally, or for the Cordilleran Ice Sheet (Sánchez-Montes et al., 2020), the LIS extended
762 over the modern-day Hudson Bay (Gao et al., 2012; Berends et al., 2019). The sizable
763 LIS during the MIS M2 glaciation, would have depressed the winter storm track
764 southward leading to an increased moisture flux to the mid-latitudes. We hypothesize that
765 the Pliocene MIS M2 glaciation may have yielded more inland penetrating atmospheric
766 rivers with similar dynamics to those of the modern climate (Rutz et al., 2015) due to
767 similar topography, but with greater frequency or amount of moisture transported to
768 explain the filled lake basins. Although we invoke similar mechanisms to the late
769 Pleistocene glacial pluvials, the 30x longer duration of the extended M2 pluvial merits
770 further investigation.

771 Prior efforts to understand the climate of late Pliocene warmth have integrated time-slabs
772 and this may have resulted in an under-appreciation of the orbital-scale variability within
773 the late Pliocene (Prescott et al., 2014). This has been hypothesized to be behind some of
774 the proxy-model disagreement (Haywood, et al., 2013). The biomarker reconstruction
775 from Searles Lake core KM-3, provides clarification that the pluvial conditions were
776 associated with MIS M2 glaciation (and cooling associated with the MG4 and MG2

777 precursors) followed by drier conditions within the mPWP (**Table 1**), although still
778 wetter than modern conditions. We hope the new biomarker evidence can refresh interest
779 in modelling the MIS M2 glacial (Dolan et al., 2015), to elucidate the climate dynamics
780 that explain the pluvial conditions, reconstructed here.

781 **6. Conclusions**

782 Applying biomarker proxies to sediments from the KM-3 core of Searles Valley,
783 California, we have demonstrated variable lacustrine conditions during the late Pliocene,
784 a period previously interpreted as a continuously deep lake (Smith et al., 1983).
785 Continuous sedimentation and a lacustrine record through the Mammoth reversal
786 subchron make Searles Lake a valuable subtropical (35.7°N) terrestrial archive of
787 conditions during the MIS M2 glacial. We find that the MIS M2 glacial was locally a
788 cool pluvial, with a deep lake from 3.4 to 3.2 Ma consistent with other interpretations
789 (Knott et al., 2018; Liddicoat et al., 1980). Warming into the mPWP led to a saline lake
790 that persisted for ~0.6 Ma before desiccation. The biomarker salinity evidence is
791 corroborated by a positive shift in carbon isotopes of plant waxes as well as prior
792 observations of evaporites in the lake sediments (Smith et al., 1983).
793 Intense pluvial conditions of the late Pliocene co-occurred with a cooling around the MIS
794 M2 glaciation that interrupted warmth, much like the pluvial states of the late
795 Pleistocene. As we reconstruct similar to modern temperatures during MIS M2 at Searles
796 Lake, evaporation would also have been similar to modern, and thus the P-E surplus
797 necessary to fill a deep lake must have been dominated by increased rainfall (Ibarra et al.,
798 2018). During the subsequent warmth of the mPWP, the persistence of a perennial lake
799 implies more rainfall than present to yield a P-E surplus, although less rainfall than

800 during the M2 pluvial. Additional studies are needed to add spatial and temporal
801 resolution to the nature of the climate transitions across the MIS M2 glacial and mPWP.

802 **Acknowledgments**

803 The biomarker study and GRA (People) were supported by U.S. National Science
804 Foundation Grant NSF-EAR-1903665 to S.F., GDGT analyses were supported by the
805 Packard Fellowship for Science and Engineering to J.T. and NSF-OCE-1903171 to J.T.
806 T.B. was supported by NSF-OCE-1903148. JRK was supported by the National Science
807 Foundation Integrated Earth Sciences grant EAR-1516593. Sample material used in this
808 project was provided by the USGS Core Research Center. We thank Patrick Murphy for
809 his assistance in preparing and measuring GDGTs. We thank colleagues for helpful
810 discussions at Pliocene workshops including Peter Molnar, Erin McClymont, Bette Otto
811 Bleisner and Alan Haywood. We thank Dan Ibarra, Ran Feng and Joe Liddicoat for
812 reading earlier versions of the manuscript. This manuscript was improved with reviews
813 from Associate editor Yige Zhang, two anonymous reviewers and Julie Brigham-Grette.

814 **Open Research**

815 Data files are publicly available and archived at the NOAA paleoclimatology database
816 (People et al., 2023).

817 **References**

- 818 Almazroui, M., Islam, M. N., Saeed, F., Saeed, S., Ismail, M., Ehsan, M. A., et al. (2021).
819 Projected Changes in Temperature and Precipitation Over the United States, Central
820 America, and the Caribbean in CMIP6 GCMs. *Earth Systems and Environment* 2021
821 5:1, 5(1), 1–24. <https://doi.org/10.1007/S41748-021-00199-5>
822 Bacon, S. N., Jayko, A. S., Owen, L. A., Lindvall, S. C., Rhodes, E. J., Schumer, R. A., &
823 Decker, D. L. (2020). A 50,000-year record of lake-level variations and overflow

- 824 from Owens Lake, eastern California, USA. *Quaternary Science Reviews*, 238,
825 106312. <https://doi.org/10.1016/j.quascirev.2020.106312>
- 826 Baxter, A. J., van Bree, L. G. J., Peterse, F., Hopmans, E. C., Villanueva, L., Verschuren,
827 D., & Sinninghe Damsté, J. S. (2021). Seasonal and multi-annual variation in the
828 abundance of isoprenoid GDGT membrane lipids and their producers in the water
829 column of a meromictic equatorial crater lake (Lake Chala, East Africa). *Quaternary*
830 *Science Reviews*, 273, 107263. <https://doi.org/10.1016/J.QUASCIREV.2021.107263>
- 831 Berends, C. J., de Boer, B., Dolan, A. M., Hill, D. J., and van de Wal, R. S. W.:
832 Modelling ice sheet evolution and atmospheric CO₂ during the Late Pliocene, *Clim.*
833 *Past*, 15, 1603–1619, <https://doi.org/10.5194/cp-15-1603-2019>, 2019.
- 834 Besseling, M. A., Hopmans, E. C., Boschman, R. C., Sinninghe Damsté, J. S., &
835 Villanueva, L. (2018). Benthic archaea as potential sources of tetraether membrane
836 lipids in sediments across an oxygen minimum zone. *Biogeosciences*, 15(13), 4047–
837 4064.
- 838 Bhattacharya, T., Tierney, J. E., Addison, J. A., & Murray, J. W. (2018). Ice-sheet
839 modulation of deglacial North American monsoon intensification. *Nature*
840 *Geoscience*, 1. <https://doi.org/10.1038/s41561-018-0220-7>
- 841 Bhattacharya, T., Feng, R., Tierney, J. E., Rubbelke, C., Burls, N., Knapp, S., & Fu, M.
842 (2022). Expansion and Intensification of the North American Monsoon During the
843 Pliocene. *AGU Advances*, 3(6). <https://doi.org/10.1029/2022av000757>
- 844 Braaten, A. H., Jakob, K. A., Ho, S. L., Friedrich, O., Galaasen, E. V., De Schepper, S.,
845 Wilson, P. A., and Meckler, A. N.: Limited exchange between the deep Pacific and
846 Atlantic oceans during the warm mid-Pliocene and MIS M2 "glaciation", *Climate of*
847 *the Past*. [preprint], <https://doi.org/10.5194/cp-2023-13>, in review, 2023.
- 848 Blaauw, M., & Christeny, J. A. (2011). Flexible paleoclimate age-depth models using an
849 autoregressive gamma process. *Bayesian Analysis*, 6(3), 457–474.
850 <https://doi.org/10.1214/11-BA618>
- 851 Blackwelder, E. (1933). Lake Manly: An Extinct Lake of Death Valley. *Geographical*
852 *Review*, 23(3), 464. <https://doi.org/10.2307/209632>
- 853 Blaga, C. I., Reichart, G.-J., Heiri, O., & Sinninghe Damsté, J. S. (2009). Tetraether
854 membrane lipid distributions in water-column particulate matter and sediments: a
855 study of 47 European lakes along a north–south transect. *Journal of Paleolimnology*,
856 41(3), 523–540.
- 857 Brigham-Grette, J., Melles, M., Minyuk, P., Andreev, A., Tarasov, P., DeConto, R., et al.
858 (2013). Pliocene warmth, polar amplification, and stepped Pleistocene cooling
859 recorded in NE Arctic Russia. *Science*, 340(6139), 1421–1427.

- 860 Brittingham, A., Hren, M. T., & Hartman, G. (2017). Microbial alteration of the
861 hydrogen and carbon isotopic composition of n-alkanes in sediments. *Organic*
862 *Geochemistry*, 107, 1–8. <https://doi.org/10.1016/j.orggeochem.2017.01.010>
- 863 Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., & Otto-
864 Bliesner, B. L. (2018). Pliocene and Eocene provide best analogs for near-future
865 climates. *Proceedings of the National Academy of Sciences*, 115(52), 13288–13293.
- 866 Carroll, R. W., Deems, J. S., Niswonger, R., Schumer, R., & Williams, K. H. (2019). The
867 importance of interflow to groundwater recharge in a snowmelt-dominated
868 headwater basin. *Geophysical Research Letters*, 46(11), 5899–5908.
- 869 Carroll, R. W., Gochis, D., & Williams, K. H. (2020). Efficiency of the summer monsoon
870 in generating streamflow within a snow-dominated headwater basin of the Colorado
871 River. *Geophysical Research Letters*, 47(23), e2020GL090856.
- 872 Channell, J. E. T., Singer, B. S., & Jicha, B. R. (2020). Timing of Quaternary
873 geomagnetic reversals and excursions in volcanic and sedimentary archives.
874 *Quaternary Science Reviews*, 228, 106114.
875 <https://doi.org/10.1016/J.QUASCIREV.2019.106114>
- 876 Chiang, J. C. H., Lee, S. Y., Putnam, A. E., & Wang, X. (2014). South Pacific Split Jet,
877 ITCZ shifts, and atmospheric North–South linkages during abrupt climate changes
878 of the last glacial period. *Earth and Planetary Science Letters*, 406, 233–246.
879 <https://doi.org/10.1016/J.EPSL.2014.09.012>
- 880 Choi, J., Lu, J., Son, S. W., Frierson, D. M. W., & Yoon, J. H. (2016). Uncertainty in
881 future projections of the North Pacific subtropical high and its implication for
882 California winter precipitation change. *Journal of Geophysical Research: Atmospheres*, 121(2), 795–806. <https://doi.org/10.1002/2015JD023858>
- 884 Curry, R. R. (1966). Glaciation about 3,000,000 years ago in the Sierra Nevada. *Science*,
885 154(3750), 770–771.
- 886 Damsté, J. S. S., Weber, Y., Zopfi, J., Lehmann, M. F., & Niemann, H. (2022).
887 Distributions and sources of isoprenoidal GDGTs in Lake Lugano and other central
888 European (peri-) alpine lakes: Lessons for their use as paleotemperature proxies.
889 *Quaternary Science Reviews*, 277, 107352.
- 890 De Schepper, S., Groeneveld, J., Naafs, B. D. A., Van Renterghem, C., Hennissen, J.,
891 Head, M. J., et al. (2013). Northern hemisphere glaciation during the globally warm
892 early late Pliocene. *PLoS One*, 8(12), e81508.
- 893 De Jonge, Cindy, Hopmans, E. C., Zell, C. I., Kim, J. H., Schouten, S., & Sinninghe
894 Damsté, J. S. (2014). Occurrence and abundance of 6-methyl branched glycerol
895 dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction.
896 *Geochimica et Cosmochimica Acta*, 141, 97–112.
897 <https://doi.org/10.1016/j.gca.2014.06.013>

- 898 Diefendorf, A. F., Freeman, K. H., Wing, S. L., & Graham, H. V. (2011). Production of
899 n-alkyl lipids in living plants and implications for the geologic past. *Geochimica et*
900 *Cosmochimica Acta*, 75(23), 7472–7485.
- 901 Dolan, A. M., Haywood, A. M., Hunter, S. J., Tindall, J. C., Dowsett, H. J., Hill, D. J., &
902 Pickering, S. J. (2015). Modelling the enigmatic Late Pliocene Glacial Event —
903 Marine Isotope Stage M2. *Global and Planetary Change*, 128, 47–60.
904 <https://doi.org/10.1016/J.GLOPLACHA.2015.02.001>
- 905 Dowsett, H. J., & Caballero Gill, R. P. (2010). Pliocene climate. *Stratigraphy*, 7(2–3),
906 106–110.
- 907 European Space Agency, Sinergise (2021). Copernicus Global Digital Elevation Model.
908 Distributed by OpenTopography. <https://doi.org/10.5069/G9028PQB>. Accessed:
909 2023-05-02
- 910 Farquhar, G., & Richards, R. (1984). Isotopic composition of plant carbon correlates with
911 water-use efficiency of wheat genotypes. *Australian Journal of Plant Physiology*,
912 11(6), 539. <https://doi.org/10.1071/PP9840539>
- 913 Feakins, S. J., & Sessions, A. L. (2010). Controls on the D/H ratios of plant leaf waxes in
914 an arid ecosystem. *Geochimica et Cosmochimica Acta*, 74(7), 2128–2141.
915 <https://doi.org/10.1016/J.GCA.2010.01.016>
- 916 Feakins, S. J., Kirby, M. E., Cheetham, M. I., Ibarra, Y., & Zimmerman, S. R. H. (2014).
917 Fluctuation in leaf wax D/H ratio from a southern California lake records significant
918 variability in isotopes in precipitation during the late Holocene. *Organic*
919 *Geochemistry*, 66, 48–59. <https://doi.org/10.1016/J.ORGGEOCHEM.2013.10.015>
- 920 Feakins, S. J., Wu, M. S., Ponton, C., & Tierney, J. E. (2019). Biomarkers reveal abrupt
921 switches in hydroclimate during the last glacial in southern California. *Earth and*
922 *Planetary Science Letters*, 515, 164–172. <https://doi.org/10.1016/j.epsl.2019.03.024>
- 923 Friedman, I., Smith, G. I., Gleason, J. D., Warden, A., & Harris, J. M. (1992). Stable
924 isotope composition of waters in southeastern California 1. Modern precipitation.
925 *Journal of Geophysical Research*, 97(D5), 5795. <https://doi.org/10.1029/92JD00184>
- 926 Friedman, I., Harris, J. M., Smith, G. I., & Johnson, C. A. (2002). Stable isotope
927 composition of waters in the Great Basin, United States 1. Air-mass trajectories.
928 *Journal of Geophysical Research: Atmospheres*, 107(D19), ACL 14-1.
929 <https://doi.org/10.1029/2001JD000565>
- 930 Fu, M., Cane, M. A., Molnar, P., & Tziperman, E. (2022). Warmer Pliocene upwelling
931 site SST leads to wetter subtropical coastal areas: A positive feedback on
932 SST. *Paleoceanography and Paleoclimatology*, 37(2), e2021PA004357

- 933 Gagnon, C., Butler, K., Gaviria, E., Terrazas, A., Gao, A., Bhattacharya, T., et al. (2022).
934 *Paleoclimate controls on lithium enrichment in Great Basin Pliocene-Pleistocene*
935 *lacustrine clays*. <https://doi.org/10.31223/X54D15>
- 936 Gao, C., McAndrews, J. H., Wang, X., Menzies, J., Turton, C. L., Wood, B. D., et al.
937 (2012). Glaciation of North America in the James Bay Lowland, Canada, 3.5 Ma.
938 *Geology*, 40(11), 975–978. <https://doi.org/10.1130/G33092.1>
- 939 Hammond, W. C., Blewitt, G., Li, Z., Plag, H. P., & Kreemer, C. (2012). Contemporary
940 uplift of the Sierra Nevada, western United States, from GPS and inSAR
941 measurements. *Geology*, 40(7), 667–670. <https://doi.org/10.1130/G32968.1>
- 942 Hay, R. L., & Guldman, S. G. (1987). Diagenetic alteration of silicic ash in Searles Lake,
943 California. *Clays and Clay Minerals*, 35, 449–457.
- 944 Hay, R. L., Guldman, S. G., Matthews, J. C., Lander, R. H., Duffin, M. E., & Kyser, T.
945 K. (1991). Clay mineral diagenesis in core KM-3 of Searles Lake, California. *Clays*
946 *and Clay Minerals*, 39(1), 84–96. <https://doi.org/10.1346/CCMN.1991.0390111>
- 947 Haywood, A. M., Dolan, A. M., Pickering, S. J., Dowsett, H. J., Mcclymont, E. L.,
948 Prescott, C. L., et al. (2013). On the identification of a Pliocene time slice for data-
949 model comparison. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 371(2001).
950 <https://doi.org/10.1098/rsta.2012.0515>
- 952 Haywood, A. M., Dowsett, H. J., & Dolan, A. M. (2016). Integrating geological archives
953 and climate models for the mid-Pliocene warm period. *Nature Communications*
954 2016 7:1, 7(1), 1–14. <https://doi.org/10.1038/ncomms10646>
- 955 Haywood, A. M., Tindall, J. C., Dowsett, H. J., Dolan, A. M., Foley, K. M., Hunter, S. J.,
956 et al. (2020). The Pliocene Model Intercomparison Project Phase 2: large-scale
957 climate features and climate sensitivity. *Climate of the Past*, 16(6), 2095–2123.
- 958 Heusser, L. E. (1981). Pollen Analysis of Selected Samples from Deep Sea Drilling
959 Project Leg 63 vol. 28. Initial Report of DSDP; 1981. p. 559–63.
960 <https://doi.org/10.2973/dsdp.proc.63.115.1981>
- 961 Hildreth, W., Fierstein, J., & Calvert, A. T. (2018). McGee Till—oldest glacial deposit in
962 the Sierra Nevada, California—and Quaternary evolution of the rangefront
963 escarpment. *Quaternary Science Reviews*, 198, 242–265.
964 <https://doi.org/10.1016/J.QUASCIREV.2018.08.008>
- 965 Hopmans, E. C., Schouten, S., & Sinninghe Damsté, J. S. (2016). The effect of improved
966 chromatography on GDGT-based palaeoproxies. *Organic Geochemistry*, 93, 1–6.
967 <https://doi.org/10.1016/j.orggeochem.2015.12.006>

- 968 Hren, M. T., Pagani, M., Erwin, D. M., & Brandon, M. (2010). Biomarker reconstruction
969 of the early Eocene paleotopography and paleoclimate of the northern Sierra
970 Nevada. *Geology*, 38(1), 7–10. <https://doi.org/10.1130/G30215.1>
- 971 Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe Damsté, J. S.,
972 & Schouten, S. (2006). An improved method to determine the absolute abundance of
973 glycerol dibiphytanyl glycerol tetraether lipids. *Organic Geochemistry*, 37(9), 1036–
974 1041. <https://doi.org/10.1016/J.ORGGEOCHEM.2006.05.008>
- 975 Ibarra, D. E., Oster, J. L., Winnick, M. J., Caves Rugenstein, J. K., Byrne, M. P., &
976 Chamberlain, C. P. (2018). Warm and cold wet states in the western United States
977 during the Pliocene–Pleistocene. *Geology*, 46(4), 355–358.
978 <https://doi.org/10.1130/G39962.1>
- 979 Jacobel, A. W., McManus, J. F., Anderson, R. F., & Winckler, G. (2016). Large deglacial
980 shifts of the Pacific intertropical convergence zone. *Nature Communications*, 7(1),
981 1–7.
- 982 Jayko, A. S., Forester, R. M., Kaufman, D. S., Phillips, F. M., Yount, J. C., McGeehin, J.,
983 & Mahan, S. A. (2008). Late Pleistocene lakes and wetlands, Panamint Valley, Inyo
984 County, California. In *Special Paper of the Geological Society of America* (Vol.
985 439, pp. 151–184). [https://doi.org/10.1130/2008.2439\(07\)](https://doi.org/10.1130/2008.2439(07))
- 986 Jayko, A. S., Bacon, S. N., Reheis, M. C., Hershler, R., & Miller, D. M. (2008). Late
987 Quaternary, MIS 6–8 shoreline features of pluvial Owens Lake, Owens Valley,
988 eastern California. *SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA*,
989 439, 185.
- 990 Keisling, B. A., Castañeda, I. S., & Brigham-Grette, J. (2017). Hydrological and
991 temperature change in Arctic Siberia during the intensification of Northern
992 Hemisphere Glaciation. *Earth and Planetary Science Letters*, 457, 136–148.
993 <https://doi.org/10.1016/J.EPSL.2016.09.058>
- 994 Knott, J. R., Machette, M. N., Klinger, R. E., Sarna-Wojcicki, A. M., Liddicoat, J. C.,
995 Tinsley, J. C., et al. (2008). Reconstructing late Pliocene to middle Pleistocene
996 Death Valley lakes and river systems as a test of pupfish (Cyprinodontidae)
997 dispersal hypotheses. In *Special Paper of the Geological Society of America* (Vol.
998 439, pp. 1–26). Geological Society of America.
999 [https://doi.org/10.1130/2008.2439\(01\)](https://doi.org/10.1130/2008.2439(01))
- 1000 Knott, J. R., Machette, M. N., Wan, E., Klinger, R. E., Liddicoat, J. C., Sarna-Wojcicki,
1001 A. M., et al. (2018). Late Neogene–Quaternary tephrochronology, stratigraphy, and
1002 paleoclimate of Death Valley, California, USA. *GSA Bulletin*, 130(7–8), 1231–1255.
1003 <https://doi.org/10.1130/B31690.1>
- 1004 Knott, J. R., Wan, E., Deino, A. L., Casteel, M., Reheis, M. C., Phillips, F. M., et al.
1005 (2019). Lake Andrei: A pliocene pluvial lake in Eureka Valley, eastern California.

- 1006 *From Saline to Freshwater: The Diversity of Western Lakes in Space and Time*, S.
1007 Starratt and MR Rosen, Eds, 536, 125–142.
- 1008 Knott, J. R., Liddicoat, J. C., Coe, R. S., & Negrini, R. M. (2021). Radiocarbon and
1009 paleomagnetic chronology of the Searles Lake Formation, San Bernardino County,
1010 California, USA. *From Saline to Freshwater: The Diversity of Western Lakes in*
1011 *Space and Time*, 81–95. [https://doi.org/10.1130/2018.2536\(06\)](https://doi.org/10.1130/2018.2536(06))
- 1012 De La Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., & Foster, G. L. (2020).
1013 Atmospheric CO₂ during the Mid-Piacenzian Warm Period and the M2 glaciation.
1014 *Scientific Reports*, 10(1), 1–8.
- 1015 Lachniet, M. S., Denniston, R. F., Asmerom, Y., & Polyak, V. J. (2014). Orbital control
1016 of western North America atmospheric circulation and climate over two glacial
1017 cycles. *Nature Communications*, 5(1), 3805. <https://doi.org/10.1038/ncomms4805>
- 1018 Liddicoat, J. C., Opdyke, N. D., & Smith, G. I. (1980). Palaeomagnetic polarity in a 930-
1019 m core from Searles Valley, California. *Nature*, 286(5768), 22–25.
1020 <https://doi.org/10.1038/286022a0>
- 1021 Lindberg, K. R., Daniels, W. C., Castañeda, I. S., & Brigham-Grette, J. (2022).
1022 Biomarker proxy records of Arctic climate change during the Mid-Pleistocene
1023 transition from Lake El'gygytgyn (Far East Russia). *Climate of the Past*, 18(3), 559–
1024 577.
- 1025 Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally
1026 distributed benthic δ 18O records. *Paleoceanography*, 20(1), 1–17.
1027 <https://doi.org/10.1029/2004PA001071>
- 1028 Lofverstrom, M. (2020). A dynamic link between high-intensity precipitation events in
1029 southwestern North America and Europe at the Last Glacial Maximum. *Earth and*
1030 *Planetary Science Letters*, 534, 116081.
- 1031 Lora, J. M., Mitchell, J. L., Risi, C., & Tripati, A. E. (2017). North Pacific atmospheric
1032 rivers and their influence on western North America at the Last Glacial
1033 Maximum. *Geophysical Research Letters*, 44(2), 1051–105.
- 1034 Lowenstein, T. K., Dolginko, L. A. C., & García-Veigas, J. (2016). Influence of
1035 magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake,
1036 California. *Bulletin*, 128(9–10), 1555–1568.
- 1037 Mack, G. H., Giordano, T. H., Cole, D. R., James, W. C., & Salyards, S. L. (1994). Stable
1038 oxygen and carbon isotopes of pedogenic carbonate as indicators of Plio-Pleistocene
1039 paleoclimate in the southern Rio Grande Rift, south-central New Mexico. *American*
1040 *Journal of Science*; (United States), 294(5).

- 1041 Martínez-Botí, M. A., Foster, G. L., Chalk, T. B., Rohling, E. J., Sexton, P. F., Lunt, D.
1042 J., et al. (2015). Plio-Pleistocene climate sensitivity evaluated using high-resolution
1043 CO₂ records. *Nature*, 518(7537), 49–54. <https://doi.org/10.1038/nature14145>
- 1044 Martínez-Sosa, P., Tierney, J. E., Stefanescu, I. C., Dearing Crampton-Flood, E.,
1045 Shuman, B. N., & Routson, C. (2021). A global Bayesian temperature calibration for
1046 lacustrine brGDGTs. *Geochimica et Cosmochimica Acta*, 305, 87–105.
1047 <https://doi.org/10.1016/J.GCA.2021.04.038>
- 1048 McClymont, E. L., Ho, S. L., Ford, H. L., Bailey, I., Berke, M. A., Bolton, C. T., ... &
1049 Tangunan, D. (2023). Climate Evolution through the onset and intensification of
1050 Northern Hemisphere Glaciation. *Reviews of Geophysics*, e2022RG000793.
- 1051 McGee, D., Moreno-Chamarro, E., Marshall, J., & Galbraith, E. D. (2018a). Western
1052 U.S. lake expansions during Heinrich stadials linked to Pacific Hadley circulation.
1053 *Science Advances*, 4(11).
1054 https://doi.org/10.1126/SCIAADV.AAV0118/SUPPL_FILE/AAV0118_SM.PDF
- 1055 McGee, D., Moreno-Chamarro, E., Marshall, J., & Galbraith, E. D. (2018b). Western
1056 U.S. lake expansions during Heinrich stadials linked to Pacific Hadley circulation.
1057 *Science Advances*, 4(11), eaav0118. <https://doi.org/10.1126/sciadv.aav0118>
- 1058 McPhillips, D., & Brandon, M. T. (2010). Using tracer thermochronology to measure
1059 modern relief change in the Sierra Nevada, California. *Earth and Planetary Science
1060 Letters*, 296(3–4), 373–383. <https://doi.org/10.1016/j.epsl.2010.05.022>
- 1061 Menemenlis, S., White, S. M., Ibarra, D. E., & Lora, J. M. (2022). A proxy-model
1062 comparison for mid-Pliocene warm period hydroclimate in the Southwestern US.
1063 *Earth and Planetary Science Letters*, 596, 117803.
- 1064 Mix, H. T., Ibarra, D. E., Mulch, A., Graham, S. A., & Page Chamberlain, C. (2016). A
1065 hot and high Eocene Sierra Nevada. *Bulletin of the Geological Society of America*,
1066 128(3–4), 531–542. <https://doi.org/10.1130/B31294.1>
- 1067 Mix, H. T., Caves Rugenstein, J. K., Reilly, S. P., Ritch, A. J., Winnick, M. J., Kukla, T.,
1068 & Chamberlain, C. P. (2019). Atmospheric flow deflection in the late Cenozoic
1069 Sierra Nevada. *Earth and Planetary Science Letters*, 518, 76–85.
1070 <https://doi.org/10.1016/j.epsl.2019.04.050>
- 1071 Molnar, P., & England, P. (1990). Late Cenozoic uplift of mountain ranges and global
1072 climate change: chicken or egg? *Nature* 1990 346:6279, 346(6279), 29–34.
1073 <https://doi.org/10.1038/346029a0>
- 1074 Moseley, G. E., Edwards, R. L., Wendt, K. A., Cheng, H., Dublyansky, Y., Lu, Y., et al.
1075 (2016). Reconciliation of the Devils Hole climate record with orbital forcing.
1076 *Science (New York, N.Y.)*, 351(6269), 165–8.
1077 <https://doi.org/10.1126/science.aad4132>

- 1078 Mulch, A., Sarna-Wojcicki, A. M., Perkins, M. E., & Chamberlain, C. P. (2008). A
1079 Miocene to Pleistocene climate and elevation record of the Sierra Nevada
1080 (California). *Proceedings of the National Academy of Sciences of the United States*
1081 *of America*, 105(19), 6819–6824. <https://doi.org/10.1073/pnas.0708811105>
- 1082 Ogg, J. G. (2020). Geomagnetic Polarity Time Scale. *Geologic Time Scale 2020*, 159–
1083 192. <https://doi.org/10.1016/B978-0-12-824360-2.00005-X>
- 1084 Olson, K. J., & Lowenstein, T. K. (2021). Searles Lake evaporite sequences: Indicators of
1085 late Pleistocene/Holocene lake temperatures, brine evolution, and pCO₂. *GSA*
1086 *Bulletin*. <https://doi.org/10.1130/B35857.1>
- 1087 Olson, K. J., Guillerm, E., Peaple, M. D., Lowenstein, T. K., Gardien, V., Caupin, F., et
1088 al. (2023). Application of Brillouin thermometry to latest Pleistocene and Holocene
1089 halite from Searles Lake, California, USA. *Earth and Planetary Science Letters*,
1090 602, 117913.
- 1091 Oster, J. L., Ibarra, D. E., Winnick, M. J., & Maher, K. (2015). Steering of westerly
1092 storms over western North America at the Last Glacial Maximum. *Nature*
1093 *Geoscience*, 8(3), 201–205
- 1094 Peaple, Mark D., Tierney, J. E., McGee, D., Lowenstein, T. K., Bhattacharya, T., &
1095 Feakins, S. J. (2021). Identifying plant wax inputs in lake sediments using machine
1096 learning. *Organic Geochemistry*, 156, 104222.
1097 <https://doi.org/10.1016/j.orggeochem.2021.104222>
- 1098 Peaple, Mark D., Bhattacharya, T., Lowenstein, T. K., McGee, D., Olson, K. J., Stroup, J.
1099 S., et al. (2022). Biomarker and Pollen Evidence for Late Pleistocene Pluvials in the
1100 Mojave Desert. *Paleoceanography and Paleoceanography*, 37(10), e2022PA004471.
1101 <https://doi.org/10.1029/2022pa004471>
- 1102 Peaple, M.D.; Bhattacharya, T.; Tierney, J.E.; Knott, J.R.; Lowenstein, T.K.; Feakins,
1103 S.J. (2022-08-15): NOAA/WDS Paleoclimatology - Searles Valley Plant Wax
1104 Carbon and Hydrogen Isotopes and GDGTs during the Pliocene. [Dataset]. NOAA
1105 National Centers for Environmental Information. <https://doi.org/10.25921/cmfc-b433>
- 1107 Post, F. J. (1977). The microbial ecology of the Great Salt Lake. *Microbial Ecology* 1977
1108 3:2, 3(2), 143–165. <https://doi.org/10.1007/BF02010403>
- 1109 Qian, S., Yang, H., Dong, C., Wang, Y., Wu, J., Pei, H., et al. (2019). Rapid response of
1110 fossil tetraether lipids in lake sediments to seasonal environmental variables in a
1111 shallow lake in central China: Implications for the use of tetraether-based proxies.
1112 *Organic Geochemistry*, 128, 108–121.
- 1113 Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A., & Wara, M. W. (2004).
1114 Regional climate shifts caused by gradual global cooling in the Pliocene epoch.
1115 *Nature*, 429(6989), 263–267.

- 1116 Raymo, M. E., Kozdon, R., Evans, D., Lisiecki, L., & Ford, H. L. (2018). The accuracy
1117 of mid-Pliocene $\delta^{18}\text{O}$ -based ice volume and sea level reconstructions. *Earth-*
1118 *Science Reviews*, 177, 291–302. <https://doi.org/10.1016/J.EARSCIREV.2017.11.022>
- 1119 Reheis, M. C., Slate, J. L., Sarna-Wojcicki, A. M., & Meyer, C. E. (1993). A late
1120 Pliocene to middle Pleistocene pluvial lake in Fish Lake Valley, Nevada and
1121 California. *Geological Society of America Bulletin*, 105(7), 953–967.
- 1122 Remeika, P., Fischbein, I. W., & Fischbein, S. A. (1988). Lower Pliocene petrified wood
1123 from the Palm Spring Formation, Anza Borrego Desert State Park, California.
1124 *Review of Palaeobotany and Palynology*, 56(3–4), 183–198.
1125 [https://doi.org/10.1016/0034-6667\(88\)90057-7](https://doi.org/10.1016/0034-6667(88)90057-7)
- 1126 Rittase, W. M., Walker, J. D., Andrew, J., Kirby, E., & Wan, E. (2020). Pliocene–
1127 Pleistocene basin evolution along the Garlock fault zone, Pilot Knob Valley,
1128 California. *Geosphere*, 16(5), 1208–1224.
1129 <https://doi.org/10.1130/GES02209.1>
- 1130 Russell, I. C. (1885). Geological history of Lake
1131 Lahontan, a Quaternary lake of northwestern Nevada. *Monographs of the United*
States Geological Survey. <https://doi.org/10.3133/m11>
- 1132 Sánchez-Montes, M. L., McClymont, E. L., Lloyd, J. M., Müller, J., Cowan, E. A., &
1133 Zorzi, C. (2020). Late Pliocene Cordilleran Ice Sheet development with warm
1134 northeast Pacific sea surface temperatures. *Climate of the Past*, 16(1), 299–313
- 1135 De Schepper, S., Gibbard, P. L., Salzmann, U., & Ehlers, J. (2014). A global synthesis of
1136 the marine and terrestrial evidence for glaciation during the Pliocene Epoch. *Earth-*
1137 *Science Reviews*, 135, 83–102.
- 1138 Schouten, S., Hopmans, E. C., Schefuß, E., & Sinninghe Damsté, J. S. (2002).
1139 Distributional variations in marine crenarchaeotal membrane lipids: a new tool for
1140 reconstructing ancient sea water temperatures? *Earth and Planetary Science Letters*,
1141 204, 265–274. [https://doi.org/10.1016/S0012-821X\(03\)00193-6](https://doi.org/10.1016/S0012-821X(03)00193-6)
- 1142 Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., et al. (2007). Model
1143 projections of an imminent transition to a more arid climate in southwestern North
1144 America. *Science*, 316(5828), 1181–1184.
- 1145 Shackleton, N. J., & Opdyke, N. D. (1977). Oxygen isotope and palaeomagnetic evidence
1146 for early Northern Hemisphere glaciation. *Nature*, 270(5634), 216–219.
- 1147 Smith, G. I. (2009). Late Cenozoic geology and lacustrine history of Searles Valley, Inyo
1148 and San Bernardino counties, California. *US Geological Survey Professional Paper*.
1149 <https://doi.org/10.3133/pp1727>
- 1150 Smith, G.I. (1991). Stratigraphy and chronology of Quaternary-age lacustrine deposits.
1151 *Quaternary nonglacial geology: Conterminous U.S.*, Morrison, R.B., ed., 339–352.

- 1152 Smith, G. I., Barczak, V. J., Moulton, G. F., & Liddicoat, J. C. (1983). *Core KM-3, a*
1153 *surface-to-bedrock record of late Cenozoic sedimentation in Searles Valley,*
1154 *California. Professional Paper.* <https://doi.org/10.3133/PP1256>
- 1155 So, R. T., Lowenstein, T. K., Jagniecki, E., Tierney, J. E., & Feakins, S. J. (2023).
1156 Holocene water balance variations in Great Salt Lake, Utah: Application of GDGT
1157 indices and the ACE salinity proxy. *Paleoceanography and Paleoclimatology*, 38,
1158 *e2022PA004558.* <https://doi.org/10.1029/2022PA004558>
- 1159 Solomon, S., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate
1160 change due to carbon dioxide emissions. *Proceedings of the National Academy of*
1161 *Sciences*, 106(6), 1704–1709.
- 1162 Stock, G. M., Anderson, R. S., & Finkel, R. C. (2004). Pace of landscape evolution in the
1163 Sierra Nevada, California, revealed by cosmogenic dating of cave sediments.
1164 *Geology*, 32(3), 193–196. <https://doi.org/10.1130/G20197.1>
- 1165 Stroup, J. S., Olson, K. J., Lowenstein, T. K., Jost, A. B., Mosher, H. M., Peaple, M. D.,
1166 et al. (2023). A >200 ka U-Th Based Chronology from Lacustrine Evaporites,
1167 Searles Lake, CA. *Geochemistry, Geophysics, Geosystems*, 24(3), e2022GC010685.
1168 <https://doi.org/https://doi.org/10.1029/2022GC010685>
- 1169 Tan, N., Ramstein, G., Dumas, C., Contoux, C., Ladant, J.-B., Sepulchre, P., et al. (2017).
1170 Exploring the MIS M2 glaciation occurring during a warm and high atmospheric
1171 CO₂ Pliocene background climate. *Earth and Planetary Science Letters*, 472, 266–
1172 276.
- 1173 Thompson, R. S. (1991). Pliocene environments and climates in the western United
1174 States. *Quaternary Science Reviews*, 10(2–3), 115–132.
1175 [https://doi.org/10.1016/0277-3791\(91\)90013-K](https://doi.org/10.1016/0277-3791(91)90013-K)
- 1176 Tierney, J. E., & Tingley, M. P. (2018). BAYSPLINE: A New Calibration for the
1177 Alkenone Paleothermometer. *Paleoceanography and Paleoclimatology*, 33(3), 281–
1178 301. <https://doi.org/10.1002/2017PA003201>
- 1179 Western Regional Climate Center. (2022). *Cooperative Climatological Data Summaries*
1180 Retrieved from <https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca9035>
- 1181 Truong, C., Oudre, L., & Vayatis, N. (2020). Selective review of offline change point
1182 detection methods. *Signal Processing*, 167, 107299.
1183 <https://doi.org/10.1016/j.sigpro.2019.107299>
- 1184 Turich, C., & Freeman, K. H. (2011). Archaeal lipids record paleosalinity in hypersaline
1185 systems. *Organic Geochemistry*, 42(9), 1147–1157.
1186 <https://doi.org/10.1016/J.ORGGEOCHEM.2011.06.002>
- 1187 Wambui, G. D., Waititu, G. A., & Wanjoya, A. (2015). The power of the pruned exact
1188 linear time (PELT) test in multiple changepoint detection. *American Journal of*

- 1189 *Theoretical and Applied Statistics*, 4(6), 581.
1190 <https://doi.org/10.11648/j.ajtas.20150406.30>
1191 Walker, J. D., Bidgoli, T. S.,
1192 Didericksen, B. D., Stockli, D. F., & Andrew, J. E. (2014). Middle Miocene to
1193 recent exhumation of the Slate Range, eastern California, and implications for the
1194 timing of extension and the transition to transtension. *Geosphere*, 10(2), 276–291.
1194 <https://doi.org/10.1130/GES00947.1>
- 1195 Wang, H., Liu, W., He, Y., Zhou, A., Zhao, H., Liu, H., et al. (2021). Salinity-controlled
1196 isomerization of lacustrine brGDGTs impacts the associated MBT_{5ME}' terrestrial
1197 temperature index. *Geochimica et Cosmochimica Acta*, 305, 33–48.
1198 <https://doi.org/10.1016/J.GCA.2021.05.004>
- 1199 Wang, Y., Cerling, T. E., Quade, J., Bowman, J. R., Smith, G. A., & Lindsay, E. H.
1200 (1993). Stable isotopes of paleosols and fossil teeth as paleoecology and
1201 paleoclimate indicators: an example from the St. David Formation, Arizona.
1202 *Washington DC American Geophysical Union Geophysical Monograph Series*, 78,
1203 241–248.
- 1204 Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., et al.
1205 (2020). An astronomically dated record of Earth's climate and its predictability over
1206 the last 66 million years. *Science*, 369(6509), 1383–1387.
- 1207 Western Regional Climate Center. (2013). *Cooperative Climatological Data Summaries*.
1208 Retrieved from <https://wrcc.dri.edu/>
- 1209 William C. Daniels, Isla S. Castañeda, Jeffrey M. Salacup, M. Helen Habicht, Kurt R.
1210 Lindberg, Julie Brigham-Grette. 2022 Archaeal lipids reveal climate-driven changes
1211 in microbial ecology at Lake El'gygytgyn (Far East Russia) during the Plio-
1212 Pleistocene. "Journal of Quaternary Science ", vol 37, number 5, 900-914
- 1213 Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abatzoglou, J. T., Bolles, K., et
1214 al. (2020). Large contribution from anthropogenic warming to an emerging North
1215 American megadrought. *Science*, 368(6488), 314–318.
1216 <https://doi.org/10.1126/SCIENCE.AAZ9600>
- 1217 Winters, Y. D., Lowenstein, T. K., & Timofeeff, M. N. (2013). Identification of
1218 Carotenoids in Ancient Salt from Death Valley, Saline Valley, and Searles Lake,
1219 California, Using Laser Raman Spectroscopy. *Astrobiology*, 13(11), 1065–1080.
1220 <https://doi.org/10.1089/ast.2012.0952>
- 1221 Wu, J., Yang, H., Pancost, R. D., Naafs, B. D. A., Qian, S., Dang, X., et al. (2021).
1222 Variations in dissolved O₂ in a Chinese lake drive changes in microbial
1223 communities and impact sedimentary GDGT distributions. *Chemical Geology*, 579,
1224 120348.

1225 Wu, M. S., West, A. J., & Feakins, S. J. (2019). Tropical soil profiles reveal the fate of
1226 plant wax biomarkers during soil storage. *Organic Geochemistry*, 128, 1–15.
1227 <https://doi.org/10.1016/j.orggeochem.2018.12.011>

1228

1229 **References from the supporting information**

- 1230 Mix, H. T., Caves Rugenstein, J. K., Reilly, S. P., Ritch, A. J., Winnick, M. J., Kukla, T.,
1231 & Chamberlain, C. P. (2019). Atmospheric flow deflection in the late Cenozoic
1232 Sierra Nevada. *Earth and Planetary Science Letters*, 518, 76–85.
1233 <https://doi.org/10.1016/j.epsl.2019.04.050>
- 1234 Jennings, C.W., 1977, Geologic Map of California: California Geological Survey
1235 Geologic Data Map No. 2; <https://maps.conservations.ca.gov/cgs/gmc/>.
- 1236 Cox, B.F., Hillhouse, J.W., and Owen, L.A., 2003, Pliocene and Pleistocene evolution of
1237 the Mojave River, and associated tectonic development of the Transverse Ranges
1238 and Mojave Desert, based on borehole stratigraphy studies and mapping of
1239 landforms and sediments near Victorville, California, in Enzel, Y., Wells, S.G., and
1240 Lancaster, N., eds., *Paleoenvironments and paleohydrology of the Mojave and*
1241 *southern Great Basin Deserts*: Boulder, Colorado, Geological Society of America
1242 Special Paper 368, p. 1-42.
- 1243 Knott, J.R., Machette, M.N., Wan, E., Klinger, R.E., Liddicoat, J.C., Sarna-Wojcicki,
1244 A.M., Fleck, R.J., Deino, A.L., Geissman, J.W., Slate, J.L., Wahl, D.B., Wernicke,
1245 B.P., Wells, S.G., Tinsley, J.C. III, Hathaway, J.C., and Weamer, V.M., 2018. Late
1246 Neogene-Quaternary tephrochronology, stratigraphy and paleoclimate of Death
1247 Valley, CA, U.S.A. *Geological Society of America Bulletin* 130 (7/8), 1231-1255,
1248 doi.org/10.1130/B31690.1.
- 1249 Knott, J.R., Sarna-Wojcicki, A.M., Meyer, C.E., Tinsley, J.C., III, Wells, S.G., and Wan,
1250 E., 1999. Late Cenozoic stratigraphy and tephrochronology of the western Black
1251 Mountains piedmont, Death Valley, California: Implications for the tectonic
1252 development of Death Valley. In Wright, L.A., and Troxel, B.W., (Eds.), *Cenozoic*
1253 *Basins of the Death Valley Region*, Volume Special Paper 333: Geological Society
1254 of America, 345-366, [doi:10.1130/0-8137-2333-7.345](https://doi.org/10.1130/0-8137-2333-7.345).
- 1255 Knott, J.R., Liddicoat, J.C., Coe, R.S., and Negrini, R.M., 2019a. Radiocarbon and
1256 paleomagnetic chronology of the Searles Lake Formation, San Bernardino County,
1257 California, U.S.A. In, Starratt, S.W. and Rosen, M.R., (Eds.), *From Saline to*
1258 *Freshwater: The Diversity of Western Lakes in Space and Time*: Geological Society
1259 of America Special Paper 536, 81-95, [doi.org/10.1130/2018.2536\(06\)](https://doi.org/10.1130/2018.2536(06)).
- 1260 Knott, J.R., Wan, E., Deino, A.L., Casteel, M., Reheis, M.C., Phillips, F.M., Walkup, L.,
1261 McCarty, K., Manoukian, D.N., and Nunez, E., 2019b. Lake Andrei: A Pliocene

1262 pluvial lake in Eureka Valley, eastern California. In Starratt, S.W. and Rosen, M.R.,
1263 (Eds.), From Saline to Freshwater: The Diversity of Western Lakes in Space and
1264 Time: Geological Society of America Special Paper 536, 125-142,
1265 doi.org/10.1130/2018.2536(08).

1266 Lutz, B., Knott, J.R., Phillips, F., Heizler, M.T., Heitkamp, K.A., Jr., Griffie, E.L., Asxen,
1267 G.A. and Calzia, J.P., 2022. Tectonically controlled drainage fragmentation in the
1268 southwestern Great Basin, USA. Geological Society of America Bulletin, doi:
1269 10.1130/B36563.1.

1270

1271

1272

1273

1274 **Table and Figure captions:**

1275 **Table 1.** Summary of the key findings

Name	Age (Ma)	T (°C)	Salinity	P-E	δD _{precip} (‰)	δ ¹³ C (‰)
MIS M2- pluvial	3.370-3.264	21±3	Low	Much wetter than modern	Unchanged	Unchanged
Extended mPWP	3.264-2.950	25±3	Moderate	Slightly wetter than modern	Unchanged	Unchanged

1276

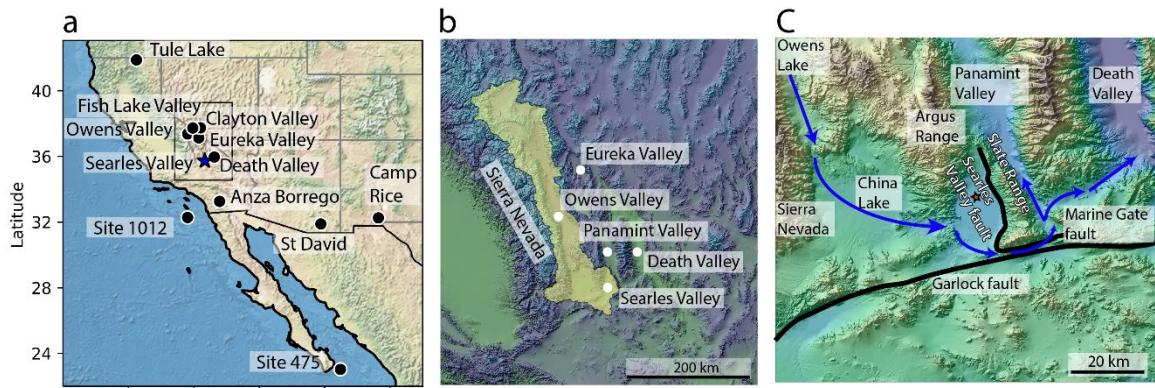
1277 **Figure 1.** a) Map of southwestern North America showing Searles Lake (star) and other
1278 late Pliocene sites (circles) referred to in this study. Light grey lines represent USA state
1279 boundaries. b) Map of the western Great Basin region highlighting late Pliocene sites and
1280 the location of the Sierra Nevada (mountain range). Catchment of Pliocene Searles
1281 Valley highlighted in yellow and calculated using the 90 m Copernicus digital elevation
1282 model (European Space Agency, Sinergise 2021). c) Map of local Searles Valley region,
1283 highlighting tectonic features related to the development of Searles Valley. KM3 core site
1284 represented by an orange star.

1285 **Figure 2.** a) Age model generated using BACON (black line), 95% confidence interval
1286 (grey shading) and paleomagnetic datums (Liddicoat et al., 1980) updated to the
1287 GPTS2020 (Channell et al., 2020; Ogg, 2020) (red circles). This study focused on the late
1288 Pliocene perennial lake phase (blue shading), terminating 18 m below the Gauss-
1289 Matuyama boundary (labelled G/M, 522.9 m, 2.606 Ma, 3 ka 1 σ) (Liddicoat et al., 1980;
1290 Smith et al., 1983). Left: Reconstructed Searles Lake environment (Smith et al., 1983).
1291 Right: Paleomagnetic reversals. b) Section of age model covering samples in this study.
1292 Tuffs at 681.5 m and 693.4 m (blue crosses) correlate with tuffs of Mesquite Spring
1293 (3.3032 +/- 0.0025 Ma; Deino et al., 2018) and Zabriskie Wash (3.335 +/- 0.002 Ma;
1294 Knott et al., 2018) in Death Valley providing independent age constraints.

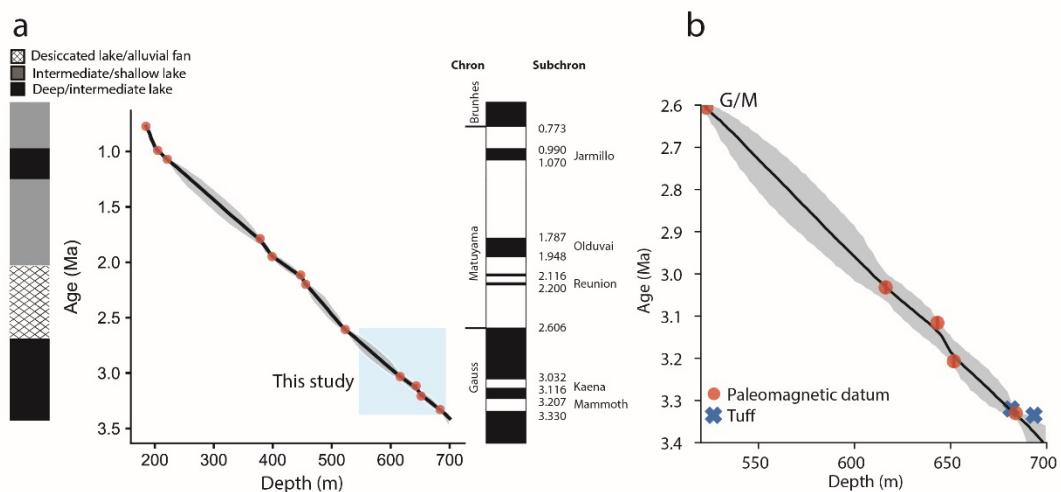
1295

1296 **Figure 3.** Searles Lake proxy reconstructions for the Late Pliocene. Comparison of a)
1297 summary of lake depth from Eureka Valley's Lake Andrei (Knott et al., 2019), Death
1298 Valley (Knott et al., 2018), and Searles Lake (Smith et al., 1983). b) Global composite
1299 record of benthic foraminiferal carbonate $\delta^{18}\text{O}$ binned, resampled and smoothed with a
1300 locally weighted function to 20 ka resolution (Westerhold et al., 2020). Searles Lake
1301 proxy reconstructions from core KM-3 (this study) including: c) $\sum\text{brGDGT}$ and
1302 $\sum\text{isoGDGT}$ concentrations (note different axes), d) ACE and $\text{IR}_{6+7\text{Me}}$ indices of salinity,
1303 e) BayMBT₀ temperature reconstruction of mean air temperature for months above
1304 freezing, f) $\sum\text{C}_{22-32}$ alkanoic acid concentration and Average chain length (ACL) of *n*-
1305 alkanoic acids, g) $\delta^{13}\text{C}$ value of C₂₈ *n*-alkanoic acid (light green) and C₃₀ *n*-alkanoic acid
1306 (dark green), and h) δD value of precipitation (light and dark blue as for h). Blue shading
1307 represents Searles Lake deep lake period (3.370–3.264 Ma) overlapping with the
1308 Mammoth reverse chron. Yellow shading represents the extended mid-Pliocene warm
1309 period (3.264–2.950 Ma). Paleomagnetic age boundaries are shown on the x axis. GDGT
1310 indices only reported when numerator and denominator peaks present.

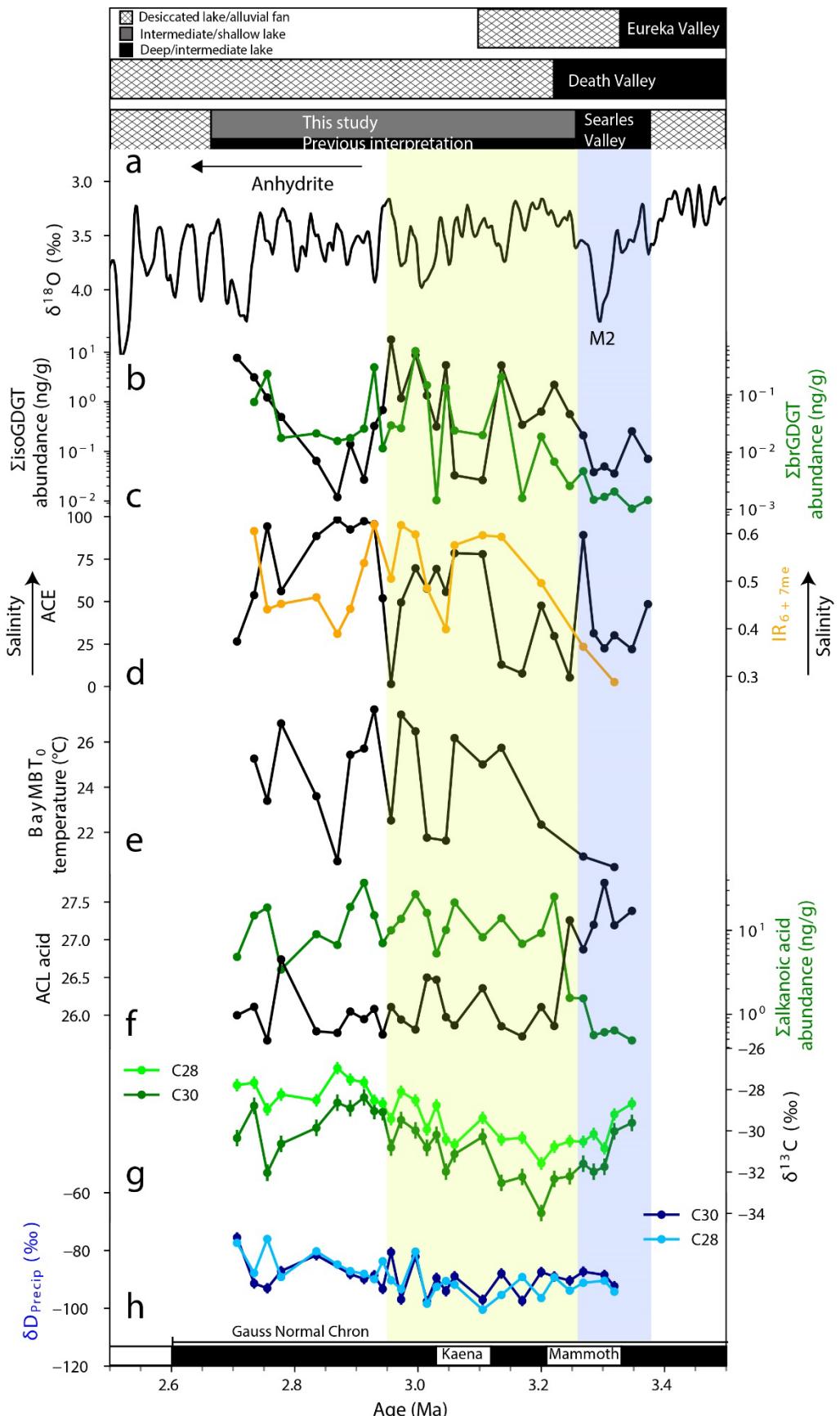
1311 **Figure 4.** Global and regional context for comparison to Searles Lake GDGT proxy
1312 reconstructions for the Late Pliocene. a) Summary of Eureka Valley, Death Valley and
1313 Searles Valley paleoenvironments. b) Global composite record of benthic foraminiferal
1314 carbonate $\delta^{18}\text{O}$ binned, resampled and smoothed with a locally weighted function to 20
1315 ka resolution (Westerhold et al., 2020). Annotated with the names of the MIS MG4, MG2
1316 and M2 glacial events. c) Lake El'gytgyn, Siberia, mean temperature of warmest month
1317 (MTWM) reconstructed from pollen compared to modern (Brigham-Grette et al., 2013).
1318 d) Sea surface temperatures (SSTs) from alkenone Uk'_{37} index in the Gulf of Alaska
1319 (Sánchez-Montes et al., 2020) and ODP 1012 (Brierley et al., 2009) recalibrated using
1320 BAYSPLINE (Tierney & Tingley, 2018). Select Searles Lake proxy reconstructions from
1321 core KM-3 (this study) including: e) BayMBT₀ temperature reconstruction of mean air
1322 temperature for months above freezing (MAF) compared to modern (solid line), f) ACE
1323 index of salinity g) $\text{IR}_{6+7\text{Me}}$ index of salinity. Change points (red lines) calculated using
1324 the Pruned Extract Linear Time algorithm using the Ruptures Python package (Truong et
1325 al., 2020). Shading and age control as in Figure 3.

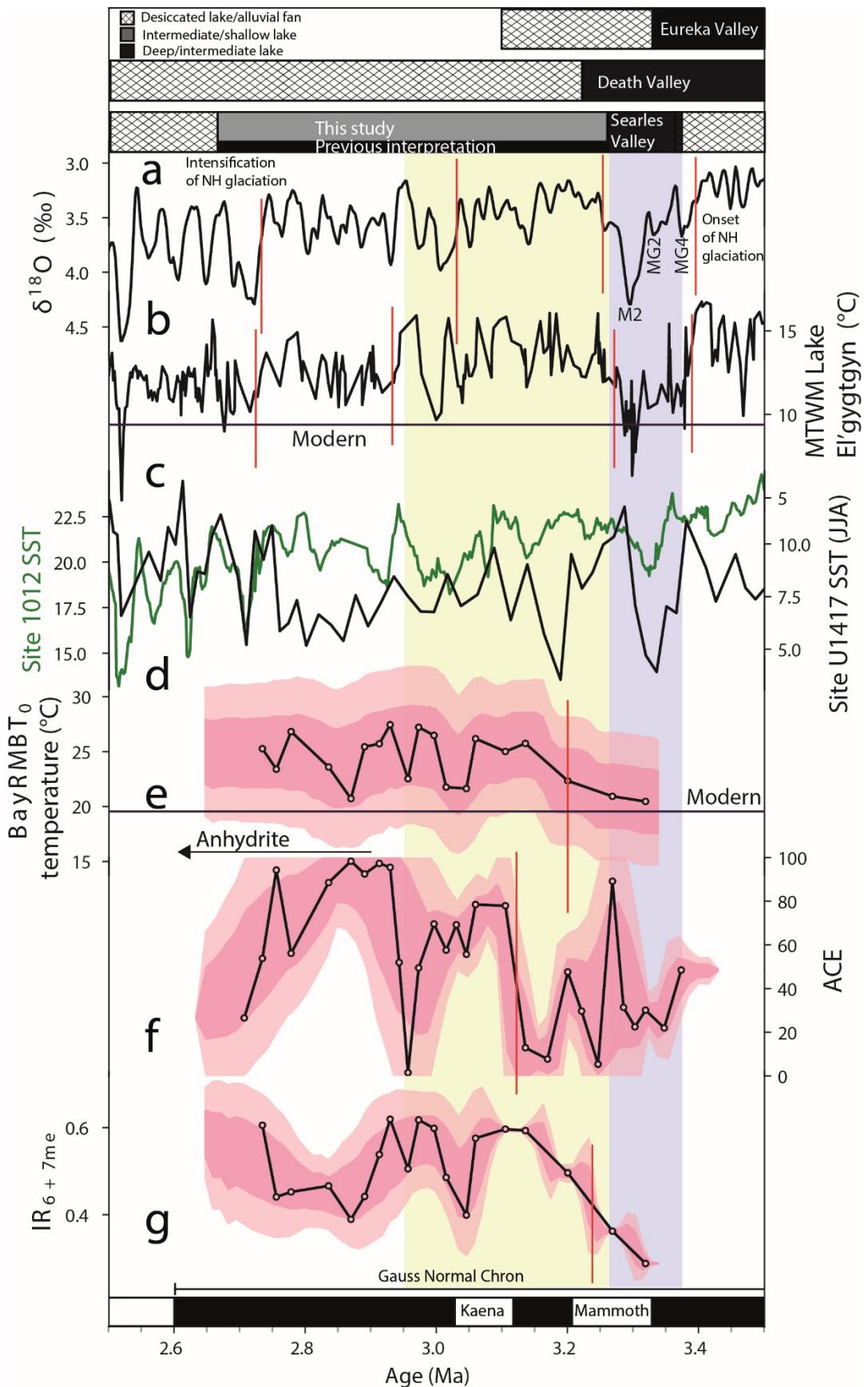

1326 **Figure 5.** Violin plots showing distributions of reconstructed BayMBT₀ temperatures
1327 (months above freezing) from Searles Lake sediments. Left panel shows previously
1328 published (People et al., 2022) temperatures from the last and penultimate glacial maxima
1329 (GM) as well as the last interglacial (LIG). Right panel (this study) show temperatures
1330 from the M2 glaciation (M2) and the mid Pliocene warm period (mPWP).

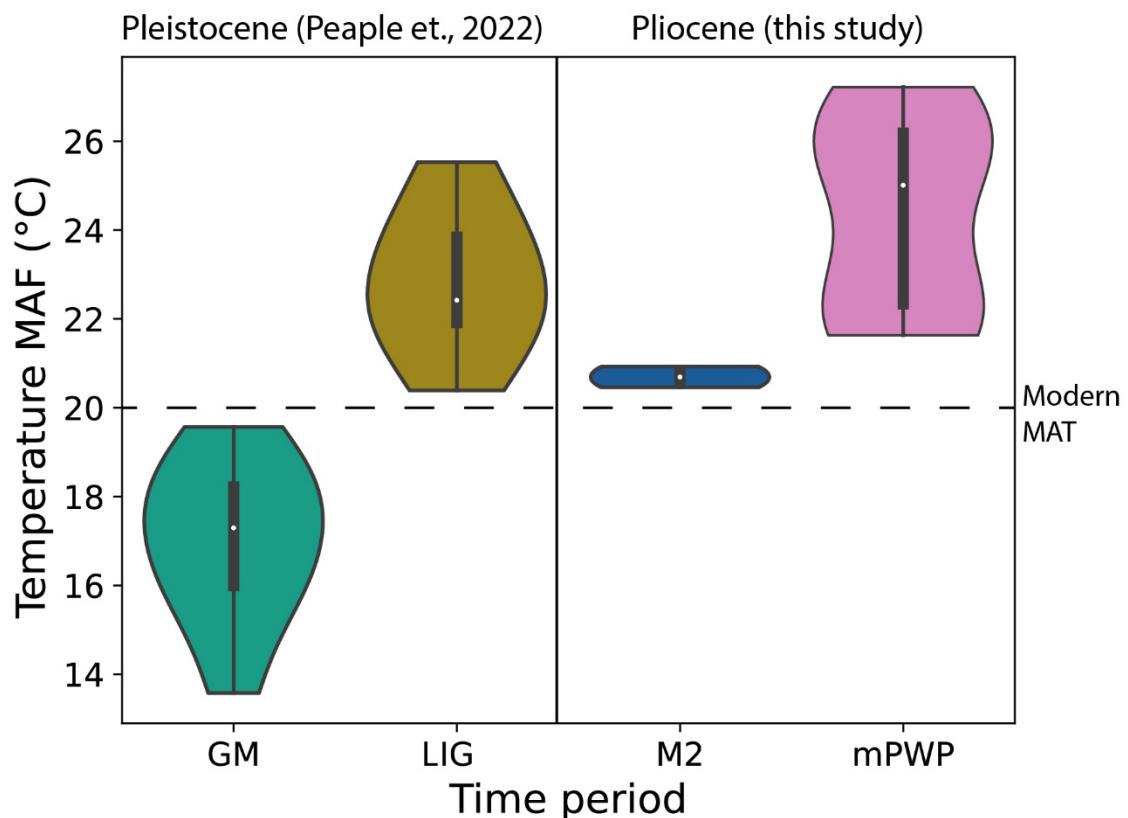
1331


1332

1333


1334




1335

1336

