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A B S T R A C T   

Humans are unique among terrestrial mammals in our manner of walking and running, reflecting 7 to 8 Ma of 
musculoskeletal evolution since diverging with the genus Pan. One component of this is a shift in our skeletal 
muscle biology towards a predominance of myosin heavy chain (MyHC) I isoforms (i.e. slow fibers) across our 
pelvis and lower limbs, which distinguishes us from chimpanzees. Here, new MyHC data from 35 pelvis and hind 
limb muscles of a Western gorilla (Gorilla gorilla) are presented. These data are combined with a similar chim
panzee dataset to assess the MyHC I content of humans in comparison to African apes (chimpanzees and gorillas) 
and other terrestrial mammals. The responsiveness of human skeletal muscle to behavioral interventions is also 
compared to the human-African ape differential. Humans are distinct from African apes and among a small group 
of terrestrial mammals whose pelvis and lower limb muscle is slow fiber dominant, on average. Behavioral in
terventions, including immobilization, bed rest, spaceflight and exercise, can induce modest decreases and in
creases in human MyHC I content (i.e. -9.3% to 2.3%, n = 2033 subjects), but these shifts are much smaller than 
the mean human-African ape differential (i.e. 31%). Taken together, these results indicate muscle fiber content is 
likely an evolvable trait under selection in the hominin lineage. As such, we highlight potential targets of se
lection in the genome (e.g. regions that regulate MyHC content) that may play an important role in hominin 
skeletal muscle evolution.   

1. Introduction 

Humans are unique among African apes (i.e. chimpanzees and go
rillas) and other primates in the size and shape of our lower back, pelvis, 
and lower limbs. Our suite of musculoskeletal traits interact so as to 
enhance our bipedal locomotor capabilities as compared to living Afri
can apes (e.g. Sockol et al., 2007; O’Neill et al., 2022), facilitating long- 
distance, overground travel and other long duration, muscle-driven ac
tivities. While skeletal traits are important determinants of locomotor 
performance and are under selection in the earliest hominins (e.g. Haile- 
Selassie, 2001; Lovejoy et al., 2009), skeletal muscle tissue also plays a 
fundamental role in the mechanics and energetics of movement. Yet, its 
contribution to hominin locomotor evolution is still not well understood. 

This is due to the limitations of the hominin fossil record and the near 
absence of comparative studies of human skeletal muscle biology, 
beyond individual-muscle mass and architectural measurements (e.g. 
Thorpe et al., 1999; Zihlman and Bolter, 2015). 

Measurements of pulling (Bauman, 1923, 1926; Finch, 1943; 
Edwards and Clarke, 1965; Bozek et al., 2014) and jumping (Scholz 
et al., 2006) tasks in humans and chimpanzees indicate that chimpanzee 
skeletal muscle can outperform human skeletal muscle on a mass- 
specific basis, by about 1.5 times, on average (O’Neill et al., 2017). 
While direct measurements of the contractile characteristics of single 
muscle fibers (i.e. maximum isometric forces, maximum shortening 
velocities) indicate that humans and chimpanzees are quite similar, 
these two species differ substantially in their distribution of myosin 
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heavy chain (MyHC) isoforms throughout their skeletal muscle (O’Neill 
et al., 2017). Indeed, while human skeletal muscles possess a predomi
nance of MyHC I (i.e. slow fibers), the same muscles in chimpanzees 
possess about half as much, instead exhibiting a predominance of MyHC 
II (i.e. IIa, IId; fast fibers). This difference is relevant to locomotor per
formance capabilities, as MyHC isoform content affects whole-muscle 
contractile mechanics in both in vitro experiments (e.g. James et al., 
1995; see also Schiaffino and Reggiani, 2011) and Hill-based muscle 
model simulations of maximum dynamic force and power (e.g. O’Neill 
et al., 2017; Mayfield et al., 2022). In particular, the MyHC isoform 
content of a muscle can influence its rate of contraction in response to a 
neural signal, as well as the shape of its force-velocity relationship (e.g. 
James et al., 1995). The metabolic cost of isometric force production and 
fatigability varies among muscle fibers of different MyHC content, with 
whole muscles that exhibit a predominance of slow fibers having the 
lowest costs and highest fatigue resistance (e.g. Harridge et al., 1996). As 
such, the predominance of MyHC I content within human skeletal 
muscle may reflect a shift within the hominin lineage, affecting both the 
mechanics and energetics of locomotor performance. 

Still, it remains unclear whether the predominance of MyHC II or fast 
fibers is a characteristic of the pelvis and hind limb muscles of African 
apes as a group or simply a characteristic of chimpanzees alone. Direct 
measurements of skeletal muscle MyHC content of a gorilla species 
would help address this and further contextualize human patterns 
within the larger ape and primate clades. Gorilla skeletal muscle mea
surements also provide an important assessment of the size indepen
dence of human and African ape MyHC content. Whereas chimpanzee 
body masses are smaller than humans on average, both Western and 
Eastern gorillas can exceed human mean body mass by more than two 
times (Smith and Jungers, 1997). As such, commonalities among 
chimpanzees and gorillas would suggest that any human-African ape 
MyHC isoform composition differential is likely untethered from the 
increase in hominin body mass over the past 7 to 8 million years (Ma) (e. 
g. Grabowski et al., 2015; Ruff et al., 2018), which likely began with a 
common ancestor of the Pan and Homo lineages that was similar in size 
to chimpanzees (Grabowski and Jungers, 2017; Grabowski et al., 2018). 

Understanding how humans and African apes compare to other 
terrestrial mammals across a wide body mass range is also needed to 
provide broader comparative context to human MyHC I content. Since 
1973, the skeletal muscle fiber composition (defined based on mATPase, 
immunohistochemistry, MyHC content, RNA expression, etc.) of several 
non-ape primate species have been studied (Supplementary Materials 
Table 1), but only macaques (Acosta and Roy, 1987), galagos (Ariano 
et al., 1973; Sickles and Pinkstaff, 1981), slow lorises (Ariano et al., 
1973; Sickles and Pinkstaff, 1981), and mouse lemurs (Petter and 
Jouffroy, 1993) have representative sampling across their pelvis and 
hind limbs (i.e. n ≥ 8 muscles). An initial assessment of these and other 
studies indicated that the percent MyHC I or slow fiber content increases 
with larger body mass in terrestrial mammals, albeit with considerable 
interspecific variation (O’Neill et al., 2017; see Supplementary Materials 
Table 1). However, a more comprehensive sampling of the currently 
available literature across the terrestrial mammalian size range will 
further clarify the extent to which humans or African apes depart from 
this size-scaling pattern and help identify what other terrestrial mam
mals are slow fiber dominant. 

Of course, skeletal muscle fiber composition is expected to be 
responsive to age and some behavioral interventions, although the 
magnitude of this effect is difficult to determine from one or two studies 
alone. Human muscle fiber composition has been measured in the pelvis 
and lower limb muscles of both young (Johnson et al., 1973: 22 yrs) and 
older adults (Tirrell et al., 2012: 83 yrs), and has been subject to a broad 
range of behavioral interventions, from immobilization to increased 
exercise. While muscle mass is exceptionally responsive to these factors 
(e.g. D’Antona et al., 2006; Handsfield et al., 2017), the responsiveness 
of muscle fiber composition may be quite modest by comparison. A 
recent meta-analysis of decreased activity levels (e.g. bed rest, leg 

unloading, detraining) on human lower limb muscle found a trivial 
1–2% decrease in MyHC I content, on average (n = 451 subjects; Vikne 
et al., 2020). It is possible that increased activity levels due to exercise or 
strength training may have a more substantial effect on MyHC I content, 
but there is no comparable survey of the existing human experimental 
data. Such data would provide greater insight into the extent to which 
the human-African ape differential in MyHC isoform composition is 
attributable to behavioral shifts in life or may be better understood as an 
evolvable musculoskeletal trait under selection between species. 

Here, we combine new MyHC isoform content data from pelvis and 
hind limb muscles of a Western gorilla (Gorilla gorilla) with existing 
chimpanzee (Pan troglodytes) data, as well as comprehensive data 
collation and meta-analysis of skeletal muscle fiber composition studies 
from 1965 to 2022 to better understand the distinctiveness of human 
skeletal muscle MyHC I content. Based on these results, we suggest that 
the substantial MyHC I content in human pelvis and lower limb skeletal 
muscle may be best understood as an evolvable musculoskeletal trait 
under selection in the hominin lineage, perhaps for reducing muscle 
metabolism and enhancing fatigue resistance to aerobic muscle con
tractile behavior. We hypothesize that molecular mechanisms that un
derlie muscle fiber composition are potential targets for selection during 
hominin evolution. Given the importance of MyHC gene regulation 
during muscle fiber development (Hagiwara et al., 2007; Hennebry 
et al., 2009; Schiaffino et al., 2015), it is likely that species-specific 
differences in adult MyHC content, such as those observed between 
humans and African apes, are due to species-specific changes in regions 
of the genome that regulate the expression of MyHC genes and their 
MyHC isoforms. As such, we highlight potential targets of selection in 
the genome (e.g. enhancer regions, a specific type of regulatory element) 
that may play an important role in hominin skeletal muscle evolution. 

2. Materials and methods 

2.1. Gorilla gorilla muscle MyHC content 

The MyHC isoform distribution of Gorilla gorilla was determined for 
samples (10–20 mg) of 35 pelvis and hind limb muscles from one adult, 
female. The animal had been living in a zoo and died of natural causes 
prior to muscle sampling. After death, the cadaveric remains were kept 
fresh frozen at −20 ◦C until dissection. The pelvis and hind limb were 
free of visible pathology. Prior to dissection, the specimen was CT 
scanned using a Philips-Gemini TF64. Serial scans of each bone were 
collected at a slice thickness of 0.67 mm with 0.35 overlap (voltage: 120 
kV; current 320 mA). The CT scanner output a stack of DICOM image 
files that were imported, rendered, and measured in Mimics Research 
19.0 (Materialise n.v., 2016). Femoral head superior-inferior diameter 
(FHSI) predicted an adult body mass of 85.3 kg using a gorilla-specific 
reference sample, although an African ape reference sample prediction 
was similar (FHSI: 41.33 mm; African Ape Eqn: 83.7 kg; Burgess et al., 
2018). 

To determine MyHC isoform composition, the skin and fascia were 
removed around the pelvis and hind limb, then individual muscles were 
identified. A 2 cm × 0.5 cm × 0.5 cm muscle tissue sample was taken 
from two locations of each muscle in the same manner as a previous 
study (e.g. O’Neill et al., 2017). The MyHC isoform expressed in each 
sample was identified using SDS-PAGE. The composition, preparation, 
staining and densiometric scanning of the gels were identical to those 
described previously (O’Neill et al., 2017). The amount of each MyHC 
isoform in the sample that expressed multiple isoforms was calculated as 
a percentage of the total amount of MyHC. The three MyHC isoforms 
that were detected on protein gels were identified based on common
alities with previous human and chimpanzee gels (O’Neill et al., 2017). 

The distribution of MyHC isoforms within 35 pelvis and hind limb 
muscles of the gorilla was compared using an analysis of variance 
(ANOVA), with Tukey HSD post-hoc pairwise comparisons between 
MyHC isoforms. Two-sample t-tests were used to conduct pairwise 
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comparisons between the average fraction of MyHC I in the gorilla mean 
and the individual-subject means for the chimpanzee and two human 
datasets. For interspecific comparisons, the mean MyHC I content across 
all pelvis and hind/lower limb muscles was calculated for each indi
vidual, then the between-individual mean and standard deviation were 
determined. This reflects the variance in mean MyHC I content between 
individuals studied in each species. Two human datasets were used, 
representing both young (22 yrs.; Johnson et al., 1973, n = 14 muscles) 
and old adults (83 yrs.; Tirrell et al., 2012, n = 37 muscles), and 
permitting an initial assessment of age effects on mean MyHC I content 
across the pelvis and lower limb. 

2.2. Terrestrial mammal muscle fiber composition comparisons 

2.2.1. Eligibility criteria and study selection 
Published, peer-reviewed data were compiled for meta-analysis be

tween June 1, 2021 and November 30, 2022 following a structure 
similar to Preferred Reporting Items for Systematic Reviews and Meta- 
analyses (PRISMA) (Moher, 2009), facilitating transparency and ease 
of reproducibility. Terms relating to mammalian skeletal muscle fiber 
composition (red, Type 1, β, MHC I, MyHC I, slow twitch, fatigue 
resistant, slow oxidative, slow fiber, slow myosin isozyme) were queried 
using academic search systems (Google Scholar, PubMed, and JSTOR) 
and library databases for relevant primary articles. Reference lists in 
relevant articles were thoroughly investigated for eligible studies. No 
restrictions were set on the date of publication. 

Eligible studies were published in the English language and provided 
muscle fiber composition data from at least one skeletal muscle from a 
species belonging to class Mammalia. Any data collected after a 
behavioral intervention (e.g. % fiber content after a treadmill running 
regime) were excluded. 

2.2.2. Data extraction 
The following data were recorded from the text, tables, figures, and 

supplementary materials of included studies when available: sampled 
species’ common name, scientific name, sex, age, method for classifi
cation of muscle fiber composition, slow muscle fiber terminology used 
(e.g. MyHC I, MHC I, Type I, beta, slow oxidative, red or slow twitch), 
number of individuals sampled, average body mass (kg), muscle(s) 
sampled and average percent slow fiber content (% fibers). 

In most studies, body mass was reported; for those studies that did 
not report a body mass the species mean was taken from Clarke et al. 
(2010) or Genoud et al. (2018). When muscle fiber content was recorded 
as the percentage of fast muscle fibers within a skeletal muscle, the 
proportion of slow muscle fibers was derived as 100 minus the total 
proportion of fast muscle fibers. If slow muscle fiber content was re
ported from multiple sampling sites across a single muscle (e.g. super
ficial and deep), the average across the sampling sites was recorded as 
the percent slow muscle fiber content of that muscle. 

Given that most studies were published between 1965 and 1999, 
binomial and common names were updated when necessary to reflect 
the current understanding of phylogenetic relationships. Taxonomic 
data (i.e. class, infraclass, magnorder, superorder, order, suborder, 
infraorder, parvorder, clade, superfamily, family, subfamily, tribe, and 
subspecies) provided by NCBI Taxonomy (Schoch et al., 2020) was 
recorded for each species when available. 

For interspecific comparisons a minimum sampling threshold of 8 
pelvis and hind/lower limb muscles per species was considered repre
sentative. Studies meeting the minimum sampling threshold were used 
for two analyses: (i) one comparing the average slow fiber content across 
all measured pelvis and hind/lower limb muscles per species and (ii) one 
comparing the mean slow fiber content across a set of 8 matched pelvis 
and hind/lower limb muscles per species, which controlled for indi
vidual muscle variation. The matched muscle condition included muscle 
composition measurements from the mm. gluteus medius, biceps femoris, 
semimembranosus, semitendinosus, vastus lateralis, extensor digitorum 

longus, gastrocnemius, and tibialis anterior. This subset of muscles repre
sented the three main anatomical regions (i.e. pelvis, thigh, leg) while 
permitting the greatest number of species to be included. When multiple 
studies existed for the same species, slow fiber content was averaged by 
muscle across studies and the average of recorded body masses was used 
as the pooled species average body mass. This both increases the number 
of animals sampled and permits the inclusion of data from multiple labs 
and techniques, which should reflect measurement reproducibility. 

2.2.3. Interspecific scaling analyses 
To incorporate the potential statistical non-independence of species 

due to shared common ancestry, the scaling relationship of muscle slow 
fiber content with log10 body mass was evaluated using phylogenetic 
generalized least squares (PGLS). The phylogenetic structure of the 
analyzed species was taken from published mammalian trees (Upham 
et al., 2019). The PGLS parameters were estimated using the Compar
ative Analyses of Phylogenetics and Evolution in R package (Orme et al., 
2013) with the parameter lambda (λ) fixed at 0 (star phylogeny) and 1 
(Brownian motion) and empirically estimated using a maximum- 
likelihood (ML) approach (Pagel, 1999). The three different model fits 
(i.e. 0, 1, ML) were compared using a likelihood ratio test. Human, 
chimpanzee and gorilla MyHC I content z-scores were calculated as z =
(xi - μi)/σ, where xi is the average fraction of MyHC I of species i, μi is the i 
species mean predicted from the regression fit, and σ is the standard 
deviation of the sample. To detect regression fit outliers, phylogenetic 
residuals were studentized by dividing the residual by the square root of 
their variance. Studentized residuals greater than an absolute value of 3 
were considered outliers (Jones and Purvis, 1997). Phylogenetic re
siduals were also standardized by dividing the residual by the square 
root of the expected value. 

2.3. Human intervention muscle fiber content comparisons 

2.3.1. Eligibility criteria and study selection 
Humans are the best-studied species in terms of the response of 

muscle fiber content to behavioral interventions and are of clear, direct 
relevance for hominin locomotor evolution. As such, published, peer- 
reviewed data were compiled for meta-analysis between June 1 and 
November 30, 2022 following a structure similar to PRISMA (Moher, 
2009). Terms relating to human exercise (human exercise, human 
running, human training, strength training, endurance training, sprint 
training, detraining, cycling) and skeletal muscle fiber composition (red, 
Type 1, β, MHC I, MyHC I, slow twitch, fatigue resistant, slow oxidative, 
slow fiber, slow myosin isozyme) were used to query academic search 
systems (Google Scholar, PubMed, JSTOR) and library databases for 
relevant primary articles. Reference lists in relevant articles were thor
oughly investigated for eligible studies. No restrictions were set on the 
date of publication. 

Eligible studies were published in the English language and provided 
muscle fiber composition data from human lower limb muscles both 
before and after a behavioral intervention. This permitted a change in 
mean slow fiber content (%) over time to be calculated. As such, only 
longitudinal studies were included; all cross-sectional studies were 
excluded from consideration. Interventions that included a counter
measure (e.g. bed rest with exercise or bed rest with nutritional coun
termeasure; Trappe et al., 2008) were also excluded, although the mean 
effects of these countermeasures all fall within the range determined 
here. No criteria were set on participant sex as no significant sex-based 
differences in skeletal muscle response to training have been identified 
(Short et al., 2005; Kojić et al., 2021). 

2.3.2. Data extraction 
The following data were recorded from the text, tables, figures, and 

supplementary materials of included studies when available: interven
tion type, intervention duration (hours, days, weeks, months), type(s) of 
exercise participants were subjected to, skeletal muscle sampled, 
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number of participants, participant sex, average participant mass (kg), 
average participant age (years), average pre-intervention skeletal mus
cle slow fiber content (% fiber), average post-intervention skeletal 
muscle slow fiber content (% fiber), standard deviation, and method for 
classification of muscle fiber composition. Study results were then 
categorized into one of nine distinct behavioral interventions based on 
the activity under investigation: bed rest, immobilization, environ
mental, spaceflight, endurance training, strength training, sprint 
training, dynamic training, and detraining. See definitions of each 
intervention in Table 3. 

When muscle fiber content was recorded as the percentage of fast 
muscle fibers within a skeletal muscle, the proportion of slow muscle 
fibers was derived as 100 minus the total proportion of fast muscle fi
bers. If multiple intervention time points were reported along a time 
series, only slow fiber content at the first and last time points were 
recorded. 

2.3.3. Statistical analyses 
The delta of each study was calculated as the mean difference in slow 

fiber content at the start and end of each unique behavioral intervention 
for each studied lower limb muscle. For each of the nine intervention 
categories, a pooled intervention effect size was calculated across 
studies. This was done as a weighted average based on sample size, such 
that studies with a larger number of subjects had a larger weight on the 
intervention mean. The weighted intervention mean across all lower 
limb muscles and the weighted intervention mean of m. vastus lateralis 
alone were calculated. A negative delta indicated a decrease in slow 
fiber content, while a positive delta indicated an increase in slow fiber 
content. 

The weighted intervention means were then compared to the mean 
difference in slow fiber content between humans and African apes (go
rillas and chimpanzees) for all studied pelvis and hind/lower limb 

muscles, as well as for the m. vastus lateralis alone. For these muscles the 
human average was taken from Tirrell et al. (2012) and Johnson et al. 
(1973) and compared to that of chimpanzees (O’Neill et al., 2017) and 
the gorilla (this study) to determine the degree of difference between 
humans and each African ape. 

3. Results 

3.1. Gorilla MyHC isoform content is similar to chimpanzees 

The distribution of MyHC isoforms within 35 pelvis and hind limb 
muscles of the gorilla indicate a predominance of MyHC II fibers, with a 
significant bias towards MyHC IId, on average (F(2,114) = 11.55, p =

0.000027; Fig. 1A; Table 1). The MyHC IId content was significantly 
higher than MyHC I (p = 0.00022) or MyHC IIa (p = 0.00015). There are 
significant differences between African apes and humans (H) in mean 
MyHC I content across the pelvis and hind/lower limb (F(3,122) = 96.93, 
p < 0.0001). Specifically, chimpanzees (C) and gorillas (G) were similar 
(p = 0.6702), while both species differed from young (G v. H: p =

0.00012; C v. H: p = 0.00075) and old adult humans (G v. H: p =

0.00011; C v. H: p = 0.00012) (Fig. 1B). The difference between the old 
and young adult humans was not significant (p = 0.147). 

Muscle-matching across species to the young human muscle count (n 
= 14 muscles, Johnson et al., 1973) results in similar species-mean 
differentials (G: 29.7 ± 8.1%; C: 33.4 ± 11.9%; H: 61.8 ± 14.6%, 55.8 
± 5.7%) as in the full, unmatched accounting. All three species exhibit a 
similar pattern of African ape-human differentiation across the three 
regions within the pelvis and hind/lower limb (pelvis, thigh, leg) 
(Fig. 1C). Among the two human datasets, the older adults exhibit a 
larger fraction of MyHC I isoforms in their pelvis and thigh muscles than 
the younger adults, while the leg musculature is similar between groups. 

Fig. 1. MyHC isoform distributions of gorilla, chimpanzee and human skeletal muscles. (A) Gorilla exhibits a MyHC II dominant distribution among the three MyHC 
isoforms across 35 skeletal muscles. P value is from an ANOVA. (B) Humans exhibit a significant bias towards slow MyHC I fibers in their skeletal muscle with 
measurements ranging from the between-subjects mean ± s.d. of (i) 69.0 ± 13.7% (n = 37 muscles, Tirrell et al., 2012; T) to (ii) 55.6 ± 5.7% (n = 14 muscles, 
Johnson et al., 1973; J). This differentiates humans (T: n = 6; J: n = 6) from the between-subject mean ± s.d. of 31.5 ± 3.3% in chimpanzees (n = 3) and 30.8% in the 
gorilla (n = 1). (C) The predominance of slow MyHC I fibers in human skeletal muscle is distinct from African apes for all major anatomical regions, including the 
pelvis, thigh and leg. 
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3.2. Humans are distinct from African apes and most other terrestrial 
mammals in muscle slow fiber content 

A total of 373 terrestrial mammal muscle fiber composition studies 
were identified. Of these, 108 were excluded because: (i) muscle fiber 
composition data were not provided (n = 73), (ii) muscle fiber compo
sition data provided were ambiguous (n = 14), (iii) muscle fiber 
composition data were provided for an unidentified muscle (n = 2), (iv) 
muscle fiber composition data were provided for cardiac fibers (n = 2), 
(v) muscle fiber composition data were provided for single muscle fibers 
(n = 3), (vi) muscle fiber composition data were provided for a mammal 
under experimental conditions (n = 4), (vii) the study duplicated 
another dataset (n = 2), (viii) the source was secondary (n = 7), or (ix) 
the source was a published abstract (n = 1). The remaining 265 studies 
were published between 1965 and 2022. Skeletal muscle fiber compo
sition data were collated for 175 species spanning 15 mammalian orders 
(see Supplementary Materials Table 1). 

Of these, 35 species across 12 mammalian orders met the minimum 
sampling threshold of 8 hind/lower limb muscles (Table 2), ranging in 
size from a Dsinezumi shrew (0.0094 kg) to an African savanna elephant 
(1542 kg). The total number of pelvis and hind/lower limb muscles 
sampled was 8 to 37 muscles per species, with humans and African apes 

being the best represented species. Twelve of the studies meeting the 
minimum sampling threshold included data for the 8 matched pelvis and 
hind/lower limb muscles (i.e. mm. gluteus medius, biceps femoris, semi
membranosus, semitendinosus, vastus lateralis, extensor digitorum longus, 
gastrocnemius, tibialis anterior). As such, the reduced, muscle-matched 
sample included 21 species, spanning the same size range. 

PGLS scaling analyses revealed that greater log10 body mass pre
dicted higher hind/lower limb slow fiber content across both the larger, 
unmatched (coefficient ± s.e. 7.51 ± 2.36, λ = 0.74, 95% CI [0.12, 
0.94], r2 = 0.21, t1,33 = 3.18, p = 0.003) (Fig. 2A) and smaller muscle- 
matched (estimate±s.e. 10.83 ± 3.61, λ = 0.54, 95% CI [NA, 0.91], r2 =

0.29, t1,19 = 3.00, p = 0.007) (Fig. 2B) datasets. In both cases, the ML 
model fit was significantly different from a star phylogeny in the un
matched, but not the matched sample (λ = 0; p = 0.0461 and p = 0.1253, 
respectively) and from Brownian motion in both samples (λ = 1; p =
0.0001 and p = 0.0008). Humans exhibit a positive z-score relative to 
this size-scaling relationship (2.23), whereas African apes exhibit 
negative z-scores (C: -0.66; G: −1.08). This pattern is similar for both the 
unmatched and muscle-matched datasets. 

Only four terrestrial mammal species are slow fiber dominant (i.e. ≥
50% slow fibers) in their pelvis and hind/lower limb muscles (i.e. 
humans, slow lorises and two sloths) in the unmatched interspecific 
sample. However, none of these species – including humans – were 
determined to be outliers with respect to the studentized residuals of the 
size-scaling relationship. In the reduced, muscle-matched sample, 
humans are the only primate that are slow fiber dominant, with the 
substantial human-African ape differential being maintained (Fig. 2B). 

3.3. Human behavioral interventions have a small impact on muscle slow 
fiber content 

A total of 256 human intervention studies were identified. Of these, 
131 studies were excluded because: (i) muscle fiber composition data 
were not provided (n = 28), (ii) pre- or post-intervention muscle fiber 
composition data were not provided (n = 62), (iii) pre- or post- 
intervention muscle fiber composition data were ambiguous (n = 7), 
(iv) muscle fiber composition data were provided for muscles other than 
the lower limb (n = 6), (v) muscle fiber composition data provided 
focused on the effect of aging (n = 3), (vi) the study provided a dupli
cated dataset (n = 2), and (vii) the source was secondary (n = 23). In 
addition, two studies quantified the change over time in fiber compo
sition in persons with permanent loss of muscle innervation due to 
catastrophic injury (Lotta et al., 1991; Burnham et al., 1997). These 
studies were not included in the meta-analysis given their distinct dif
ference from all other studies. The remaining 123 studies were pub
lished between 1973 and 2019. There were a total of 2033 participants 
across these 123 studies, with a mean reported age and body mass of 
32.9 ± 17.4 years and 72.8 ± 9.3 kg. The total number of participants in 
each intervention category were: bed rest (n = 153), immobilization (n 
= 179), environmental (n = 30), spaceflight (n = 21), endurance 
training (n = 313), strength training (n = 1018), sprint training (n = 92), 
dynamic training (n = 96), and detraining (n = 131) (Table 3; see 
category definitions therein). 

The effect of each intervention category on lower limb muscle slow 
fiber content ranged from −9.3 ± 6.9% in spaceflight to 2.3 ± 5.7% in 
endurance training (Table 3; Fig. 3A). Comparisons based on the 
m. vastus lateralis alone were similar, albeit with a slightly smaller range 
(−7.3 ± 1.4% to 2.4 ± 6.4%; Fig. 3B). Overall, these pooled interven
tion effect sizes are substantially lower than the degree of difference 
observed between the hind/lower limb muscles of humans and chim
panzees (31.1 ± 9.6%) and humans and the gorilla (31.3 ± 9.6%). This 
is also the case when looking at the m. vastus lateralis alone (H v. C: 11.0 
± 4.2%; H v. G: 17.1 ± 4.2%). 

Table 1 
Mean myosin heavy chain (MyHC) isoform content of 35 pelvis and hind limb 
muscles of Gorilla gorilla (n = 1).  

Muscle MyHC I 
(%) 

MyHC IIa 
(%) 

MyHC IId (%) 

Adductor brevis 26.9 31.9 41.3 
Adductor longus 45.6 41.4 13.1 
Adductor magnus    

Adductor magnus ischiocondylaris 53.5 25.8 20.8 
Adductor magnus pubofemoralis 34.7 37.6 27.8 

Biceps femoris    
Biceps femoris, long head 40.9 25.2 34.0 
Biceps femoris, short head 26.7 28.5 44.9 

Extensor digitorum longus 26.1 28.8 45.3 
Extensor hallucis longus 31.4 26.2 42.6 
Flexor digitorum fibularis 15.5 27.2 57.4 
Flexor digitorum tibialis 17.7 27.1 55.2 
Gastrocnemius lateralis 20.2 35.2 44.7 
Gastrocnemius medialis 22.1 31.6 46.3 
Gemellus inferior 17.2 32.4 50.5 
Gemellus superior 27.4 30.1 42.7 
Gluteus maximus    

Gluteus maximus ischiofemoralis 39.4 22.9 37.7 
Gluteus maximus proprius 27.2 33.0 39.9 

Gluteus medius 33.0 32.0 35.1 
Gluteus minimus 29.5 30.2 40.4 
Gracilis 24.8 32.5 42.7 
Iliopsoas    

Iliacus 33.9 30.7 35.4 
Psoas major 20.6 29.5 49.9 

Obturator externus 29.9 30.1 40.1 
Obturator internus 23.2 27.0 49.8 
Pectineus 30.1 31.9 38.0 
Peroneus (fibularis) brevis 26.7 33.6 39.8 
Peroneus (fibularis) longus 21.3 32.9 46.0 
Piriformis 39.4 34.1 26.6 
Quadratus femoris 50.9 29.2 20.0 
Rectus femoris 28.4 30.1 41.5 
Sartorius 26.3 34.4 39.4 
Semimembranosus 38.4 26.6 35.2 
Semitendinosus 26.7 31.4 41.9 
Soleus 45.7 25.9 28.5 
Tensor fascia lata 26.2 33.0 40.9 
Tibialis anterior 21.2 34.5 44.5 
Tibialis posterior 32.3 30.6 37.2 
Vastus intermedius 55.3 33.8 11.0 
Vastus lateralis 28.3 27.1 44.7 
Vastus medialis 36.8 28.2 35.0 
Mean 30.8 30.6 38.6 
Standard deviation 9.8 3.7 10.2  
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Table 2 
Studies meeting the minimum threshold (n ≥ 8 hind/lower limb muscles) for use in interspecific size scaling analysis of terrestrial mammals. Species colored by 
taxonomic order (Aigner et al., 1993; Armstrong and Phelps, 1984; Armstrong et al., 1982; Burkholder et al., 1994; Delp and Duan, 1996; Edgerton et al., 1975; Eng 
et al., 2008; Goto et al., 2013a; Goto et al., 2013b; Hansen et al., 1987; Ichikawa et al., 2019; Jouffroy et al., 2003; Kawai et al., 2009; Konno and Watanabe, 2012; 
Mashima et al., 2019; Mattson et al., 2002; Rivero et al., 1999; Sahd et al., 2022; Spainhower et al., 2021; Summerbell et al., 2000; Suzuki, 1990; Suzuki and Tamate, 
1988; Suzuki et al., 1999; Talmadge et al., 1996; Zhong et al., 2008). 

*Body mass from Clarke et al. (2010) or Genoud et al. (2018). 
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4. Discussion 

4.1. Humans MyHC I dominance is distinct from African apes and 
evolved within the hominin lineage 

Humans are distinct from both gorillas and chimpanzees in the mean 
MyHC I isoform content of their pelvis and hind/lower limb skeletal 
muscles, while the two African apes are nearly identical across the same 
muscles. This reinforces the view that the predominance of MyHC I 
likely evolved within the hominin lineage (O’Neill et al., 2017), some
time since the Pan-Homo divergence 7 to 8 Ma (Langergraber et al., 
2012). This substantial human-African ape contrast appears robust 
whether young or old adult human samples are used, and is evident 
across pelvis, thigh, and leg muscles. 

Across terrestrial mammals, skeletal muscle slow fiber content in
creases with body mass, albeit with substantial interspecific variation. 
This is consistent with an earlier assessment (O’Neill et al., 2017) and 
confirms that almost all terrestrial mammals studied to date are fast fiber 

dominant, on average. The chimpanzee and gorilla data indicate that 
African apes are most similar to most other terrestrial mammals in this 
regard, including other primates such as macaques, galagos and mouse 
lemurs. Human slow fiber dominance is therefore an exception to this 
pattern, which appears to be maintained in both young (22 yrs.; Johnson 
et al., 1973) and old adults (83 yrs.; Tirrell et al., 2012). The absence of a 
significant age effect on slow fiber content is consistent with detailed 
cross-sectional studies of m. vastus lateralis, which previously reported a 
small, but nonsignificant increase from 10 to 85 yr olds (Lexell et al., 
1988; Lexell and Downham, 1992). Still, there is marked variance in 
slow fiber content among individual muscles, with most of the muscles 
studied herein recruited during walking and running (e.g. Cappellini 
et al., 2006). Whether there are age-related shifts between fast (e.g. 
MyHC IIa and IId) or between hybrid fibers (e.g. MyHC IIa/IId) in 
humans requires further assessment. 

The skeletal muscles of slow lorises (Nycticebus coucang) and sloths 
(Bradypus variegatus, Choloepus hoffmanni) are also slow fiber dominant 
on average, but this is almost certainly due to ecological factors that are 
distinct from those of humans. Whereas human walking and running 
capabilities likely benefit from an enhanced capacity for repetitive, low- 
cost contractile behavior, neither the slow loris nor the sloth have much 
need for frequent, overground travel. Instead, their commonalities may 
reflect a shared reliance on fatigue-resistant, low-force contractile 
behavior, used in the context of crypsis and ‘slow climbing’ (slow loris: 
Rassmusen and Nekaris, 1998; Nekaris, 2001, 2014) or extended tree 
hanging (sloth: Urbani and Bosque, 2007; Granatosky et al., 2018). 

4.2. Human MyHC I content is an evolved trait with modest 
responsiveness to behavioral interventions 

A -9 to 2% shift in muscle slow fiber content in response to a wide 
range of behavioral interventions is quite modest when compared to the 
average 31% interspecific differences between humans and African apes 
(Fig. 3A, Table 2; O’Neill et al., 2017). There is of course variance among 
individuals in average lower limb slow fiber content, with Johnson et al. 
(1973) exhibiting less between-subjects variance than Tirrell et al. 
(2012) for the same number of individuals (i.e. J: s.d. = 5.7%; T: s.d. =
13.7%; Fig. 1B). Yet, neither of these human datasets overlap the 
chimpanzees or gorilla. This is important since the average MyHC I shifts 
reported here control for between-subject or between-muscle variance 
by sampling longitudinal studies alone, in contrast to cross-sectional 
comparisons (e.g. sprinters vs. marathoners) that have the potential to 
be misleading in regard to responsiveness. Indeed, these results imply 
that the human-African ape contrast in MyHC I content is an evolved 
trait, not simply a reflection of increased or decreased activity level 
during a lifetime – distinct from the level of plasticity that influences 
muscle size (e.g. D’Antona et al., 2006; Handsfield et al., 2017) or even 
some skeletal parameters (e.g. cortical bone distribution; Ruff et al., 
2006). 

Among the 2033 subjects and 9 behavioral groups studied to date, 
only endurance training (e.g. running or cycling) and strength training 
(e.g. weightlifting) are associated with an increase in skeletal muscle 
slow fiber content, although the magnitude of this effect is quite small (i. 
e. 1.5–2.3%, Table 3). Longitudinal comparisons of different behavioral 
interventions in other taxa (e.g. mouse models) may provide additional 
insights into this pattern; however, these studies often focus on MyHC II, 
due to its much greater prevalence in small animals (e.g. Allen et al., 
2001; see also Fig. 2). All other behavioral interventions decrease 
skeletal muscle slow fiber content, on average. This is important since 
the African ape, macaque and human data indicate that the shift within 
the hominin lineage was an increase in MyHC I isoform content, 
regardless of whether the last common ancestor of the Pan and Homo 
lineages was more similar to African apes or a generalized arboreal ape 
in its locomotor behavior (e.g. Lovejoy et al., 2009; Pilbeam and Lie
berman, 2017). 

The timing of the shift towards MyHC I dominant skeletal muscle 

Fig. 2. Size scaling of slow fiber distribution across body size. (A) The rela
tionship between log10 body mass and average percent slow fiber content from 
all available pelvis and hind/lower limb muscles (n = 35 species). (B) The 
relationship between log10 body mass and average percent slow fiber content 
from eight matched pelvis and hind/lower limb muscles (mm. gluteus medius, 
biceps femoris, semimembranosus, semitendinosus, vastus lateralis, extensor dig
itorum longus, gastrocnemius, tibialis anterior) (n = 21 species). Dotted line rep
resents a slow fiber composition of 50%, above which denotes species that are 
slow fiber dominant. The solid line represents the slope and intercept of the 
PGLS regression of log10 body mass on slow fiber content. Data points are 
colored by taxonomic order and are matched to Table 2. Species belonging to 
order Primates are distinguished with icons. 
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Table 3 
Human intervention studies.  

Intervention a No. of 
studies 

No. of 
subjects 

Average 
Mass (kg) 

Age 
(yrs) 

Muscles b Duration 
(days) 

Weighted 
Delta (%) c 

Standard 
Deviation 

References 

Bed rest 18 153 73.3 32.6 VL, SL 14–112 −5.6 9.4 Arentson-Lantz et al., 2016; Bamman et al., 
1998; Blottner et al., 2020; Borina et al., 2010;  
Bosutti et al., 2016; Chopard et al., 2005; Dalla 
Libera et al., 2009; Dudley et al., 1989; Ferretti 
et al., 1997; Gallagher et al., 2005; Krainski 
et al., 2014; Larsson et al., 1996; Salanova 
et al., 2014; Trappe et al., 2001, 2004, 2007, 
2008; Yamashita-Goto et al., 2001 

Immobilization 11 179 74.6 30.2 VL, 
unknown 

leg m. 

14–42 −3.9 3.5 Andersen et al., 1999; Berg et al., 1993, 1997;  
Deschenes et al., 2002; Hather et al., 1992;  
Hortobágyi et al., 2000; Hvid et al., 2010;  
Labarque et al., 2002; Veldhuizen et al., 1993;  
Vigelsø et al., 2015; Yasuda et al., 2005 

Environmental 3 30 77.8 26.8 VL 21–40 −3.2 5.2 Debevec et al., 2018; Esbjörnsson et al., 1993b;  
Green et al., 1989 

Spaceflight 3 21 76.1 42.0 VL, SL, GS 5–182 −9.3 6.9 Edgerton et al., 1995; Trappe et al., 2001, 2009 
Endurance 

training 
25 313 71.1 29.4 VL, SL, GS, 

quadriceps, 
unknown 

leg m. 

1–168 2.3 5.7 Andersen and Henriksson, 1977a, 1977b; Ball 
et al., 1983; Baumann et al., 1987; Campbell 
et al., 1979; Denis et al., 1984; Eriksson et al., 
1973; Esbjörnsson et al., 1993a; Gehlert et al., 
2012; Gollnick et al., 1973; Green et al., 1991;  
Hardin et al., 1995; Houston et al., 1979;  
Howald, 1982; Ingjer, 1979; Jansson et al., 
1978; Karavirta et al., 2011; Klausen et al., 
1981; Kraemer et al., 1995; Krotkiewski et al., 
1983; Luden et al., 2012; Putman et al., 2004;  
Sipila et al., 1997; Trappe et al., 2006; Vigelsø 
et al., 2015 

Strength 
training 

58 1018 71.7 36.5 VL 14–365 1.5 4.4 Aagaard et al., 2003; Adams et al., 1993;  
Andersen et al., 1994a; Andersen and Aagaard, 
2000; Bamman et al., 2007; Bickel et al., 2011;  
Bishop et al., 1999; Cadefau et al., 1990;  
Campos et al., 2002; Carroll et al., 1998; Costill 
et al., 1979; Daugaard et al., 2000; Dons et al., 
1979; Fry et al., 1994; Green et al., 1999;  
Häkkinen et al., 1981, 1990, 2001, 2002;  
Harber et al., 2004; Hather et al., 1991; Hepple 
et al., 1996; Hickson et al., 1994; Hikida et al., 
2000; Holm et al., 2008; Hortobágyi et al., 
2000; Hostler et al., 2001; Houston et al., 1983; 
Hvid et al., 2010; Karavirta et al., 2011; Kosek 
et al., 2006; Kraemer et al., 1995; Kryger and 
Andersen, 2007; Labarque et al., 2002; Larsson, 
1982; Lexell et al., 1995; Malisoux et al., 2006;  
Martel et al., 2006; Pareja-Blanco et al., 2017;  
Parente et al., 2008; Pellegrino et al., 2016;  
Putman et al., 2004; Schuenke et al., 2012;  
Simoneau et al., 1985; Sipila et al., 1997; Slivka 
et al., 2008; Snijders et al., 2019; Staron et al., 
1990, 1991, 1994, 2012; Terzis et al., 2008;  
Thorstensson et al., 1976; Trappe et al., 2000;  
Widrick et al., 2002; Williamson et al., 2000, 
2001; Winchester et al., 2008 

Sprint training 10 92 74.8 30.3 VL 1–91 −2.1 6.8 Allemeier et al., 1994; Christensen et al., 2011;  
Esbjörnsson et al., 1993a; Harber et al., 2012;  
Jansson et al., 1978, 1990; Konopka et al., 
2011; Linossier et al., 1997; Parcell et al., 2005; 
Pereira Sant’Ana et al., 1997 

Dynamic 
training 

7 96 76.5 28.3 VL 70–1460 −1.6 4.5 Andersen et al., 1994b; Green et al., 1979;  
Hickson et al., 1988; Karavirta et al., 2011;  
Kraemer et al., 1995; Larsson and Ansved, 
1985; Putman et al., 2004 

Detraining 16 131 74.4 24.1 VL, GS 14–1460 −2.5 4.2 Andersen and Aagaard, 2000; Christensen 
et al., 2011; Dahlström et al., 1987; Denis et al., 
1984; Green et al., 1980; Häkkinen et al., 1981; 
Hortobágyi et al., 1993; Houston et al., 1979, 
1983; Howald, 1982; Klausen et al., 1981;  
Larsson and Ansved, 1985; Linossier et al., 
1997; Madsen et al., 1993; Snijders et al., 2019; 
Terzis et al., 2008  

a During bed rest the participants were confined to a bed at a hospital or research center and monitored continuously. During immobilization one of the participants’ 
legs were prevented from weight-bearing to reduce muscle activity while participants continued their habitual daily activities. During environmental the participants 
were subjected to various living conditions (e.g., reduced barometric pressure or hypoxia) in a controlled research chamber for varying amounts of time with or 
without supine leg training. During spaceflight the participants (astronauts) flew aboard the International Space Station and followed an individually structured 
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aerobic and resistance exercise countermeasure program. During endurance training the participants followed an aerobic training regimen, typically involving cycling 
or running exercises, aimed at increasing cardiovascular and/or muscular endurance. During strength training the participants followed various resistance training 
regimens, typically involving free weights and/or exercise machines, aimed at building muscle mass and improving muscle strength. During sprint training the 
participants followed a high intensity interval training regimen, typically involving a cycle ergometer, aimed at increasing cardiovascular health, muscle mass, and 
muscle power. During dynamic training the participants followed a combined endurance exercise and resistance training regimen. During detraining the participants 
ceased training/exercise after a period of vigorous training, but otherwise continued their habitual daily activities. 

b Muscles measured before and after intervention. VL = vastus lateralis, SL = soleus, GS = gastrocnemius, quadriceps = undefined muscle of the quadriceps muscle 
group (mm. vastus lateralis, vastus medialis, vastus intermedius, rectus femoris), unknown leg m. = undefined muscle of the leg. 

c Mean weighted delta = (end intervention value – start intervention value) ⋅ (no. of subjects in study / total no. of subjects per intervention). This weighting factors 
the number of subjects in each intervention study into the mean effect, such that larger samples have more weight in determining the mean delta. 

Fig. 3. Average change in lower limb muscle 
slow fiber content across 9 human intervention 
categories compared to the human/African ape 
differential. (A) Analysis of studies of lower limb 
muscle slow fiber content before and after a 
range of bed rest, immobilization, spaceflight and 
exercise interventions. (B) Analysis of studies of 
m. vastus lateralis slow fiber content before and 
after a range of bed rest, immobilization, space
flight and exercise interventions. Strength and 
endurance training increased slow fiber content, 
while most other activities decreased slow fiber 
content, on average.   
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within the hominin lineage is difficult to establish. However, we antic
ipate this shift to have been concurrent with major transitions in loco
motor behavior, daily travel distance, home range size or some 
combination thereof. The earliest australopithecines (e.g. Austral
opithecus anamensis, Australopithecus afarensis) exhibit changes to the 
pelvis and lower limb skeleton as compared to Ardipithecus ramidus (e.g. 
Ward et al., 1999; Lovejoy et al., 2009; Simpson et al., 2019), suggesting 
an adaptive shift towards greater overground locomotion as early as 4 
Ma, at least in east Africa. Between 2.1 and 1.8 Ma, Homo erectus appears 
in east and south Africa (e.g. Herries et al., 2020; Hammond et al., 
2021), east Europe (e.g. Ferring et al., 2011) and east Asia (e.g. Zhu 
et al., 2008; Zhu et al., 2018), indicating a global dispersal that must 
have involved substantial overground walking and running. This species 
would seem to benefit from a lower-cost, fatigue-resistant skeletal 
muscle design, although an earlier evolutionary shift or multiple, in
cremental shifts as part of ongoing selection for overground locomotion 
in the hominin lineage is also plausible. A better understanding of the 
molecular mechanisms that determine adult muscle MyHC content in 
primates and other mammals may provide additional information on the 
initial appearance, pleiotropic effects, or selective pressures acting on 
this trait within the hominin lineage. 

4.3. Enhancers may play an important role in hominin skeletal muscle 
evolution 

Our findings indicate that muscle fiber content is likely an evolvable 
trait that was under selection in the hominin lineage. MyHC isoforms 
expressed in mammalian skeletal muscle are encoded by specific MyHC 
genes (Schiaffino et al., 2015). While these genes, by nature of the 
proteins they encode, represent obvious candidates for selection in the 
hominin lineage, they are highly conserved across mammals (reviewed 
in Lee et al., 2019) and likely under heavy evolutionary constraint across 
species. Indeed, mutations in MyHC genes can have multiple effects (i.e. 
be pleiotropic) and are associated with human disease (e.g. Tajsharghi 
et al., 2010; Walsh et al., 2010; Colegrave and Peckham, 2014). Despite 
this, MyHC gene expression varies considerably across tissues (e.g. 
skeletal, cardiac, extraocular, and masticatory muscle), time points (e.g. 
embryonic, fetal, adult), and taxonomic lineages (e.g. small and large 
mammals) (Harrison et al., 2011; Smerdu and Cvetko, 2013; Lee et al., 
2019). As such, regions of the genome that regulate the expression of 
these genes may better explain observed variation in slow fiber content 
across mammals (Fig. 2; see also Supplementary Materials Fig. 1) and 
make compelling candidates for understanding the shift in MyHC con
tent in hominin skeletal muscle. 

Indeed, phenotypic differences between humans and chimpanzees 
have long been attributed to species-specific mutations in non-coding 
regulatory regions of the genome (King and Wilson, 1975), which in
fluence both where and when genes are expressed. Mutations in regu
latory elements can change the spatiotemporal expression of genes 
during growth and development and lead to phenotypic variation and 
evolutionary divergence between closely related species (e.g. Haygood 
et al., 2007; Blekhman et al., 2008; McLean et al., 2011; Sumiyama and 
Saitou, 2011; Kamm et al., 2013; Boyd et al., 2015; Prescott et al., 2015; 
Indjeian et al., 2016; Kostka et al., 2018; Richard et al., 2020; Aldea 
et al., 2021; Johansson et al., 2022; Young et al., 2022). For example, the 
shapes of the human knee and pelvis, compared to those of African apes, 
have resulted from evolutionary selection on regulatory sequences 
unique to the individual skeletal elements of the knee (i.e. distal femur) 
(Richard et al., 2020) and pelvis (i.e. ilium) (Young et al., 2022). In line 
with these studies, here we hypothesize that natural selection has 
selected for human-specific variation in the non-coding regions of the 
genome that regulate the expression of fast MyHC II and slow MyHC I 
genes, rather than the MyHC genes themselves. The result of this se
lection would be increases in the amount of fatigue-resistant slow MyHC 
I muscle fibers in human lower limb muscles in order to facilitate re
petitive, low-cost contractile behavior during walking and running. 

Of particular interest are enhancers, a type of non-coding regulatory 
element that possess remarkable specificity in their control of gene 
expression. Enhancers can regulate gene expression in a tissue-specific 
or developmental stage-specific manner, leading to modularized ef
fects on phenotype (reviewed in Hill et al., 2021). Previous research has 
also demonstrated that species-specific mutations within conserved 
enhancer regions can lead to evolutionary novelty (e.g. Prabhakar et al., 
2008; Arnaud et al., 2011; McLean et al., 2011; Indjeian et al., 2016; 
Kvon et al., 2016) or convergence (e.g. Guerreiro et al., 2013; Sackton 
et al., 2019; LaPotin et al., 2022; Pereira et al., 2022). MyHC “super 
enhancers” have recently been identified in mouse skeletal muscle that 
regulate the expression of genes belonging to the fast and slow MyHC 
gene clusters (dos Santos et al., 2022; Long et al., 2022). Given that the 
temporal regulation of MyHC genes during development is critical for 
the stage-specific progression of primary myotubes to developmental (i. 
e. embryonic and fetal) and adult muscle fibers (Schiaffino et al., 2015), 
and the replacement of developmental isoforms (i.e. MyHC-emb and 
MyHC-neo) with adult slow (MyHC I) and fast (MyHC II) isoforms 
(Hagiwara et al., 2007; Hennebry et al., 2009), it is likely that species- 
specific differences in adult MyHC content, such as those observed be
tween humans and African apes, are due to species-specific changes in 
MyHC enhancers (Fig. 4). Similarities in adult MyHC content, as seen in 
humans, sloths and slow lorises, may be due to functionally equivalent 
mutations in these evolutionarily conserved MyHC enhancers, although 
trait convergence may also have arisen via the evolution of novel, 
species-specific enhancers (e.g. Ordway et al., 2014; Boyd et al., 2015; 
Koshikawa et al., 2015; Signor et al., 2016; Letelier et al., 2018). A more 
comprehensive consideration of the molecular mechanisms involved in 
regulating muscle MyHC isoform content in humans and other mammals 
is needed to refine this understanding of skeletal muscle evolution and to 
reconstruct how and when these changes occurred. 

5. Conclusions 

Humans are distinct from African apes (chimpanzees and gorillas) 
and among a small group of terrestrial mammals whose pelvis and hind/ 
lower limb skeletal muscle is slow fiber dominant, on average. Behav
ioral interventions, including immobilization, bed rest, spaceflight and 
exercise, can induce modest decreases and increases in human slow fiber 
content (i.e. -9.3% to 2.3%, n = 2033 subjects), but these shifts are much 
smaller than the mean human-African ape differential. The relative 
magnitude of the human-African ape differential in MyHC I content 
suggests that selection in the hominin lineage for low-cost, repetitive 
contractile behavior may underlie this difference. As a result, greater 
characterization of the regulatory landscape of muscles during muscle 
fiber development between species with divergent MyHC isoform 
composition is needed to reconstruct the evolutionary history of 
observed shifts in human skeletal muscle MyHC content. 
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Aigner, S., Gohlsch, B., Hämaläinen, N., Staron, R.S., Uber, A., Wehrle, U., Pette, D., 
1993. Fast myosin heavy chain diversity in skeletal muscles of the rabbit: heavy 
chain IId, not IIb predominates. Eur. J. Biochem. 211, 367–372. https://doi.org/ 
10.1111/j.1432-1033.1993.tb19906.x. 

Aldea, D., Atsuta, Y., Kokalari, B., Schaffner, S.F., Prasasya, R.D., Aharoni, A., 
Dingwall, H.L., Warder, B., Kamberov, Y.G., 2021. Repeated mutation of a 
developmental enhancer contributed to human thermoregulatory evolution. Proc. 
Natl. Acad. Sci. 118, e2021722118 https://doi.org/10.1073/pnas.2021722118. 

Allemeier, C.A., Fry, A.C., Johnson, P., Hikida, R.S., Hagerman, F.C., Staron, R.S., 1994. 
Effects of sprint cycle training on human skeletal muscle. J. Appl. Physiol. 77, 
2385–2390. https://doi.org/10.1152/jappl.1994.77.5.2385. 

Allen, D.L., Harrison, B.C., Maass, A., Bell, M.L., Byrnes, W.C., Leinwand, L.A., 2001. 
Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. 
J. Appl. Physiol. 90, 1900–1908. https://doi.org/10.1152/jappl.2001.90.5.1900. 

Andersen, J.L., Aagaard, P., 2000. Myosin heavy chain IIX overshoot in human skeletal 
muscle. Muscle Nerve 23, 1095–1104. https://doi.org/10.1002/1097-4598(200007) 
23:7<1095::AID-MUS13>3.0.CO;2-O. 

Andersen, P., Henriksson, J., 1977a. Training induced changes in the subgroups of 
human type II skeletal muscle fibres. Acta Physiol. Scand. 99, 123–125. https://doi. 
org/10.1111/j.1748-1716.1977.tb10361.x. 

Andersen, P., Henriksson, J., 1977b. Capillary supply of the quadriceps femoris muscle of 
man: adaptive response to exercise. J. Physiol. 270, 677–690. https://doi.org/ 
10.1113/jphysiol.1977.sp011975. 

Andersen, J.L., Klitgaard, H., Bangsbo, J., Saltin, B., 1994a. Myosin heavy chain isoforms 
in single fibres from m. vastus lateralis of soccer players: effects of strength-training. 
Acta Physiol. Scand. 150, 21–26. https://doi.org/10.1111/j.1748-1716.1994. 
tb09655.x. 

Andersen, J.L., Klitgaard, H., Saltin, B., 1994b. Myosin heavy chain isoforms in single 
fibres from m. vastus lateralis of sprinters: influence of training. Acta Physiol. Scand. 
151, 135–142. https://doi.org/10.1111/j.1748-1716.1994.tb09730.x. 

Andersen, J.L., Gruschy-Knudsen, T., Sandri, C., Larsson, L., Schiaffino, S., 1999. Bed rest 
increases the amount of mismatched fibers in human skeletal muscle. J. Appl. 
Physiol. 86, 455–460. https://doi.org/10.1152/jappl.1999.86.2.455. 

Arentson-Lantz, E.J., English, K.L., Paddon-Jones, D., Fry, C.S., 2016. Fourteen days of 
bed rest induces a decline in satellite cell content and robust atrophy of skeletal 
muscle fibers in middle-aged adults. J. Appl. Physiol. 120, 965–975. https://doi.org/ 
10.1152/japplphysiol.00799.2015. 

Ariano, M.A., Edgerton, V.R., Armstrong, R.B., 1973. Hindlimb muscle fiber populations 
of five mammals. J. Histochem. Cytochem. 21, 51–55. https://doi.org/10.1177/ 
21.1.51. 

Armstrong, R.B., Phelps, R.O., 1984. Muscle fiber type composition of the rat hindlimb. 
Am. J. Anat. 171, 259–272. https://doi.org/10.1002/aja.1001710303. 

Armstrong, R.B., Saubert, C.W., Seeherman, H.J., Taylor, C.R., 1982. Distribution of fiber 
types in locomotory muscles of dogs. Am. J. Anat. 163, 87–98. https://doi.org/ 
10.1002/aja.1001630107. 

Arnaud, N., Lawrenson, T., Østergaard, L., Sablowski, R., 2011. The same regulatory 
point mutation changed seed-dispersal structures in evolution and domestication. 
Curr. Biol. 21, 1215–1219. https://doi.org/10.1016/j.cub.2011.06.008. 

Ball, M.E., Green, H.J., Houston, M.E., 1983. Alterations in human muscle fibre type 
distribution induced by acute exercise. Histochemistry 79, 53–57. https://doi.org/ 
10.1007/BF00494341. 

Bamman, M.M., Clarke, M.S.F., Feeback, D.L., Talmadge, R.J., Stevens, B.R., 
Lieberman, S.A., Greenisen, M.C., 1998. Impact of resistance exercise during bed rest 

Fig. 4. One hypothesized regulatory mechanism underlying the observed variation in pelvis and hind/lower limb MyHC I content across species and human slow 
fiber dominance. The average, unmatched pelvis and hind/lower limb muscle slow fiber content for each species is given in parentheses. Here, the conserved 
enhancer (highlighted in orange or green) is shown to regulate the expression of MYH7, the gene encoding slow MyHC I. The non-human primates (orange enhancer) 
have identical DNA sequences within this conserved enhancer, reflecting similarities in muscle MyHC I content. Under this scenario, the hominin lineage acquired a 
mutation (or mutations) within a conserved enhancer (here represented in the green enhancer by a single C to A base pair change) after the Pan-Homo divergence, 
increasing the expression of MYH7 and the proportion of slow MyHC I fibers within hominin pelvis and lower limb muscles. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

S.R. Queeno et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.cbpa.2023.111415
https://doi.org/10.1016/j.cbpa.2023.111415
https://doi.org/10.1097/00005768-200305001-02053
https://doi.org/10.1097/00005768-200305001-02053
https://doi.org/10.1002/ar.1092180207
https://doi.org/10.1002/ar.1092180207
https://doi.org/10.1152/jappl.1993.74.2.911
https://doi.org/10.1111/j.1432-1033.1993.tb19906.x
https://doi.org/10.1111/j.1432-1033.1993.tb19906.x
https://doi.org/10.1073/pnas.2021722118
https://doi.org/10.1152/jappl.1994.77.5.2385
https://doi.org/10.1152/jappl.2001.90.5.1900
https://doi.org/10.1002/1097-4598(200007)23:7<1095::AID-MUS13>3.0.CO;2-O
https://doi.org/10.1002/1097-4598(200007)23:7<1095::AID-MUS13>3.0.CO;2-O
https://doi.org/10.1111/j.1748-1716.1977.tb10361.x
https://doi.org/10.1111/j.1748-1716.1977.tb10361.x
https://doi.org/10.1113/jphysiol.1977.sp011975
https://doi.org/10.1113/jphysiol.1977.sp011975
https://doi.org/10.1111/j.1748-1716.1994.tb09655.x
https://doi.org/10.1111/j.1748-1716.1994.tb09655.x
https://doi.org/10.1111/j.1748-1716.1994.tb09730.x
https://doi.org/10.1152/jappl.1999.86.2.455
https://doi.org/10.1152/japplphysiol.00799.2015
https://doi.org/10.1152/japplphysiol.00799.2015
https://doi.org/10.1177/21.1.51
https://doi.org/10.1177/21.1.51
https://doi.org/10.1002/aja.1001710303
https://doi.org/10.1002/aja.1001630107
https://doi.org/10.1002/aja.1001630107
https://doi.org/10.1016/j.cub.2011.06.008
https://doi.org/10.1007/BF00494341
https://doi.org/10.1007/BF00494341


Comparative Biochemistry and Physiology, Part A 281 (2023) 111415

12

on skeletal muscle sarcopenia and myosin isoform distribution. J. Appl. Physiol. 84, 
157–163. https://doi.org/10.1152/jappl.1998.84.1.157. 

Bamman, M.M., Petrella, J.K., Kim, J., Mayhew, D.L., Cross, J.M., 2007. Cluster analysis 
tests the importance of myogenic gene expression during myofiber hypertrophy in 
humans. J. Appl. Physiol. 102, 2232–2239. https://doi.org/10.1152/ 
japplphysiol.00024.2007. 

Bauman, J.E., 1923. The strength of the chimpanzee and orang. Sci. Mon. 16, 432–439. 
Bauman, J.E., 1926. Observations on the strength of the chimpanzee and its implications. 

J. Mammal. 7, 1. https://doi.org/10.2307/1373587. 
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Kamm, G.B., López-Leal, R., Lorenzo, J.R., Franchini, L.F., 2013. A fast-evolving human 
NPAS3 enhancer gained reporter expression in the developing forebrain of 
transgenic mice. Philos. Trans. Royal Soc. B Biol. Sci. 368, 20130019. https://doi. 
org/10.1098/rstb.2013.0019. 
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