
Physics Letters B 844 (2023) 137545

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Closing in on critical net-baryon fluctuations at LHC energies: 
Cumulants up to third order in Pb–Pb collisions

.ALICE Collaboration �

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 June 2022
Received in revised form 14 September 
2022
Accepted 1 November 2022
Available online 5 November 2022
Editor: M. Doser

Dataset link: https://
www.hepdata .net /record /ins2092559

Fluctuation measurements are important sources of information on the mechanism of particle production 
at LHC energies. This article reports the first experimental results on third-order cumulants of the 
net-proton distributions in Pb–Pb collisions at a center-of-mass energy √

sNN = 5.02 TeV recorded 
by the ALICE detector. The results on the second-order cumulants of net-proton distributions at √
sNN = 2.76 and 5.02 TeV are also discussed in view of effects due to the global and local baryon 

number conservation. The results demonstrate the presence of long-range rapidity correlations between 
protons and antiprotons. Such correlations originate from the early phase of the collision. The 
experimental results are compared with HIJING and EPOS model calculations, and the dependence of the 
fluctuation measurements on the phase-space coverage is examined in the context of lattice quantum 
chromodynamics (LQCD) and hadron resonance gas (HRG) model estimations. The measured third-order 
cumulants are consistent with zero within experimental uncertainties of about 4% and are described well 
by LQCD and HRG predictions.

© 2022 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Predictions based on the theory of the strong interaction, QCD, 
imply that, at sufficiently high energy densities, nuclear matter 
transforms into a state called quark–gluon plasma (QGP) [1,2], 
where chiral symmetry is restored and quarks and gluons are 
deconfined. Ultrarelativistic heavy-ion collisions are ideal environ-
ments to study the phase diagram of strongly interacting matter 
and the physics of the QGP state as a function of temperature 
(T ) and baryon chemical potential (μB). While the QCD phase dia-
gram is largely unknown for μB > 450 MeV, the region below that 
value down to μB = 0 has been well explored theoretically [2,3]
and experimentally [4]. In that region, the chiral phase transition 
is most likely a continuous crossover with pseudo-critical temper-
ature Tpc ≈ 157 MeV at μB = 0 [5,6]. Near μB = 0 the properties 
of the QCD phase transition depend on the number of quark fla-
vors and their masses. For vanishing masses of the light quarks 
(u, d) the transition is of second order and belongs to the univer-
sality class of three-dimensional O(4)-symmetric spin models [7]. 
The small u, d quark masses of order of 1% of the constituent quark 
masses constitute a small but explicit breaking of chiral symme-
try. For these small physical quark masses LQCD indicates that the 
transition turns into a smooth crossover. To date, there is no ex-
perimental confirmation of the crossover nature of the transition. 
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Nevertheless, the smallness of the physical quark masses may leave 
traces of critical behavior also for a crossover transition. Therefore, 
a significant effort at the RHIC and LHC colliders is concentrated 
on quantifying the nature of the phase transition in the small μB
region.

For large μB the phase diagram may exhibit a “critical endpoint 
(CEP)”. The search for the CEP is one of the main physics goals of 
the beam energy scan programs at RHIC [8,9], at the CERN SPS 
[10], and at FAIR [11].

Recent LQCD [12–14] calculations of chiral susceptibilities, 
derivatives of the chiral condensate with respect to quark masses, 
exhibit for small quark masses a clear peak at Tpc, consistent 
with the chemical freeze-out temperature extracted by the anal-
ysis of hadron multiplicities [4,15] measured in central Pb–Pb 
collisions by the ALICE experiment. This suggests that the chemi-
cal freeze-out occurs very close to the chiral phase transition at 
LHC energies. Critical signals associated with this phenomenon 
can be linked with long-range correlations and increasing multi-
plicity fluctuations due to the existence of the massless modes of 
the second-order phase transition [16,17]. In particular, the fluctu-
ations of the conserved charges are very sensitive probes for the 
equation of state and can be directly related to the thermodynamic 
susceptibilities, which are calculable in the framework of LQCD. 
The quark-number susceptibilities are defined as the derivatives 
of the reduced QCD pressure (P/T 4) with respect to the reduced 
chemical potentials (μ̂ = μ/T ) of the conserved charges
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Here the relevant conserved charges, represented by the chem-
ical potentials, are the electric charge Q, the baryon number B, 
the strangeness S, and the charm C. These susceptibilities are 
studied experimentally in terms of the ratios of the cumulants1

of net-charge distributions [19]. Here and in the following, net-
charge distribution stands for the difference between the distribu-
tions of positively and negatively charged particles, where “charge” 
refers to any additive quantum number. Signs of criticality due to 
the proximity of the chiral crossover transition to a second-order 
transition are expected to show up starting only with the sixth-
order cumulants of net-charge distributions [16,20]. Measuring 
conserved charge fluctuations in ultrarelativistic nuclear collisions 
is a challenging task, see Ref. [8] for a recent review. In addition 
to possible critical fluctuations due to the proximity of a CEP or 
O(N) criticality, there are several other dynamical signals, such as 
correlations due to baryon number conservation [21–23], volume 
fluctuations [18], thermal blurring [24], resonance decays [23,25], 
initial-state fluctuations [26], baryon annihilation [27], “excluded 
volume” effects [23], etc., which could overshadow the dynamical 
fluctuations of interest.

The article is organized as follows. In Section 2, details are given 
about the ALICE detector, the data set and the analysis procedure, 
such as event and track selection criteria, particle identification 
and the efficiency correction technique. In Section 3, results on 
second-order cumulants of net-pion and net-kaon distributions are 
presented to demonstrate the influence of resonance decays on 
the measured cumulants. The main results are contained in the 
second- and third-order cumulants of net-proton distributions and 
compared to theoretical expectations. The article concludes, in Sec-
tion 4, with a discussion on how the present results fit into the 
general strategy to get information on possible critical behavior
near the QCD phase boundary and with an outline of the next 
steps.

2. Experimental setup and data analysis

The measurements presented in this article are based on about 
13 and 78 million minimum bias Pb–Pb collisions at 

√
sNN = 2.76

and 5.02 TeV recorded with the ALICE detector [28,29] in the years 
2010 and 2015, respectively. Note that the running conditions have 
changed significantly in 2015. The details presented in this arti-
cle refer only to the analysis of 2015 data (see Refs. [30,31] for 
2010). The minimum-bias trigger condition is defined by requir-
ing a coincidence of hits in both V0 detectors [32] located on 
either side of the nominal interaction point along the beam direc-
tion and covering the pseudorapidity intervals 2.8 < η < 5.1 and 
−3.7 < η < −1.7. The definition of the centrality [33] is based on 
the signal amplitudes measured in the V0 detectors, which are 
related to the collision geometry and the number of participat-
ing nucleons through a Monte Carlo (MC) simulation based on a 
Glauber model [34,35]. Beyond event characterization, the main 
sub-detectors used in the analysis are the Time Projection Cham-
ber (TPC) [36] for tracking and particle identification (PID), using 
the specific energy loss dE/dx, and the Inner Tracking System 
(ITS) [37,38] for tracking and vertex determination.

Event and track selection criteria were applied to ensure op-
timal PID performance via dE/dx measurement and momentum 
(p) resolution, as well as good track quality. The V0 [32] and 
the Zero Degree Calorimeter [39] timing information was used 

1 The cumulants, κn , of net-baryon number, �NB = NB − NB, are defined as the 
coefficients in the Maclaurin series of the logarithm of the characteristic function of 
�NB [18].

to reject background due to beam–gas interactions and parasitic 
beam–beam interactions. Along the beam direction, events occur-
ring within ±0.15 cm, where tracking is affected by the central 
membrane of the TPC, and outside ±7 cm of the nominal interac-
tion point were discarded to keep detection efficiency uniform as 
a function of event vertex position. This corresponds to 24% of the 
total events.

The analysis uses tracks of charged particles reconstructed us-
ing the ITS and the TPC in the pseudorapidity range of |η| < 0.8
and with full azimuthal acceptance. Due to the different gas mix-
ture, higher interaction rates, and larger multiplicities in 2015, 
the TPC performance was affected by local space-charge distor-
tions caused by the accumulation of space charge originating from 
the gaps between adjacent readout chambers [40]. Although these 
distortions are corrected on average during reconstruction, their 
fluctuations caused a significant mismatch between the TPC and 
ITS tracks. They affected all events detected within a time inter-
val of about 0.5 seconds after a collision, corresponding to the full 
drift time of ions from the amplification region in the TPC read-
out chambers to the central electrode. Collisions within such time 
intervals were discarded using the event interaction time (times-
tamp), when in addition the mean matching efficiency between 
the TPC and ITS for all tracks was less than 88%. The nominal 
TPC–ITS track matching efficiency is narrowly peaked at 90.5%. By 
applying this condition about 7% of all events are rejected. Tracks 
were accepted if their χ2 value per space point from the track fit 
is less than 3.5. To improve the dE/dx resolution and reduce the 
contributions from track splitting,2 two additional track selection 
criteria were applied. The number of clusters used for the dE/dx
calculation3 was set to more than 70, and short tracks crossing less 
than 80 out of a maximum of 159 pad rows were excluded from 
the analysis. These criteria address both tracks crossing chamber 
boundaries and split tracks, both leading to a deterioration of the 
dE/dx measurement. To suppress contributions from particles from 
weak decays and interactions in the detector material, the dis-
tance of closest approach (DCA) of the extrapolated track to the 
primary vertex position was required to be less than 1 cm along 
the beam direction, while in the transverse plane a transverse mo-
mentum (pT) dependent DCA selection of less than (0.018 cm +
0.035p−1.01

T ) with pT in GeV/c was applied to account for the 
pT dependence of the DCA resolution [41]. In addition, daughter 
tracks from reconstructed secondary weak-decay kink topologies 
were discarded.

In 2015, the ALICE TPC was operated at interaction rates up to 
8 kHz during Pb–Pb collisions. These high interaction rates resulted 
in a possible pile-up of several interactions during the 90 μs drift 
time. The fraction of pile-up events that occur within a few cm of 
the primary vertex, the so-called in-bunch pile-up, is less than 1‰ 
of the entire data set. Therefore, in-bunch pile-up has a negligi-
ble impact on the results. Moreover, in-bunch pile-up events were 
further suppressed thanks to the high-precision vertexing capabili-
ties of the ITS. Even slightly displaced multiple vertices originating 
from interactions within the same bunch crossing can be discrimi-
nated. The much more frequent out-of-bunch pile-up events occur 
anytime during the drift time of the TPC, i.e., they are distributed 
equally along the time direction within the TPC and cannot be sup-
pressed by reconstructed secondary vertices in the ITS. They lead 
to a significant deterioration in the measurements of the dE/dx

2 Track splitting occurs when a track is reconstructed as two separate tracks due 
to poor dE/dx resolution.
3 Clusters that are very close to the TPC readout chamber boundaries [40] or are 

from overlapping tracks are not considered in the calculation of dE/dx. Therefore, 
the number of clusters used to calculate dE/dx may differ from the number of clus-
ters used for track selection. This quantity is particularly important for the dE/dx
resolution.
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Fig. 1. (Left) Correlation between the reconstructed (Nrec
p ) and the generated (Ngen

p ) number of protons for the most central Pb–Pb collisions simulated using the HIJING 
model [50]. (Right) Distribution of reconstructed proton number for a fixed value of Ngen

p = 36, where the fit demonstrates the deviation from a binomial efficiency loss.

of the triggered event caused by the baseline fluctuations in the 
TPC [40]. These pile-up events affect about 20% of the data col-
lected in 2015 and are negligible for 2010. The resulting bias in 
the measured dE/dx is corrected to restore optimal PID perfor-
mance and to avoid the need to discard events with pile-up [40].

Protons are identified by their dE/dx in the TPC and its known 
momentum dependence. To overcome the misidentification prob-
lem caused by overlapping dE/dx distributions for different parti-
cles, for instance at the crossings of kaons (K) and protons (p) or 
pions (π ) and protons, a novel experimental technique, the Iden-
tity Method (IM) [42–44] was used. With this method, weights, 
which are obtained from the fits of dE/dx distributions, are as-
signed to each track reflecting the probability of a particle having 
a specific identity. Thereby all tracks can be kept without applying 
any selection on the PID variable and no second detector needs 
to be employed to identify the (anti)protons. In the present analy-
sis, particles in the momentum range 0.6–2.0 GeV/c were retained. 
With particle identification based solely on the dE/dx measure-
ments in the TPC, the efficiencies are independent of momentum 
in the selected range, and as high as about 91% for protons and 
about 83% for antiprotons. The difference of 8% is due to the ab-
sorption of antiprotons in the detector material. Both proton and 
antiproton detection efficiencies are nearly independent of collision 
centrality and are uniform within the kinematic acceptance used 
in this analysis. The cumulants of the net-proton distribution are 
reconstructed using the IM as well. Further details on the applica-
tion of the IM to ALICE data are discussed in Ref. [31]. In Ref. [30], 
the method used here was applied to the analysis of second-order 
cumulants of net protons in Pb–Pb collisions at 

√
sNN = 2.76 TeV. 

The current analysis closely follows what is described there.
Understanding and controlling the particle detection efficiency 

is one of the major technical challenges in the measurement of 
higher-order cumulants, since the efficiency enters into the an-
alytical formula of the correction with the corresponding higher 
power [45–47]. This affects both statistical and systematic uncer-
tainties of the corrected data. Note that the efficiency correction 
approximately doubles the statistical uncertainties, as also noted in 
Ref. [48]. The efficiency correction for the cumulants is performed 
by using proton and antiproton efficiencies in analytic formulas 
derived in Refs. [45–47] assuming efficiency losses governed by 
the binomial statistics (binomial efficiency loss). In order to ensure 
that this assumption is fulfilled, the ALICE detector response [29]
was studied in detail with a full MC simulation using the HIJING 
event generator and the GEANT4 [49] transport software. The re-
sponse of the TPC detector for the kinematic range used in this 
analysis is illustrated in the left panel of Fig. 1 as a correlation be-
tween the reconstructed (Nrec

p ) and the generated (Ngen
p ) number 

of protons, where the reconstructed protons are those detected in 
the active area of the detector, as well as satisfying the event and 
track quality criteria. The event and track selection plays a signif-
icant role in the shape of the TPC detector response. For example, 
as discussed above, they can reduce the contributions from track 
splitting, which causes correlated dE/dx measurements, and thus 
a deviation from a binomial detector response.

After detailed study and optimization of the event and track 
selection, only a slight deviation from the binomial loss is ob-
served, as shown in the right panel of Fig. 1. A MC verification 
test was performed to estimate the impact of this deviation in 
the final results on the net-proton cumulant measurements. In this 
MC closure test, particles are generated, including certain correla-
tions such as the effect of baryon number conservation, and re-
constructed after they have passed through the detector simulated 
with GEANT4. Then the efficiency correction is applied, and the 
generated and corrected observables are compared. The compari-
son is shown in Fig. 2 for the second- and third-order cumulant 
ratios of the net-proton distribution. The efficiency-corrected re-
sults obtained from the MC reconstructed data are in agreement 
with the results obtained from the MC generated data. Note that 
the uncorrected results, also in Fig. 6, deviate from the Skellam 
baseline, which is set at zero, because the net-proton number is 
nonzero due to antiproton absorption in the detector material and, 
to a smaller degree, by a proton knock-out contribution. Therefore, 
the final results depend crucially on a very accurate determination 
of the proton and antiproton efficiencies.

The statistical uncertainties assigned to the reconstructed cu-
mulants were determined using the sub-sample method. To this 
end, the data set was subdivided into n random subsamples. The 
distribution of the cumulants from these subsamples yields the 
statistical uncertainty as described in Ref. [31]. The fits to the mea-
sured dE/dx distributions, which are the only inputs to the IM, are 
the dominant source of systematic uncertainty in the ratios of the 
cumulants, for both second and third order. The observed maxi-
mum deviation between fit variations [31] is 0.6% and 0.8% for the 
normalized second-order cumulants within the momentum inter-
vals of 0.6–1.5 GeV/c and 0.6–2.0 GeV/c, respectively, and 4% for 
the ratio of third- to second-order cumulants in the momentum 
interval 0.6–1.5 GeV/c. The impact of possible imperfections in the 
dE/dx correction procedure mentioned above is also included in 
this systematic uncertainty estimate by analyzing the data retain-
ing different fractions of events containing pile-up. The uncertain-
ties associated with the detection efficiencies of the (anti)protons 
are also investigated by varying the detection efficiencies by an 
amount of ±2% for protons and antiprotons separately. The result-
ing systematic variation is less than 0.2% and 1.5% for the second-
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Fig. 2. HIJING model [50] based calculations of the normalized second-order cumulants of net protons as a function of pseudorapidity window (�η) (left) and ratio of 
third- to second-order cumulants (right) of net protons as a function of collision centrality at √sNN = 5.02 TeV. The results at the generated and reconstructed level are 
shown by the green closed and open circles, respectively. The error bars represent statistical uncertainties. The results after efficiency correction assuming binomial efficiency 
losses [45–47] are shown by black open squares.

Fig. 3. Pseudorapidity interval dependence of the second-order cumulants of net-pions (left) and net-kaons (right) normalized to the means (see text). The ALICE data are 
shown as solid black circles while the blue solid and dashed lines indicate the results from HIJING [50] model calculations with and without resonance contributions, 
respectively. The error bars represent statistical uncertainties and the boxes around the data points represent the total systematic uncertainties.

and third-order cumulants, respectively. Other sources of system-
atic uncertainty are estimated by varying the event and track se-
lection criteria, resulting in a maximum uncertainty of less than 
1%. The final total systematic uncertainty is obtained by adding 
in quadrature the individual maximum systematic deviations from 
these three groups of independent contributions. For the third-
order cumulants, it varies between less than 0.5% for the most 
peripheral collisions and a maximum of 3% for the most central 
collisions for the pseudorapidity interval of �η = 1.6.

3. Results

As potential candidates for conservation of electric charge and 
strangeness, results are reported for the pseudorapidity interval 
dependence of the second-order cumulants of net-pions and net-
kaons produced in central Pb–Pb collisions.

The observations in these channels are quite striking because 
they shed light on resonance decay contributions to fluctuations in 
Pb–Pb collisions at the LHC. Fig. 3 shows the pseudorapidity inter-
val dependence of the normalized second-order cumulants of net-
pions and net-kaons compared with the results from HIJING [50]
with and without resonance contributions. A significant effect of 
resonances, e.g., ρ → π+π− and φ → K+K− , is clearly visible 

in both cases. In fact, the decay of resonances into oppositely 
charged pion or kaon pairs drastically reduces the fluctuations 
and dominates the second-order cumulants of the respective net 
distributions. Therefore, to study the genuine electric charge and 
strangeness fluctuations, first a quantitative understanding of the 
resonance contributions is essential. On the other hand, there are 
no resonances that decay into pp with a sizeable branching ratio, 
therefore net-proton fluctuations are not obscured by this effect. 
It has been argued in the literature [51] that net-proton fluctua-
tions are good proxies for net-baryon fluctuations, in particular for √
sNN >10 GeV. Also, total electric-charge conservation is expected 

to have a negligible impact on the net-proton fluctuation measure-
ments, since the electric charge is mostly carried by the charged 
pions, which are the most abundant species at LHC energies. The 
statistically independent Poisson limit for net-baryon distributions 
is the Skellam distribution, which is defined as the probability dis-
tribution of the difference of two random variables, each generated 
from statistically independent Poisson distributions [52,53]. For net 
protons, the nth-order cumulants of the Skellam distribution are 
given by

κSkellam
n (p− p) = 〈p〉 + (−1)n〈p〉, (2)
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Fig. 4. Centrality (left) and pseudorapidity interval (right) dependence of the normalized second-order cumulants of net protons. The ALICE data are shown by black and 
red markers for √sNN = 2.76 and 5.02 TeV, respectively, while the colored shaded areas indicate the results from HIJING [50] and EPOS [57] model calculations at √sNN =
5.02 TeV. The Skellam baseline is shown by the horizontal dashed black line. In the right panel the expectation from global baryon number conservation is shown as a pink 
band and the dashed colored lines represent the predictions of the model with local baryon number conservation [22].

where 〈p〉 and 〈p〉 are the mean values of the proton and antipro-
ton multiplicity distributions, respectively. That means that even-
order cumulants of the Skellam distribution of the net protons are 
just the sum of the mean numbers of protons and antiprotons. At 
LHC energies, these numbers are equal within 1% [54], and there-
fore the normalized cumulants of the Skellam distribution with re-
spect to its second-order cumulant are zero for odd cumulants and 
unity for even cumulants. At Tpc [5,6], both the predictions based 
on LQCD and the HRG [4] model agree with the Skellam baseline 
up to the third-order cumulants of the net protons, reflecting inde-
pendent Poissonian fluctuations. The LQCD prediction [55], includ-
ing the effect of dynamical quarks, shows a significant deviation 
from the Skellam baseline for the fourth- and higher-order cumu-
lants, while the standard HRG does not contain such effects and 
deviations from the Skellam baseline are only due to baryon num-
ber conservation [56]. Fluctuations of conserved charges are mean-
ingful only within a limited phase space. They vanish in the full 
phase space, in order to obey the conservation laws, and asymptot-
ically approach the Poisson limit for very small acceptance, where 
dynamical correlations are suppressed [45]. Therefore, the fluctu-
ations of net-baryons are studied in the framework of the Grand 
Canonical Ensemble, where the net-baryon number is conserved 
only on average. Accordingly, the analysis is performed differen-
tially as a function of the collision centrality, the pseudorapidity 
interval, �η = 0.2 to 1.6, and for two different momentum ranges, 
0.6–1.5 GeV/c and 0.6–2.0 GeV/c. It should be noted that the de-
termination of centrality and the net-proton analysis are based on 
measurements in different pseudorapidity intervals to avoid trivial 
effects due to autocorrelations [18].

Fig. 4 shows the measured centrality and pseudorapidity de-
pendence of the normalized second-order cumulants of the net 
protons in Pb–Pb collisions for the two collision energies. The 5.02 
TeV data appear to be somewhat lower, however the two data sets 
agree within systematic uncertainties. It should be noted that the 
systematic uncertainties exhibit a large degree of correlation from 
bin to bin, but between the two collision energies are essentially 
uncorrelated due to the different running conditions (collision rate, 
gas mixture and space charge distortions in the TPC, etc.). The nor-
malized second-order cumulants are independent of collision cen-
trality and are reduced by about 5% from the Skellam baseline for 
the �η = 1.6 interval (left panel). As a function of the width of the 
�η interval, the fluctuations are increasingly reduced. Due to the 
increasing relevance of baryon number conservation with larger 
acceptance, this is expected. For the narrowest interval, statistically 

independent Poissonian fluctuations are observed. The results are 
also compared to results from HIJING [50] and EPOS [57] model 
calculations at 

√
sNN = 5.02 TeV. HIJING treats nucleus–nucleus 

collisions as an independent superposition of nucleon–nucleon in-
teractions and does not include phenomena such as equilibrium 
and collectivity. While in HIJING the hadronization is based on the 
Lund string fragmentation scheme, EPOS (version 1.99, tuned to 
LHC data) distinguishes between string segments in a collectively 
behaving central part (“core”) with high energy density and those 
in a peripheral part (“corona”) with lower energy density, more 
like in pp or p–A collisions.

It is noteworthy that the proton to antiproton ratio is above 
unity in both models with a significance of more than 3 sigma: 
1.025±0.004 and 1.008±0.002 for EPOS and HIJING, respectively; 
the value measured by ALICE in Pb–Pb collisions at 

√
sNN =

2.76 TeV agrees with unity within experimental uncertainties of 
a few percent [54]. This implies that the volume fluctuations for 
the second- and third-order cumulants are not negligible for the 
model calculations [18].

Both model calculations show second-order fluctuations inde-
pendent of centrality, as do the experimental data. The results 
from the EPOS calculations agree within the uncertainties with the 
data both in terms of the centrality and the �η dependencies. The 
HIJING model results exhibit a 12% suppression compared to Pois-
sonian fluctuations for the widest �η interval and are significantly 
below the data. This is also apparent in the dependence on the 
width of the �η interval (right panel of Fig. 4). The dependence 
on acceptance, and specifically the discrepancy between the HI-
JING results and the data, is examined in view of global vs local 
baryon number conservation modelled in Refs. [18,22,30,56] using 
a canonical statistical model. The right panel of Fig. 4 shows the re-
sults for different widths of the correlation interval, ranging from 
global baryon number conservation to short-range correlations. As 
expected, measurements and model calculations converge to the 
Skellam baseline in the limit of very small acceptance. As already 
noted in Ref. [30], the data from ALICE indicate long-range rapidity 
correlations (�ycorr > 5) between protons and antiprotons, there-
fore originating from the early phase of the collision [58]. Here 
�ycorr/2 is defined as the correlation length between protons and 
antiprotons in rapidity [22], so that �ycorr = 5 means that protons 
are correlated with antiprotons within 2.5 rapidity units into either 
direction.

The HIJING model calculations reflect a much smaller correla-
tion length (�ycorr = 2) than the EPOS model (�ycorr = 5) and 
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Fig. 5. Centrality (left) and pseudorapidity interval (right) dependence of the normalized second-order cumulants of net protons for √sNN = 5.02 TeV and two momentum 
intervals for the protons. The ALICE data are shown by red and blue markers for 0.6 < p < 1.5 GeV/c and 0.6 < p < 2.0 GeV/c, respectively. The colored shaded areas indicate 
the results from the HIJING [50] and EPOS [57] model calculations. In the right panel, in addition, the dashed colored lines represent the predictions from the model with 
local baryon number conservation with �ycorr = 5 [22].

Fig. 6. Centrality (left) and pseudorapidity interval (right) dependence of the ratio of third- to second-order cumulants for net protons at √sNN = 5.02 TeV before (open 
markers) and after (closed markers) efficiency correction.

the ALICE data. This is likely due to the formation of baryons 
in string breaking in the underlying Lund string model [59]. 
This sensitivity to the range of proton–antiproton correlations 
is further studied by enlarging the momentum acceptance for 
the 

√
sNN = 5.02 TeV data. The resulting normalized second-order 

cumulants are shown in Fig. 5 for the momentum intervals 
0.6–1.5 GeV/c and 0.6–2.0 GeV/c. Using the wider momentum in-
terval the number of protons and antiprotons roughly doubles. 
While there is again no change with the collision centrality, the 
larger acceptance leads to a larger suppression of fluctuations for 
the wider momentum range. For the largest �η interval, the sup-
pression amounts to an additional 4%. All calculations reflect the 
reduction in the fluctuations. However, while the magnitude is 
properly reproduced by the canonical statistical model predictions 
with a long correlation length [22], it can be noted that the sup-
pression due to increased acceptance is somewhat weaker in the 
EPOS results. The HIJING calculations properly track the absolute 
reduction in fluctuations, but fall significantly below the data in 
absolute amount.

Fig. 6 shows the centrality and pseudorapidity dependence of 
the ratio of third- to second-order cumulants of net protons at √
sNN = 5.02 TeV before and after the efficiency correction. After 

efficiency correction, the data agree with the zero baseline within 

the experimental uncertainties, which is consistent with expecta-
tions from the HRG model. The experimentally achieved overall 
precision is better than 4% for the most central collisions and much 
smaller for more peripheral collisions. Note that in the HRG model 
all odd cumulants vanish at LHC energy, where the number of 
baryons and antibaryons agree. The odd cumulants vanish under 
these conditions also if baryon number conservation is included, 
see Refs. [56,60]. Also in LQCD [61] the odd cumulants vanish.

In Fig. 7, the third-order cumulant measurements are also com-
pared with HIJING and EPOS model calculation results. Both mod-
els include baryon number conservation but, as mentioned above, 
the net-proton number is positive within the current experimental 
acceptance. Therefore, the resulting third-order cumulants for all 
centrality and pseudorapidity difference intervals shift toward pos-
itive values and are affected by the volume fluctuations [18] visible 
in the 10–20% centrality interval, where the centrality range dou-
bles (left panel). The consistency of the experimental results of the 
third- to second-order cumulant ratio with a value of zero, which 
is lower than the expectation from the EPOS and HIJING genera-
tors, is a confirmation that the proton-to-antiproton ratio is closer 
to unity than calculated by these generators and that the system-
atic uncertainties for these measurements are under good control. 
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Fig. 7. Centrality (left) and pseudorapidity interval (right) dependence of the ratio of third- to second-order cumulants for net protons at √sNN = 5.02 TeV. The ALICE data 
are shown by red markers, while the colored shaded bands represent the results from HIJING [50] and EPOS [57] model calculations.

A value of κ3/κ2 consistent with zero within small uncertainties 
also indicates that μB is very close to zero at LHC energies.

4. Conclusions

In summary, net-proton cumulant measurements up to third 
order and net-pion and net-kaon second-order cumulant measure-
ments are reported. The technical challenges related to data anal-
ysis, in particular efficiency correction and event pile-up, are over-
come as discussed in detail. Resonance contributions prove to be 
challenging in the study of fluctuations of the net-electric charge 
and the net-strangeness. A deviation of about 4% from the Skellam 
baseline is observed for the second-order net-proton cumulants for 
the widest �η interval. Investigation of this deviation in light of 
baryon number conservation led to the conclusion that the 2010 
data from ALICE [30] indicate the presence of long-range rapid-
ity correlations between protons and antiprotons originating from 
the early phase of the collision. This finding is corroborated by the 
present analysis including the higher luminosity 2015 data with 
significantly different experimental conditions. Results of calcula-
tions using the HIJING generator, based on the Lund string model, 
reflect a much smaller correlation length of one unit of rapidity. 
This observed discrepancy calls into question the mechanism im-
plemented in the Lund string model for the production of baryons. 
Baryon production as implemented in the EPOS event generator 
reflects the long-range correlation observed in the data. After ac-
counting for the effect of baryon number conservation, the data 
from ALICE are consistent with LQCD expectations up to the third-
order cumulants of the net protons. The finding of third-order net-
proton cumulants consistent with zero with a precision of better 
than 4% is promising for the analysis of the higher-order cumulants 
during the operation of LHC with increased Pb–Pb luminosity [62]
starting in 2022 and for the future heavy-ion detector planned for 
the early 2030s [63].
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B. Mohanty 80, M. Mohisin Khan 15, ,V, M.A. Molander 43, , Z. Moravcova 83, , C. Mordasini 96, , 

11

http://orcid.org/0000-0002-3632-4547
http://orcid.org/0000-0002-7078-3093
http://orcid.org/0000-0001-9001-4198
http://orcid.org/0009-0003-2644-3643
http://orcid.org/0000-0003-1477-8414
http://orcid.org/0000-0002-2442-4583
http://orcid.org/0000-0001-9352-5049
http://orcid.org/0000-0002-5397-6782
http://orcid.org/0000-0003-1008-5119
http://orcid.org/0009-0008-7787-9304
http://orcid.org/0000-0002-1488-4009
http://orcid.org/0000-0002-2851-5554
http://orcid.org/0000-0002-3693-2649
http://orcid.org/0000-0003-3895-9092
http://orcid.org/0000-0003-2478-9651
http://orcid.org/0000-0001-9059-2414
http://orcid.org/0000-0002-2134-967X
http://orcid.org/0000-0002-7934-4038
http://orcid.org/0000-0001-9047-4856
http://orcid.org/0000-0001-7461-7327
http://orcid.org/0009-0002-2983-9494
http://orcid.org/0000-0003-2406-911X
http://orcid.org/0000-0003-2889-2234
http://orcid.org/0000-0002-3066-855X
http://orcid.org/0000-0001-9980-5199
http://orcid.org/0000-0003-3958-9062
http://orcid.org/0000-0003-1969-6960
http://orcid.org/0000-0001-9087-4665
http://orcid.org/0000-0002-7685-0808
http://orcid.org/0000-0002-1605-5837
http://orcid.org/0000-0002-9492-3775
http://orcid.org/0000-0001-6811-5240
http://orcid.org/0009-0004-0872-2785
http://orcid.org/0009-0002-4730-9489
http://orcid.org/0009-0009-3972-0631
http://orcid.org/0000-0001-7602-1121
http://orcid.org/0000-0002-0559-6697
http://orcid.org/0000-0003-0618-4843
http://orcid.org/0000-0001-6907-0486
http://orcid.org/0000-0002-1513-2845
http://orcid.org/0000-0001-6297-2532
http://orcid.org/0000-0002-1726-5684
http://orcid.org/0000-0002-5629-5181
http://orcid.org/0000-0002-9355-6379
http://orcid.org/0000-0002-9057-9719
http://orcid.org/0000-0002-6603-6693
http://orcid.org/0000-0003-1831-7957
http://orcid.org/0000-0002-1474-6191
http://orcid.org/0009-0003-1055-0356
http://orcid.org/0000-0002-3493-3891
http://orcid.org/0000-0001-6189-3242
http://orcid.org/0000-0003-3075-2871
http://orcid.org/0000-0002-5741-7144
http://orcid.org/0000-0001-6653-6164
http://orcid.org/0000-0002-2724-668X
http://orcid.org/0000-0003-0996-8547
http://orcid.org/0009-0009-9098-9839
http://orcid.org/0000-0002-7504-2809
http://orcid.org/0000-0002-6434-7084
http://orcid.org/0000-0002-4816-283X
http://orcid.org/0000-0003-1433-6018
http://orcid.org/0009-0000-0438-5567
http://orcid.org/0009-0006-7951-7118
http://orcid.org/0000-0001-9676-3309
http://orcid.org/0000-0003-0078-8398
http://orcid.org/0000-0002-0906-062X
http://orcid.org/0000-0002-2102-7398
http://orcid.org/0000-0003-4558-7856
http://orcid.org/0009-0004-3408-5783
http://orcid.org/0009-0003-8978-9852
http://orcid.org/0000-0002-4808-419X
http://orcid.org/0000-0002-8354-7786
http://orcid.org/0000-0001-8322-9510
http://orcid.org/0000-0003-3902-8310
http://orcid.org/0000-0002-5592-0758
http://orcid.org/0000-0002-1301-1636
http://orcid.org/0000-0003-2841-6553
http://orcid.org/0000-0002-7285-3411
http://orcid.org/0009-0003-0133-319X
http://orcid.org/0000-0003-4116-7002
http://orcid.org/0000-0002-6497-3974
http://orcid.org/0000-0002-2211-715X
http://orcid.org/0000-0001-7296-5248
http://orcid.org/0000-0001-6203-9160
http://orcid.org/0000-0002-9249-0435
http://orcid.org/0000-0002-8831-4009
http://orcid.org/0000-0003-4824-2458
http://orcid.org/0000-0001-8738-7268
http://orcid.org/0000-0002-3652-6683
http://orcid.org/0000-0001-6810-6897
http://orcid.org/0000-0003-3576-4185
http://orcid.org/0009-0005-8435-0001
http://orcid.org/0000-0001-6012-6615
http://orcid.org/0000-0002-7568-7498
http://orcid.org/0000-0001-6441-9300
http://orcid.org/0000-0002-1381-3436
http://orcid.org/0000-0001-5091-4159
http://orcid.org/0000-0001-6593-4574
http://orcid.org/0000-0002-5569-1254
http://orcid.org/0009-0001-6795-6109
http://orcid.org/0000-0001-7174-6617
http://orcid.org/0000-0002-1706-4428
http://orcid.org/0000-0002-2197-4109
http://orcid.org/0000-0002-3567-5177
http://orcid.org/0000-0002-7998-5046
http://orcid.org/0000-0002-6987-2048
http://orcid.org/0000-0002-2746-9840
http://orcid.org/0000-0003-3049-9976
http://orcid.org/0000-0003-3150-2831
http://orcid.org/0000-0002-0613-5278
http://orcid.org/0000-0001-7672-2067
http://orcid.org/0000-0002-1851-4136
http://orcid.org/0000-0001-9289-2840
http://orcid.org/0000-0002-0298-9073
http://orcid.org/0000-0002-8958-4190
http://orcid.org/0000-0002-6586-9300
http://orcid.org/0009-0001-4180-0413
http://orcid.org/0000-0002-5267-0140
http://orcid.org/0000-0002-7291-8166
http://orcid.org/0009-0006-1840-462X
http://orcid.org/0000-0001-9471-1804
http://orcid.org/0000-0002-5489-3751
http://orcid.org/0009-0006-8424-015X
http://orcid.org/0000-0002-7017-4183
http://orcid.org/0000-0002-8384-0384
http://orcid.org/0000-0002-8068-8786
http://orcid.org/0000-0001-5955-0769
http://orcid.org/0009-0007-5832-8630
http://orcid.org/0009-0001-3545-3275
http://orcid.org/0000-0002-1259-979X
http://orcid.org/0000-0002-7919-2150
http://orcid.org/0000-0002-7480-7558
http://orcid.org/0000-0001-8367-8703
http://orcid.org/0009-0006-9345-9620
http://orcid.org/0000-0002-0425-9138
http://orcid.org/0000-0002-9188-9428
http://orcid.org/0000-0002-1904-296X
http://orcid.org/0000-0001-6335-7427
http://orcid.org/0009-0006-7301-988X
http://orcid.org/0000-0003-0062-0536
http://orcid.org/0000-0001-6895-4829
http://orcid.org/0009-0006-6383-6069
http://orcid.org/0000-0002-8397-7620
http://orcid.org/0000-0002-9063-1599
http://orcid.org/0000-0001-8635-8465
http://orcid.org/0000-0001-6486-2230
http://orcid.org/0000-0002-5648-4206
http://orcid.org/0000-0001-8159-8603
http://orcid.org/0000-0002-2850-4222
http://orcid.org/0000-0002-7002-0061
http://orcid.org/0009-0006-1802-5857
http://orcid.org/0000-0002-6027-0024
http://orcid.org/0000-0002-9901-2014
http://orcid.org/0000-0002-0233-9900
http://orcid.org/0009-0002-2291-691X
http://orcid.org/0000-0002-4831-2367
http://orcid.org/0009-0001-9974-0169
http://orcid.org/0000-0001-5455-9502
http://orcid.org/0000-0001-5682-0903
http://orcid.org/0000-0003-0311-9552
http://orcid.org/0000-0003-1723-4121
http://orcid.org/0000-0002-6683-7626
http://orcid.org/0000-0002-4256-052X
http://orcid.org/0000-0003-2706-1025
http://orcid.org/0000-0003-4486-4807
http://orcid.org/0000-0002-4772-3615
http://orcid.org/0009-0008-5115-943X
http://orcid.org/0000-0002-3102-1504
http://orcid.org/0000-0002-0786-8545
http://orcid.org/0000-0003-1965-7953
http://orcid.org/0000-0003-2146-0391
http://orcid.org/0000-0002-9069-0353
http://orcid.org/0000-0001-9675-4322
http://orcid.org/0000-0003-0288-202X
http://orcid.org/0000-0002-8503-3009
http://orcid.org/0000-0002-8657-6742
http://orcid.org/0000-0002-2064-6517
http://orcid.org/0000-0003-1880-5467
http://orcid.org/0000-0002-2699-1522
http://orcid.org/0000-0002-5475-5092
http://orcid.org/0000-0003-3711-8902
http://orcid.org/0000-0001-7604-9116
http://orcid.org/0000-0002-0015-9367
http://orcid.org/0000-0002-4524-563X
http://orcid.org/0000-0003-2570-8278
http://orcid.org/0009-0009-7230-3792
http://orcid.org/0000-0003-2613-2901
http://orcid.org/0000-0002-1415-4559
http://orcid.org/0000-0002-9745-0504
http://orcid.org/0000-0002-4165-505X
http://orcid.org/0000-0002-4856-8055
http://orcid.org/0000-0003-4389-7711
http://orcid.org/0009-0003-3911-1744
http://orcid.org/0009-0005-3106-8571
http://orcid.org/0000-0002-1430-6655
http://orcid.org/0009-0004-2669-5696
http://orcid.org/0000-0002-6726-6407
http://orcid.org/0000-0002-3892-2719
http://orcid.org/0000-0002-8627-9721
http://orcid.org/0000-0003-3056-8353
http://orcid.org/0000-0002-7634-8949
http://orcid.org/0000-0002-4767-1464
http://orcid.org/0000-0003-2845-8702
http://orcid.org/0000-0002-4512-1645
http://orcid.org/0000-0002-3265-9614


ALICE Collaboration Physics Letters B 844 (2023) 137545

D.A. Moreira De Godoy 135, , I. Morozov 140, , A. Morsch 32, , T. Mrnjavac 32, , V. Muccifora 48, , 

S. Muhuri 132, , J.D. Mulligan 74, , A. Mulliri 22, M.G. Munhoz 110, , R.H. Munzer 63, , 

H. Murakami 122, , S. Murray 113, , L. Musa 32, , J. Musinsky 59, , J.W. Myrcha 133, , B. Naik 121, , 

R. Nair 79, , A.I. Nambrath 18, , B.K. Nandi 46, , R. Nania 50, , E. Nappi 49, , A.F. Nassirpour 75, , 

A. Nath 95, , C. Nattrass 120, , T.K. Nayak 80, , A. Neagu 19, A. Negru 124, L. Nellen 64, , S.V. Nesbo 34, 

G. Neskovic 38, , D. Nesterov 140, , B.S. Nielsen 83, , E.G. Nielsen 83, , S. Nikolaev 140, , 
S. Nikulin 140, , V. Nikulin 140, , F. Noferini 50, , S. Noh 11, , P. Nomokonov 141, , J. Norman 117, , 

N. Novitzky 123, , P. Nowakowski 133, , A. Nyanin 140, , J. Nystrand 20, , M. Ogino 76, , A. Ohlson 75, , 

V.A. Okorokov 140, , J. Oleniacz 133, , A.C. Oliveira Da Silva 120, , M.H. Oliver 137, , A. Onnerstad 115, , 

C. Oppedisano 55, , A. Ortiz Velasquez 64, , A. Oskarsson 75, J. Otwinowski 107, , M. Oya 93, 

K. Oyama 76, , Y. Pachmayer 95, , S. Padhan 46, , D. Pagano 131,54, , G. Paić 64, , A. Palasciano 49, , 
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