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A new, more precise measurement of the Λ hyperon lifetime is performed using a large data sample of
Pb–Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV with ALICE. The Λ and Λ̄ hyperons are reconstructed at

midrapidity using their two-body weak decay channel Λ → pþ π− and Λ̄ → p̄þ πþ. The measured
value of the Λ lifetime is τΛ ¼ ½261.07� 0.37ðstat:Þ � 0.72ðsyst:Þ� ps. The relative difference between the
lifetime of Λ and Λ̄, which represents an important test of CPT invariance in the strangeness sector, is also
measured. The obtained value ðτΛ − τΛ̄Þ=τΛ ¼ 0.0013� 0.0028ðstat:Þ � 0.0021ðsyst:Þ is consistent with
zero within the uncertainties. Both measurements of the Λ hyperon lifetime and of the relative difference
between τΛ and τΛ̄ are in agreement with the corresponding world averages of the Particle Data Group and
about a factor of three more precise.

DOI: 10.1103/PhysRevD.108.032009

I. INTRODUCTION

The Λ is the lightest hyperon, with strangeness S ¼ −1,
isospin I ¼ 0, and quark content uds. Its lifetime has been
measured in past experiments starting from 1963 using its
weak decay channels Λ → pþ π− and Λ̄ → p̄þ πþ. The
world average reported in the Review of Particle Physics of
the Particle Data Group (PDG) [1] is τΛ ¼ 263.2� 2.0 ps.
This is the result of averaging the measurements performed
in 1973 by Poulard et al. [2] and 1975 by Clayton et al. [3]
using Λ produced in interactions of low-energy charged
kaon beams with a fixed target, and the measurement of
Zech et al. [4] in 1977 using a neutral hyperon beam. These
results are based on data samples containing a maximum
of fifty-three thousand events. The relative difference
between the lifetimes of Λ and Λ̄ reported in the PDG is
ðτΛ − τΛ̄Þ=τΛ ¼ −0.001� 0.009, resulting from the aver-
age of two measurements, one performed in 1967 by Badier
et al. [5] and another one in 1996 by Barnes et al. [6], using
Λ and Λ̄ produced in low-energy pþ p̄ → Λþ Λ̄ reactions.
The excellent tracking and particle-identification capabil-
ities of ALICE over a broad momentum range and the large
amount of data collected during Run 2 of the LHC are
exploited to improve the current precision on the meas-
urement of the Λ lifetime and on the relative difference
between the lifetimes of Λ and Λ̄. The latter provides a

fundamental test of CPT invariance in the strangeness
sector.
This measurement is also a fundamental reference for the

studies of the properties of hypernuclear states created in
heavy-ion collisions and for future precision studies of
other hyperon properties. The analysis presented here is
performed in Pb–Pb collisions at a center-of-mass energyffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV using the same data sample employed
for the measurements of the (anti)hypertriton lifetime andΛ
separation energy [7]. The latter measurements are funda-
mental to infer the internal structure of this hypernucleus as
well as the properties of hyperon–nucleon interaction in the
low-density limit, as described in [8].

II. EXPERIMENTAL APPARATUS

ALICE is one of the four large experiments at the LHC
and it is dedicated to the study of heavy-ion collisions at
ultrarelativistic energies. A detailed description of the
ALICE apparatus and its performance can be found in
Refs. [9,10]. In the following, only the subdetector systems
used for the analysis presented in this paper are described.
Trajectories of charged particles are reconstructed in the

ALICE central barrel with the inner tracking system (ITS)
[11] and the time projection chamber (TPC) [12]. These are
located within a large solenoidal magnet, providing a
highly homogeneous magnetic field of 0.5 T parallel to
the beam axis. The ITS consists of six cylindrical layers of
silicon detectors, concentric and coaxial to the beam pipe,
with a total pseudorapidity coverage jηj < 0.9 with respect
to the nominal interaction point. Three different technol-
ogies are used for this detector: the two innermost layers
consist of silicon pixel detectors (SPD), the two central
layers of silicon drift detectors (SDD), and the two
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outermost layers of double-sided silicon strip detectors
(SSD). This detector is used in the determination of primary
and secondary vertices, and in the track reconstruction.
The TPC is the largest detector in the ALICE central

barrel, with a pseudorapidity coverage jηj < 0.9. It is used
for charged-particle track reconstruction, momentum meas-
urement, and particle identification (PID) via the measure-
ment of the specific energy loss (dE=dx) of particles in the
TPC gas. This detector provides up to 159 spacial points
per track for charged-particle reconstruction. The resolution
in the measurement of the distance-of-closest approach of
primary tracks to the primary collision vertex, projected on
the transverse plane, ranges from about 200 μm at
0.2 GeV=c to about 10 μm at 10 GeV=c [10]. The trans-
verse-momentum (pT) resolution ranges from about 1% at
1 GeV=c to about 10% at 50 GeV=c in Pb–Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [13]. The dE=dx resolution depends on
the event multiplicity and is about 5–6.5% for minimum-
ionizing particles crossing the full volume of the TPC [10].
The PID is complemented by the time-of-flight (TOF)

system [14]. This detector is made of multigap resistive
plate chambers (MRPC) and is located at a radial distance
of 3.7 m from the nominal interaction point. The TOF
detector measures the arrival time of particles relative to the
event collision time provided by the TOF detector itself or
by the T0 detectors, two arrays of Cherenkov counters
located at forward and backward rapidities [15]. The TOF
detector is used in this analysis for pile-up rejection, mostly
from out-of-bunch collisions, by requiring that at least one
of the Λ (Λ̄) charged decay-daughter tracks has an
associated hit in the TOF detector.
Collision events are triggered by two plastic scintillator

arrays, V0A and V0C [16], located on both sides of the
interaction point, covering the pseudorapidity regions
2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. Each
array consists of four concentric rings, each ring compris-
ing eight cells with the same azimuthal coverage. The V0A
and V0C scintillators are used to determine the collision
centrality from the measured signals produced by charged
particles [17,18]. The centrality is defined in terms of
percentiles of the total hadronic cross section.

III. DATA ANALYSIS

A. Event selection

The data used for this analysis were collected in 2018
during the LHC Pb–Pb run at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. A
minimum bias (MB) event trigger and two centrality
triggers were used. The MB trigger, fully efficient in the
centrality interval 0–90%, requires coincident signals in the
V0 detectors, synchronous with the bunch crossing time
defined by the LHC clock. The two centrality triggers, fully
efficient in the centrality classes 0%–10% and 30%–50%,
are based on the signal amplitude measured by the V0
scintillators, which is proportional to the charged-particle
multiplicity of the event. The analysis is performed in four

centrality classes: 0%–10%, 10%–30%, 30%–50%, and
50%–90%. The events in the centrality classes 0%–10%
and 30%–50% are selected using both the MB and central-
ity triggers, while the MB event trigger alone is used for the
other centrality classes. In order to keep the conditions of
the detectors as uniform as possible and reject background
collisions, the coordinate of the primary vertex along the
beam axis is required to be within 10 cm from the nominal
interaction point. Events with multiple vertices identified
with the SPD are tagged as pile-up and removed from the
analysis [10]. In addition, events with pile-up occurring
during the drift time of the TPC are rejected based on the
correlation between the number of SDD and SSD clusters
and the total number of clusters in the TPC, as described in
Ref. [19]. To further suppress the pile-up contribution,
mostly from out-of-bunch collisions, the Λ daughter tracks
are required to have an associated hit in the TOF detector.
This requirement is applied only for the centrality classes
30%–50% and 50%–90%. For the most central events, the
matching of daughter tracks with a TOF hit does not have a
significant impact on the fraction of Λ (Λ̄) from events with
out-of-bunch pile-up, which is found to be between 0.02%
and 0.07%. The total number of events selected for each
centrality class is reported in Table I.

B. Selection of Λ candidates

The two-body decay channels Λ → pþ π− and Λ̄ →
p̄þ πþ are used in this measurement. These have a
branching ratio BR of ð63.9� 0.5Þ% [1]. The Λ (Λ̄)
candidates are reconstructed using the standard ALICE
weak decay finder. This algorithm searches for weak decay
topologies, called V0, by reconstructing oppositely-charged
particle tracks originating from a displaced vertex as
described in Refs. [20,21]. In the case of a decay vertex
located inside the ITS volume, at least one hit in any of the
ITS layers is used in the reconstruction of the charged
tracks originating from the V0 decay. The reconstructed
tracks, selected in the pseudorapidity region jηj < 0.8, are
required to fulfil a set of quality criteria such as having a
number of TPC crossed rows larger than 80, a number of
TPC clusters used for the dE=dx calculation larger than 60
to ensure a good dE=dx resolution, a fraction of TPC
crossed rows and findable clusters larger than 70%, and a
good track fit χ2=NTPC

cls < 2.5, where NTPC
cls is the number of

TPC clusters.

TABLE I. Number of events used for the analysis.

Centrality
Number of

events (×106)

0%–10% 70.97
10%–30% 18.43
30%–50% 61.43
50%–90% 36.86
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To reduce the combinatorial background, a set of
topological selections are applied, i.e. the distance of
closest approach (DCA) between the V0 daughter tracks
is required to be less than 1 cm, the DCA between the V0

and the primary collision vertex less than 0.5 cm, the radial
distance between primary and secondary vertices larger
than 3 cm, and cosðθpÞ > 0.995, where θp is the angle
between the vector connecting the primary and secondary
vertices and the total V0 momentum (  pV0 ¼  pp þ  pπ). The
selection criteria applied for this measurement are similar to
those already used in previous measurements [21–23].
The particle identification is based on the energy loss per

unit of track length measured by the TPC. Protons and
pions are identified by requiring that their measured dE=dx
is within 3σdE=dx from the expected average calculated
using the Bethe–Bloch, where σdE=dx is the dE=dx reso-
lution. Proton and pion candidates are selected in the
transverse-momentum intervals 0.2 < pπ

T < 2 GeV=c and
0.2 < pp

T < 10 GeV=c, respectively.

C. Signal extraction

The Λ and Λ̄ lifetimes are extracted from a fit to their
proper decay length distributions using the exponential
function exp ð−Lproper=hLproperiÞ. The proper decay length
is calculated for every Λ (Λ̄) as

Lproper ¼ Llab=βγ ¼ MΛ
Llab

p
; ð1Þ

where Llab is the decay length measured in the laboratory
system as the distance between primary and secondary
vertices, MΛ is the Λ mass taken from the PDG
(MΛ ¼ 1115.683 MeV=c2) [1], and p is the total momen-
tum of the Λ (Λ̄) measured at the decay point. The number
of signal counts in each Lproper interval is obtained using the
following procedure, which is illustrated in Fig. 1:

(1) Location of the peak region: the invariant mass of the
decay daughters is calculated and the region around
the maximum of the invariant-mass distribution is
fitted using a Gaussian function. The peak region is
defined as ½M0 − 8σ;M0 þ 10σ�, where M0 is the
mean and σ is the standard deviation of the Gaussian
fit. The choice of such a wide signal region is
motivated by the fact that the peak has two long tails
and is slightly asymmetric, especially for low values
of Lproper. This asymmetry is an effect of residual
imperfections in tracking and energy loss correc-
tions, which affect candidates with invariant masses
above and below the expected mass differently.

(2) Fit of the background: the background on the side
bands of the peak is fitted using a continuous
function to extrapolate the expected background
inside the peak region. Since the background shape
changes with Lproper, a third-order polynomial func-
tion is used to fit the background at low Lproper while
the sum of a power-law and a linear function is used
at high Lproper values. These functions have the
minimum number of parameters that guarantees a
data-to-fit ratio consistent with unity within statis-
tical uncertainties in the sidebands.

(3) Signal extraction: the signal is extracted in each
Lproper interval by subtracting the estimated back-
ground from the invariant mass distribution and
counting the entries inside the peak region.

The total number of Λ and Λ̄ raw counts within the peak
region are reported in Table II for each centrality interval.

D. Efficiency and secondary Λ corrections

The raw Lproper spectrum of Λ (Λ̄) is corrected for the
reconstruction efficiency, the feed-down contribution from
higher-mass baryons and secondary Λ (Λ̄) originating from
interactions of particles with the detector material as
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FIG. 1. Invariant mass spectra of pπ pairs measured in central collisions (0%–10%) at low (left) and large (right) Lproper. The green
area indicates the peak region.
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�
dNΛ

dLproper

�
corr

¼ 1

ϵðLproperÞ
× fprimðLproperÞ ×

�
dNΛ

dLproper

�
raw

;

ð2Þ

where ϵðLproperÞ is the efficiency of primary Λ (Λ̄) and
fprimðLproperÞ is the fraction of primary Λ (Λ̄). The
dominant feed-down contributions are given by the weak
decays of Ξ�, Ξ0, and Ω�: [1]

(i) Ξ0ðΞ̄0Þ → ΛðΛ̄Þ þ π0 BR ¼ ð99.524� 0.012Þ%,
(ii) Ξ� → Λþ π� BR ¼ ð99.887� 0.035Þ%,
(iii) Ω� → Λþ K� BR ¼ ð67.8� 0.7Þ%,
(iv) Ω�→Ξ0þπ� and Ω�→Ξ�þπ0BR¼ð32.2�0.8Þ%.
These corrections are calculated using Monte Carlo

(MC) simulations. Collision events between lead ions
are simulated using the HIJING event generator [24] and
the passage of particles through the experimental apparatus
is simulated using GEANT3 [25] as transport code.
Considering that the pT distributions of particles and their
relative abundances in MC simulations are different from
data, centrality and pT-dependent corrections are applied in
MC simulations using weights. These are defined, for
different centrality classes, as the ratio of the pT spectrum
measured by ALICE and the pT spectrum generated
by HIJING.
The ALICE measurements of the pT spectra of Λ, Ξ�,

and Ω� [21,26] in Pb–Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV,
scaled by the ratio of the proton pT spectra measured atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [27] and
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV [28], are
used to calculate the weights for different centralities.

Based on isospin symmetry, the pT spectra of Ξ0 are
assumed to be identical to those of Ξ�. Centrality depen-
dent factors, given by the ratios ðΞ=ΛÞdata=ðΞ=ΛÞMC and
ðΩ=ΛÞdata=ðΩ=ΛÞMC, are also included to reproduce the
centrality dependence of the particle ratios observed in
data. The efficiency is calculated as the ratio between
reconstructed and generated primary Λ in the simulation

ϵðLproperÞ ¼
½ dNΛ
dLproper

�
rec

½ dNΛ
dLproper

�
gen

: ð3Þ

The efficiencies of Λ and Λ̄ for central Pb–Pb collisions
(0–10%) as a function of Lproper are shown in Fig. 2 (left).
The correction for secondary Λ (Λ̄) from material and weak
decays is applied by scaling the raw Lproper spectrum by the
fraction of primary Λ (Λ̄) given by

fprimðLproperÞ ¼ 1 −
dNΛsec

=dLproper

dNΛall
=dLproper

: ð4Þ

The fraction of secondary Λ and Λ̄ for central Pb–Pb
(0%–10%) is shown as a function of Lproper in the right
panel of Fig. 2. The individual contributions from material
and weak decays are shown in addition to the total fraction
for illustration. The observed trend of the fraction of
secondary Λ (Λ̄) from weak decays with Lproper is due
to an interplay between the efficiency and decay time of the
Λ (Λ̄) mother particle. For secondary Λ (Λ̄) from material,
it is due to a combined effect of efficiency and the radial
distance at which the secondary Λ (Λ̄) is produced.

IV. SYSTEMATIC UNCERTAINTIES

The dominant sources of systematic uncertainties on the
Λ and Λ̄ lifetime measurements are related to the track
and V0 selections, signal extraction, efficiency and feed-
down corrections. These are summarized in Table III.
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FIG. 2. Reconstruction efficiency of primary Λ (Λ̄) (left) and fraction of secondary Λ (Λ̄) (right) in central Pb–Pb collisions (0–10%).

TABLE II. Raw counts of Λ and Λ̄ for different centralities.

Centrality Λ (×106) Λ̄ (×106)

0–10% 312.6 296.4
10–30% 49.7 47.2
30–50% 41.2 35.9
50–90% 4.2 3.6
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The methods used to estimate the systematic uncertainties
from these sources are illustrated in the following. In
addition, effects of the material budget uncertainty, the
uncertainty on the hadronic interaction of Λ, Λ̄, and their
decay daughters, and potential effects of residual pile-up—
which are found to be negligible—are also discussed.

A. Systematic uncertainty from track and V0 selection

The systematic uncertainty due to the track and V0

selection criteria is estimated by repeating the full analysis
chain using one hundred different analysis parameters,
where the single-track, topological, and particle-identifica-
tion selection criteria are varied, such that they produce a
maximum variation of �10% in the raw signal yield,
similarly to the approach used in Refs. [21–23]. The
systematic uncertainty from the track and V0 selection is
calculated by fitting the distribution of lifetime values
obtained from different selection criteria using a
Gaussian function and taking the σ of the Gaussian fit
as an uncertainty. The obtained uncertainties are 0.55 ps for
τΛ, 0.69 ps for τΛ̄, and 0.65 ps for τΛþΛ̄. This contribution is
the dominant source of systematic uncertainty.

B. Signal extraction uncertainty

The systematic uncertainty from the signal extraction
includes two contributions: the choice of the background fit
range and the integration range used for the raw yield
extraction. For both contributions, one hundred different
intervals are randomly generated, with a uniform proba-
bility distribution between two extremes, and the signal
extraction procedure is repeated for each of these intervals.
The limits used are specified in Table IV.
The standard deviation of the distribution of raw yields in

each Lproper interval is taken as the systematic uncertainty.
These two contributions are independent and added in

quadrature. The stability of the results was tested against
different choices of the fit functions used to model the
background. In particular, linear and second-order poly-
nomials were also tried at low Lproper, while an exponential
(power-law) for the left and second-order polynomial
(exponential) for the right side of the background were
also used at high Lproper. The use of alternative fit functions
to model the background resulted in negligible changes in
the extracted yield. For this reason, this contribution to the
signal extraction uncertainty is considered negligible. The
uncertainty on the lifetime is calculated by replacing
the statistical uncertainties on the corrected Lproper spectrum
with the signal extraction uncertainties, which are bin-by-
bin uncorrelated, and taking the uncertainty from the
exponential fit as the systematic uncertainty. This contri-
bution is found to be ðΔτÞsystsignal ¼ 0.03 ps for both τΛ and
τΛ̄, and 0.02 ps for τΛþΛ̄.

C. Systematic uncertainty from efficiency
and feed-down corrections

The systematic uncertainty related to the efficiency and
feed-down corrections is estimated by varying: (i) the pT-
dependent weights used to adjust the input pT distributions
of Λ, Ξ, and Ω in the simulations, (ii) the Λ, Ξ, and Ω
lifetimes by the PDG uncertainties [1] and (iii) the Λ=Ξ and
Λ=Ω ratios by the measured uncertainties. The Ω is found
to give a negligible contribution to the systematic uncer-
tainties. To vary the lifetimes implemented in the
simulations, which are taken from the PDG [1], Lproper-
dependent weights are used. These are obtained as the ratio
between the Lproper spectrum with modified lifetime and the
default spectrum. To estimate the total contribution of these
sources, a set of five hundred different efficiency and feed-
down corrections is generated. Each of them is obtained
using a different set of weights where the pT spectra of Λ,
Ξ, and Ω, their lifetimes and particle ratios are varied by a
fraction of their uncertainty. Such a fraction is extracted
randomly from a Gaussian distribution centered at zero and
with a width equal to 1. When modifying the pT spectra
measured in data to recalculate the weights, the correlated
and uncorrelated uncertainties with pT are treated
differently:
(1) pT-correlated uncertainties: all data points of the pT

spectrum are shifted coherently upward and down-
ward by a fraction of their systematic uncertainty in
each pT interval.

(2) pT-uncorrelated uncertainties: the data points are
moved independently by a fraction of their uncorre-
lated uncertainty in each pT interval.

These five hundred different efficiencies and fractions of
secondary Λ (Λ̄) are then used to correct the raw-Lproper

spectrum measured in data. The lifetime is extracted for
each corrected spectrum and the standard deviation of the
distribution of lifetimes is taken as an estimate of the

TABLE III. Summary of the systematic uncertainties on the Λ
and Λ̄ lifetime measurements. All values are in ps.

Source Λ Λ̄ Λþ Λ̄

Track and V0 selections 0.55 0.69 0.65
Signal extraction 0.03 0.03 0.02
Efficiency and feed-down corrections 0.30 0.33 0.30
Total 0.63 0.77 0.72

TABLE IV. Invariant-mass intervals used for the signal extrac-
tion systematic uncertainty.

Left extreme Right extreme

Background
fit range

½M0−14σ;M0−11σ� ½M0þ20σ;M0þ32σ�

Signal integration
range

½M0−13σ;M0−7σ� ½M0þ5σ;M0þ11σ�
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systematic uncertainty from efficiency and feed-down
corrections. The obtained uncertainties are 0.30 ps for
τΛ, 0.33 ps for τΛ̄, and 0.30 ps for τΛþΛ̄.

D. Inelastic interaction with the detector materials

The default efficiency is based on GEANT3 transport
package. The effect of (anti)matter absorption was studied
by comparing the default efficiency with that obtained
using a MC production based on GEANT4 [29], which
contains slightly different parametrizations of the inelastic
cross sections of (anti)matter particles. The GEANT3 and
GEANT4-based efficiencies are consistent within uncertain-
ties. TheΛ and Λ̄ lifetimes are found to be consistent within
uncertainties, and therefore, no systematic uncertainty is
assigned due to this effect.

E. Material budget

The ALICE detector material is known with a precision
of 4.5% [10]. The effect of the limited knowledge of the
material budget, which could affect the efficiency and the
fraction of secondary Λ (Λ̄) from material and its depend-
ence on Lproper, is studied by comparing the efficiency and
corrections for secondaryΛ (Λ̄) usingMC productions with
increased and decreased material density by 4.5%. The
difference in the mean lifetime is found to not be sta-
tistically significant and therefore this contribution is
neglected.

F. Pile-up effects

Simultaneous collisions with displaced vertices (pile-up)
could, in principle, create a bias in the measurement of the

Λ (Λ̄) decay length due to the wrong V0–vertex association.
The tight selection on the cosðθpÞ allows the matching
between a reconstructed V0 and the wrong vertex only for
close vertices. This happens with very low probability and
is found to give a negligible bias in the decay length
measurement. To further cross-check potential pile-up
effects, the analysis is repeated removing all pile-up
rejections. The Λ (Λ̄) lifetimes, in this case, are found to
be consistent with the value using default pile-up rejection
within the statistical uncertainties. It is concluded that the
pile-up effects combined with rather strong topological
selections used in this analysis give a negligible effect on
the Λ (Λ̄) lifetime.

V. RESULTS

The Lproper spectra of Λ and Λ̄ measured in each
centrality interval are corrected for the corresponding
efficiency, feed-down from higher mass baryons, and the
fraction of secondary Λ (Λ̄) from the material. The use of
centrality triggers in the data used in this analysis leads to a
nonuniform centrality distribution. In order to restore the
correct relative contribution from different centralities, the
Lproper spectra measured in the centrality intervals 10%–
30%, 30%–50%, and 50%–90% are scaled by a factor

ki ¼
N0−10%

events =w0−10%

Ni
events=wi

wi; ð5Þ

where Ni
events and wi are the number of events and the

centrality bin width of the ith centrality interval and N0−10%
events

and w0−10% ¼ 10 are those related to the reference
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FIG. 3. Lproper spectra of Λ (left), Λ̄ (middle) and their sum (right), and exponential fits for the lifetime extractions. Only statistical
uncertainties are shown for each data point and for the mean lifetime extracted from the exponential fit.
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centrality interval 0%–10%. The obtained spectrum is
normalized to unity and fitted with an exponential function
in the Lproper interval [3,30] cm to extract the mean lifetime.
The fit results for Λ, Λ̄ and their sum are shown in Fig. 3,
which also contains the data-to-fit ratios in the bottom
panels. The data-to-fit ratio in each interval is obtained as
the ratio between the interval content and the weighted
average of the fit function within the interval, with weight
given by the exponential function. In this figure, only
statistical uncertainties in each Lproper interval and on the
mean lifetime are shown. The systematic uncertainties are
calculated using the procedure described in Sec. IVand are
reported only for the final result of the lifetime in the
0%–90% centrality class. The fit is stable when changing
fit range (Lmin

proper ¼ 1; 2; 3; 4; 5;…, 10 cm) and binning
(width ¼ 0.5; 1; 2 cm) leading to results that are consistent
within the statistical uncertainties.
The measured lifetimes of Λ and Λ̄ with statistical and

systematic uncertainties, are

τΛ ¼ ½261.20� 0.49ðstatÞ � 0.63ðsystÞ� ps;
τΛ̄ ¼ ½260.86� 0.55ðstatÞ � 0.77ðsystÞ� ps;

τΛþΛ̄ ¼ ½261.07� 0.37ðstatÞ � 0.72ðsystÞ� ps:

The lifetimes extracted in different centrality intervals
are consistent within their statistical uncertainties, as shown
in Fig. 4. As a cross-check, the lifetime is also calculated as
the weighted average of the results in different centrality
intervals, with weights given by the inverse of the statistical
uncertainties squared. The result is fully consistent with
that extracted from the Lproper distribution obtained
using Eq. (5).

The present measurement is compared with previous
results in Fig. 5. The STAR measurement is taken from

Ref. [30]. For this comparison, statistical and systematic
uncertainties are added in quadrature.
Assuming CPT invariance, the lifetimes of the Λ and Λ̄

are expected to be consistent within uncertainties. To test
CPT invariance, the relative difference ðτΛ − τΛ̄Þ=τΛ is
measured. Statistical uncertainties on τΛ and τΛ̄ and the
systematic uncertainties originating from the signal extrac-
tion are uncorrelated and propagated independently. On the
other hand, the systematic uncertainties on the efficiency
and feed-down corrections as well as those on the track
and V0 selections of Λ and Λ̄ are partially correlated.
The systematic uncertainty on the relative difference
ðτΛ − τΛ̄Þ=τΛ from the former contribution is considered
as half of the interval with the following extremes

�
τΛ̄
τΛ

�
upper

¼ τΛ̄ þ ΔτΛ̄ðcorrectionsÞ
τΛ þ ΔτΛðcorrectionsÞ

; ð6Þ

�
τΛ̄
τΛ

�
lower

¼ τΛ̄ − ΔτΛ̄ðcorrectionsÞ
τΛ − ΔτΛðcorrectionsÞ

; ð7Þ

and is found to be 1.1 × 10−4. To take into account the
correlation between the uncertainties from the track and V0

selections, the relative difference ðτΛ − τΛ̄Þ=τΛ is calculated
for each of the different analysis settings used. The uncer-
tainty is given by the standard deviation of the distribution of
ðτΛ − τΛ̄Þ=τΛ values and is found to be 0.0021, which is the
largest contribution to the total systematic uncertainty. The
measured value of the relative difference between the Λ and
Λ̄ lifetimes is

ðτΛ − τΛ̄Þ=τΛ ¼ 0.0013� 0.0028ðstat:Þ � 0.0021ðsyst:Þ;
ð8Þ
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FIG. 4. Λ lifetime measured in different centrality intervals.
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while that reported in the PDG is ðτΛ − τΛ̄Þ=τΛ ¼ −0.001�
0.009 [1]. The present measurement is consistent with zero
with an overall improvement of the absolute precision with
respect to the PDG by approximately a factor of three.

VI. SUMMARY

Unprecedentedly precise measurements of the Λ (Λ̄)
lifetime and of the relative difference between the lifetimes
of Λ and Λ̄ are presented. The latter represents an important
test of the CPT symmetry in the strangeness sector. The
confidence range of the Λ (Λ̄) lifetime is reduced by
approximately a factor of three with respect to the PDG
average.
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Nucléaire et de Physique des Particules (IN2P3) and
Centre National de la Recherche Scientifique (CNRS),

France; Bundesministerium für Bildung und Forschung
(BMBF) and GSI Helmholtzzentrum für
Schwerionenforschung GmbH, Germany; General
Secretariat for Research and Technology, Ministry of
Education, Research and Religions, Greece; National
Research, Development and Innovation Office, Hungary;
Department of Atomic Energy Government of India
(DAE), Department of Science and Technology,
Government of India (DST), University Grants
Commission, Government of India (UGC) and Council of
Scientific and Industrial Research (CSIR), India; National
Research and InnovationAgency—BRIN, Indonesia; Istituto
Nazionale diFisicaNucleare (INFN), Italy; JapaneseMinistry
of Education, Culture, Sports, Science and Technology
(MEXT) and Japan Society for the Promotion of Science
(JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia
(CONACYT) y Tecnología, through Fondo de
Cooperación Internacional en Ciencia y Tecnología
(FONCICYT) and Dirección General de Asuntos del
Personal Academico (DGAPA), Mexico; Nederlandse
Organisatie voor Wetenschappelijk Onderzoek (NWO),
Netherlands; The Research Council of Norway, Norway;
Commission on Science and Technology for Sustainable
Development in the South (COMSATS), Pakistan;
Pontificia Universidad Católica del Perú, Peru; Ministry of
Education and Science, National Science Centre and WUT
ID-UB, Poland; Korea Institute of Science and Technology
Information and National Research Foundation of Korea
(NRF), Republic of Korea; Ministry of Education and
Scientific Research, Institute of Atomic Physics, Ministry
of Research and Innovation and Institute of Atomic Physics
and University Politehnica of Bucharest, Romania; Ministry
of Education, Science, Research and Sport of the Slovak
Republic, Slovakia; National Research Foundation of South
Africa, South Africa; Swedish Research Council (VR) and
Knut & Alice Wallenberg Foundation (KAW), Sweden;
European Organization for Nuclear Research, Switzerland;
SuranareeUniversity of Technology (SUT),National Science
and Technology Development Agency (NSTDA), Thailand
Science Research and Innovation (TSRI) and National
Science, Research and Innovation Fund (NSRF), Thailand;
Turkish Energy, Nuclear and Mineral Research Agency
(TENMAK), Turkey; National Academy of Sciences of
Ukraine, Ukraine; Science and Technology Facilities
Council (STFC), United Kingdom; National Science
Foundation of the United States of America (NSF) and
United States Department of Energy, Office of Nuclear
Physics (DOE NP), United States of America. In addition,
individual groups or members have received support from:
European Research Council, Strong 2020—Horizon 2020,
Marie Skłodowska Curie (Grants No. 950692, No. 824093,
No. 896850), European Union; Academy of Finland (Center
of Excellence in Quark Matter) (Grants No. 346327,
No. 346328), Finland; Programa de Apoyos para la
Superación del Personal Académico, UNAM, Mexico.

S. ACHARYA et al. PHYS. REV. D 108, 032009 (2023)

032009-8



[1] R. L.Workman et al. (ParticleDataGroup), Reviewof particle
physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

[2] G. Poulard, A. Givernaud, and A. Borg, New measurement
of the Λ lifetime, Phys. Lett. 46B, 135 (1973).

[3] E. F. Clayton et al., High-statistics determination of the Λ
mean lifetime, Nucl. Phys. B95, 130 (1975).

[4] G. Zech et al., A measurement of the lifetimes of Ξ0 and Λ
hyperons, Nucl. Phys. B124, 413 (1977).

[5] J. Badier et al., Reactions pp → ΛΛ at 2.5 GeV=c, Phys.
Lett. 25B, 152 (1967).

[6] P. D.Barneset al.,Observables inhigh statisticsmeasurements
of the reaction p̄p → Λ̄Λ, Phys. Rev. C 54, 1877 (1996).

[7] ALICE Collaboration, Measurement of the lifetime and Λ
separation energy of 3

ΛH, arXiv:2209.07360.
[8] ALICE Collaboration, The ALICE experiment—A journey

through QCD, arXiv:2211.04384.
[9] K.Aamodt et al. (ALICECollaboration), TheALICE experi-

ment at the CERN LHC, J. Instrum. 3, S08002 (2008).
[10] B. Abelev et al. (ALICE Collaboration), Performance of the

ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A
29, 1430044 (2014).

[11] K. Aamodt et al. (ALICE Collaboration), Alignment of the
ALICE inner tracking system with cosmic-ray tracks, J.
Instrum. 5, P03003 (2010).

[12] J. Alme et al., The ALICE TPC, a large 3-dimensional
tracking device with fast readout for ultra-high multiplicity
events, Nucl. Instrum. Methods Phys. Res., Sect. A 622, 316
(2010).

[13] S. Acharya et al. (ALICE Collaboration), Transverse mo-
mentum spectra and nuclear modification factors of charged
particles in pp, p-Pb and Pb-Pb collisions at the LHC, J.
High Energy Phys. 11 (2018) 013.

[14] A. Akindinov et al., Performance of the ALICE time-of-
flight detector at the LHC, Eur. Phys. J. Plus 128, 44 (2013).

[15] J. Adam et al. (ALICE Collaboration), Determination of the
event collision time with the ALICE detector at the LHC,
Eur. Phys. J. Plus 132, 99 (2017).

[16] E. Abbas et al. (ALICE Collaboration), Performance of the
ALICE VZERO system, J. Instrum. 8, P10016 (2013).

[17] B. Abelev et al. (ALICE Collaboration), Centrality deter-
mination of Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV with
ALICE, Phys. Rev. C 88, 044909 (2013).

[18] S. Acharya et al. (ALICE Collaboration), Centrality deter-
mination in heavy ion collisions, Report No. ALICE-
PUBLIC-2018-011, CERN, 2018, https://cds.cern.ch/
record/2636623.

[19] S. Acharya et al. (ALICE Collaboration), J=ψ elliptic and
triangular flow in Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV,
J. High Energy Phys. 10 (2020) 141.

[20] K. Aamodt et al. (ALICE Collaboration), Strange particle
production in proton-proton collisions at

ffiffiffi
s

p ¼ 0.9 TeVwith
ALICE at the LHC, Eur. Phys. J. C 71, 1594 (2011).

[21] B. Abelev et al. (ALICE Collaboration), K0
S and Λ Pro-

duction in Pb-Pb Collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys.
Rev. Lett. 111, 222301 (2013).

[22] S. Acharya et al. (ALICE Collaboration), Multiplicity
dependence of (multi-)strange hadron production in pro-
ton-proton collisions at

ffiffiffi
s

p ¼ 13 TeV, Eur. Phys. J. C 80,
167 (2020).

[23] J. Adam et al. (ALICE Collaboration), Enhanced production
of multi-strange hadrons in high-multiplicity proton-proton
collisions, Nat. Phys. 13, 535 (2017).

[24] X.-N. Wang and M. Gyulassy, HIJING: AMonte Carlo model
for multiple jet production in pp, pA, and AA collisions,
Phys. Rev. D 44, 3501 (1991).

[25] R. Brunand et al., GEANT Detector Description and Simu-
lation Tool, Program Library Long Write-up, 10.17181/
CERN.MUHF.DMJ1.

[26] B. Abelev et al. (ALICE Collaboration), Multi-strange
baryon production at mid-rapidity in Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys. Lett. B 728, 216 (2014); 734, 409
(E) (2014).

[27] S. Acharya et al. (ALICE Collaboration), Production of
charged pions, kaons, and (anti-)protons in Pb-Pb and
inelastic pp collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, Phys. Rev.
C 101, 044907 (2020).

[28] B. Abelev et al. (ALICE Collaboration), Centrality depend-
ence of π, k, and p production in Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, Phys. Rev. C 88, 044910 (2013).
[29] S. Agostinelli et al., GEANT4—a simulation toolkit,

Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250
(2003).

[30] B. I. Abelev et al. (STAR Collaboration), Observation of an
antimatter hypernucleus, Science 328, 58 (2010).

S. Acharya ,125 D. Adamová ,86 A. Adler,69 G. Aglieri Rinella ,32 M. Agnello ,29 N. Agrawal ,50 Z. Ahammed ,132

S. Ahmad ,15 S. U. Ahn ,70 I. Ahuja ,37 A. Akindinov ,140 M. Al-Turany ,97 D. Aleksandrov ,140 B. Alessandro ,55

H. M. Alfanda ,6 R. Alfaro Molina ,66 B. Ali ,15 A. Alici ,25 N. Alizadehvandchali ,114 A. Alkin ,32 J. Alme ,20

G. Alocco ,51 T. Alt ,63 I. Altsybeev ,140 M. N. Anaam ,6 C. Andrei ,45 A. Andronic ,135 V. Anguelov ,94

F. Antinori ,53 P. Antonioli ,50 N. Apadula ,74 L. Aphecetche ,103 H. Appelshäuser ,63 C. Arata ,73 S. Arcelli ,25

M. Aresti ,51 R. Arnaldi ,55 J. G. M. C. A. Arneiro ,110 I. C. Arsene ,19 M. Arslandok ,137 A. Augustinus ,32
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