
IoTFlowGenerator: Crafting Synthetic IoT Device Traffic Flows for Cyber
Deception

Joseph Bao
The University of Texas

at Dallas
jxb110430@utdallas.edu

Murat Kantarcioglu
The University of Texas

at Dallas
muratk@utdallas.edu

Yevgeniy Vorobeychik
Washington University

in St. Louis
yvorobeychik@wustl.edu

Charles Kamhoua
Army Research Labs

charles.a.kamhoua.civ@
army.mil

Abstract

Over the years, honeypots emerged as an important security
tool to understand attacker intent and deceive attackers to
spend time and resources. Recently, honeypots are being de-
ployed for Internet of things (IoT) devices to lure attackers,
and learn their behavior. However, most of the existing IoT
honeypots, even the high interaction ones, are easily detected
by an attacker who can observe honeypot traffic due to lack
of real network traffic originating from the honeypot. This
implies that, to build better honeypots and enhance cyber de-
ception capabilities, IoT honeypots need to generate realistic
network traffic flows.

To achieve this goal, we propose a novel deep learning based
approach for generating traffic flows that mimic real network
traffic due to user and IoT device interactions. A key tech-
nical challenge that our approach overcomes is scarcity of
device-specific IoT traffic data to effectively train a genera-
tor. We address this challenge by leveraging a core generative
adversarial learning algorithm for sequences along with do-
main specific knowledge common to IoT devices. Through
an extensive experimental evaluation with 18 IoT devices, we
demonstrate that the proposed synthetic IoT traffic generation
tool significantly outperforms state of the art sequence and
packet generators in remaining indistinguishable from real
traffic even to an adaptive attacker.

Introduction
Deception has been prevalent throughout history, especially
in warfare. In the context of cybersecurity, various cyber de-
ception techniques have been applied to move the attack-
ers away from the real resources and learn their intent. An
important cyber deception technique that has been heavily
used is honeypots. Honeypots have been deployed to deceive
attackers into spending time and resources away from real
targets and disclose their tools and capabilities. After many
attacks against IoT devices, honeypot based solutions have
been applied in the context of Internet of Things (IoT) de-
vices as well.

Although existing IoT honeypots have significant capa-
bilities, what remains a major weakness is their inability to
generate network traffic that appears sufficiently realistic in
such a way that it cannot be easily attributed to a honeypot
by attackers. This is especially important for IoT deploy-
ment settings where an attacker can observe some of the

Copyright © 2023 by the authors. All rights reserved.

network traffic. For example, in a commercial IoT or Indus-
trial Internet of Things (IIoT) deployment setting, once an
attacker hacks into a local network and starts observing the
network, it can easily detect IoT/IIoT honeypots since they
will not have a traffic flow originating from them. Therefore,
to create IoT honeypots that are difficult to detect, there is
a need to generate realistic network traffic flows associated
with those honeypots.

A simple idea for generating such synthetic traffic flows
could be to replay captured existing IoT device traffic. How-
ever, replay is easy to detect as long as the adversary is ob-
serving traffic for a sufficiently long period of time. Another
option could be to use state of art network traffic generators
that leverage generative adversarial network (GAN) frame-
works. However, direct application of these techniques in
our setting does not result in effective generators.

In this work, we propose a generative IoT network traffic
flow data algorithm that can generate network traffic using
a small amount of real IoT data. In addition, the developed
generator can deceive the attacker into accepting honeydata
with much higher probability compared to the state of art
network generator approach. Our contributions in this work
can be summarized as follows:

• We develop a novel IoT traffic flow generation algorithm
that can generate realistic synthetic traffic flow 1 for cyber
deception.

• Using signature extraction, our algorithm can easily learn
how to generate realistic network traffic with access to
little real IoT data.

• By comparing our algorithm with a state of art network
traffic generator using 18 different IoT devices, we show
that our algorithm performs much better in an adversarial
setting.

In the remainder of this paper, we provide the necessary
background related to our algorithm in the background sec-
tion. In the threat model section, we discuss our threat model
assumptions. In the IoTFlowGenerator section, we present
the implementation of our synthetic IoT traffic generation
algorithm. In the experimental results section, we show eval-
uation results using different IoT devices. Finally, we end the

1We also use the term honeydata for such synthetic IoT traffic
flows.



paper in the conclusion section.

Background
In this section, we introduce two state of art Generative Ad-
verserial Networks: SeqGAN, which utilizes reinforcement
learning concepts to generate sequences in a discrete space,
and DoppelGANger, a state of the art framework for gen-
erating time series datasets with metadata - including net-
work traffic. We use SeqGAN as part of our IoT network
traffic flow generation algorithm, and use DoppelGANger
as a comparison model to evaluate the relative fidelity of our
generated traffic flows.

Generative Adverserial Networks

Generative Adversarial Networks that use discriminative
models to guide the training of the generative model
have enjoyed considerable success in generating real-valued
data. GANs have many applications such as face synthesis
(Mokhayeri, Kamali, and Granger 2019), face aging (An-
tipov, Baccouche, and Dugelay 2017; Zhang, Song, and Qi
2017; Tang et al. 2018), image blending (Wu et al. 2019;
Chen and Kae 2019), text synthesis (Xu et al. 2017; Zhang
et al. 2017), object detection (Ehsani, Mottaghi, and Farhadi
2018; Li et al. 2017; Bai et al. 2018), language and speech
synthesis (Lin et al. 2018; Hsu et al. 2017), music gen-
eration (Mogren 2016; Guimaraes et al. 2018), etc. Even
though GANs have achieved some great results by produc-
ing highly realistic samples, it is still difficult to train GANs
with good stability. Other important shortcomings include
mode collapse (Goodfellow 2017; Arora et al. 2017), van-
ishing gradient (Goodfellow 2017), and the lack of proper
evaluation metrics (Borji 2018). For IoT traffic, or sequen-
tial data, GAN’s have limitations when the goal is to gener-
ate sequences of discrete valued data. SeqGAN is a GAN
based sequence generation framework that addresses this
problem (Yu et al. 2016). Modeling the data generator as
a stochastic policy in reinforcement learning (RL), SeqGAN
bypasses the generator differentiation problem by directly
performing gradient policy update. The reinforcement learn-
ing reward signal comes from the GAN discriminator judged
on a complete sequence, and is passed back to the interme-
diate state-action steps using Monte Carlo search. Extensive
experiments on synthetic data and real-world tasks demon-
strate significant improvements over strong baselines. Seq-
GAN alone is insufficient for generating synthetic network
traffic and is limited to generating only uni-variate integer
sequences. Our work extends the work of SeqGAN by gen-
erating multi-variate sequences composed of discrete and
continuous values.

DoppelGANger is a synthetic generation framework for
time series datasets including network traffic (Lin et al.
2019). To model correlations between measurements and
their metadata, DoppelGANger decouples the generation of
metadata from time series and feeds metadata to the time se-
ries generator at each time step. The DoppelGANger frame-
work allows generation of multi-variate time series datasets
with minimal expert knowledge. We use DoppelGANger to
generate synthetic IoT network traffic to serve as a baseline
predictive model to draw comparisons from.

VQ-VAE

Variational AutoEncoders (VAEs) are well-studied gener-
ative models. VAEs have been applied to various genera-
tion tasks. It is generally easier to train VAEs than GANs.
However, GAN-based methods have been able to gener-
ate high-fidelity synthetic images, whereas, until recently,
VAE-based methods seemed to generate blurred images. In
order to address this issue of low-quality generation, Van
Den Oord et al. (van den Oord, Vinyals, and Kavukcuoglu
2017) recently proposed the Vector Quantized-Variational
AutoEncoder (VQ-VAE) framework. Unlike a regular VAE
which encodes the input in a continuous latent space, VQ-
VAE finds compressed representations of images by project-
ing the output of the encoder onto a discrete latent space.
The output of the encoder is quantized to a set of vectors,
called the codebook which is a priori fixed and is much
smaller than the dimension of the input data. The vectors
(codes) in the codebook are updated throughout the training
process and VQ-VAE uses this codebook to obtain a dis-
crete, or “vectorized”, latent representation of the output of
the encoder by searching the nearest element in the code-
book. Although VQ-VAE was originally designed to handle
both image and audio data, it was recently extended to other
natural language processing tasks. VQ-VAE is utilized in our
work to extend SeqGAN to generate multi-variate sequences
composed of discrete and continuous values.

Threat Model

The goal of our adversary is to identify active IoT device
types from captured traffic in a target smart environment
when the IoT device traffic is encrypted. We assume in our
threat model, the attacker passively sniffs traffic between the
Internet Gateway and IoT devices, and uses analysis tech-
niques trained with previously obtained datasets to deter-
mine device types that exist. The term device type in this
work is defined to represent the combination of make, model
and software version of a particular device. Our goal of gen-
erating synthetic traffic is to trick our adversary into believ-
ing the fake traffic flow data is real and belongs to a particu-
lar device type.

Adversary Assumptions

We make the following assumptions about the adversary for
our evaluation task.

• The adversary passively sniffs the network traffic and
does not interact with any devices.

• The adversary is assumed to only have access to en-
crypted traffic flows corresponding to individual device
types. In other words, the content of the network packets
are protected by the secure encryption.

• The adversary has access to protocol headers data on all
layers that are not protected by the encryption scheme.

• The adversary makes a classification decision after wit-
nessing L packets of any given flow f where L can be
adapted based on the attack setting.



Adversarial ML Model

We create an adversarial attack model using packet metadata
inference, which is an adversarial ML model that classifies
device traffic using raw packet metadata. We utilize packet
metadata inference to evaluate the quality of generated syn-
thetic data.

Packet Metadata Inference The packet metadata adver-
sary uses packet frame lengths, packet timing, packet direc-
tion, protocol configuration, source and destination port of
each packet in the traffic window for inference. Each unique
packet frame length, port number, direction and protocol
configuration are categorically encoded, while timings are
continuously encoded. These features are used as input to
an adversarial classification model. This adversarial model
is a deep learning model that uses an LSTM hidden layer,
which is well suited to handle sequential data. The LSTM
architecture has an internal mechanism called gates that can
regulate the flow of information, and can learn which data
in a sequence is important to keep or throw away. By doing
that, it can pass relevant information down the chain of se-
quences to make predictions. The model also uses a cross
entropy loss function. Our results show that that this adver-
sarial ML model is also effective for identify device types
from captured encrypted traffic.

IoTFlowGenerator

Overview

IoTFlowGenerator, as shown in Figure 1 reduces the dimen-
sionality of traffic flows by finding discrete token represen-
tation for each packet feature vector and learning a recon-
struction process to create a two way mapping between the
feature space and the discrete space. The discrete packet rep-
resentations enable the adversarial network to learn the tem-
poral features of the sequential data in a lower dimensional
space. At the core of IoTFlowGenerator, is SeqGAN, the
process responsible for generating sequences of discrete to-
kens at this lower dimensional space. IoTFlowGenertor fin-
ishes by reconstructing the synthetic token sequences back
into the multivariate sequential input. Below we discuss the
different components of IoTFlowGenerator.

Data Pre-processing

As the traffic flows are initially in the form of PCAP files
from our datasets, we must transform them into something
that can be more easily analyzed using statistical methods.

Packet Analysis via Wireshark We use Wireshark to an-
alyze and extract relevant information from our datasets of
PCAP files. Wireshark is a popular network protocol ana-
lyzer, and has tools for capturing, inspecting, and analyz-
ing data packets. We deployed a script that uses Wireshark’s
command line utility (tshark) to parse packet capture files
from our datasets and extract useful features.

Data Extraction For each packet, we use wireshark to
extract the packet source and destination, the timestamp,
packet length , source and destination port number, and pro-
tocol configuration (i.e., the information available to adver-
saries even if the payload is encrypted). We then convert the

timestamps into a duration value measuring time in seconds
until the next packet in the same capture, after all packets
in the capture are sorted by earliest timestamp. We assign a
direction to each packet based on an inferred target device
IP and discard the IP addresses.

Protocol Configurations We use a binary sequence to
represent the presence of protocols in packet headers. We se-
lect some protocol types Wireshark can detect, namely, ARP,
LLC, IP, ICMMP, ICMPv6, EAPOL, TCP, UDP, HTTP,
HTTPS, DHCP, BOOTP, SSDSP, DNS, MDNS, and NTP.

Assigning Packet Direction Most IoT devices send pack-
ets to a service provider (e.g., for using a voice-command
detection module running the cloud) and receives responses
from the cloud. Hence, separating packets going in differ-
ent directions can be useful (e.g., to the service provider vs.
from the service provider). In order to assign a direction to a
packet, an IP address of the target device is needed. For our
purposes, we used the most common IP address as the IP of
the target device. Each packet is given a direction, outgoing
if the source IP of the packet and the IP of the target device
are equal, incoming if otherwise. This method works even if
there is no available data on the target device’s IP address.
For the purposes of this paper, the direction derived from
this method was useful for our downstream prediction tasks.
The IP addresses are discarded after the packet directions
are obtained.

Traffic Windows Our datasets contained packet metadata
sequences of variable length, but our sequential generation
algorithms is currently limited to generating fixed length se-
quences. Thus, we group L consecutive packets to form a
traffic window as shown in figure 2. These traffic windows,
simply fixed length device traffic flows, are useful in down-
stream inference tasks. For each device, we randomly se-
lect n traffic windows from the device traffic flows which
are used for all downstream tasks, including generation and
evaluation tasks; these tasks expect fixed length input.

Packet-Level Signature Extraction One insight discov-
ered for IoT devices, is that clearly visible changes in traffic
rates directly correspond with user activities (Apthorpe et al.
2018), and that traffic flows that occur immediately after cer-
tain user activities were typically comprised of packets go-
ing in opposite directions (Trimananda et al. 2019). These
traffic flows for specific user activities are called packet-
level signatures that consist only of the lengths and direc-
tions of a few packets in the captured traffic and can be used
to infer the device type and the specific type of activity that
occurred. Packet level signatures are extracted using unsu-
pervised learning methods shown in the appendix section of
our extended paper (Bao et al. 2023). The Density-Based
(DBScan) clustering algorithm is used with an Euclidean
pairwise distance metric to find signatures of arbitrary size.
For each possible signature size i, all subarrays of length i
in the device type’s traffic flows are used as input to the DB-
Scan clustering algorithm. The subarrays contain only the
packet length and direction, and not the duration or timing
information. For clustering, we configure the maximum dis-
tance d between two samples for one to be considered in the



Figure 1: The Illustration of IoTFlowGenerator: Metadata is extracted from packet capture files and preprocessed into feature
vectors. IoTFlowGenerator then finds discrete packet representations (FDPR) for each packet. SeqGAN is utilized to adverse-
rially train on the real tokens and synthesize fake tokens. Finally, IoTFlowGenerator reconstructs packet feature vectors for the
fake tokens, producing our desired synthetic feature vectors.

neighborhood of the other, and the minimum samples s re-
quired to form a cluster. If two samples have packets at the
same index with opposing directions, the distance measure
between these two samples is considered maximal. For each
cluster discovered and each subarray index, a range of inte-
ger packet lengths with direction encodes the set of potential
packet lengths and the direction at that position. This range
is determined by the minimum and maximum packet lengths
in each cluster and index. A sequence of these ranges is a
packet-level signature, and can match at any index position
in a traffic flow.

Figure 2: A traffic window with size n

Packet Frame Lengths and Direction If each packet
frame length and direction was directly encoded, we en-
counter the curse of dimensionality when doing further anal-
ysis. To avoid this, extracted packet-level signatures are uti-
lized to reduce the dimensionality of packet frame length
and direction features. Our proposed model, IoTFlowGener-
ator uses extracted packet-level signatures to convert a traffic
window into a sequence of non-overlapping activities (from
extracted signatures) and orphans, namely packets that do
not belong to an extracted signature. Since multiple signa-
tures may overlap, we sort packet-level signatures by to-

tal number detected over the entire set of traffic windows
for the specified device type multiplied by the length of the
packet-level signature. This is because packet-level signa-
tures that appear more frequently, are more important to con-
sider. Each traffic window is then fully traversed using a re-
cursive algorithm range matching the signatures in sorted
order. Each sequence element can be assigned a single sig-
nature, and some elements may not be assigned a signature
at all - orphan packets. Each signature is split into individual
packet length ranges, one for each index position, and each
unique packet in the traffic window is assigned an unique in-
teger encoding we call packet frame tokens based on the sig-
nature and index it belongs to or the packet frame length if
it does not have a signature. This packet frame token is used
instead of the packet frame length in downstream tasks until
the last reconstruction step when the packet frame length is
predicted, so generated traffic mimics network traffic from
user activities occurring on IoT devices. Since packet-level
signatures are specific to IoT devices, this specializes IoT-
FlowGenerator to synthesize IoT specific traffic and dif-
ferentiates IoTFlowGenerator from generic network packet
generators.

Packet Timings across Multiple Magnitudes In our
dataset, the duration between any two consecutive packets
in a flow may vary wildly for any given device type. For
some instances, the time between two consecutive packets
may may be less than a thousandth of a second, while a pe-
riod of inactivity may see the time between packets of min-
utes or more. Intuitively, if we built a model to predict packet
durations directly, our auto encoder loss function will com-
pletely ignore accurately predicting smaller values, while a
log transformed input will skew predicting the larger val-
ues. We bin packet durations into partitions using clustering,
so varying magnitudes are preserved. Our downstream tasks
predict a duration partition instead of directly predicting the



Figure 3: The Illustration of VQ-STAE: The auto-encoder used in IoTFlowGenerator to map between the feature space and
the discrete space. VQ-STAE is a modified Vector Quantized - Variational Auto Encoder that uses multi-variate sequence
transformers for the encoder and decoder to train on multi-variate sequences in a self-supervised manner. In the figure, C
represents the input sequence length and D represents the length of the embedding vectors.

duration as a continuous value.

Finding Discrete Packet Representations

The motivation behind finding discrete packet header rep-
resentations is to reduce the dimensionality of the feature
space so that the core sequence generation algorithm can
learn and produce sequences at higher level. We first com-
pute a feature vector for each packet in a traffic flow nu-
merically encoding each of the packet’s features. We train a
vector quantized sequence transformer auto encoder or VQ-
STAE to perform both sequence discretization and recon-
struction for traffic windows per device. We then use the en-
coder from the trained VQ-STAE to transform packet feature
vectors into discrete representations per packet - the result-
ing discrete sequences are learned via SeqGAN.

Generation

In IoTFlowGenerator, SeqGAN is responsible for generat-
ing traffic windows in the discrete space. SeqGAN is able
to generate discrete sequences out of the box. Sometimes,
the generator encounters mode collapse, a failure case for
GANs where the generator learns to produce samples with
extremely low variety. We counteract this issue by checking
the generated samples for low variety before using them in
downstream tasks.

Reconstruction

IoTFlowGenerator uses the decoder in the previously trained
VQ-STAE to map synthetic discrete sequences generated
from SeqGAN back to the feature space for each device (See
Figure 3).

After we generate duration tokens in the feature space,
our method for mapping duration tokens to actual duration
values is simple. Each token represents a cluster of duration
values partitioned from the training data. When we need to
map a token to a real duration value, we randomly select a

duration value from the cluster corresponding to the token,
and introduce a small amount of random noise so we don’t
have exactly matching duration values which is extremely
rare in the real world. Consider a noise element - a positive
real number e, and original duration q, the final duration q′

will be a random number between q − e and q + e. e is
calculated as a fixed fraction of q, and we use e = q/10. The
target element in the traffic window is then augmented with
the duration value.

The feature space does not contain explicit packet frame
lengths and instead contains a unique integer encoding we
call a packet frame token representing a position in a signa-
ture. We map this integer encoding back into a packet frame
length for each packet using a multi-layer perception deep
learning model with a sliding window on the sequence, and
a look behind on previous predictions as well. The inputs
for the model are the packet frame token sequence as well
as the discrete packet representation. An input for random
noise is also integrated for each model to produce a vari-
ety of outputs even when the inputs to the model are identi-
cal. The deep learning model trains on the real packet frame
lengths, the corresponding packet frame tokens and the dis-
crete sequence generated by the encoder in the VQ-STAE.
During reconstruction, the deep learning model predicts the
synthetic packet frame length using the packet frame token
generated by the decoder of the VQ-STAE and the synthetic
discrete sequences generated from SeqGAN. The model has
hyperparameters that define the size of the sliding window
and the look behind window. IoTFlowGenerator trains the
models using categorical cross entropy loss function and the
ADAM optimizer.

Packet Fuzzing Once the packet metadata flows are re-
constructed, we need to synthesize network packets with en-
crypted payloads where we utilize Scapy. IoTFlowGenerator
relies on the scapy’s fuzz function, which is able to change
any default value that is not to be calculated (like check-



sums) by an object whose value is random and whose type
is adapted to the field, to produce a random payload field,
which represents as an encrypted payload, and other packet
fields not defined by our synthetic metadata.

Experimental Results

IoT Dataset This dataset (Miettinen et al. 2017) which
was published by Aalto University represents the traffic
emitted during the setup of 31 smart home IoT devices of 27
different types (4 types are represented by 2 devices each).
For each tested device, the typical device setup process was
repeated n = 20 times, and after each testing round, a hard
reset to default factory settings of the tested device was per-
formed. The data is in the form of PCAP files; one PCAP file
exists for each setup process and captured traffic flow. We se-
lect 18 of these devices which have at least 20 TCP payload
containing packets per packet capture for displaying results
in this paper. The other device types did not contain enough
data for interesting analysis. We analyze the list of IoT de-
vices used and their supporting connectivity technologies in
the appendix section of our extended paper (Bao et al. 2023)

Evaluating Generator Performance

In this section, we present methods to evaluate the fidelity
of our synthetically generated traffic by testing how well our
generated data can fool the adversary AI models. Previously,
authors have defined tasks to evaluate synthetically gener-
ated data against adversary models (Abay et al. 2019). We
use one of these tasks with our defined adversary type for
synthetic traffic evaluation.

Baseline Comparison We evaluate the synthetic traffic
flows generated by DoppelGANger as a baseline algorithm
for IoTFlowGenerator baselining. Our generation process
for DoppelGANger is as follows. We utilize Wireshark to
extract packet features and assign a direction for each packet
- using some of the same data pre-processing steps we
use for IoTFlowGenerator. We extract features to input into
DoppelGANger. The first feature is the packet length, which
is a categorical variable - a separate category is used for
each unique packet length. The second feature is the direc-
tion, which is a categorical variable with two categories, in-
coming or outgoing. We also include as features the one-hot
encoded protocol configuration and source and destination
port. The final feature is the rescaled (min max normalized)
duration, or the time interval until the next packet arrives.
We run the generation process once per device type and eval-
uate the traffic as a baseline for our own generation process
IoTFlowGenerator.

Cyber Deception for a Synthetic Data-Aware
Adversary

In this scenario, the adversary has access to both labeled syn-
thetic data and real traffic flows during training, which may
help the adversary in distinguishing synthetic data/flows.
The knowledge of synthetic samples may occur in scenar-
ios where the adversary was fooled into accepting some syn-
thetic data previously, determined the data was synthetic and

Table 1: Synthetic Data-Aware Adversary Classification Ac-
curacy

Device IoTG DG

D-LinkCam 72.4% 100.0%

D-LinkDoorSensor 59.9% 99.3%

D-LinkHomeHub 64.8% 95.2%

D-LinkSensor 64.6% 97.2%

D-LinkSiren 71.2% 100.0%

D-LinkSwitch 63.2% 95.4%

D-LinkWaterSensor 62.4% 93.1%

EdimaxPlug1101W 59.8% 91.7%

EdnetGateway 61.3% 90.5%

HomeMaticPlug 61.5% 85.3%

HueBridge 61.4% 96.4%

HueSwitch 72.6% 94.1%

MAXGateway 62.6% 91.0%

WeMoInsightSwitch 76.8% 92.9%

WeMoInsightSwitch2 57.5% 93.9%

WeMoLink 59.3% 99.3%

WeMoSwitch 58.9% 100.0%

Withings 60.1% 82.0%

he/she may start analyzing other stored data files to authen-
ticate them. The attacker employs classification models to
predict whether the traffic flow is real or fake. The classi-
fiers are trained to learn 2 labels, one class for a real classifi-
cation, and one class for synthetic classification on a training
set. The adversarial ML models are trained to discriminate
between real/fake traffic of a target device. We computed the
cross validation accuracy score for each device type against
each adversarial ML model trained and validated on an equal
amount of real and synthetic traffic. We did this for each de-
vice type. We randomly elected an equal number of fixed
length traffic windows per device type for evaluation from
the real data set. For the absolute best performance in syn-
thetic data generation, the adversary at most correctly clas-
sifies 50 percent of the data points (i.e., random guess). If
the accuracy is close 50%, it suggests that the synthetic data
is indistinguishable from the real data. Table 1 shows cross
validation accuracy results for select devices in the Aalto
dataset (IoT setup traffic). These results indicate that IoT-
FlowGenerator performs significantly better than Doppel-
GANger across both evaluation tasks.

Conclusion

We presented a generation technique which can generate
synthetic IoT traffic flows, such that strong adversary evalu-
ation models will mistakenly identify them as real network
traffic flows for the intended IoT device. We find that, in
terms of the adversary model we used, the real and synthetic
traffic flows from IoTFlowGenerator are relatively indistin-
guishable and our IoTFlowGenerator generation technique
beats an existing state of art GAN-based network data gen-
eration technique in our adversary model evaluation task for
all devices across the dataset we use.



Acknowledgments

The research reported herein was supported in part by
NSF awards OAC-1828467, OAC-2115094 and ARO award
W911NF-17-1-0356.

References

Abay, N. C.; Akcora, C. G.; Zhou, Y.; Kantarcioglu, M.; and
Thuraisingham, B. 2019. Using deep learning to generate
relational honeydata. In Autonomous Cyber Deception Rea-
soning, Adaptive Planning, and Evaluation of HoneyThings.
Cham: Springer International Publishing, 1st ed. 2019. edi-
tion. 3–19.

Antipov, G.; Baccouche, M.; and Dugelay, J.-L. 2017. Face
aging with conditional generative adversarial networks.

Apthorpe, N. J.; Huang, D. Y.; Reisman, D.; Narayanan, A.;
and Feamster, N. 2018. Keeping the smart home private
with smart(er) iot traffic shaping. CoRR abs/1812.00955.

Arora, S.; Ge, R.; Liang, Y.; Ma, T.; and Zhang, Y. 2017.
Generalization and equilibrium in generative adversarial
nets (gans).

Bai, Y.; Zhang, Y.; Ding, M.; and Ghanem, B. 2018. Sod-
mtgan: Small object detection via multi-task generative ad-
versarial network. In ECCV.

Bao, J.; Kantarcioglu, M.; Vorobeychik, Y.; and Kamhoua,
C. 2023. IoTFlowGenerator: Crafting Synthetic IoT De-
vice Traffic Flows for Cyber Deception. arXiv e-prints
arXiv:2305.00925.

Borji, A. 2018. Pros and cons of gan evaluation measures.

Chen, B.-C., and Kae, A. 2019. Toward realistic image com-
positing with adversarial learning. 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
8407–8416.

Ehsani, K.; Mottaghi, R.; and Farhadi, A. 2018. Segan:
Segmenting and generating the invisible.

Goodfellow, I. 2017. Nips 2016 tutorial: Generative adver-
sarial networks.

Guimaraes, G. L.; Sanchez-Lengeling, B.; Outeiral, C.;
Farias, P. L. C.; and Aspuru-Guzik, A. 2018. Objective-
reinforced generative adversarial networks (organ) for se-
quence generation models.

Hsu, C.-C.; Hwang, H.-T.; Wu, Y.-C.; Tsao, Y.; and Wang,
H.-M. 2017. Voice conversion from unaligned corpora using
variational autoencoding wasserstein generative adversarial
networks.

Li, J.; Liang, X.; Wei, Y.; Xu, T.; Feng, J.; and Yan, S. 2017.
Perceptual generative adversarial networks for small object
detection.

Lin, K.; Li, D.; He, X.; Zhang, Z.; and Sun, M.-T. 2018.
Adversarial ranking for language generation.

Lin, Z.; Jain, A.; Wang, C.; Fanti, G. C.; and Sekar, V. 2019.
Generating high-fidelity, synthetic time series datasets with
doppelganger. CoRR abs/1909.13403.

Miettinen, M.; Marchal, S.; Hafeez, I.; Asokan, N.; Sadeghi,
A.-R.; and Tarkoma, S. 2017. Iot sentinel: Automated
device-type identification for security enforcement in iot.

2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS).

Mogren, O. 2016. C-rnn-gan: Continuous recurrent neural
networks with adversarial training.

Mokhayeri, F.; Kamali, K.; and Granger, E. 2019. Cross-
domain face synthesis using a controllable GAN. CoRR
abs/1910.14247.

Tang, X.; Wang, Z.; Luo, W.; and Gao, S. 2018. Face ag-
ing with identity-preserved conditional generative adversar-
ial networks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 7939–7947.

Trimananda, R.; Varmarken, J.; Markopoulou, A.; and Dem-
sky, B. 2019. Pingpong: Packet-level signatures for smart
home device events. CoRR abs/1907.11797.

van den Oord, A.; Vinyals, O.; and Kavukcuoglu, K.
2017. Neural discrete representation learning. CoRR
abs/1711.00937.

Wu, H.; Zheng, S.; Zhang, J.; and Huang, K. 2019. Gp-gan:
Towards realistic high-resolution image blending.

Xu, T.; Zhang, P.; Huang, Q.; Zhang, H.; Gan, Z.; Huang,
X.; and He, X. 2017. Attngan: Fine-grained text to image
generation with attentional generative adversarial networks.

Yu, L.; Zhang, W.; Wang, J.; and Yu, Y. 2016. Seqgan:
Sequence generative adversarial nets with policy gradient.
CoRR abs/1609.05473.

Zhang, H.; Xu, T.; Li, H.; Zhang, S.; Wang, X.; Huang, X.;
and Metaxas, D. 2017. Stackgan: Text to photo-realistic im-
age synthesis with stacked generative adversarial networks.

Zhang, Z.; Song, Y.; and Qi, H. 2017. Age progres-
sion/regression by conditional adversarial autoencoder.


