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crystal structure and physical properties of Pr0.75Gd0.25ScGe. The mag
netic ordering temperatures of the partially (approximately 0.27 H 
atoms per formula unit) and fully (1 H atom per formula unit) hydro
genated intermetallic compound are, as seen from AC magnetic sus
ceptibility, 70 K and 10 K, respectively; both are lower than the 190 K 
magnetic ordering temperature of the non-hydrogenated parent. 
Experimentally, the Gd and Pr magnetic sublattices in 
Pr0.75Gd0.25ScGeH order separately, with the Gd magnetic sublattice 
being ordered and the Pr magnetic sublattice being disordered at 3 K. 
DFT predicts that at the ground state Gd and Pr order ferrimagnetically. 

Like other CeScSi-type structures, hydrogen is inserted into the Ln4 
tetrahedra, contracting the a(=b) lattice parameters, expanding the c 
lattice parameter, and increasing the unit cell volume. Hydrogenation 
destroys the spin densities on the Sc atoms disconnecting the 
Pr0.75Gd0.25 magnetic layers and forming a quasi-2D magnetic structure. 
Hybridization of the Gd/Pr 5d states with H 1s states indicate chemical 
bonding, influencing the magnetic properties of Pr0.75Gd0.25ScGeH. The 
Pr/Gd-H hybridization in the valence band results in weak spin- 
polarization of conduction electrons at the Fermi energy, EF, opening 
a pseudo-gap in the spin-up channel, in contrast to the spin-down 
channel where EF is located on a steep slope. Furthermore, hydrogena
tion causes strong hybridization between the Pr1–4f and 5d/3d-states in 
the vicinity of EF, shifting the Pr1–4f states near EF in the minority 
channel. The strong 4f hybridization coupled with the pseudo-gap at EF 
in the majority-spin channel, suggests hydrogenation induces weak 
Kondo interactions in the fully hydrogenated Pr0.75Gd0.25ScGe system. 
Anomalous electrical resistivity behavior stems directly from the 
competition between weak Kondo interactions and long-range magnetic 
ordering. Thus, when strong magnetic fields are applied, long-range 
magnetic ordering dominates, and Kondo behavior is suppressed. 
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