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Abstract. Most models of epidemic spread, including many designed specifically for COVID-19, im-
plicitly assume mass-action contact patterns and undirected contact networks, meaning
that the individuals most likely to spread the disease are also the most at risk of contract-
ing it from others. Here, we review results from the theory of random directed graphs
which show that many important quantities, including the reproduction number and the
epidemic size, depend sensitively on the joint distribution of in- and out-degrees (``risk""
and ``spread""), including their heterogeneity and the correlation between them. By con-
sidering joint distributions of various kinds, we elucidate why some types of heterogeneity
cause a deviation from the standard Kermack--McKendrick analysis of SIR models, i.e.,
so-called mass-action models where contacts are homogeneous and random, and why some
do not. We also show that some structured SIR models informed by realistic complex
contact patterns among types of individuals (age or activity) are simply mixtures of Pois-
son processes and tend not to deviate significantly from the simplest mass-action model.
Finally, we point out some possible policy implications of this directed structure, both for
contact tracing strategy and for interventions designed to prevent superspreading events.
In particular, directed graphs have a forward and a backward version of the classic ``friend-
ship paradox""---forward edges tend to lead to individuals with high risk, while backward
edges lead to individuals with high spread---such that a combination of both forward and
backward contact tracing is necessary to find superspreading events and prevent future
cascades of infection.
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1. Introduction. In the field of network epidemiology, populations of hosts are
modeled as graphs, in which vertices are individuals and edges are contacts along
which infectious diseases can spread [32]. Here, we review important concepts from
the study of random graphs to inform our understanding of epidemics. We explain
how these concepts and results can be used on the one hand to inform interventions
and guide policy, and on the other hand to solve common nonlinear models of epidemic
spread based on differential equations. Our paper is structured such that the main
text focuses on concepts and insights, with all mathematical details presented in
complementary boxes and in the appendix.

To model epidemic spreading with graphs, we consider general transmission graphs
where we define edges as contacts or interactions that will transmit the disease
from one individual to another should the first individual become infected. These
transmission graphs can be generated through a set of assumptions [36, 44], contact
tracing data [23], or defined as isomorphic to classic epidemic models [27]. We can
then analyze how epidemic outcomes depend on the structure of these transmission
graphs [25, 26, 36, 39]. The only assumption we make is that these graphs correspond
to nonrecurrent epidemic dynamics, i.e., where individuals have a state that repre-
sents their immunological status and never go back to previous states. This is true,
for example, for infectious diseases that convey lifelong immunity. The susceptible-
infectious-recovered (SIR) model is the canonical example of such dynamics, but our
discussion also applies to the susceptible-exposed-infectious-recovered (SEIR) model
or any other nonrecurrent compartmental model of disease spread [5]. The fact that
individual states are nonrecurrent here means that individuals can only be susceptible
once and that every contact can only transmit the disease once, which is a key feature
that allows us to analyze epidemic models based on the structure of the underlying
graph.

Graphs allow us to model many kinds of heterogeneity and structure and to ex-
plore how and when heterogeneity affects epidemic thresholds and sizes. For the
simplest random graphs, epidemics end up being equivalent to classic mass-action
compartmentalized models in epidemiology, which can be analyzed using systems of
differential equations. As we will discuss, the SIR model on Erd\H os--R\'enyi random
graphs, where every pair of vertices is independently connected with the same prob-
ability, behaves like the Kermack--McKendrick SIR solution in the limit where the
number of vertices---i.e., the population size---is infinitely large [23, 28, 29, 30]. Yet,
since the degree of a vertex is the number of edges it has, we can model superspreading
events by having a heavy-tailed degree distribution, where some vertices have a degree
considerably larger than the mean [35]. A random edge is more likely to be with a
high-degree individual, who in turn has more secondary contacts. Thus, the average
degree of a vertex reached by a random edge is greater than the average degree of a
random vertex. This phenomenon is often called the ``friendship paradox"": on aver-
age, your friends have more friends than you do [45]. In the epidemic context, this
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EPIDEMIC DIRECTION, HETEROGENEITY, AND CORRELATIONS 473

Box I: Undirected graphs and the degree variance

If P (k) is the degree distribution in an undirected graph, i.e., the fraction of vertices
with degree k, then the average excess degree, or the expected number of secondary
contacts resulting from a random contact (see Figure 2(b)), is

(1.1) R0 =

\sum 
k k(k  - 1)P (k)\sum 

k kP (k)
=

\langle k2\rangle 
\langle k\rangle  - 1 =

Var k

\langle k\rangle + \langle k\rangle  - 1 ,

where \langle k\rangle =
\sum 

k kP (k), \langle k2\rangle =
\sum 

k k
2P (k), and Var k = \langle k2\rangle  - \langle k\rangle 2. An epidemic

may only occur when R0 > 1. For the Poisson degree distribution we have Var k = \langle k\rangle 
and thus R0 = \langle k\rangle , but for distributions with larger variance we have R0 > \langle k\rangle . This
is the friendship paradox: a random friend of yours has more friends, on average,
than you do (even when not counting you).

phenomenon has two effects. First, the reproduction number is not simply the mean
degree; it depends also on its second moment or variance (see Box I). In particular,
even if we hold the mean degree constant, increasing the variance lowers the critical
transmission rate: the probability of transmission per contact needed to reach the
epidemic threshold [44]. Second, as developed in [15, 31, 43] and recently pointed out
as highly relevant for COVID-19 in [24, 33], the ``friendship paradox"" can amplify
the effectiveness of contact tracing, giving a better chance that a contact leads to a
superspreading event, helping the prevention of further cascades of infection.

This view of superspreading events assumes that the transmission graph is undi-
rected: that is, edges that would spread the disease in one direction would also spread
it in the other. While this may be true for individuals who attend a group event or
work together in close quarters, some mechanisms of spread, such as surface contacts
from handling and delivery, are inherently directed [37]. In graph terms, an individual
might have high out-degree but low in-degree, or vice versa. Intuitively, this is be-
cause they represent different concepts: in-degree captures the risk that an individual
receives the infection from others (network pathways for an incoming transmission
event), while out-degree captures the spread that an infected individual can cause
once infected (the network pathways for outgoing transmission events). In addition,
many nonpharmaceutical interventions to prevent disease spread have a directed ef-
fect. Wearing a simple mask is one such mechanism, as it is believed to reduce the
probability that the wearer spreads a respiratory disease like COVID-19 to others,
but not to strongly protect the wearer from receiving the disease from others [11, 21].

Most importantly, almost all epidemic models---including many mass-action mod-
els and models based on undirected contact networks---can be mapped onto epidemic
percolation networks (EPNs) [25, 26, 27], which are semidirected (contain both di-
rected and undirected edges). A directed edge a \rightarrow b in an EPN means that a will
transmit the disease to b if a becomes infected and b is susceptible, and undirected
edges simply correspond to two directed edges in opposite directions. We therefore
adopt a general view of directed transmission graphs [7, 26, 37, 39, 40] which allows
us to investigate the roles of directionality, heterogeneity, and correlations in these
graphs without the need to specify the complex underlying mechanisms of a spreading
dynamics, and without loss of generality.

Each vertex in a directed graph has an in-degree, i.e., the number of contacts from
whom it could receive the disease, and an out-degree, i.e., the number of contacts to
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474 ALLARD, MOORE, SCARPINO, ALTHOUSE, AND HÉBERT-DUFRESNE

a. low risk, high spread b. high risk, low spread c. high risk, high spread

Fig. 1 Different types of individuals in a directed graph model of disease spread: (a) low risk, but
high spread, (b) high risk, but low spread, and (c) high risk and high spread.

whom it could spread the disease if it became infected. We can think of the in-degree
as the risk of this individual, and the out-degree as their spread. As illustrated in
Figure 1, an individual might contribute to rapid spreading by having high risk, high
spread, or both. For instance, an average immunocompromised individual might have
high risk but low spread, while someone who fails to wear a mask even while those
around them do might have low risk and high spread. Finally, someone who by choice
or necessity interacts with many others in close quarters would have both high risk
and high spread, as in the traditional undirected picture of superspreading events.

This distinction between risk and spread, or between incoming and outgoing
edges, has several consequences. First, the reproduction number is proportional to
the correlation between risk and spread (see Box II). More precisely, the contribution
of a given vertex to the reproduction number is proportional to the product of its
in- and out-degrees. Vertices with both high risk and high spread are likely to be-
come infected and then to infect many others. But if they have either high risk or
low spread, then the expectation for the number of new cases they might generate
is smaller. This has possible implications for nonpharmaceutical interventions: the
effect of reducing an individual's spread is implicitly proportional to their risk.

Box II: Directed graphs and correlation between risk and spread

In a directed graph, each vertex has an in-degree kin and an out-degree kout. We
associate these, respectively, with their risk, the number of contacts from whom they
could receive the infection, and their spread, the number of contacts to whom they
will transmit it if they become infected. The degree distribution is then a joint
distribution, giving the fraction P (i, j) of vertices with kin = i and kout = j. Since
the total number of incoming and outgoing edges must match, the mean in-degree
and the mean out-degree are equal:

(1.2) \langle kin\rangle =
\sum 
i,j

iP (i, j) = \langle kout\rangle =
\sum 
i,j

jP (i, j) .

The directed configuration model of random graphs [8, 14, 37] assumes that vertices
are connected to each other randomly conditioned on their in- and out-degrees. The
``heads"" of the directed edges are randomly matched with their ``tails,"" and each
outgoing edge arrives at a given vertex with probability proportional to that vertex's
in-degree. This method of constructing a random graph can give rise to self-loops
or parallel edges, but these are rare in sparse graphs (with finite average degree). In
the limit of large population size, we can also say that for each pair of vertices a, b
there is an edge a \rightarrow b with probability kout(a)kin(b)/m, where m = \langle kin\rangle n is the
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EPIDEMIC DIRECTION, HETEROGENEITY, AND CORRELATIONS 475

total number of edges and n is the total number of vertices.

The reproduction number, or the expected number of secondary transmissions re-
sulting from a random transmission, is

(1.3) R0 =

\sum 
i,j ijP (i, j)\sum 
i,j iP (i, j)

=
\langle kinkout\rangle 
\langle kin\rangle 

.

Just as R0 depends on the variance of the degree distribution in the undirected case,
it now depends on the covariance, or correlation, between the in- and out-degrees.
In particular, the contribution of each individual to the reproduction number is
proportional to the product of their risk and their spread.

parents
children

kin = 2 k out = kexcess = 3

for
war

d

backward

tra
nsmission

backward

a. directed b. undirected
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forward
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Fig. 2 Definitions of key concepts around an index case. (a) In directed graphs, kin defines the
number of potential parents of a vertex and kout its number of potential children. Backward
tracing goes up the genealogical tree toward predecessors, while forward tracing goes down
the tree toward descendants. Backward tracing will find a biased number of excess outgoing
transmissions around the parent (backward friendship paradox, biased spread), while forward
tracing will find a biased number of potential parents around the child (forward friendship
paradox, biased risk). (b) In undirected graphs, transmissions can go both ways. The identi-
fication of parent vertices for backward tracing is therefore only possible after a transmission
event. The excess degree of a vertex will then refer to the number of edges other than the one
which led to a transmission event and will be equal to the degree minus one (i.e., k - 1). (c)
Example of an undirected degree distribution (blue cross) along with the corresponding excess
degree distribution (green diamond). The friendship paradox, i.e., a statistical sampling bias
toward higher degree vertices, yields a more skewed tail and higher average in excess degrees
than in original degrees.

Second, we now have two distinct types of friendship paradox, a forward one and
a backward one (see Figure 2 and Box III). Outgoing edges connect to vertices with
probability proportional to their in-degree, so following an edge forward will tend to
lead to individuals with high risk. Incoming edges, in contrast, come from vertices
with probability proportional to their out-degree, so following edges backward tends
to lead to individuals with high spread.

This suggests that to find superspreading events, and thus to prevent a large num-
ber of downstream cases, it may be important to perform backward contact tracing,
determining the source of an index case, rather than focusing only on forward contact
tracing, finding those who the index case may have infected. As shown in Box III, the
average spread of the predecessor of an index case is larger than that of an average
successor, especially if the spread has high variance, except in the unusual case where
risk and spread are almost perfectly correlated. This insight also implies that the
time window we use to define relevant contacts should include their likely predecessor
as well as the likely successors of an index case. We can then trace the ``siblings"" of
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476 ALLARD, MOORE, SCARPINO, ALTHOUSE, AND HÉBERT-DUFRESNE

the index case, i.e., others who were infected by the same individual, and prevent a
larger number of future cases.

Box III: Forward and backward friendship paradoxes and contact tracing

Suppose we are performing contact tracing from an index case. Since the probability
that a given individual is the predecessor of the index case (i.e., the source of their
infection) is proportional to the out-degree (or spread) of the former, the average
excess spread of their predecessor---that is, the average number of other children the
predecessor has---is

(1.4) \langle kout\rangle predecessor =
\sum 

i,j j(j  - 1)P (i, j)\sum 
i,j jP (i, j)

=
\langle k2

out\rangle 
\langle kin\rangle 

 - 1 =
Var kout
\langle kin\rangle 

+ \langle kin\rangle  - 1 .

Similarly, the probability a given individual is a successor of the index case is pro-
portional to their in-degree or risk, so the average excess risk of a successor---that is,
the average number of other predecessors the successor had---is

(1.5) \langle kin\rangle successor =
\sum 

i,j i(i - 1)P (i, j)\sum 
i,j iP (i, j)

=
\langle k2

in\rangle 
\langle kin\rangle 

 - 1 =
Var kin
\langle kin\rangle 

+ \langle kin\rangle  - 1 .

These are the backward and forward friendship paradoxes: the predecessor of a
random vertex tends to have high spread, but a successor tends to have high risk,
especially when both of these have high variance. On the other hand, the average
spread of a successor is just the reproduction number calculated in (1.3),

(1.6) \langle kout\rangle successor = R0 =
\langle kinkout\rangle 
\langle kin\rangle 

.

Comparing this with (1.4), we see that if the spread kout has high variance, then
the predecessor has larger spread on average than a successor, unless the risk and
spread are almost perfectly correlated, i.e., unless \langle kinkout\rangle \geq \langle k2

out\rangle  - 1. This insight
highlights the conclusion of [33] that contact tracing strategies should include tracing
backward from the index case as well as forward. In fact, this recommendation
becomes critical once we consider the directionality of contacts such that risk and
spread might not be perfectly correlated.

2. Epidemic Probability and Epidemic Size. Here we review some results of [46,
10] from random graph theory which show how to calculate the epidemic size as a func-
tion of the joint distribution of individual risk and spread. We note that these results
can be generalized [14, 48] and expanded to include semidirected graphs composed of
a mixture of both directed and undirected edges [8, 37].

As mentioned above, we define the graph such that an edge a \rightarrow b means that a
will transmit the disease to b if a becomes infected and b is susceptible. These trans-
mission graphs are called epidemic percolation networks (EPNs) [25, 26, 27]. The
term ``EPN"" is often specifically used to refer to transmission graphs whose structure
is isomorphic to specific epidemic dynamics and are therefore typically semidirected.
In other words, EPNs consist in randomly chosen subgraphs of a more general graph
of contacts that have the potential to transmit the disease, in which each transmission
occurs with some probability. Here we focus on general but purely directed graphs
for the sake of simplicity, without affecting the generality of our conclusions (the phe-
nomenology observed below remains the same in the presence of undirected edges).
Our approach allows us to consider general forms of heterogeneities and correlations
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EPIDEMIC DIRECTION, HETEROGENEITY, AND CORRELATIONS 477

without the need to specify an underlying epidemic dynamics. The connection be-
tween general contact networks and EPNs is discussed in Box IV.

Box IV: Probabilistic transmission and epidemic percolation networks

There is a long shared history between epidemic models, percolation processes, and
contact networks [9, 12, 17, 20, 34, 42, 47]. In this literature, there are two gen-
eral approaches. The first and simplest assumes (or makes the approximation)
that epidemics spread as a bond percolation process: transmissions on contacts
between infectious and susceptible individuals are independent stochastic events
[13, 19, 36, 37, 38, 44]. These probabilities can be heterogeneous and directed to
account for diverse types of contacts and individuals [1, 2, 3, 6] but always assume
that all contacts of an infectious vertex transmit independently. However, in most
epidemic models, these transmission events are correlated through the recovery pe-
riod of the infectious vertex. The second approach, therefore, defines a different
percolation process designed to be isomorphic to classic, dynamical, epidemic mod-
els [26, 27, 39]. In this work, we consider transmission trees stemming from both
approaches.
Bond percolation as an epidemic model : In general, the entire probability generating
function (PGF) formalism introduced in the main text can be applied to the study of
a percolation process. Recall that the variables x and y are simply counting variables.
If a contact only exists in the transmission tree with a probability q corresponding to
the transmission probability, then it contributes qx+(1 - q) to the counting function
(counting x only with probability q). We show that transmission trees lead to an
epidemic size agreeing with the Kermack--McKendrick solution if the in-degree is
Poisson distributed with mean R0 = \langle kin\rangle , generated with (see the appendix)

(2.1) Gin(x) =

\infty \sum 
i=0

P (i)xi =

\infty \sum 
i=0

e - \langle kin\rangle \langle kin\rangle i

i!
xi = e\langle kin\rangle (x - 1) .

The bond percolation model leads to the same scenario if, for instance, we consider
the case where each individual has d contacts, each transmitting the disease with
probability q. Then \langle kin\rangle = qd and the distribution of the in-degrees follows as

Gin(x) =

d\sum 
i=0

P (i)xi =

d\sum 
i=0

\Biggl( 
d

i

\Biggr) 
qi(1 - q)d - ixi(2.2)

=
\bigl( 
qx+ (1 - q)

\bigr) d
=

\biggl( 
1 +

\langle kin\rangle (x - 1)

d

\biggr) d
.

For large degree d, the identity (1+w/d)d \approx ew applies, and (2.2) falls back on (2.1),
hence recovering the Kermack--McKendrick prediction for epidemic size.
Epidemic percolation networks as isomorphism of epidemic models : To account for
the fact that transmissions are correlated through the recovery period of a vertex,
we must add heterogeneity to the percolation process. To model the final size of the
SIR model with transmission rate \beta and recovery rate \gamma , EPNs can be generated as
follows:

1. For all vertices i in the contact network, assign a recovery period \tau i, drawn
from \gamma e - \gamma \tau i based on the Poisson recovery process of the SIR model.

2. For each ordered pair of contacts between vertices (say, i and j), draw a
directed edge from i to j with probability Tij(\tau i) = (1  - e - \beta \tau i) based on
the Poisson transmission process over infection time \tau i of the SIR model.

These EPNs can then be analyzed with the PGF formalism described in the main
text. The process can be straightforwardly generalized to other epidemic dynamics
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478 ALLARD, MOORE, SCARPINO, ALTHOUSE, AND HÉBERT-DUFRESNE

by calculating the correct distributions for \tau i and Tij(\tau i) [27]. Importantly, this
process breaks the symmetry between epidemic probability and the size of the bond
percolation approach, yielding smaller epidemic probabilities [27], and it reduces to
classic bond percolation only when \tau i = \tau for all vertices [34, 27].

Let us first compute the epidemic probability, i.e., the probability that a single
infected individual generates a large-scale epidemic as opposed to a small outbreak.
It helps to think of a process where edges, rather than vertices, propagate the disease
from one generation to the next. An outgoing edge produces j ``children,"" or secondary
contacts, if the edge arrives at a vertex with out-degree j. A central question in the
theory of branching processes is whether the resulting downstream tree of contacts is
finite or infinite. Since the total number of descendants of a vertex is finite if and only
if this is true of all of its children, the probability of this event obeys a fixed-point
equation which can be written compactly using probability generating functions (see
Box V).

Box V: Generating functions formalism for epidemic probability

Given the degree distribution P (i, j), we define the following probability generating
function (PGF):

(2.3) G(x, y) =

\infty \sum 
i,j=0

P (i, j)xiyj .

Many quantities can be written compactly in terms of G and its derivatives, including
the average in- and out-degrees, (1.2),

\langle kin\rangle =
\partial G(x, y)

\partial x

\bigm| \bigm| \bigm| \bigm| 
x=y=1

= \langle kout\rangle =
\partial G(x, y)

\partial y

\bigm| \bigm| \bigm| \bigm| 
x=y=1

,(2.4)

and the reproduction number, (1.3),

R0 =
1

\langle kin\rangle 
\partial 2G(x, y)

\partial x \partial y

\bigm| \bigm| \bigm| \bigm| 
x=y=1

=
\langle kinkout\rangle 
\langle kin\rangle 

.(2.5)

We can also use G to analyze branching processes on the graph. In the forward
branching process of an outbreak, the probability Qout(j) that a random contact
results in j secondary contacts, i.e., that a random edge arrives at a vertex of out-
degree j, is

(2.6) Qout(j) =

\sum 
i iP (i, j)\sum 
i,j iP (i, j)

=
1

\langle kin\rangle 
\sum 
i

iP (i, j) .

We can write a generating function for Qout in terms of G:

(2.7) Fout(y) =
\sum 
j

Qout(j)y
j =

1

\langle kin\rangle 
\partial G(x, y)

\partial x

\bigm| \bigm| \bigm| \bigm| 
x=1

.

Now let uout be the probability that an edge has a finite number of descendants, i.e.,
that it will lead to a finite outbreak rather than an epidemic. This is true if it is
true for all j of its children. Since these are independent, averaging over j gives the
fixed-point equation

(2.8) uout =
\sum 
j

Qout(j)u
j
out = Fout(uout) ,
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EPIDEMIC DIRECTION, HETEROGENEITY, AND CORRELATIONS 479

of which uout is the smallest nonnegative solution. Finally, since a vertex with out-
degree j generates an epidemic with probability 1 - uj

out, the probability that infecting
a random initial vertex leads to an epidemic is

(2.9) \scrP \equiv 1 - 
\sum 
i,j

P (i, j)uj
out = 1 - G(1, uout) .

To compute the epidemic size, we consider the backward branching process of incom-
ing edges. The probability Qin(i) that an edge comes from a vertex with in-degree
i, and the corresponding generating function, are

(2.10) Qin(i) =
1

\langle kin\rangle 
\sum 
j

jP (i, j)

and

(2.11) Fin(x) =
\sum 
i

Qin(i)x
i =

1

\langle kin\rangle 
\partial G(x, y)

\partial y

\bigm| \bigm| \bigm| \bigm| 
y=1

.

The probability uin that an edge has a finite number of ancestors is then the smallest
nonnegative solution of

(2.12) uin =
\sum 
i

Qin(i)u
i
in = Fin(uin) .

Finally, a vertex with in-degree i becomes infected with probability 1  - ui
in, so the

size of the epidemic is

(2.13) \scrS \equiv 1 - 
\sum 
i,j

P (i, j)ui
in = 1 - G(uin, 1) .

Note that (2.8) and (2.12) assume that Qout and Qin stay constant as the disease
spread on the graph, and that the states of the neighbors of a given vertex with
respect to them being part of the epidemic are not correlated [44, 46]. These as-
sumptions imply that (2.9) and (2.13) are only exact in the limit of infinitely large
graphs.

Let us now consider the epidemic size. Vertices can receive the infection from
one of their incoming edges, or predecessors, who received it from their predecessor in
turn. We can thus consider a backward branching process of incoming edges, where
an edge has i ``parents"" (predecessors upstream in the directed graph) if it comes from
a vertex with in-degree i. If a vertex has only a finite number of ancestors, counting
all upstream vertices, then with high probability none of them will be the index case
and it will remain uninfected. But if it has a very large (i.e., infinite) number of
ancestors, then with high probability one of its ancestors will be the index case and
the vertex will eventually become infected. Thus, the calculation of the epidemic size
is equivalent to the calculation of the epidemic probability in a time-reversed model,
where the disease spreads backward from each vertex to its predecessors.

On undirected graphs, these forward and backward branching processes can often
be the same, such that the probability that they die out obeys the same fixed-point
equation. This leads to the observation that, in very simple percolation processes, the
epidemic size equals the epidemic probability. As explained previously, more complex
and realistic processes imply the presence of directed edges, meaning that these two
quantities are typically different [8, 44, 37]. Therefore, in the classic SIR dynamics,
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480 ALLARD, MOORE, SCARPINO, ALTHOUSE, AND HÉBERT-DUFRESNE

these fixed-point equations are expected to be different since the EPNs capturing
this process are semidirected (see Box IV for details), with the epidemic probability
being smaller than the relative size of the epidemic as predicted by the Kermack--
McKendrick analysis [27, 34]. In the next section, we consider degree distributions of
various kinds and with varying levels of correlation between risk and spread, and we
look at how these types of heterogeneity affect their epidemic size.

3. Examples. Let us first consider a simple and random undirected transmis-
sion graph, as illustrated in Figure 3(a--b), whose structure is fully specified by its
degree distribution, P (k), setting the number of contacts, k, leading to and from a
given vertex. Since the graph is undirected, we have kin = kout = k. One could
obtain such a transmission graph by either directly assuming undirected transmission
mechanisms such as a percolation process [9] or by starting from epidemic dynamics
(e.g., the SIR model) and applying a set of approximations [44]. In the context of
EPNs, undirected transmission graphs are possible for simple SI dynamics, or in very
specific cases where transmission of a disease is certain over some types of contacts
and impossible otherwise. As shown in [23], the epidemic size \scrS obtained on these
graphs corresponds to the classic Kermack--McKendrick solution, meaning that it is
the smallest nonnegative solution of

(3.1) \scrS = 1 - e - R0\scrS 

if and only if the degree distribution is Poisson, i.e., P (k) = Rk
0e

 - R0/k! where R0

is the reproduction number. What is so special about this distribution? As it turns
out, the Poisson distribution is the only one where the excess degree has the same
distribution as the degree itself: the probability that an edge leads to k secondary
transmissions equals the probability that a random vertex does the same. In terms
of the friendship paradox, the probability that you have k friends is the same as the
probability that your friend has k friends in addition to you. In particular, these two
distributions have the same mean, so R0 = \langle k\rangle . This is similar to the mass-action
hypothesis of Kermack and McKendrick as it implies that information about the
contact structure does not matter. For any other degree distribution---even a more
homogeneous one as in Figure 3(a)---the distribution of excess degrees is different
from the degree distribution, and the Kermack--McKendrick solution given by (3.1)
for the epidemic size does not apply.

Consider now a directed version of the Poisson graph. As shown in Figure 3(c),
we can think of undirected edges as bidirectional contacts, i.e., pairs of directed edges,
and make this directionality explicit before randomizing the incoming and outgoing
edges. What we now have is a graph where in-degrees and out-degrees are equal
(kin = kout = k) and are still drawn from a Poisson distribution, but where incoming
and outgoing neighbors are different. Even if the construction of the directed graph
structure is very close to that of the undirected case, this directed version does not fall
back on the Kermack--McKendrick solution given by (3.1) (see section A.3). One key
difference can be observed around transmission dead-ends, i.e., vertices with kout = 0,
which are now impossible to reach since they also have kin = 0. In other words, if
a vertex has been reached via one of its incoming edges, there is always at least one
outgoing edge available to reach the next vertex. As shown in section A.2, equivalence
with the Kermack--McKendrick solution is only recovered when in-degrees and out-
degrees are uncorrelated.

It turns out that some naive approaches to modeling heterogeneity do not, in
fact, alter the epidemic size at all. Consider the following kind of simulation, which
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EPIDEMIC DIRECTION, HETEROGENEITY, AND CORRELATIONS 481

Graph Construction Kermack-McKendrick?

No
Undirected graph:
all nodes have
degree, k = 3

Undirected graph: 
degrees k drawn 
from a Poisson dist.

Directed graph:
degrees kin = kout = k
from a Poisson dist.

Directed graph:
out-degree drawn
from a heterogeneous
distribution and 
targets selected at
random

No

Yes

Yes

(a)

(b)

(c)

(d)

Fig. 3 Four examples of transmission graphs and their construction, noting whether the Kermack--
McKendrick solution corresponds to the expected epidemic size. (a) An undirected graph
where all vertices are exactly the same, showing that too much homogeneity is different from
mass-action mixing. (b) The simple Poisson graph, the fish out of water, is the only type
of undirected transmission graph where the Kermack--McKendrick solution holds. Simple
Poisson graphs can be represented with a network structure but will lead to an expected
epidemic size corresponding exactly to that of the classic mass-action models and therefore
fail to include important network effects. (c) We take the undirected Poisson graph and
add directions to all edges (left). This procedure preserves the in- and out-degree for all
vertices. We then rewire the directed edges to obtain a simple graph without overlap between
contacts (right). Should we expect the Kermack--McKendrick solution to correctly predict
the epidemic size as it did in the original undirected graph? No. (d) A directed graph
obtained by independently specifying an in-degree distribution (here Poisson) and an out-
degree distribution (here fairly heterogeneous). This corresponds to a situation where all
individuals have similar risk of infection, while allowing for superspreading events. Proofs of
mapping (or lack thereof) to the Kermack--McKendrick solution are provided in the appendix.
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482 ALLARD, MOORE, SCARPINO, ALTHOUSE, AND HÉBERT-DUFRESNE

is run until there are no newly infected individuals and where Pout is an arbitrary
distribution of out-degrees:

1. Start with a single new infectious case in an otherwise susceptible population
of size N .

2. For each newly infected individual i, draw a number kout of transmissions
from the out-degree distribution Pout.

3. Randomly select kout individuals from the population. For each one, if it is
susceptible, then mark it as newly infected and go to step 2; otherwise, do
nothing.

This type of simulation generates transmission trees similar to the example shown in
Figure 3(d). While the out-degree distribution Pout can be arbitrarily heterogeneous,
including various kinds of superspreading events, the incoming edges fall with equal
probability on every susceptible individual because of the random selection of neigh-
bors at step 3. As a result, the distribution of risk, or in-degree, is Poisson, and the
in- and out-degrees are uncorrelated. As shown in section A.2, in the limit of large
N , the typical epidemic size produced by this kind of simulation exactly corresponds
to the Kermack--McKendrick solution, regardless of the out-degree distribution Pout.

These simple examples suggest that the Kermack--McKendrick solution given by
(3.1) relies on (i) a Poisson distribution of risk among individuals, and (ii) a lack of
correlation between risk and spread. It does not actually rely on homogeneous spread,
but only on the independence between the infection risk faced by an individual and the
number of secondary infections caused by that individual if infected. The undirected
Poisson case, where this independence does not hold since the in- and out-degrees
are equal by definition, is somewhat unique, since the lack of backtracking and the
friendship paradox balance out. We formalize this intuition mathematically in the
appendix, and some important results are visually summarized in Figure 4.

4. Connection with Structured Differential Equation Models. The mathemat-
ical analysis presented thus far is completely general and exact on very large (formally
infinite) random directed graphs. To further assess the impact of risk heterogeneity
on the epidemic size, we need to look into the mechanisms behind the joint distribu-
tion of both risk and spread in specific models. Here we show how one case of these
distributions arises from age-structured models in epidemiology.

One particularly powerful and common approach in current models of the COVID-
19 pandemic is age-structured SIR or SEIR models (e.g., [18, 41, 50]), where individ-
uals are separated into different types based on their age and where contacts between
age groups are specified through a contact (or ``mixing"") matrix. This approach is
powerful because it allows the inclusion of important sources of heterogeneity such as
different susceptibilities and likelihood of symptoms based on age, and it also allows
an easy parametrization of interventions such as school closures and/or lockdowns
through the contact matrix. Note that the different categories need not be related to
age, and could be used to represent other distinguishing properties such as behavior,
physiology, employment, etc.

For each group i, let us define Si(t), Ii(t), and Ri(t) as the numbers of susceptible,
infectious, and recovered individuals in that group at time t. These structured models
follow the SIR dynamics through a coupled system of ordinary differential equations
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EPIDEMIC DIRECTION, HETEROGENEITY, AND CORRELATIONS 483

Fig. 4 (a) Comparison between age-structured SIR and Poisson mixture models. The Poisson mix-
ture model presented in Box VI is compared to the numerical integration of the model of [50]
given by (4.1) and to the Kermack--McKendrick solution given by (3.1). This comparison
showcases the versatility of our approach and illustrates how many mass-action models sim-
ilar to (4.1) are equivalent to transmission graphs, where in-degrees and out-degrees are a
mixture of Poisson distributions, when it comes to predicting the epidemic size. (b) Im-
pact of correlations on epidemic size. We consider a correlated Poisson mixture model (see
section A.5) with w0 = w1 = 0.5 and zin11 = zin12 = zin21 = zin22. The parameter a controls
the correlation between the in-degrees and out-degrees for vertices of type 1: a = 0 corre-
sponds to no correlation, while a = 1 corresponds to perfect correlation. The case a = 0
is equivalent to the uncorrelated scenario explored in section A.2, while the dotted red line
corresponds to the fully correlated scenario explored in section A.3. (c) Impact of corre-
lations and heterogeneity on the final epidemic size. In each case study, the in-degree is
distributed according to a Poisson (Gin(x) = eR0(x - 1)) distribution and the out-degree is
either distributed according to a Poisson (Gout(y) = eR0(y - 1)) or a negative binomial dis-
tribution (Gout = (1 + R0(1  - y)/k) - k). The parameter a controls the correlation between
the in-degrees and out-degrees: a = 0 corresponds to no correlation, while a = 1 corresponds
to perfect correlation; see (A.11) for details. The epidemic size, \scrS , and the reproduction
number, R0, were computed with (A.12d)--(A.13). The Kermack--McKendrick solution (3.1)
was added to illustrate the impact of heterogeneity and correlations. Importantly, we show
that increasing correlations always lead to lower final epidemic size and that their effect
is larger for higher heterogeneity in out-degree. (d) Same results as shown in panel (b)
but plotted against the average degree of the populations rather than R0. This emphasizes
multiple results. First, correlations lower the epidemic threshold. Second, correlations in a
subset of the population can lead to sequential epidemic transitions [1, 22], here visible as an
S-shaped curve for the cases a = 0.8 and a = 1.0. Third, differences between the Kermack--
McKendrick and correlated transmission graphs shown in panel (a) are partially hidden in
the R0 calculation.
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484 ALLARD, MOORE, SCARPINO, ALTHOUSE, AND HÉBERT-DUFRESNE

written as

\.Si(t) =  - \beta \sigma i

\sum 
j

Mij
Ij
N

Si ,(4.1a)

\.Ii(t) = \beta \sigma i

\sum 
j

Mij
Ij
N

Si  - \gamma Ii ,(4.1b)

\.Ri(t) = \gamma Ii ,(4.1c)

where \beta is the baseline transmission rate of the disease, \sigma i is the group-dependent
susceptibility of individuals, Mij is the average number of contacts someone in group i
has with people in group j and through which that individual in group i could become
infected, and \gamma is the recovery rate of the disease. Note that these equations are
equivalent to the model described in the supplementary materials of [50]. They can be
understood as setting a Poisson distribution of in-degree with average zinij = \beta \sigma iMij/\gamma 
coming from group j for all individuals in group i. The model therefore corresponds
to a mixture of directed Poisson processes, and it is unclear a priori how much we
should expect these models to differ from the simple mass-action SIR. Note that
(4.1) does not require Mij to be constrained by Mji in any way since it can be seen
as quantifying the risk that individuals in group i catch the disease through their
contacts with individuals in group j (e.g., a musician playing along during a choir
practice and who does not sing). The matrix M whose elements are \{ Mij\} therefore
need not be symmetric, meaning that (4.1) implicitly recognizes that interactions
between individuals can be directed.

We apply this framework to a multitype directed graph [2] (see Box VI) where
the type of a vertex corresponds to its age group and where directed edges allow us to
consider heterogeneous susceptibility. As shown in Figure 4(a), the multitype directed
graph approach exactly solves for the final epidemic size produced by the system pre-
sented in (4.1). The equations presented in Box VI therefore provide a general solution
for the epidemic size in structured SIR-like models. Perhaps more importantly, this
solution highlights how the solution of such systems is actually a simple mixture of
Poisson processes and therefore a combination of Kermack--McKendrick-like terms.
As can be observed in Figure 4(a), this type of heterogeneity based on realistic con-
tact patterns does not translate into epidemic sizes that are very different from the
ones predicted by the simpler Kermack--McKendrick solution given by (3.1).

Box VI: Poisson mixture model

We consider a general case in which there are M types of vertices and where a fraction
w\ell of the vertices are of type \ell . We assume that the in-degrees and the out-degrees
are uncorrelated, and that the contribution to the in-degree from each vertex type is
independent and distributed according to a Poisson distribution. Thus, a PGF G\ell is
defined for each vertex type and has the general form

G\ell (\bfitx ,\bfity ) = exp

\Biggl[ 
M\sum 
r=1

zin\ell r(xr  - 1)

\Biggr] 
Gout(\bfity ) ,(4.2)

where zin\ell r is the average number of incoming edges type-\ell vertices received from
vertices of type r, and where Gout(\bfity ) is an arbitrary PGF. The average in-degree
of type-\ell vertices is therefore

\sum 
r z

in
\ell r. Akin to (1.2), the average in- and out-degrees

between any pair of vertex types are related via

wiz
out
ij = wjz

in
ji ,(4.3)
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EPIDEMIC DIRECTION, HETEROGENEITY, AND CORRELATIONS 485

which can be seen as the conservation of the total number of contacts between types of
vertices (i.e., there are as many edges ``leaving type i vertices toward type j vertices""
as there are edges ``arriving at type j from type i vertices""). Note that the matrices
whose elements are, respectively, \{ zinr\ell \} and \{ zoutr\ell \} need not be symmetric or satisfy
wiz

in
ij = wjz

in
ji and wiz

out
ij = wjz

out
ji . Following [2], the epidemic size is

\scrS = 1 - 
M\sum 
\ell =1

w\ell G\ell (\bfitu 
\bfi \bfn ,\bfone ) ,(4.4)

where \bfitu \bfi \bfn = (uin
1 , . . . , uin

M ) is the smallest nonnegative solution of

uin
\ell = exp

\Biggl[ 
M\sum 
r=1

zin\ell r(u
in
r  - 1)

\Biggr] 
(4.5)

for \ell = 1, . . . ,M . The reproduction number, R0 = \rho (\bfZ ), is equal to the spectral
radius, i.e., the largest absolute eigenvalue, of the matrix \bfZ whose elements are
\{ zin\ell r\} .

One intuition for this is that, since the sum of independent Poisson variables is
Poisson (with the sum of their means), the total risk of individuals in these models, i.e.,
the number of incoming edges they have from all age groups, is Poisson distributed.
Thus, while these models are structured, they result in a sum of terms like that in
the original Kermack--McKendrick model, where R0 is given by a weighted average
(specifically, the spectral radius of a matrix; see Box VI). As a result, mixtures of
uncorrelated Poisson processes cannot truly embrace the full heterogeneity of risk
and spread produced by biology, demographics, and human behavior.

5. Conclusion. In this paper, we have reviewed key results from random directed
graphs to clarify the roles of heterogeneity and correlations in risk and spread of an
infectious disease. We noted that in directed graphs the friendship paradox plays
different roles in contact tracing when following edges forward or backward: forward
tracing leads to high-risk individuals, and backward tracing leads to high-spread in-
dividuals.

We then focused on identifying when the final epidemic size deviates from the
classic Kermack--McKendrick solution. In particular, we showed that implementing
heterogeneity in differential equation models by having a small number of types of
individuals (representing, for example, age, occupation, susceptibility, and/or activity
level) does not significantly affect epidemic size. Risk in these models is a mixture
of Poisson distributions that individually correspond to Kermack--McKendrick-like
contributions and therefore result in a similar epidemic size. While contact patterns
between groups may be important in assessing interventions (e.g., the effect of school
closings), the epidemic size is not always as sensitive to these parameters as one might
think.

The robustness of the Kermack--McKendrick result on directed graphs highlights
the fact that the critical assumption behind their analysis of the SIR model is not
mass-action mixing per se, but instead an implicit assumption that risk is Poisson
distributed and that ``risk"" and ``spread"" are independent. As we showed in section 3,
this also implies that any model or simulation will fall back on the classic mass-action
result if the secondary cases caused by an infectious individual are randomly selected
from the population, no matter how heterogeneous the distribution of spread is. When
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486 ALLARD, MOORE, SCARPINO, ALTHOUSE, AND HÉBERT-DUFRESNE

there is genuine heterogeneity in both risk and spread, they play dual roles in the early
and late stages of an epidemic: the probability that an outbreak becomes an epidemic
is driven primarily by superspreading events [4, 35], while the final epidemic size is
driven primarily by high-risk individuals.

For emerging infectious diseases, especially when no proven pharmaceutical ther-
apies or prophylactics exist when they first emerge, our results highlight the critical
need for detailed contact tracing studies. These studies should quantify both the
incoming and outgoing risks of transmission and quantify the relative contribution
of these risks during the epidemic. Indeed, the efficacy of measures such as digital
contact tracing [16] and ``immune shielding"" [49] will depend on how risk and con-
tact heterogeneity are structured across populations. Only through the application of
models able to capture relevant heterogeneity, and the collection of empirical data on
contact networks and risk, can the efficacy of such nonpharmaceutical interventions
be accurately determined.

Appendix A. Mathematical Case Studies. In this appendix, we formally solve
for the final epidemic size found in directed graphs representing different models of
disease spread, including the examples used in section 3.

A.1. Uncorrelated In- and Out-Degrees. Let us first illustrate the formalism
when in- and out-degrees are independent. Denoting their respective PGFs by Gin(x)
and Gout(y), (2.3), (2.8), (2.9), (2.12), and (2.13) become

(A.1) G(x, y) = G(x, 1)G(1, y) = Gin(x)Gout(y)

and

uout = Gout(uout) , \scrP = 1 - Gout(uout) ,(A.2a)

uin = Gin(uin) , \scrS = 1 - Gin(uin) .(A.2b)

We conclude that the size of a macroscopic outbreak, \scrS , is solely dictated by the dis-
tribution of the in-degrees, i.e., by the distribution of the risk of individuals, while the
probability for an outbreak to become macroscopic depends only on the distribution
of spread. Moreover, we see from (1.3) that the numbers of secondary infections from
patient zero and from secondary cases are equal, that is,

R0 =
\langle kinkout\rangle 
\langle kin\rangle 

=
\langle kin\rangle \langle kout\rangle 

\langle kin\rangle 
= \langle kout\rangle = \langle kin\rangle ,(A.3)

and we conclude therefore that there is no ``friendship paradox effect"" (from the excess
degree distribution) when in- and out-degrees are not correlated.

A.2. Derivation of Kermack–McKendrick. In addition to being independent
from the out-degrees, if we assume that the in-degrees are distributed according to a
Poisson distribution, that is, if Gin(x) = e\langle kin\rangle (x - 1), (A.2b) becomes

uin = e\langle kin\rangle (uin - 1) , \scrS = 1 - e\langle kin\rangle (uin - 1) ,(A.4a)

from which we obtain the results by Kermack--McKendrick for the size of an epi-
demic [28, 29, 30],

\scrS = 1 - e - R0\scrS .(A.5)
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We conclude that the predictions for the size of a macroscopic outbreak will coin-
cide with the Kermack--McKendrick solution given by (3.1) if the in-degrees are not
correlated with the out-degrees and if they are distributed according to a Poisson
distribution (i.e., uniform risk).

To understand how uniform risk leads to a Poisson in-degree distribution, let

us assume that each individual i selects a finite number of other individuals, k
(i)
out,

that they could transmit to should they become infected. This finite number can
vary from one individual to another and is distributed according to the out-degree
distribution. In the limit of a large population size n \rightarrow \infty , the in-degree of individual

j due to individual i is distributed according to binomial
\bigl( 
k
(i)
out, 1/(n - 1)

\bigr) 
whose PGF

is [1 + (x - 1)/(n - 1)]
k
(i)
out . The PGF for the in-degree of individual j, obtained by

considering the contribution of all n - 1 other individuals, is

G
(j)
in (x) =

\prod 
i\not =j

\biggl[ 
1 +

x - 1

n - 1

\biggr] k(i)
out

\approx 
\prod 
i\not =j

\Biggl[ 
1 +

k
(i)
out (x - 1)

n - 1

\Biggr] 
(A.6)

\approx 

\Biggl[ 
1 +

\sum 
i\not =j

k
(i)
out (x - 1)

n - 1

\Biggr] 
\approx 

\Biggl[ 
1 +

(n - 1) \langle k(i)out\rangle (x - 1)

n - 1

\Biggr] 

\approx 

\Biggl[ 
1 +

\langle k(i)out\rangle (x - 1)

n - 1

\Biggr] (n - 1)

\approx e\langle k
(i)
out\rangle (x - 1) ,

where we used the binomial approximation twice, used the definition of the exponen-

tial function, and approximated \langle k(i)out\rangle \approx (n  - 1) - 1
\sum 

i\not =j k
(i)
out. Equation (A.6) tells

us that the in-degree of every individual will be identically distributed in the limit of
large population size, and that this in-degree distribution is Poisson.

A.3. Perfect Correlation. Let us now investigate the effect of a perfect correla-
tion between individual risk and spread, which can be encoded as

(A.7) G(x, y) =
\infty \sum 

i,j=0

Pin(i)\delta ijx
iyj =

\infty \sum 
i=0

Pin(i)(xy)
i \equiv Gin(xy) ,

where Pin(i) is the in-degree, or risk, distribution. Note that perfect correlation does
not imply that edges are reciprocal (i.e., edges run in both directions between vertices,
which would be equivalent to undirected graphs). Equations (2.8), (2.9), (2.12), and
(2.13) become

uout =

\biggl[ 
1

\langle kin\rangle 
\partial Gin(xy)

\partial x

\biggr] 
xy=uout

, \scrP = 1 - Gin(uout) ,(A.8a)

uin =

\biggl[ 
1

\langle kin\rangle 
\partial Gin(xy)

\partial y

\biggr] 
xy=uin

, \scrS = 1 - Gin(uin) .(A.8b)

We conclude that in the presence of perfect correlation, the size and the probability
of a macroscopic outbreak are equal. Also, (1.3) shows that

(A.9) R0 =
\langle k2in\rangle 
\langle kin\rangle 

,

which differs from its undirected counterpart (i.e., R0 = \langle k(k  - 1)\rangle /\langle k\rangle ) [46].
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As shown in [23], the undirected case, in which in- and out-degrees are perfectly
correlated by construction, falls back on the result of Kermack--McKendrick when
the degrees are distributed according to a Poisson distribution. However, this result
does not extend to fully correlated directed graphs. Indeed, substituting Gin(x) =
e\langle kin\rangle (x - 1) in (A.8b) yields only two solutions uin = 0, 1 for all \langle kin\rangle . The probability
for a macroscopic outbreak and its size are therefore equal to the fraction of vertices
with nonzero in-/out-degree,

\scrS = \scrP = 1 - e - \langle kin\rangle ,(A.10)

and (A.9) yields R0 = \langle kin\rangle +1, since a vertex that has been infected can always infect
at least one other vertex.

A.4. Arbitrary Correlations. To explore scenarios in between the two previous
limiting correlation cases, we consider the following PGF, which allows us to fix the
marginal out-degree distribution and to interpolate between perfect correlation (a =
1) and independence (a = 0):

G(x, y) = [Gout(xy)]
a[Gin(x)Gout(y)]

1 - a .(A.11)

Note that in the case of perfect correlations, the in-degrees are distributed according
to Gout. Equations (2.8), (2.9), (2.12), and (2.13) become

uout = a

\biggl[ 
1

\langle kin\rangle 
\partial Gout(xy)

\partial x

\biggr] 
xy=uout

+ (1 - a)Gout(uout) ,(A.12a)

\scrP = 1 - Gout(uout) ,(A.12b)

uin = a

\biggl[ 
Gin(uin)

Gout(uin)

\biggr] 1 - a \biggl[ 
1

\langle kin\rangle 
\partial Gout(xy)

\partial y

\biggr] 
xy=uin

(A.12c)

+ (1 - a)

\biggl[ 
Gout(uin)

Gin(uin)

\biggr] a
Gin(uin) ,

\scrS = 1 - [Gout(uin)]
a[Gin(uin)]

1 - a .(A.12d)

From (1.3), we find that

R0 = (1 - a)\langle kin\rangle + a
\langle k2out\rangle 
\langle kin\rangle 

.(A.13)

A.5. Correlated Poisson Mixture Model. We now combine the formalism of the
previous section with the Poisson mixture model presented in Box VI. We consider a
case in which there are two types of vertices, each type representing a fraction w1 and
w2 of the graph, respectively. We define zinij as the average number of incoming edges
that vertices of type j receive from vertices of type j, and zoutij as the average number
of outgoing edges from vertices of type i toward vertices of type j. As in Box VI, the
parameters \{ wi\} , \{ zinij\} , and \{ zoutij \} are related via

(A.14) wiz
out
ij = wjz

in
ji
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for i, j = 1, 2. We assume that the number of incoming and outgoing edges between
vertices is given by a Poisson mixture whose associated PGFs take the form

G1(\bfitx ,\bfity ) = exp
\Bigl[ 
azin11(x11y11  - 1) + azin12(x12y12  - 1)(A.15a)

(1 - a)zin11(x11  - 1) + (1 - a)zin12(x12  - 1)

(1 - a)zout11 (y11  - 1) + (1 - a)zout12 (y12  - 1)
\Bigr] 
,

G2(\bfitx ,\bfity ) = exp
\Bigl[ 
zin21(x21  - 1) + zin22(x22  - 1)(A.15b)

zout21 (y21  - 1) + zout22 (y22  - 1)
\Bigr] 
,

where \bfitx =
\bigl( 
x11, x12, x21, x22

\bigr) 
and \bfity =

\bigl( 
y11, y12, y21, y22

\bigr) 
, and where 0 \leq a \leq 1

controls the correlation between the in-degree and out-degree of vertices of type 1.
Perfect correlation is obtained when a = 1, and a = 0 corresponds to the uncorrelated
case, similar to the formalism presented in the previous section.

Inserting (A.15) into the same PGF formalism as that used to obtain the equations
in Box VI [2], we obtain the following expression for the epidemic size:

\scrS = 1 - 
2\sum 

i=1

wiGi(\bfitu 
in,1) ,(A.16)

where \bfitu in =
\bigl( 
uin
11, u

in
12, u

in
21, u

in
22

\bigr) 
is the smallest nonnegative solution of the system of

equations

uin
11 = (auin

11 + 1 - a)G1(\bfitu 
in,1) ,(A.17a)

uin
21 = (auin

12 + 1 - a)G1(\bfitu 
in,1) ,(A.17b)

uin
12 = uin

22 = G2(\bfitu 
in,1) .(A.17c)

As for the Poisson mixture model described in Box VI, the reproduction number,
R0 = \rho (Z), is equal to the spectral radius of matrix Z, which now takes the form

Z =

\left[    
a+ zin11 zin12 0 0

0 0 zin21 zin22
zin11 a+ zin12 0 0
0 0 zin21 zin22

\right]    .(A.18)
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