
ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 1

PRONTO: Preamble Overhead Reduction with
Neural Networks for Coarse Synchronization

Nasim Soltani, Debashri Roy, and Kaushik Chowdhury
Electrical and Computer Engineering Department, Northeastern University, Boston, MA

{soltani.n, d.roy}@northeastern.edu, krc@ece.neu.edu

Abstract—In IEEE 802.11 WiFi-based waveforms, the receiver
performs coarse time and frequency synchronization using the
first field of the preamble known as the legacy short training field
(L-STF). The L-STF occupies upto 40% of the preamble length
and takes upto 32 µs of airtime. With the goal of reducing com-
munication overhead, we propose a modified waveform, where the
preamble length is reduced by eliminating the L-STF. To decode
this modified waveform, we propose a neural network (NN)-based
scheme called PRONTO that performs coarse time and frequency
estimations using other preamble fields, specifically the legacy
long training field (L-LTF). Our contributions are threefold:
(i) We present PRONTO featuring customized convolutional
neural networks (CNNs) for packet detection and coarse carrier
frequency offset (CFO) estimation, along with data augmentation
steps for robust training. (ii) We propose a generalized decision
flow that makes PRONTO compatible with legacy waveforms that
include the standard L-STF. (iii) We validate the outcomes on
an over-the-air WiFi dataset from a testbed of software defined
radios (SDRs). Our evaluations show that PRONTO can perform
packet detection with 100% accuracy, and coarse CFO estimation
with errors as small as 3%. We demonstrate that PRONTO
provides upto 40% preamble length reduction with no bit error
rate (BER) degradation. We further show that PRONTO is able
to achieve the same performance in new environments without
the need to re-train the CNNs. Finally, we experimentally show
the speedup achieved by PRONTO through GPU parallelization
over the corresponding CPU-only implementations.

Index Terms—CFO estimation, packet detection, LTF signal,
IEEE 802.11, NN-based receiver.

I. INTRODUCTION

The ever-increasing demand for wireless spectrum has led
to transformative breakthroughs in the use of massive channel
bandwidths (e.g., 2 GHz channels in the 57-72 GHz band) [1],
massive multiple input multiple output (MIMO) (with several
dozens of antenna elements) [2], [3], and physical layer
signal processing innovations (e.g., channel aggregation [4]).
All of these methods involve assumptions of availability of
specialized hardware, often at the cutting edge of systems
design. As opposed to these, in this paper, we propose an
approach called PRONTO that reduces the occupancy time of
the wireless channel in WiFi networks by shortening packet
preambles. Since preambles are present in every transmitted
packet, even a modest reduction results in a significant cumu-
lative benefit over time. PRONTO is carefully designed to be
backwards compatible with legacy WiFi waveforms for general
purpose adoption and coexistence with standards-compliant
access points (APs) deployed today.
• Challenges in shortening the preamble: A typical WiFi
packet is composed of a multi-field preamble and data payload.

Packet

detection

Coarse CFO

estimation

Packet

detection

Coarse CFO

estimation

Fine time

synch.

Fine CFO

estimation

Toward

channel

estimation

using L-LTF

L-STF

L-LTFPRONTO

Traditional L-LTF

Fine time

synch.

Fine CFO

estimation

Toward

channel

estimation

using L-LTF

L-LTF

Legacy short

training field

(L-STF)

L-SIG

Rest of

the packet
............

(a)

(b)

......

......

Legacy long

training field

(L-LTF)

Fig. 1: (a) IEEE 802.11 OFDM-family preamble structure.
(b) Traditional packet detection and coarse CFO estimation
with L-STF, and PRONTO packet detection and coarse CFO
estimation without L-STF.

The preamble is used in many tasks, including establishing
synchronization between the transmitter and the receiver by re-
moving relative time/frequency offsets. As shown in Fig. 1(a),
the preamble in orthogonal frequency division multiplexing
(OFDM) family of IEEE 802.11 waveforms starts with the
legacy short training field (L-STF) followed by the legacy
long training field (L-LTF) that have bits arranged in pre-set
configurations with short and long periods, respectively. First,
the L-STF is used to detect the start of the packet (i.e., coarse
time synchronization) and then for coarse carrier frequency
offset (CFO) estimation. Following this, the L-LTF is used
for fine time synchronization and fine CFO estimation. The
total CFO is the sum of coarse and fine CFOs, which is later
compensated on the whole received packet. Traditional time
and frequency synchronization steps are shown in Fig. 1(b).
PRONTO revisits the fundamental structure of the WiFi packet
by answering the following question: Can the L-STF be
completely eliminated from the preamble, without any adverse
impact on decoding?

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 2

• PRONTO approach using deep learning: In the absence
of part of the preamble, the L-STF, PRONTO must extract
relevant information from the remaining fields. Towards this
goal, it leverages deep learning using convolutional neural
networks (CNNs), which have already been demonstrated to
be remarkably capable in physical layer signal classification
problems [5] such as modulation recognition [6]–[11] and
RF fingerprinting [12]–[16]. In all these problems, CNNs
recognize patterns embedded within sequences of in-phase
and quadrature (I/Q) samples. Classical methods that perform
packet detection and coarse CFO estimation rely on known
specific preamble patterns of fixed periods. As opposed to
this, once trained, CNNs are able to detect a pattern that is
present somewhere within their input sequences, regardless
of its short or long period, and associate each input with a
category (classification) or value (regression). In PRONTO,
we leverage this ability by training custom-designed CNNs
using L-LTF signals (that follow the now eliminated L-STF).
Our hypothesis here is that PRONTO should be able to predict
both the start of packet and the coarse CFO, with only the L-
LTF as input to the trained CNNs (Fig. 1(b)).
• PRONTO distinction from previous work: Reducing
preamble length in WiFi systems is a real challenge studied
before by the related literature. [17] reduces preamble length
by dropping a few training symbols and using a complete
iterative receiver algorithm. They achieve preamble length
reduction at the expense of less accurate channel estimation
and higher bit error rate (BER). [18] designs a new shorter
WiFi preamble by superimposing different fields in the legacy
preamble. However, their method is not compatible with
conventional WiFi receivers. PRONTO shifts the burden of
packet detection and coarse CFO estimation to CNNs without
imposing BER degradation, while the rest of the receiver chain
remains the same. We note that our work is distinct from
others that use neural networks as an alternative to the legacy
processing blocks, but retain the same inputs and outputs as
the latter. Applications of such uses of neural networks exist
for channel estimation [19]–[22], signal demapping [23], [24],
and decoding [25], [26]. Among these works are [27], [28],
and [29] that detect packets and estimate CFOs using L-STF
signals, similar to the legacy processing blocks. PRONTO
is different from [29] that models CFO estimation using L-
STF signals as a classification problem, where one of the
pre-defined classes is chosen as the CFO category instead of
predicting an exact CFO value. PRONTO is distinct from [27],
[28], where packet detection using L-STF signals is modeled
as a regression problem that yields upto ⇠8% false alarm
rate. In terms of overall objectives, our work comes close
to prior research on new waveforms, such as removing pi-
lots in orthogonal frequency division multiplexing (OFDM)
symbols [30]. However, approaches like [30] fundamentally
change the receiver processing flow. As opposed to this,
PRONTO is also designed with the goal of maintaining
backward compatibility with legacy waveforms. Through a
decision logic included alongside PRONTO, the process-flow
seamlessly switches between full preamble-enabled packets
(i.e., with L-STF) or PRONTO-capable waveforms (i.e., L-
STF missing).

We summarize our contributions as follows:
• We propose a modified version of the IEEE 802.11

OFDM waveforms where the preamble length is reduced
by eliminating the first field (i.e., L-STF). To decode
the modified waveform, we propose a deep-learning-
based scheme called PRONTO that uses CNNs to detect
the packet and estimate coarse CFO using L-LTF. We
parameterize our method to be adaptable to signals with
different bandwidths, and further propose a generalized
decision flow to make the proposed approach compatible
with standard waveforms.

• The first objective of PRONTO is to perform packet
detection as a classification task that returns the start
index of the packet, if a part of L-LTF signal exists in the
input. We propose a robust training method by artificially
shifting L-LTF signal and injecting periods of noise in the
training set through a data augmentation step. The CNN
trained on this large variety of inputs can detect L-LTF
patterns with 100% accuracy in different noise levels.

• The second objective of PRONTO is to perform coarse
CFO estimation, for which we train a regressor CNN to
return a coarse CFO value for each detected L-LTF. We
propose another data augmentation step to dynamically
augment the training set by imposing different CFO
values to each training signal. The CNN trained on this
large variety of training data, is able to predict coarse
CFO values in L-LTFs with errors as small as 3%.

• We validate PRONTO on two over-the-air (OTA) WiFi
datasets with multiple SNR levels. We demonstrate that
PRONTO causes no degradation in BER compared to the
traditional WiFi receiver.

• We provide computation complexity for PRONTO com-
pared to traditional (i.e., MATLAB-based) algorithms for
packet detection and coarse CFO estimation, as well as
run-time on server and edge platforms. We show that
PRONTO packet detection and coarse CFO estimation (if
properly parallelized on GPUs) can perform upto 2053x
and 1.92x faster computation, respectively, compared to
their traditional MATLAB-based counterparts.

The rest of the paper is organized as follows. Section II
describes the legacy methods for packet detection and coarse
CFO estimation using L-STF. Section III explains PRONTO
scheme in details, as well as the decision flow for backward
compatibility. Section IV describes the datasets and the deep
learning setup used to evaluate PRONTO system. Section V
presents the results and Section VI concludes the paper.

II. BACKGROUND AND PRELIMINARIES

In IEEE 802.11 OFDM waveforms, the standard preamble
starts with the L-STF. L-STF contains 10 repetitions of a
training symbol with length ⌘. Each training symbol contains
one period of a specific pattern, and its length ⌘ directly
depends on the FFT length N , as ⌘ = 1

4N [31]. Consequently,
the length of full L-STF is 10⌘ = 10

4 N . L-STF is modulated
with binary phase shift keying (BPSK) modulation. It is not
scrambled and has no channel encoding. L-STF is traditionally
used for packet detection and coarse CFO estimation, due to
its good correlation properties.

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 3

A. Packet Detection with L-STF

For detecting the packet, the classical method needs the full
L-STF signal and a threshold �, which is a number in the range
[0,1], typically close to 1. The classical method finds the start
index of the packet by performing an auto-correlation between
a portion of L-STF referred to as ⇣ = L-STF (0 : 10⌘�⌘�1),
and its delayed version ⇣delayed = L-STF (⌘ : 10⌘ � 1), where
⌘ = 1

4N .
Next, the complex correlation, ⇢(⌧), between ⇣ and ⇣delayed in

time ⌧ is computed as (1), where * is the notation for complex
conjugate.

⇢(⌧) =
⌘�1X

i=0

⇣(i+ ⌧)⇥ ⇣⇤delayed(i+ ⌧ + ⌘) (1)

The energy vector E(⌧) in the correlation window is calcu-
lated as in (2).

E(⌧) =
⌘�1X

i=0

|⇣delayed(i+ ⌧ + ⌘)|2 (2)

Then, ⇢(⌧) is normalized through dividing it by E(⌧) as in (3).

⇢(⌧)norm. =
|⇢(⌧)|2

E(⌧) ⇥ E(⌧)
(3)

In the normalized correlation vector, ⇢(⌧)norm., we record the
indices of the elements that are greater than � as vector I , and
the number of elements (peaks) as n⇢. According to the 802.11
standard, the first peak shows the start of the packet. However,
MATLAB implementation performs an additional step in the
function wlanPacketDetect [32] based on [33], to ensure
the detected pattern is actually L-STF. In this step: First, the
number of detected peaks are checked to be larger than or
equal to 1.5 times the training symbol length (n⇢ � 1.5⇥ ⌘).
Second, the sum of index distances of peaks from the first peak
should be smaller than 3 times the symbol length (

P⌘
i=1(Ii�

I0) < 3 ⇥ ⌘). These criteria ensure that sufficient number of
correlation peaks are detected and they are not too distant from
each other. In this case, I0 � 1 is returned as the coarse start
time index of the packet.

B. Coarse CFO Estimation with L-STF

The coarse CFO is derived from the phase of complex
conjugate of a portion of the L-STF, multiplied by a second
portion of the L-STF [33]. The time-domain method for
coarse CFO estimation, as implemented in MATLAB function
wlanCoarseCFOEstimate [34], needs 9 short training
symbols for coarse CFO estimation. These 9 symbols are
chosen with a distance of 1 symbol from each other. The L-
STF (consisting of 10⇥⌘ short training symbols) starts with
a default guard interval of G = 3

4⌘, and these samples are
considered as offset from the beginning of the signal. After G,
two portions of the L-STF, � = L-STF (G + (0 : 8 ⇥ ⌘ � 1))
and ⇠ = L-STF (G + (0 : 8⇥ ⌘ � 1) + ⌘) each with length of
8 training symbols are separated and composed.

Next, coarse CFO is calculated using the phase of multipli-
cation of complex conjugate of � multiplied by ⇠ as shown

L-LTF
L-

SIG

L-LTF
L-

SIG

L-LTF
L-

SIG

HT-SIG
HT-

STF

HT-

LTF

HT-

LTF

HT-

LTF
... ...

VHT-

SIG-A

VTH-

STF

VHT-

SIG-B
VHT-LTF

L-LTF
L-

SIG

RL-

SIG
HE-SIG-A

HE-

STF

HE-

LTF

HE-

LTF
...

L-LTF
L-

SIG

RL-

SIG
HE-SIG-A

HE-

STF

HE-

LTF

HE-

LTF
...

L-LTF
L-

SIG

RL-

SIG
HE-SIG-A

HE-

LTF

HE-

LTF
...HE-STF

L-LTF
L-

SIG

RL-

SIG
HE-SIG-A

HE-

LTF

HE-

LTF
...HE-SIG-B

HE-

STF

L-STF

L-STF

L-STF

L-STF

L-STF

L-STF

L-STF

Non-HT

format
40%

HT-

LTF
~16%

~15%

~18%

~15%

~16%

~15%

HT format

VHT

format

HE SU

format

HE ex ra.

SU format

HE TB

format

HE MU

format

Fig. 2: Different IEEE 802.11 preamble formats and the
percentages that the L-STF occupies in each preamble [35].

in (4), where �(x) = arctan (Imag(x)
Real(x)) and fs is sampling

frequency in Hz.

CFOcoarse =
�(�⇤ ⇥ ⇠)⇥ fs

2⇡ ⇥ ⌘
(4)

C. Eliminating the L-STF
The L-STF occupies upto 40% of the preamble and is

considered as an integral component of existing and emerging
standards of IEEE 802.11 WiFi, as represented in Fig. 2.

Apart from the L-STF, the legacy long training field (L-
LTF) plays a key role in fine time synchronization, fine CFO
estimation, and channel estimation. Hence, it is also included
in all the preamble formats seen in Fig.2. However, the L-LTF
has a different pattern with longer training symbol period,
and cannot substitute for the L-STF using classical signal
processing blocks. In this regard, we propose to use custom-
designed neural networks to exploit the intrinsic patterns
within the L-LTF symbols for packet detection and coarse CFO
estimation. This obviates the need for L-STF and suggests that
it could be completely removed from the preamble.

III. PRONTO SYSTEM DESCRIPTION

In this section, we present the details of our proposed
PRONTO framework that performs packet detection and
coarse CFO estimation without the L-STF. First, we discuss
L-LTF extraction which is used to compose the training,
validation, and test sets for PRONTO. Then, we explain
the CNN-based PRONTO modules for packet detection and
coarse CFO estimation, respectively. Finally, we propose a
generalized decision flow to make PRONTO compatible with
coarse synchronization of standard waveforms.

A. L-LTF Extraction
Consider a PRONTO-enabled waveform that does not con-

tain the L-STF. In this case, PRONTO buffers the received
signal in I/Q format and streams these samples to the packet
detection module. The objective of this module is to detect
potential L-LTF signals that may be embedded somewhere
within the streaming samples. PRONTO uses CNNs for both
packet detection and coarse CFO estimation, therefore we
first describe the procedure for training these models. To

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 4

setup a training/test pipeline using an OTA standard WiFi
dataset, we need to create the labeled training/test datasets
by extracting coarsely time-synchronized (detected) L-LTF
signals denoted as X(t)s. To do this, the start of each packet in
the standard dataset is detected through the traditional method
(Section II-A), and depending on the waveform in use we
extract L-LTF signal, X(t), with known length and known
start index, l, in the standard waveform. For the input data
provided to the PRONTO coarse CFO estimation module, we
label each X(t) with the coarse CFO, f , for the associated
packet estimated through the traditional method using the
corresponding L-STF (Section II-A). The dataset of X(t)
signals recorded and labeled in this manner is later partitioned
into training, validation, and test sets.

B. PRONTO Packet Detection Module

In the first module of PRONTO scheme, we propose a
CNN-based solution to detect packets by detecting their L-
LTF signals. Our solution can be generalized to detect any
other types of signals (e.g., proprietary L-LTF sequences with
customized patterns and periods) as long as a specific pattern
exists within them. Since the role of packet detection module
is to find the start index of a specific pattern in a sequence of
time domain samples with discrete indices, we model packet
detection as a multi-class classification problem, which we
solve using a deep CNN. The input and output dimensions of
the CNN, and the details of data flow in the packet detection
module are shown in Fig. 3 and explained in the following.
CNN Input Dimensions. Inputs of the packet detector CNN
are sequences of length L that contain shifted versions of the
L-LTF signal, X(t), in the time domain. To determine the size
of the input sequence, we start by studying the L-LTF length.
In an OFDM system, the L-LTF signal consists of 2.5 long
training symbols, each with length equal to the FFT length, N .
The smallest input sequence with length L to fit one full L-LTF
signal (i.e., start index = 0 with respect to the input sequence)
is calculated as L = 2.5 ⇥N . We prepare the inputs for the
CNN by separating their real and imaginary components and
forming inputs of dimensions (L, 2).
CNN Output Dimensions. To model packet detection as a
classification problem, we map detection or no detection of
a packet to certain classes. Each input sequence with length
L is classified as detection classes, if a portion of L-LTF
signal, X(t), exists within it. In cases where a portion of X(t)
is present, we associate different classes with different start
indices of X(t) with respect to the input with length L. We
denote the start index (shift) of X(t) in the input sequence of
length L, as k, which ranges from 0 to a specific number K
(i.e., k 2 {0, ...,K}). For the CNN to be able to distinguish
an L-LTF pattern from a generic pattern of bits, there should
be at least one period of the L-LTF in the input. Therefore,
K is defined as the largest L-LTF shift in the range [0, L-1],
wherein at least N samples of L-LTF are in the input sequence
of length L. K is calculated as K = L�N .

We associate each L-LTF shift k (k 2 {0, ...,K}) with
one class, and hence, the set of classes is given as IPD =
{0, · · · ,K}, where len(IPD) = (K + 1). Apart from these

K + 1 classes where the L-LTF pattern can be detected in
the input, there is one additional class that includes all the
cases where the L-LTF pattern cannot be recognized. This
class includes cases where L-LTF exists in the input but it
cannot be detected because k > K, as well as the cases where
the input does not contain any part of the L-LTF. Hence, we
revise the set of classes as IPD = IPD S

{(K + 1)}, and the
total number of classes are updated to len(IPD) = (K + 2).
Finally, the basis vector (or one hot representation) of the class
set IPD is represented as Y PD 2 {0, 1}len(IPD).

Fig. 4 shows an example of defining the classes with L-LTF
of length L = 160, that occurs in 5 MHz, 10 MHz, and 20
MHz bandwidths. In Fig. 4(a), the start of L-LTF, k, in the
input sequence is shifted between 0 and K to create K + 1
classes, where the L-LTF pattern can be detected in the input,
giving rise to classes indexed as 0 to 96. Fig. 4(b) shows
different cases where the L-LTF pattern cannot be detected in
the input, and hence, the packet is not detected. All these cases
are labeled as class 97. Therefore, total number of classes for
L = 160 is calculated as 98.
Data Augmentation. We load to the memory the L-LTF sig-
nals, X(t)s, of the training set, batch-by-batch. Next, we pass
each training X(t) through a data augmentation function for
packet detection, denoted as F PD

aug.(.), to dynamically generate
different inputs and their corresponding true classes for the
packet detector CNN. The goal of the data augmentation block
is to artificially create different shift variations in the training
input to the CNN, so that the trained packet detector CNN
can detect L-LTF signals in different settings with a variety of
time shifts and added noise. In this regard, the augmentation
function performs a series of steps including shifting the input
L-LTFs, as well as inserting noise and random data portions
along the shifted L-LTF, to increase resiliency of the classifier,
especially for unseen channels and conditions.

First, the mean of X(t) is calculated as µX(t). Second,
an empty sequence of XPD

aug.(t) is created with the same
dimensions as those of X(t). Third, the L-LTF signal X(t) is
shifted k indices (k 2 {0, ...,K}) and inserted in XPD

aug.(t) (that
has length L), as shown in Fig. 4. Fourth, the power of X(t)
is calculated as PX(t) =

1
L |X(t)|2, and a random vector with

random length in range [0,k], is drawn from complex Gaussian
distribution with mean=µX(t) and variance=PX(t). This vector
emulates the potential random data with the same power
as L-LTF, and is inserted in XPD

aug.(t) alongside the shifted
X(t). Fifth, the power of noise PN(t) in the L-LTF signal is
calculated, and if there are empty periods left in XPD

aug.(t), they
are filled with random values drawn from complex Gaussian
distribution with mean µX(t) and variance PN(t). The function
F PD

aug.(.) returns XPD
aug.(t) as well as the shift of L-LTF, k, as

the true class index, as shown in (5). The data augmentation
block is highlighted in Fig. 3.

XPD
aug.(t) , k = F PD

aug.(X(t), PN(t), PX(t)) (5)

RMS Normalization. At this stage our augmented signal
XPD

aug.(t) contains the shifted X(t) along with periods of
data and noise with different amplitudes. In order for the
packet detector CNN to be able to detect signals in different
environments with different amplitudes, we perform a root

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 5

True class
index,

Dynamic L-LTF shifting and data/noise interjecting

Predicted
class index,

Training/test sets on
disk (training set

consists of coarsely
time synchronized

L-LTF signals)

Batch
creation

Train

Test

XPD
aug.(t)

X(t)

X(t) RMS
normalization

XPD
RMS(t)

XPD
RMS(t)

Data Augmentation

Fig. 3: PRONTO training/test pipeline for packet detection as a classification problem, with dynamic L-LTF shifting block in
the training path.

........Class 0 :
0

L-LTF
start, k

1 2 3 4 5 159966 97 98
........

........Class 1 :
0 1 2 3 4 5 159966 97 98

........

........Class 96 :
0 1 2 3 4 5 159966 97 98

........

......

...... 64 samples (1 period)

........
0 1 2 3 4 5 159966 97 98

........

63 samples

L-LTF
start, k

L-LTF
start, k

L-LTF
start, k

........
0 1 2 3 4 5 159966 97 98

........

62 samples

L-LTF
start, k

Class
97 :

........
0 1 2 3 4 5 159966 97 98

........

No L-LTF in the sequence

(a)

(b)
......

Full 160 L-LTF, consisting of 2.5 period

Fig. 4: The position of L-LTF in the 160 sample NN input
for different packet detection classes. (a) Classes 0 to 96
correspond to the index of packet start, where we have 1 period
of L-LTF signal in the sequence. (b) Class 97 shows different
cases where less than a period of L-LTF exists in the sequence
and the L-LTF pattern cannot be detected.
mean square (RMS) normalization for each augmented signal
XPD

aug.(t), as in (6).

XPD
RMS(t) =

XPD
aug.(t)q

1
L
P

|XPD
aug.(t)|2

(6)

The RMS normalization block that follows the data aug-
mentation block is shown in Fig. 3.
CNN Modeling. Recall that real and imaginary components of
XPD

RMS(t) are separated to form an input of dimensions (L, 2),
which is used for training and testing the CNN along with one
hot representation, Y PD 2 {0, 1}len(IPD), of the true class index.
The proposed CNN-based classifier predicts the occurrence
probability of each class, as in (7), where � is Softmax and
F PD
✓ (.) denotes the classifier CNN.

Ŷ PD = � (F PD
✓ (XPD

RMS(t))) F PD
✓ : RL⇥2 7! Rlen(IPD) (7)

As shown in Fig. 3, we train the CNN with XPD
RMS(t) using

catergorical cross-entropy loss for several hundreds of epochs,
to create millions of variations in the L-LTF pattern, as the
shifts and data and/or noise chunks happen randomly for each
X(t) in each epoch. During the test phase, we do not need the
augmentation block described in (5), as the sampled wireless
input by nature resembles the augmented L-LTF sequences in
Fig. 3. Therefore, we only process the test sequences through
the RMS normalization block in (6) and feed them to the
trained CNN model.

The predicted class index, k̂, is determined using the prob-
ability vector, Ŷ PD, as in (8).

k̂ = argmax
k̂2{0,..., len(IPD)�1}

(Ŷ PD) (8)

C. PRONTO Coarse CFO Estimation Module
The second module of PRONTO is designed to estimate

coarse CFO using the L-LTF signals, once a packet is de-
tected in the system. We model coarse CFO estimation as a
regression problem where the intrinsic properties within the
L-LTF patterns are exploited by a CNN to estimate the coarse
CFO (see Fig. 5).
CNN Input and Output Dimensions. The inputs to the coarse
CFO estimator CNN are batches of L-LTF signals, X(t)s, of
dimensions (L, 2) where I and Q are passed through 2 separate
channels to form the second dimension. Since we consider
coarse CFO estimation as a regression problem, the label space
of the PRONTO CFO estimator CNN converges to a single
valued prediction represented by 1 neuron (len(ICFO) = 1).
RMS Normalization. To start with training, validation, and
test phases, we normalize each L-LTF signal, through RMS
normalization as in (9).

XCFO
RMS(t) =

X(t)q
1
L
P

|X(t)|2
(9)

The RMS normalization step in the training/test pipeline is
shown in Fig. 5.
Data Augmentation (CFO Augmentation). For training a ro-
bust CFO estimator, different variations of the input perturbed
with different CFO values should be provided to the CNN. To
do this, we insert an intermediate CFO augmentation block in
the training pipeline, as shown in Fig. 5.

Before adding augmenting CFO values to the normalized
signal, XCFO

RMS(t), the inherent coarse CFO, f , of the signal

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 6

Training/test sets
on disk (Coarsely
time synchronized

L-LTF signals)

Batch creation
and RMS

normalization

True CFO value
(foff. / (Δf/2))

x

ej2𝜋foff.t

random foff. from
uniform (-Δf/2 , Δf/2)

Dynamic CFO imposing
Predicted

CFO

Train x

e-j2𝜋ft

CFO augmentation

Compensate CFO
Test

X(t) XCFO
RMS(t)

XCFO
aug.(t)Xcompen.(t)

Fig. 5: PRONTO training/test pipeline for CFO estimation as a regression problem, with CFO augmentation block in the
training path.

must be compensated. This f is previously recorded for each
L-LTF during L-LTF extraction, and is required only during
the training process, as shown in Fig. 5. The inherent coarse
CFO, f , is compensated on XCFO

RMS(t) with sampling frequency
fs, as given in (10). Here, l is the L-LTF start index in the
original waveform as defined in Section III-A.

Xcompen.(t) = XCFO
RMS(t)⇥e�j2⇡ft/fs , t = l, . . . , l+L�1 (10)

After compensating the CFO, f , an augmenting CFO needs
to be applied to Xcompen.(t). We choose our augmenting
CFO to be in range [��f

2 , �f
2], where �f is sub-carrier

frequency spacing. In the augmentation step, we draw a
random CFO value, foff., from a uniform distribution given
as foff. ⇠ U(��f

2 , �f
2), and apply it to the signal Xcompen.(t),

as shown in (11).

XCFO
aug. (t) = Xcompen.(t)⇥ ej2⇡foff.t/fs , t = 0, . . . ,L� 1 (11)

The augmentation function FCFO
aug. (x) is defined as a cascade

of (10) and (11), with the assumption that l = L (i.e., the
L-STF and L-LTF have the same length) as in (12).

FCFO
aug. (x) = x⇥ ej2⇡(foff.(t�L)�ft)/fs , t = L, . . . , 2L�1 (12)

During augmentation, for each XCFO
aug. (t), foff. is recorded as

the true CFO label. For a regression problem, the labels need
to be normalized, as well. In our case, foff. is scaled to the
range of [-1,1] as in (13) to generate true label Y CFO for the
CNN.

Y CFO =
foff.

�f/2
(13)

The function FCFO
aug. (.) returns the augmented L-LTF signal,

XCFO
aug. (t), along with its corresponding normalized true label,

Y CFO, as in (14).

XCFO
aug. (t) , Y CFO = FCFO

aug. (X
CFO
RMS(t)) (14)

CNN Modeling. Recall that real and imaginary components
of XCFO

aug. (t)s are separated to form inputs with dimensions
(L, 2) which are fed to the training function along with their
corresponding true labels, Y CFOs. We design PRONTO coarse
CFO estimator to learn to map each augmented L-LTF signal,
XCFO

aug. (t), to a true CFO value, Y CFO, as in (15) where � is
tanh, FCFO

✓ (.) denotes the regressor CNN, and Ŷ CFO represents
the predicted coarse CFO.

Ŷ CFO = � (FCFO
✓ (XCFO

aug. (t))), FCFO
✓ : RL⇥2 7! R1 (15)

We train the CFO estimator CNN with batches of XCFO
aug. (t)

signals. The mean squared error loss is calculated between

 Signal buffered

Packet detected?

Yes

Fetch next buffer

of received signals

Stop

Traditional coarse CFO

estimator

CNN coarse CFO

estimator

CNN packet detector
Traditional packet

detector

No

Packet detected?

Yes

No

Traditional fine timing

synchronizer

Rest of traditional

 Rx chain

Start

PRONTO

Fig. 6: Generalized decision flow for making PRONTO com-
patible with standard IEEE 802.11 waveforms. The system
first looks for the L-STF in the received signal. If no L-STF
is detected, it sends the signal to PRONTO packet detector
CNN for L-LTF search.

Y CFO and Ŷ CFO for each batch. We train the CNN for several
hundreds of epochs with millions of CFO variations introduced
in different L-LTF signals.

In the test phase, X(t) signals only need to be normalized
using (6).

After the test phase, the actual predicted coarse CFO, f̂off,
is calculated as in (16), where Ŷ CFO is the CNN prediction in
range [-1,1].

f̂off = Ŷ CFO ⇥�f/2 (16)

D. System Overview
We propose an adaptive decision flow to make PRONTO

compatible with standard IEEE 802.11 waveforms (i.e., con-
taining both L-STF and L-LTF in the preamble), as well as
the proposed modified version of this waveform (containing
no L-STF in the preamble), as shown in Fig. 6. First the
received signal is buffered and sent to the traditional packet
detector block. If the latter detects the packet, it means that
the L-STF pattern exists in the received signal, and the signal

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 7

goes through the traditional processing chain. If the traditional
packet detector cannot detect a packet, there is a chance that
the buffered signal is a modified waveform that starts with
L-LTF. Therefore, we send the buffered signal to PRONTO
packet detector to search for L-LTF pattern. If the L-LTF
pattern is detected, we proceed with the PRONTO coarse
CFO estimator. After coarse CFO estimation, the packet goes
through the rest of the traditional receiver chain. If PRONTO
packet detector CNN cannot detect the L-LTF pattern, it goes
up to fetch the next buffered set of I/Q samples of the received
signal. The whole process iterates again starting with the
traditional packet detector.

IV. DATASETS AND DEEP LEARNING SETUP

A. Dataset Description
We use two OTA WiFi datasets to evaluate PRONTO.
1) Oracle Dataset: We use a publicly available1 OTA WiFi

dataset [36] that is referred to as Oracle in the rest of this
paper. As described in the metadata files of this dataset, signals
are collected in an indoor environment from 16 different USRP
X310 software defined radios (SDRs) that transmit IEEE
802.11 Non-HT frames (see Fig. 2) with OFDM modulation,
QPSK 3/4 in 2.4 GHz frequency with 5 MHz bandwidth. The
distance between the transmitter and receiver varies between
2 ft and 62 ft with steps of 6 ft (11 different distances).
The wireless channel is continuously sampled using a receiver
USRP B210. We set the parameters defined in Section III,
using the dataset properties, as shown in Table I.

2) Arena Dataset: To show how pre-trained PRONTO
CNNs perform in new environments, we use the dataset used
in [37], [38], which we refer to as Arena in the rest of
this paper. As the name suggests, this dataset is collected in
Arena [39], an indoor lab environment with X310 SDR arrays
on the ceiling. A pair of X310 SDRs are used to collect ⇠152k
IEEE 802.11a packets with 16QAM modulation at 10 MHz
bandwidth. The L-LTF parameters of this dataset are the same
as Oracle dataset described in Table I, except for the sampling
frequency (fs=10 MHz) and the sub-carrier frequency spacing
(�f=156.5 kHz). As the SDR locations are fixed, transmission
power is intentionally varied during data collection to emulate
different SNRs.

B. L-LTF Extraction
For extracting L-LTF signals from each dataset, we find

packet offsets using the traditional packet detection method
explained in Section II-A and implemented in MATLAB func-
tion wlanPacketDetect with �=0.8. The packet offset in
the standard IEEE 802.11 waveform is the offset from the be-
ginning of the L-STF. We add an offset of 160 (L-STF length)
to it and extract the next 160-sample sequence as coarsely
time-synchronized L-LTF. To calculate the noise power, PN(t),
in each L-LTF signal that is needed for the packet detec-
tion problem as shown in (5), we use MATLAB function
helperNoiseEstimate. To obtain inherent coarse CFO,
f , used in (10), we record coarse CFOs estimated using the

1https://genesys-lab.org/oracle

Parameter Notation Value
Length of FFT (Length of N 64

one L-LTF training symbol)
Full length of L-LTF L 160
Start index of L-LTF in the

l 160
original waveform
Output layer size for classification len(IPD) 98
Output layer size for regression len(ICFO) 1
Sampling frequency fs 5 MHz
Sub-carrier frequency spacing �f 78.125 kHz

TABLE I: Parameters for 5 MHz WiFi signals [31] in the
Oracle dataset [36].

7
C

on
v1

D
, 1

28

5
C

on
v1

D
, 1

28

M
ax

Po
ol

 /
2

x5

1D
 in

pu
t

FC
, 2

56

FC
, 1

28

FC
, l

en
(I

)

3
C

on
v1

D
, 6

4

M
ax

Po
ol

 /
2

x3

1D
 in

pu
t

FC
, 1

28

FC
, 1

28

FC
, l

en
(I
)

(a) (b)

Fig. 7: (a) PRONTO-L with ⇠1M parameters, and (b)
PRONTO-S with ⇠200k parameters, used for packet detection
and coarse CFO estimation. The highlighted last layer has size
98 with Softmax activation for packet detection (classification),
and size 1 with tanh activation for coarse CFO estimation
(regression).

L-STF with the traditional coarse CFO estimation method de-
scribed in Section II-B. This step is implemented in MATLAB

function wlanCoarseCFOEstimate. We extract ⇠663k
and ⇠152k L-LTF signals from the recorded sequences in
Oracle and Arena datasets, respectively, along with their
corresponding noise power, PN(t), and their coarse CFOs,
fs. These signals form our training, validation, and test sets
that are used in packet detection and coarse CFO estimation
problems.

C. Deep Learning Setup
Data Augmentation. For the deep learning framework2, we
use Keras [40]. We use a data generator class inherited
from keras.utils.Sequence, a special class from Keras
libraries that gives us the possibility of loading the data to the
memory batch-by-batch. This helps in efficiently performing
the described data augmentation steps during packet detection
and coarse CFO estimation.
CNN Input Dimensions. For both problems, we configure the
input size of the CNN as L = 160, which is the size of an
L-LTF signal. We separate real and imaginary parts in the L-
LTF signal to form inputs of size (160, 2) with I/Q separated
in the last dimension as separate channels.
CNN Architectures. We compare the performance of two 1D
forward CNN architectures, (i) a large CNN called PRONTO-
L with 13 layers and ⇠1M parameters, and (ii) a smaller CNN
called PRONTO-S with 6 layers and ⇠200k parameters. Both
architectures are combinations of 1D convolutional layers,

2https://github.com/nasimsoltani/PRONTO

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 8

Fig. 8: Confusion matrices for packet detection using L-LTF,
with PRONTO-L and PRONTO-S architectures. Both archi-
tectures yield 100% accuracy, therefore, for packet detection
we choose PRONTO-S that has 1/5th parameters compared to
PRONTO-L.

1D MaxPooling layers, and fully connected (FC) layers. The
details of PRONTO-L and PRONTO-S architectures are shown
in Fig. 7. In this figure, the convolution layers are characterized
with two numbers. The first number is the convolution kernel
(filter) size, and the second number indicates the number of
kernels in the layer. For example, 5 Conv1D, 128 means a
convolution layer with 128 kernels of size 7 each. The FC
layers are characterized with one value that is the output size
of the FC layer. The MaxPooling layers have window size of
2 with stride 2.
CNN Output Dimensions. The final layer of CNNs in Fig. 7
is an FC layer whose size and activation function changes
depending on the studied problem. For packet detection that
is considered a classification problem with 98 classes, the final
layer is of size 98 with Softmax activation. For CFO estimation
that is considered a regression problem, the final layer has only
one neuron with tanh activation function.

The PRONTO-L and PRONTO-S architectures shown in
Fig. 7, with the aforementioned input and output dimensions
have ⇠1 million and ⇠200 thousand parameters, respectively.

V. EVALUATIONS

In this section, we validate PRONTO in terms of both packet
detection and coarse CFO estimation performance using the
OTA datasets described in Section IV. We use Oracle dataset
to evaluate PRONTO training/test performance as the primary
step. We further show how PRONTO trained in this initial
environment (Oracle dataset) performs in a new environment
(Arena dataset). Moreover, we present computational com-
plexity and run-time of PRONTO on 4 different platforms
and compare our results with the closest related work to
PRONTO [27]–[29].

A. Packet Detection Evaluation

We shuffle Oracle L-LTF dataset and partition it into 70%,
10%, and 20% portions to form the training, validation, and
test sets, respectively. We train the CNNs PRONTO-L and
PRONTO-S shown in Fig. 7, on the training set. We stop
training when validation accuracy does not improve during
100 consecutive epochs. We test the trained model on the test
set, and for each signal in the latter, we calculate the predicted
class using (8). The accuracy over the test set is calculated

50 100 150 200
10�3

10�2

10�1

100

Epoch number

C
at

eg
or

ic
al

cr
os

s
en

tro
py

lo
ss

(lo
g) Training loss

Validation loss

Fig. 9: Training and validation loss in packet detection using
PRONTO-S.
by dividing the number of correctly predicted signals by the
total number of signals in the test set. We observe that both
PRONTO-L and PRONTO-S, each with 98 classes defined in
Fig. 4, can detect packets with 100% accuracy using only L-
LTF signals. Fig. 8 shows the confusion matrices of PRONTO-
L and PRONTO-S for these 98 classes with all outcomes
represented on the diagonal.

As both CNNs show 100% accuracy, for reducing computa-
tional complexity we choose PRONTO-S as PRONTO packet
detector CNN.

Fig. 9 demonstrates training and validation loss over epochs
for PRONTO-S architecture. As expected, validation loss
closely follows the training loss, which shows the network
is not overfitting. The variations in the plot are due to random
augmentation of both training and validation batches, which
exposes the CNN to different data in every epoch. PRONTO-L
loss plot follows the same trend.

B. CFO Estimation Evaluation
For the CFO estimation problem, we sort Oracle dataset

in ascending order with respect to their CFO labels, fs. We
pick the first ⇠50% portion for training and validation and
the second ⇠50% for test, so that the training and validation
sets contain negative CFOs, whereas the test set contains
positive CFOs. In this way, the training and test sets emulate
the realistic situation where training set CFO values are in a
limited range, but we wish to predict CFOs of other ranges
during test, as well. For the sake of extensive evaluation, we
artificially inject CFOs in the range of [0, �f/2] to the test
set signals.
CFO Augmentation Impact. To show the effect of CFO aug-
mentation step, we first train PRONTO-L with the determined
training set without CFO augmentation in the training pipeline.
We compare predicted CFO values Ŷ CFO at the output of the
CNN with true CFO labels Y CFO and calculate mean absolute
error (MAE) for each SNR level (distance) as in (17), where
M is the number of test L-LTF signals in each SNR.

MAE =
1

M

M�1X

m=0

|Y CFO
m � Ŷ CFO

m | (17)

The MAE for the aforementioned case for different SNR
levels is shown in Fig. 10 under the legend “PRONTO-L,
w/o CFO aug.”. In a follow-up experiment, we train and test
PRONTO-L with the same training and test sets, this time with
CFO augmentation in the training pipeline, same as in Fig. 5.

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 9

Distance Traditional receiver (all MATLAB) PRONTO-based receiver
(ft) Coarse CFO (Hz) Fine CFO (Hz) Coarse+Fine (Hz) Coarse CFO (PRONTO) (Hz) Fine CFO (MATLAB) (Hz) Coarse+Fine (Hz)
2 31186.47413 1.672545869 31188.14668 31073.47413 # 114.6725459 " 31188.14668
8 27935.04853 -173.4179159 27761.63061 28056.04853 " -294.4179159 # 27761.63061
14 24935.6091 -24.97061088 24910.63849 25076.6091 " -165.9706109 # 24910.63849
20 22454.2147 118.8058465 22573.02055 22331.2147 # 241.8058465 " 22573.02055
26 26613.99321 -2.242109413 26611.7511 26773.99321 " -162.2421094 # 26611.7511
32 25127.22223 -153.0018763 24974.22035 24901.22223 # 72.9981237 " 24974.22035
38 23959.62959 86.35591791 24045.9855 23641.62959 # 404.3559179 " 24045.9855
44 24733.93078 -196.1821002 24537.74868 24444.93078 # 92.81789983 " 24537.74868
50 24282.74508 153.5915397 24436.33662 24541.74508 " -105.4084603 # 24436.33662
56 27072.75937 -37.8109977 27034.94837 27739.75937 " -704.8109977 # 27034.94837
62 32227.95237 -5318.056399 26909.89597 31128.95237 # -4219.056399 " 26909.89597

TABLE II: Comparison of CFO estimation by traditional and PRONTO-based receivers, evaluated on the OTA WiFi dataset [36].
We observe that despite the small error in ‘Coarse CFO (PRONTO)’, ‘Coarse+Fine’ (bold column) in both cases of MATLAB
and PRONTO lead to the exact same values (given until 5 decimal places). The reason is that MATLAB fine CFO estimator
(‘Fine CFO (MATLAB)’) that follows ‘Coarse CFO (PRONTO)’, estimates the residual CFO that remains after the execution
of PRONTO, as a part of fine CFO. Hence, no BER degradation occurs in the PRONTO-based receiver in comparison to the
traditional receiver.

10 15 20 25 30 35 40
102

103

104

Average SNR per distance (dB)

M
A

E
(H

z)

PRONTO-L, w/o CFO aug.
PRONTO-L, w/ CFO aug.
PRONTO-S, w/ CFO aug.

Fig. 10: Mean absolute error (MAE) between coarse CFOs
predicted by CNNs using L-LTF signals and by MATLAB using
L-STF signals, with and without CFO augmentation.

We calculate the MAE for this case for different SNR levels
and show it under the legend “PRONTO-L w/ CFO aug.” in
Fig. 10. We see that the augmentation block improves the
MAE results by up to ⇠20000 Hz. This large improvement is
achieved by exposing the neural network to different random
CFOs that are not present in the training set and are artificially
injected using the CFO augmentation block during training.
CNN Architecture Impact. In addition to CFO augmentation,
the choice of CNN architecture also plays a key role. We train
and test PRONTO-S in Fig. 7 with CFO augmentation block
in the training pipeline. The results for different SNRs are
shown as “PRONTO-S w/ CFO aug.” in Fig. 10. We observe
that the best CFO estimation (lowest MAE) is achieved
with a comparatively deeper CNN (PRONTO-L), when CFO
augmentation is included in the training pipeline.
Scatter Plots For Coarse CFO Estimation. In Fig. 11,
scatter plots of “True CFO” versus “Predicted CFO” for each
distance are demonstrated. The prediction results are achieved
using PRONTO-L trained with CFO augmentation block in the
training pipeline. We observe that for higher SNRs, we see the
presence of a strong diagonal. As the SNR decreases, there is

increased deviation from the diagonal line, which shows an
increase in error. This is consistent with our observations in
Fig. 10.
Coarse CFO Estimation MATLAB vs. PRONTO. To demon-
strate PRONTO’s ability to estimate coarse CFO compared
with traditional methods, we feed the coarsely-time syn-
chronized L-LTF signals in the test set to MATLAB func-
tion wlanFineCFOEstimate. This function is designed
to estimate CFO using L-LTF signals through the traditional
methods, and is used in fine frequency synchronization in the
traditional receiver.

We collect predictions on test set signals from PRONTO-
L and then calculate the percentage of error (PoE) in each
SNR (distance) for both MATLAB calculations and PRONTO-
L predictions, using (18).

PoE =
1

M

M�1X

m=0

|Y CFO
m � Ŷ CFO

m |
|Y CFO

m | (18)

As demonstrated in Fig. 12 the MATLAB function yields
very large errors of upto ⇠2000% when fed with coarsely
time-synchronized L-LTFs, as it fails to estimate the coarse
CFO on L-LTF signals. In contrast, PRONTO-L can estimate
coarse CFO on L-LTF signals with errors as small as 3%.
Coarse CFO Estimation Error Impact on BER. In Fig. 10,
we demonstrate that our CFO estimator CNN (without L-
STF) performs within an error of ⇠300 Hz averaged over all
SNRs (distances) in reference to the traditional coarse CFO
estimator (that uses L-STF). The question is: How much BER
degradation is caused by this small error in PRONTO’s coarse
CFO estimator?

To answer this question, we measure the BER over the
dataset when the receiver works with the legacy coarse CFO
estimator, as well as with the coarse CFO estimator CNN,
PRONTO-L. We observe that the two BERs are exactly the
same. Therefore, the answer to the above question is PRONTO
causes no BER degradation.

We explain below as to why there is no BER degradation,
despite some error in coarse CFO estimation. The fine CFO

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 10

Fig. 11: Scatter plots showing the true CFO versus the predicted CFO for PRONTO CFO estimator in 11 different distances
(SNRs). The predicted CFO shows a larger divergence from the true CFO in lower SNR regions.

7 9 13 14 15 17 20 22 24 26 39

10%

100%

1000%

10000%

Average SNR per distance (dB)

Po
E

(lo
g)

PRONTO-L MATLAB

Fig. 12: Percentage of error (PoE) when MATLAB estimates
CFO on coarsely time-synchronized L-LTF signals compared
to PRONTO-L estimations.

estimation function, which is implemented through the legacy
approach is shown in Fig. 1(b). This function tunes the fine
CFO to compensate for the small errors in coarse CFO. Ta-
ble II shows 11 test set packets with randomly injected CFOs
for each distance from 2 ft to 62 ft. We observe that the tradi-
tional receiver (columns 2,3,4) estimates coarse and fine CFOs
for each packet that leads to a total CFO (Coarse+Fine). In the
PRONTO-based receiver (columns 5,6,7), the up/down arrows
under the Coarse CFO (PRONTO) (column 5) show that the
coarse CFO estimated by PRONTO increases/decreases in
reference to coarse CFO of the traditional receiver (column
2). However, the fine CFO estimator that comes after coarse
CFO estimation by PRONTO (column 6) compensates in the
opposite direction. In this way, the total CFO (Coarse+Fine)
for the traditional receiver (column 4) and PRONTO-based
receiver (column 7) are calculated to be exactly equal to each
other.
Coarse CFO Values Beyond Sub-carrier Spacing.
The MATLAB function for coarse CFO estimation (i.e.,
wlanCoarseCFOEstimate [34]) can estimate coarse
CFOs as large as twice the sub-carrier spacing. To show that
PRONTO-L CFO estimator can perform similarly, we draw
foff. from U(��f

2 , �f
2) as explained in Section III-C, and vary

the ranges as [-39k, 39k] (same �f as shown in Table I), [-
49k, 49k], [-78k, 78k], and [-156k, 156k]. For each range,
we train and test PRONTO-L CFO estimator with �fs from
the specific range and show MAE versus SNR in Fig. 13. We

10 15 20 25 30 35 40

102

103

Average SNR per distance (dB)

M
A

E
(H

z)

�f /2 = 39k
�f /2 = 49k
�f /2 = 78k
�f /2 = 156k

Fig. 13: Mean absolute error (MAE) between coarse CFOs
predicted by CNNs and the imposed CFO when different
values are chosen for �f of CFO augmentation block.

observe that MAE in higher SNRs slightly increases from 73
Hz (39k graph) to 146 Hz (156k graph), however, it remains
smaller than the largest MAE for �f/2=39k. From Table II,
this CFO MAE is compensated by fine CFO estimation, and
does not impact the BER. Therefore, the PRONTO-L is able
to perform coarse CFO estimation of CFOs as large as twice
the sub-carrier spacing similar to the MATLAB function.

C. PRONTO Performance in a New Environment

To evaluate packet detection in a new environment, we test
the PRONTO-S architecture, pretrained on Oracle dataset in
Section V-A, and we test it on packets from Arena dataset.
The reason this test is possible is that although sampling
frequency is different in Oracle (training) and Arena (test)
datasets, the L-LTF length is equal to 160 I/Q samples for
sampling frequencies between 5 to 20 MHz. Therefore, the
number of classes for packet detection in Arena dataset is
the same as Oracle dataset as shown in Fig. 4. We observe
the same 100% classification accuracy for the Arena dataset
without re-training the neural network.

To evaluate CFO estimation in a new environment, we
train two PRONTO-L CNNs on the training portion of the
Oracle dataset, one with �f=78 kHz (foff.⇠U (-39k, 39k)),
and another with �f=156 kHz (foff.⇠U (-78k, 78k)). In this
way, we set �f for each CNN equal to the sub-carrier

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 11

0 10 20 30 40

102

103

SNR per recorded L-LTF (dB)

M
A

E
(H

z)
(lo

g)
Test on Oracle
Test on Arena

Fig. 14: Mean Absolute Error (MAE) for CFO estimation in
test sets of Oracle and Arena (two different environments).
For both tests, the same model trained on data from Oracle
environment is used.

spacing in each of the 5 MHz and 10 MHz Oracle and Arena
datasets, respectively. However, in both cases, we set fs as
the sampling rate of the training dataset, i.e., 5 MHz, and we
train both CNNs on Oracle dataset. Since there is no distance
concept in the Arena dataset, for a point to point comparison,
we calculate the per-L-LTF frequency domain SNR using
MATLAB function helperNoiseEstimate, as explained
in Section IV-B, without averaging over distances. We test the
trained models on their respective test datasets from Oracle
(same environment as the training dataset) and Arena (different
environment from the training dataset), and measure the MAE
at each SNR for each test set. The average of MAEs shown in
Fig. 14 are 247 Hz and 270 Hz for Oracle and Arena datasets,
respectively. We observe that with changing the environment,
coarse CFO error increases by 9%, however, the MAE is
still in the range of Table II, and hence the residual CFO
is compensated by fine CFO estimation process. Therefore,
no compromise in BER happens if PRONTO is trained in
an indoor environment, and is deployed in a new indoor
environment.

D. Computation Cost

We evaluate PRONTO in terms of computation cost by
counting floating point operations (FLOPs), similar to the
state-of-the-art (SOTA) [16], [27]–[29], and run-time on 4
different commonly used platforms of desktop and edge CPUs
and GPUs, as shown in Table III and listed below:

1) Desktop-CPU: AMD Ryzen Threadripper 2950X 16-
Core Processor

2) Desktop-GPU: NVIDIA GeForce RTX 2080 GPU
3) Jetson TX2-CPU: Quad-Core ARM Cortex-A57
4) Jetson TX2-GPU: NVIDIA Pascal GPU
As explained in Sections V-A and V-B, in the PRONTO-

based wireless receiver we use PRONTO-S architecture for
packet detection and PRONTO-L for coarse CFO estimation
(shown in Fig. 7).
FLOPs and CPU Run-Time. We count FLOPs in both
MATLAB functions [41] and PRONTO CNNs for the two tasks
of packet detection and coarse CFO estimation, and show

Fig. 15: NVIDIA Jetson TX2 used for edge implementation.

them in the third row of Table III. As expected, PRONTO-
L that is a larger CNN consists of more FLOPs compared
to PRONTO-S (40.8M FLOPs for PRONTO-L versus 1.7M
FLOPs for PRONTO-S). To have a fair comparison between
traditional (MATLAB) and PRONTO algorithms run-time, we
first run all the algorithms with one input (batch size=1) on
the same platform of Desktop-CPU. To account for operating
system interrupts and run-time fluctuations, we run MATLAB

implementations for each algorithm of packet detection and
coarse CFO estimation 100 times in a loop and measure
100 individual run-time durations. We calculate mean and
standard deviation of these run-times and show them in the
fourth row of Table III as mean±standard deviation. We
repeat the same process of measuring run-time on CPU for
PRONTO-S and PRONTO-L CNNs with batch size 1. We
observe that PRONTO CNNs consist of much larger number
of FLOPs compared to their traditional MATLAB counterparts.
However, MATLAB packet detector function takes longer to
run compared to PRONTO-S. The reason for this is that in
the traditional MATLAB packet detection algorithm there are
many comparison statements and branches that contribute to
increasing the time, but are not counted as FLOPs.
CPU/GPU Comparison. We run PRONTO-S and PRONTO-
L on Desktop-GPU and measure run-time for one input L-LTF
(batch size=1) during the same process as CPU run-time mea-
surements. We observe that in the case of PRONTO-L GPU
implementation decreases CPU mean run-time by 40% (1.8 ms
for GPU compared to 3.15 ms for CPU). However, in the case
of PRONTO-S GPU implementation increases CPU mean run-
time by 65% (1.9 ms for GPU versus 1.09 ms for CPU). The
reason for this is that GPU hardware consists of a large number
of processing cores that run with a slower clock compared to
CPU clock. GPU implementation is only beneficial when the
algorithms are realized with compute-intensive large matrix
multiplications, which is the case for large neural networks.
Smaller CNNs specially if run with only one input have limited
opportunity for GPU parallelization compared to larger CNNs.
In other words, in the case of smaller CNN (PRONTO-S)
GPU resources are under-utilized, which leads to longer run-
time compared to CPU implementation. For the same reason,
PRONTO-S run-time on GPU is larger than that of PRONTO-
L despite PRONTO-S being smaller than PRONTO-L.
Edge Implementation. In order to measure PRONTO run
time on a power-efficient edge device, we run PRONTO-S
and PRONTO-L on NVIDIA Jetson TX2, an embedded AI

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 12

Task Packet Detection Coarse CFO Estimation

Method MATLAB PRONTO-S MATLAB PRONTO-L

Computational complexity (FLOPs) 2400 1.7M 417 40.8M

Run Time Desktop-CPU 30.8±0.62 1.09±0.12 0.05±0.02 3.15±0.29

(ms) Desktop-GPU - 1.9±0.19 - 1.88±0.22

Batch size=1 Jetson TX2-CPU - 4.91±0.54 - 9.88±0.38

Jetson TX2-GPU - 8.98±0.61 - 7.99±1.01

Run Time Desktop-GPU - 2.02±0.16 - 3.34±0.27
(ms) (0.015 ms per input) (0.026 ms per input)
Batch size=128 Jetson TX2-GPU - 17.63±0.89 - 53.19±1.64

(0.137 ms per input) (0.415 ms per input)

TABLE III: Comparison of FLOPs and run-time in traditional (MATLAB) and PRONTO (CNN) algorithms for packet detection
and coarse CFO estimation. Run-durations are measured 100 times on each of the 4 different platforms, and results are
demonstrated as mean±standard deviation of these 100 time durations.

computing device shown in Fig. 15. We can access an ARM
Cortex-A57 processor as well as NVIDIA Pascal GPU on
the TX2. We run one input L-LTF (batch size=1) through
PRONTO-S and PRONTO-L on the ARM core and the GPU
of the TX2 and measure mean and standard deviation of the
run-time same as before. In Table III we observe that TX2-
GPU decreases PRONTO-L run-time but increases PRONTO-
S run-time compared to the run-time on the TX2-CPU core
(for the same reason explained earlier). As expected, the run-
time of PRONTO on the TX2 is overall larger compared to
the powerful desktop computer.

Large Batch Size Effect. We explore the effect of feeding in
large batch size of input (batch size=128) on effective GPU
parallelization and PRONTO run-time. We repeat the run-
time measuring procedure in a loop that runs 100 times on
Desktop-GPU and TX2-GPU, however, instead of just one
input (batch size= 1) we feed in 128 inputs together (batch
size= 128). These 128 inputs are parallelized on the GPU
architecture instead of running sequentially. We observe that
the average run-time for PRONTO-S and PRONTO-L equals
2.02 ms and 3.34 ms, respectively, on the Desktop-GPU. If the
run-time periods are averaged over the number of inputs, we
achieve 0.015 ms and 0.026 ms per input for PRONTO-S and
PRONTO-L, respectively. Similarly, on TX2-GPU run-time
per input decreases to 0.137 ms and 0.415 ms for PRONTO-S
and PRONTO-L, respectively, compared to batch size 1 on the
same platform.

Run-time Comparison with Commercial WiFi Card. For
an example WiFi card with 5 MHz sampling rate, each L-
LTF is received in 32 µs. Therefore, each of packet detection
and coarse CFO estimation tasks must happen within 32 µs
for the card to be able to receive streaming signals without
packet loss. The reported GPU run-time for PRONTO (15 µs
and 26 µs) shows promising results wherein with a custom
chip design, a fully-pipelined WiFi card receiver can leverage
PRONTO for packet synchronization without packet loss in
higher sampling rates. As an example, the decoder neural
network proposed in [37] with 4.45⇥1010 FLOPs that is bigger
than both PRONTO-S and PRONTO-L (with 1.7 ⇥ 106 and
40.8⇥106 FLOPs, respectively) works in 100 MHz frequency

Ninkovic et al. Ninkovic et al. Zhou et al. PRONTO
[28] [27] [29] (this paper)

Performed packet detection ! ! - !

Performed CFO estimation - ! ! !

Preamble field used L-STF L-STF L-STF L-LTF
Used over the air data - ! - !

Studied BER degradation - - - !

Bandwidth (MHz) 1 1 10 5
Packet detection FLOPs 200M 200M - 1.7M
CFO estimation FLOPs >8738 - - 40.8M
Edge implementation - - - !

Packet detection miss rate 0.7% 0.4% - 0%
Preamble length reduction 0% 0% 0% upto 40%

TABLE IV: Comparing PRONTO with the state-of-the-art.

on FPGAs. A custom designed chip can boost the working
frequency of these NNs even further and provide PRONTO
timing efficiency in high sampling rate WiFi protocols.

E. Comparison with State-of-the-art (SOTA)

Finally, we demonstrate the superiority of PRONTO over
the SOTA techniques by evaluating its performance on various
metrics as presented in Table IV. As PRONTO is a first-of-
its-kind that uses only L-LTF for both packet detection and
coarse CFO estimation, we do not have a direct comparison
point among the related work. However, we compare our
results with the SOTA approaches which use deep learning
for packet detection and coarse CFO estimation using the
traditional inputs for these tasks (i.e., the L-STF signals). In
the following, we list the SOTA-related work that we use for
comparison which were also previously discussed in Section I.

1) Ninkovic et al. [28]: Proposes deep learning for esti-
mating the packet (L-STF) start index as a regression
problem on simulated data.

2) Ninkovic et al. [27]: Proposes deep learning for estimat-
ing the packet (L-STF) start index as well as CFO, both
as regression problems, on OTA data.

3) Zhou et al. [29]: Proposes deep learning for detecting
the class of CFO with L-STF of simulated data as a
classification problem.

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 13

Our comparison outcomes are shown in Table IV and the
highlights are described in the following.
Novelty and Superiority. Our novelty of not using L-STF
for packet detection and coarse CFO estimation provides
the possibility of removing the L-STF, which reduces WiFi
preamble length by upto 40%.
Model Size and Complexity. We show that our packet
detector CNN (PRONTO-S) is much lighter compared to the
architectures used in the SOTA. We show 1.7M FLOPs for
packet detection compared to 200M FLOPs presented in the
SOTA [27].
Communication Quality. While we study communication
quality (i.e., BER) in our proposed PRONTO-based receiver,
none of the studied related work consider the effect of errors
in their packet detection and coarse CFO estimation on the
BER.
Edge Implementation. None of the studied related work
present edge implementation and run-time results for deploy-
ment of packet detection and CFO estimation neural networks
in wireless receivers. However, we present edge implementa-
tion results on different platforms for conventional blocks as
well as PRONTO.
Packet Detection Miss Rate. From another perspective, [28]
and [27] report 0.7% and 0.3% miss detection rate, respec-
tively, for packet detection with input size 160 (same input size
as PRONTO). However, our 100% packet detection accuracy
shows that all the packets detected by the traditional MATLAB-
based packet detection algorithm are detected by PRONTO
too and no packets are missed (0% miss rate). We believe
that our robust packet detection algorithm is achieved by two
techniques. Firstly, we treat packet detection as a classification
problem instead of the less accurate regression proposed by
the SOTA [27], [28]. Secondly, we use a data augmentation
block that emulates different shifts in the L-LTF, accompanied
by periods of noise, that contribute to training a more robust
packet detection CNN.

To the best of our knowledge, there is no related work on
packet detection and CFO estimation using L-LTF signals to be
used as a direct comparison point. However, we establish the
efficacy of PRONTO by achieving same BER as the traditional
method after eliminating upto 40% of the preamble.

VI. CONCLUSIONS

PRONTO reduces the packet preamble overhead by elim-
inating the need for the first field of the preamble (i.e., L-
STF), while remaining compliant with legacy standard wave-
forms that contain the entire preamble. To decode packets
without L-STF, PRONTO performs coarse time and frequency
synchronizations using the next field of the preamble (i.e.,
the L-LTF). PRONTO consists of two CNN-based modules
for packet detection (coarse time synchronization) and coarse
CFO estimation, along with their corresponding augmentation
steps for training robust CNNs. We evaluated PRONTO on
two OTA WiFi datasets collected from a testbed of SDRs and
showed that packet detector CNN yields 100% accuracy with
a modest error as small as 3% in coarse CFO estimation. We
demonstrate that this small error in coarse CFO estimation

does not degrade the BER. Finally, by comparing to neural
networks implemented on custom hardware in the existing
literature, we envision that with properly pipelined customized
hardware, PRONTO can keep up with WiFi transmissions with
high sampling rates.

ACKNOWLEDGEMENT

This work is supported by the US National Science Foun-
dation (NSF) CNS-1923789 award.

REFERENCES

[1] H. Shimodaira, G. K. Tran, K. Sakaguchi, and K. Araki, “Investigation
on Millimeter-wave Spectrum for 5G,” in 2015 IEEE conference on
standards for communications and networking (CSCN), pp. 143–148,
IEEE, 2015.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE communications
magazine, vol. 52, no. 2, pp. 186–195, 2014.

[3] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
Overview of Massive MIMO: Benefits and Challenges,” IEEE journal
of selected topics in signal processing, vol. 8, no. 5, pp. 742–758, 2014.

[4] X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient Mobile
Fronthaul via DSP-based Channel Aggregation,” Journal of Lightwave
Technology, vol. 34, no. 6, pp. 1556–1564, 2015.

[5] S. D’Oro, F. Restuccia, and T. Melodia, “Can you fix my neural net-
work? real-time adaptive waveform synthesis for resilient wireless signal
classification,” IEEE INFOCOM 2021-IEEE Conference on Computer
Communications, 2021.

[6] S. Peng, H. Jiang, H. Wang, H. Alwageed, and Y.-D. Yao, “Modu-
lation Classification using Convolutional Neural Network Based Deep
Learning Model,” in 2017 26th Wireless and Optical Communication
Conference (WOCC), pp. 1–5, IEEE, 2017.

[7] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air Deep Learning
Based Radio Signal Classification,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 168–179, 2018.

[8] E. Perenda, S. Rajendran, G. Bovet, S. Pollin, and M. Zheleva, “Learning
the Unknown: Improving Modulation Classification Performance in
Unseen Scenarios,” in IEEE INFOCOM 2021-IEEE Conference on
Computer Communications, 2021.

[9] W. Xiong, L. Zhang, M. McNeil, P. Bogdanov, and M. Zheleva,
“Exploiting Self-Similarity for Under-Determined MIMO Modulation
Recognition,” in IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pp. 1201–1210, 2020.

[10] Y. Lin, H. Zhao, Y. Tu, S. Mao, and Z. Dou, “Threats of adversarial
attacks in DNN-based modulation recognition,” in IEEE INFOCOM
2020-IEEE Conference on Computer Communications, pp. 2469–2478,
IEEE, 2020.

[11] N. Soltani, K. Sankhe, S. Ioannidis, D. Jaisinghani, and K. Chowdhury,
“Spectrum Awareness at the Edge: Modulation Classification using
Smartphones,” in 2019 IEEE International Symposium on Dynamic
Spectrum Access Networks (DySPAN), pp. 1–10, IEEE, 2019.

[12] G. Shen, J. Zhang, A. Marshall, and J. R. Cavallaro, “Towards Scal-
able and Channel-Robust Radio Frequency Fingerprint Identification
for LoRa,” IEEE Transactions on Information Forensics and Security,
vol. 17, pp. 774–787, 2022.

[13] G. Shen, J. Zhang, A. Marshall, L. Peng, and X. Wang, “Radio frequency
fingerprint identification for LoRa using spectrogram and CNN,” IEEE
INFOCOM-IEEE Conference on Computer Communications, 2021.

[14] N. Soltani, K. Sankhe, J. Dy, S. Ioannidis, and K. Chowdhury, “More
is Better: Data Augmentation for Channel-Resilient RF Fingerprinting,”
IEEE Communications Magazine, vol. 58, no. 10, pp. 66–72, 2020.

[15] N. Soltani, G. Reus-Muns, B. Salehi, J. Dy, S. Ioannidis, and K. Chowd-
hury, “Rf fingerprinting unmanned aerial vehicles with non-standard
transmitter waveforms,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 12, pp. 15518–15531, 2020.

[16] T. Jian, Y. Gong, Z. Zhan, R. Shi, N. Soltani, Z. Wang, J. G. Dy, K. R.
Chowdhury, Y. Wang, and S. Ioannidis, “Radio Frequency Fingerprinting
on the Edge,” IEEE Transactions on Mobile Computing, 2021.

[17] T.-J. Liang, W. Rave, and G. Fettweis, “On Preamble Length of
OFDM-WLAN,” in 2007 IEEE 65th Vehicular Technology Conference-
VTC2007-Spring, pp. 2291–2295, IEEE, 2007.

ACCEPTED IN IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (TWC) MARCH 2023 14

[18] Y. Wang, J. Oostveen, A. Filippi, and S. Wesemann, “A novel Preamble
Scheme for Packet-based OFDM WLAN,” in 2007 IEEE Wireless
Communications and Networking Conference, pp. 1481–1485, IEEE,
2007.

[19] M. Belgiovine, K. Sankhe, C. Bocanegra, D. Roy, and K. Chowdhury,
“Deep Learning at the Edge for Channel Estimation in Beyond-5G
Massive MIMO,” IEEE Wireless Communications Magazine, pp. 1–7,
2021.

[20] R. Jiang, X. Wang, S. Cao, J. Zhao, and X. Li, “Deep neural networks
for channel estimation in underwater acoustic OFDM systems,” IEEE
access, vol. 7, pp. 23579–23594, 2019.

[21] X. Zheng and V. K. Lau, “Online Deep Neural Networks for MmWave
Massive MIMO Channel Estimation With Arbitrary Array Geometry,”
IEEE Transactions on Signal Processing, vol. 69, pp. 2010–2025, 2021.

[22] S. Liu, Z. Gao, J. Zhang, M. Di Renzo, and M.-S. Alouini, “Deep
denoising neural network assisted compressive channel estimation for
mmWave intelligent reflecting surfaces,” IEEE Transactions on Vehicu-
lar Technology, vol. 69, no. 8, pp. 9223–9228, 2020.

[23] M. Schaedler, S. Calabrò, F. Pittalà, C. Bluemm, M. Kuschnerov, and
S. Pachnicke, “Neural Network-Based Soft-Demapping for Nonlinear
Channels,” in 2020 Optical Fiber Communications Conference and
Exhibition (OFC), pp. 1–3, IEEE, 2020.

[24] M. Schaedler, F. Pittalà, G. Böcherer, C. Bluemm, M. Kuschnerov, and
S. Pachnicke, “Recurrent neural network soft-demapping for nonlinear
isi in 800gbit/s dwdm coherent optical transmissions,” in 2020 European
Conference on Optical Communications (ECOC), pp. 1–4, IEEE, 2020.

[25] H. Kim, Y. Jiang, R. B. Rana, S. Kannan, S. Oh, and P. Viswanath,
“Communication Algorithms via Deep Learning,” in International Con-
ference on Learning Representations, 2018.

[26] Y. He, M. Jiang, X. Ling, and C. Zhao, “A neural network aided
approach for LDPC coded DCO-OFDM with clipping distortion,” in ICC
2019-2019 IEEE International Conference on Communications (ICC),
pp. 1–6, IEEE, 2019.

[27] V. Ninkovic, A. Valka, D. Dumic, and D. Vukobratovic, “Deep Learning
Based Packet Detection and Carrier Frequency Offset Estimation in
IEEE 802.11 ah,” IEEE Access, 2021.

[28] V. Ninkovic, D. Vukobratovic, A. Valka, and D. Dumic, “Preamble-
Based Packet Detection in Wi-Fi: A Deep Learning Approach,” in 2020
IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), pp. 1–5,
IEEE, 2020.

[29] M. Zhou, X. Huang, Z. Feng, and Y. Liu, “Coarse frequency offset
estimation in MIMO systems using neural networks: A solution with
higher compatibility,” IEEE Access, vol. 7, pp. 121565–121573, 2019.

[30] F. A. Aoudia and J. Hoydis, “End-to-end Learning for OFDM: From
Neural Receivers to Pilotless Communication,” IEEE Transactions on
Wireless Communications, 2021.

[31] T. Cooklev, Wireless communication standards: A study of IEEE 802.11,
802.15, 802.16. IEEE Standards Association, 2004.

[32] The MathWorks, Inc., “wlanPacketDetect to
Estimate timing offset of OFDM packet.”
https://www.mathworks.com/help/wlan/ref/wlanpacketdetect.html,
2021.

[33] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and
Practical Guide. Sams publishing, 2002.

[34] The MathWorks, Inc., “wlanCoarseCFOEsti-
mate to Perform coarse CFO estimation.”
https://www.mathworks.com/help/wlan/ref/wlancoarsecfoestimate.html,
2021.

[35] “IEEE Standard for Information technology—Telecommunications and
information exchange between systems Local and metropolitan area
networks—Specific requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE
Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534, 2016.

[36] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and
K. Chowdhury, “Oracle: Optimized Radio Classification Through Con-
volutional Neural Networks,” in IEEE INFOCOM 2019-IEEE Confer-
ence on Computer Communications, pp. 370–378, IEEE, 2019.

[37] N. Soltani, H. Cheng, M. Belgiovine, Y. Li, H. Li, B. Azari, S. D’Oro,
T. Imbiriba, T. Melodia, P. Closas, et al., “Neural Network-Based OFDM
Receiver for Resource Constrained IoT Devices,” IEEE Internet of
Things Magazine, vol. 5, no. 3, pp. 158–164, 2022.

[38] B. Azari, H. Cheng, N. Soltani, H. Li, Y. Li, M. Belgiovine, T. Imbiriba,
S. D’Oro, T. Melodia, Y. Wang, et al., “Automated Deep Learning-based
Wide-band Receiver,” Computer Networks, vol. 218, p. 109367, 2022.

[39] L. Bertizzolo, L. Bonati, E. Demirors, A. Al-shawabka, S. D’Oro,
F. Restuccia, and T. Melodia, “Arena: A 64-antenna SDR-based ceiling

grid testing platform for sub-6 GHz 5G-and-Beyond radio spectrum
research,” Computer Networks, vol. 181, p. 107436, 2020.

[40] F. Chollet et al., “Keras.” https://github.com/fchollet/keras, 2015.
[41] H. Qian, “Counting the Floating Point Operations (FLOPS).”

https://www.mathworks.com/matlabcentral/fileexchange/
50608-counting-the-floating-point-operations-flops, 2021.

Nasim Soltani is a PhD candidate at the Department
of Electrical and Computer Engineering, Northeast-
ern University, Boston, MA. She started her PhD un-
der supervision of Professor Kaushik Chowdhury in
2018. Her research area is ML applications for wire-
less systems. Her interests are within the physical
layer of WiFi and cellular systems, specifically RF
fingerprinting, neural network-based receiver design,
signal classification, and secure communication.

Debashri Roy is currently an Associate Research
Scientist at the Department of Electrical and Com-
puter Engineering, Northeastern University. She re-
ceived her MS (2018) and PhD (2020) degrees
in Computer Science from University of Central
Florida, USA. She was an experiential AI postdoc-
toral fellow at Northeastern University (2020-2021).
Her research interests are in the areas of AI/ML
enabled technologies in wireless communication,
multimodal data fusion, network orchestration and
nextG networks.

Kaushik Chowdhury is a Professor at Northeast-
ern University, Boston, MA. He is presently a
co-director of the Platforms for Advanced Wire-
less Research (PAWR) project office. His current
research interests involve systems aspects of net-
worked robotics, machine learning for agile spec-
trum sensing/access, wireless energy transfer, and
large-scale experimental deployment of emerging
wireless technologies.

