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Abstract

Hybrid organic-inorganic perovskites (HOIPs) such as methylammonium lead io-

dide (MAPbI3) are promising candidates for use in photovoltaic cells and other semi-

conductor applications, but their limited chemical stability poses obstacles to their

widespread use. Ab initio modelling of finite-temperature and pressure thermodynamic

equilibria of HOIPs with their decomposition products can reveal stability limits and

help develop mitigation strategies. We here use a previously published experimental

temperature-pressure equilibrium to benchmark and demonstrate the applicability of

the harmonic and quasiharmonic approximations, combined with a simple entropy cor-

rection for the configurational freedom of methylammonium cations in solid MAPbI3

1



and for several density functional approximations, to the thermodynamics of MAPbI3

decomposition. We find that these approximations, together with the dispersion-

corrected hybrid density functional HSE06, yield remarkably good agreement with

the experimentally assessed equilibrium between T=326 K and T=407 K, providing a

solid foundation for future broad thermodynamic assessments of HOIP stability.

Introduction

Methylammonium (MA) lead iodide (CH3NH3PbI3 or MAPbI3) is a hybrid organic-inorganic

perovskite (HOIP) semiconductor that has garnered much interest as a light-harvesting ma-

terial for photovoltaic cells due to its facile synthesis and high power-conversion efficiency. 1–30

As a result of this development, certified power conversion efficiency of devices based on the

HOIP paradigm has grown to more than 25.5% in recent years for single-junction cells, 31

reaching 26.1% in July 2023.32 Tandem cells coupling HOIP and Si devices have rapidly in-

creased in efficiency, reaching 33.7% certified efficiency in May 2023.32 While exact composi-

tion data are not always immediately available for the latest devices, an earlier (2022) record

device reached 31.3% efficiency in a device without MAPbI3 and 30.9% in a device containing

a small amount of MAPbI3, respectively.33 However, stability remains an ongoing research

priority for hybrid metal halide based devices.1–3,5–7,11–18,21,22,24,26,27,29,34,35 The prototypi-

cal compound MAPbI3 tends to decompose when exposed to realistic operating conditions,

most notably high temperatures and humidity.1,2,7,10–18,22,24,27,29,34,35 Several approaches have

been investigated to improve the lifespans of perovskite photovoltaic cells, such as encapsu-

lating the cells with impermeable materials1,3,5,6,24 and altering the chemical composition of

the perovskites. For instance, methylammonium ions can be replaced with formamidinium

(CH5N
+
2 )36–38 or cesium.11,38–40 Indeed, demonstrated device stability in methylammonium-

free perovskite cells can reach 2,000 hours in the current literature,6,7,16,21,24,26 but perovskite

solar cell stability nevertheless remains an ongoing issue for technological viability over com-

mercially relevant device lifetimes. Long-term stability remains a general research topic for
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the much broader class of metal halide HOIPs.

One step towards developing mitigation strategies against decomposition is to assess ther-

modynamic stability boundaries of the broader class of HOIP materials in a given environ-

ment. Specifically, for assessing the effectiveness of encapsulation-based1,3,5,6,24 strategies, it

would be useful to be able to predict temperature-pressure equilibria of HOIPs with their de-

composition products from first principles. However, MAPbI3 and other hybrid perovskites

present some difficulties with respect to computational modelling due to the strongly an-

harmonic nature of the organic-inorganic lattice. Specifically, the polarity and rotational

asymmetry of the methylammonium ions introduce complex internal degrees of freedom to

the material, causing the lattice around them to distort.4,9,13,19,20,28,30,41–44 Depending on the

temperature, these ions may be temporarily fixed by hydrogen bonds (at cryogenic tem-

peratures44), they may switch between several minimum-energy orientations or they may

even dynamically tumble.41,44 Additionally, the orientational preferences of these ions causes

the surrounding lattice to distort into non-cubic structures (specifically, orthorhombic and

tetragonal phases) at low temperatures. One option is to apply ab-initio molecular dy-

namics and thermodynamic integration of anharmonic terms to the problem of MAPbI3

thermodynamics and decomposition,28,41,45 but this method is computationally demanding,

with either significant computational cost (if carried out by a direct first-principles approach)

or a nontrivial workflow by machine-learning (ML) an interpolated potential energy surface

with lower computational cost and sufficient precision.4,27 For simpler solids, a widely em-

ployed method to capture a first approximation of temperature/entropy components is the

quasiharmonic method15,28,45,46 (QHM), which uses the locally stable equilibrium geometry

and takes lattice thermal expansion into account, but otherwise remains within the bounds

of the harmonic approximation. While the quasiharmonic approximation does not account

for all consequences of anharmonicity,47 some of its limitations can potentially be mitigated.

As a workflow, the QHM is computationally tractable and, additionally, naturally includes

approximate (i.e., harmonic) nuclear quantum effects in the free energy. The QHM has
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previously been successfully applied to MAPbI3 to capture properties of the material itself

(e.g., lattice parameters,20,48 elastic moduli and phase transitions20,28).

We here assess the quality of several density functionals in combination with the QHM

and a simple entropy correction to account for MA+ cation orientational disorder (similar

to a correction applied and validated previously by Saidi and Choi20) for a somewhat more

challenging purpose, i.e., a chemical reaction equilibrium. Specifically, for MAPbI3, we

are in the fortunate position that a well established temperature-pressure equilibrium with

its decomposition products is published.14,34 Ciccioli et al.14,34 determined the product gas

pressures needed to bring the system into equilibrium as a function of temperature, using

Knudsen Effusion Mass Loss (KEML) and Knudsen Effusion Mass Spectrometry (KEMS).

Three candidate reactions were considered:34

(CH3NH3)PbI3 → PbI2 + CH3I + NH3 , (1)

(CH3NH3)PbI3 → PbI2 + CH3NH2 + HI , (2)

(CH3NH3)PbI3 → PbI2 + CH3NH3I . (3)

Ciccioli et al. found that the pressure calculated from pathway (2) closely matched measure-

ments of the MAPbI3 system. In principle, the products of pathway (1) are more energetically

favorable than those of pathway (2).12,16,34,35 However, pathway (1) is kinetically hindered

at moderate temperatures (326 – 407 K for the KEML and KEMS experiments 14), allow-

ing pathway (2) to dictate the equilibrium pressures in this temperature range. Therefore,

pathway (2) will be considered the dominant mode of decomposition in the present work.

We stress that our study thus focuses on the experimentally established thermodynamic

equilibrium (2), i.e., the starting and end points of a decomposition reaction, but we do not

make any claims regarding the numerous possible, detailed kinetic processes involved in the

decomposition or formation of an experimental sample. The decomposition mechanism (2)

is in line with the broader literature,6,12,27,34 and others (though without the detailed anal-

4



ysis of Ciccioli et al.) also report typical MAPbI3 decomposition temperatures in the range

of 100◦C (373 K).8,49 It is worth noting that the equilibrium pressures associated with the

gas-phase decomposition products for the equilibrium temperature range investigated by Ci-

ccioli et al. are extremely low (approximately 10−2–10−3 Pa) compared to typical laboratory

gas pressures, indicating that the stability of MAPbI3 based devices against decomposition

might increase significantly even in a trace gas atmosphere of its prospective decomposition

products.

Our analysis indicates that the QHM, coupled with the Heyd-Scuseria-Ernzerhof (HSE06)

hybrid density functional,50,51 the Tkatchenko-Scheffler (TS) dispersion correction52 and the

aforementioned entropy correction20 reproduces the published experimental equilibrium re-

markably well. Interestingly, already the harmonic approximation for fixed lattice parameters

(i.e., without the QHM correction) captures the reaction equilibrium, with only small energy

corrections from volume expansion in the QHM. This observation lays the foundation to use

the same, tractable approach for other hybrid metal halide perovskite materials in the future.

Methods

Methodological choices

The way to perform a computational evaluation of pathway (2) for comparison with experi-

ment is, in principle, straightforward. One must simply calculate the Gibbs free energies gi

of the reactants and products i and then, for any given temperature, find the pressure at

which the energy difference between the reactants and products, ∆g, is zero. Even if the

product gases are initially trapped in a solid-solid interface, they may thermodynamically

be considered to be in equilibrium with an external gas phase (especially for the anticipated

long lifetimes of an encapsulated photovoltaic device), and therefore it is valid to treat the

material as if it is in contact with a gas.

Several key decisions must be made for a practical first-principles computation of the
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relevant Gibbs free energy differences and the resulting temperature-pressure equilibria:

(i) Selection of the underlying method to compute total energies (the potential energy

surface), i.e., the density functional approximation and relativistic formalism methods to

be applied. In general, the validity and limits of different methods are not a priori clear.

Providing this validation for several functionals is one of the objectives of this paper. Specifi-

cally, we apply the Perdew-Burke-Ernzerhof (PBE) functional,53 the PBE-based hybrid func-

tional known as PBE0,54 and the HSE06 hybrid functional.50,51 In each case, we account

for the energy associated with van der Waals type dispersion interactions using the pairwise

Tkatchenko-Scheffler (TS) van der Waals correction.52 Our choice of the TS approach is mo-

tivated by a significant body of experience with the TS method applied to HOIP materials in

our group, showing that the TS method generally produces equilibrium geometries in good

agreement with published experimental structures.4,13,20,55–60 The supporting information of

Ref. 55 also shows that predicted structure differences for MAPbI3 between the TS method

and a more sophisticated many-body dispersion approach61 are insignificant. Finally, a sim-

ple, theoretically motivated reparameterization62 of the atomic polarizability of Cs renders

the TS method applicable to Cs-containing HOIP nanostructures as well.63

(ii) Selection of the method used to calculate the free energy components associated

with temperature and entropy of the solid and gaseous species. As mentioned above, the

QHM is here applied to MAPbI3 and PbI2. The free energies of the gases are calculated by

the harmonic oscillator / rigid rotor model. Anharmonic corrections to the free energies of

the molecular species could be incorporated by more complex workflows of their own and

has been demonstrated, for example, by Piccini et al. for small alkanes in zeolites.64,65 In

contrast, our analysis relies initially on the QHM only. The relevant equations to assess the gi

in solids and gases using the harmonic approximation or variants thereof are well known and

included in the Appendix to keep this paper self-contained. We then incorporate a simple

configurational entropy estimate to account for the most likely orientations of the MA+

cations, aiming to capture the zero-order entropy difference due to MA+ orientational changes
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between important phases of MAPbI3 (specificially, the low-temperature orthorhombic phase

and the high-temperature cubic phase).

The free energy calculations for the cubic phase of MAPbI3 are based on a fully-relaxed

(including unit cell) orthorhombic geometry. The geometry of the MA+ cation dictates

that a minimal unit of MAPbI3 cannot be locally of cubic symmetry, unlike the spatial or

thermal average of such a unit in a diffraction experiment. Rather, even the “cubic” phase of

MAPbI3 in a diffraction sense will still exhibit significant local lattice distortion and tilting

of octahedra.19,28,30,42 Even at temperatures in which MAPbI3 exists in the cubic phase, the

orthorhombic unit cell may therefore provide a better approximation of the instantaneously

preferred configurations of the crystal on the nanoscale.

In our calculations, we neglect the pV term of the Gibbs free energy of either MAPbI3 or

PbI2 since the partial pressures of the involved gases remain relatively low (<50 mPa34) We

note that, in high-pressure experiments, this term would be important. The high-pressure

physics of MAPbI3 has also been studied in other works15,66 but does not pertain to the

specific decomposition equilibrium conditions considered here.

Correction for configurational entropy of MAPbI3

The QHM is suitable for a first-order approximation of the thermodynamics of MAPbI3, but

it does not take into account the intrinsic disorder of the MAPbI3 lattice. At moderate to

high temperatures, the methylammonium ions within the lattice are capable of realigning

or even tumbling, causing distortion of the lattice around them. This overall anharmonic

motion is also intricately linked to the different phases exhibited by methylammonium lead

halides at different temperatures, as, e.g., some of us have shown in other work,44 compar-

ing temperature-dependent high-resolution X-ray diffraction and spectroscopies to ab initio

molecular dynamics derived structural expectation values in MAPbBr3. In general, modeling

this behavior adds considerable complexity to any numerical approach; molecular dynamics

simulations have been used to characterize it,20 but these are computationally intensive, and
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may become prohibitive if one wishes to model the behavior of MAPbI3 over a range of

temperatures. The QHM is suitable for a first-order approximation of the thermodynamics

of MAPbI3, but it does not take into account the intrinsic disorder of the MAPbI3 lattice. At

moderate to high temperatures, the methylammonium ions within the lattice are capable of

realigning or even tumbling, causing distortion of the lattice around them. This overall an-

harmonic motion is also intricately linked to the different phases exhibited by methylammo-

nium lead halides at different temperatures, as, e.g., some of us have shown in other work,44

comparing temperature-dependent high-resolution X-ray diffraction and spectroscopies to

ab initio molecular dynamics derived structural expectation values in MAPbBr3. In general,

modeling this behavior adds considerable complexity to any numerical approach; molecular

dynamics simulations have been used to characterize it,20 but these are computationally

intensive, and may become prohibitive if one wishes to model the behavior of MAPbI3 over

a range of temperatures. In other solid systems with internal rotational degrees of freedom

(such as hydrocarbons in zeolite lattices),64 accurate calculations of the free energies asso-

ciated with these degrees of freedom can be made by mapping the rotational energy well of

the free species and thus calculating its rotational partition function. For example, Piccini

et al. quantify the net impact of the anharmonic contribution to the adsorption Gibbs free

energy ∆G of an ethane molecule in a zeolite cavity to ≈0.12 eV at T=313 K.64 However,

this method is expected to be most accurate in systems where each rotating species is func-

tionally isolated from the others, and may therefore be treated separately from them. Due

to the proximity of the methylammonium ions in the MAPbI3 lattice and the flexible nature

of the surrounding structure, such a method may not be applicable.

We here adopt a simple entropy correction strategy that accounts for expected preferential

orientations of MAPbI3 as validated earlier through explicit molecular dynamic simulations

by Saidi and Choi.20 If each methylammonium ion is considered to be in one of several low-

energy orientations (each with probability pi), then one may formulate a straightforward
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configurational entropy term from the random alignment of ions:

sconfig = −kB ·
N∑
i=1

pi · ln(pi). (4)

Molecular dynamics simulations have shown that, in the cubic phase, there are six most prob-

able orientations of the methylammonium ion in MAPbI3.
30,41,43,67 For six equally-probable

configurations per methylammonium ion (and, thus, per formula unit), the formula Eq. (4)

simplifies to the following expression:

sconfig = kB · ln(6). (5)

It is important to note that, by assigning a probability of 1/6 to each possible orientation of

each methylammonium ion, we have made the assumption that the individual ions’ orienta-

tions are uncorrelated with one another. Molecular dynamics simulations68,69 suggest that

the static correlations between the orientations of neighboring MA+ ions are highly significant

at low temperatures, but decrease greatly as temperature increases to 300 K and above. As

such, we expect this method to systematically and significantly overestimate the configura-

tional entropy at low temperatures, but it may be approximately accurate in the temperature

range (300 – 400 K) considered here. At T=313 K, Eq. (5) yields Tsconfig=0.05 eV. As ex-

pected, this value is somewhat lower than the ethane/zeolite estimate of 0.12 eV by Piccini

et al.64 Due to the charged and polar nature of the MA+ ion, it is expected that the forces

between the ion and the host lattice would be significantly stronger than those between the

ethane molecule and the zeolite lattice. These forces restrict the motion of the MA+ ion to

the extent that a reduction of configurational entropy by a factor of ∼2 compared to the

ethane/zeolite system is understandable.
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Computational Details

The structures of MAPbI3, PbI2, methylamine (MAe, to distinguish the neutral species

CH3NH2 from the MA cation CH3NH+
3 ) and HI were obtained by relaxing them with the

FHI-aims code70 using the PBE53 generalized gradient approximation (GGA) functional

with the TS van der Waals correction. FHI-aims is an all-electron code based on numeric

atom-centered basis functions, an efficient, high-precision recipe for electronic structure cal-

culations verified by numerous past benchmarks71,72 and also validated in numerous studies

of perovskites.55–60 As an all-electron code, FHI-aims represents the potential near the nu-

cleus without any shape approximations, i.e., pseudopotentials or projectors are not used.

Specific numerical settings used, including k-space grids for solids, are summarized in an

appendix “Computational Settings”. For static total-energy calculations, we also obtained

fully relaxed structures using the HSE06+TS and PBE0+TS hybrid functionals. In addi-

tion to the atomic coordinates, the lattice vectors of MAPbI3 and PbI2 were relaxed as well,

except for the QHM related geometries, where fixed lattice parameters are necessary to sim-

ulate thermal expansion. Note that FHI-aims can perform both periodic and non-periodic

calculations on equal footing and isolated molecules were thus treated non-periodically. Also,

the algorithm used to relax structures73 is robust even for complex, subtle hybrid organic-

inorganic perovskite crystal structures and has been used in our group to validate detailed

single-crystal X-ray refined structures.59,60 The starting structure for MAPbI3 was the com-

putationally relaxed (PBE+TS) low-temperature orthorhombic unit cell of Ref. 55. PbI2 is

the DFT-relaxed version of the P3m1 literature structure (the 2H polytype).74 For DFT-

PBE+TS calculations, k-space sampling was carried out using Γ-centered Monkhorst-Pack

integration grids of 6×6×6 points for MAPbI3 and 12×12×9 points for PbI2. For hybrid

DFT calculations (HSE06+TS and PBE0+TS), we used k-space grids of 4×4×4 points for

MAPbI3 and 10×10×8 points for PbI2. The parameters for the HSE06 functional were set

as suggested by Krukau et al.75 (exchange mixing 0.25, screening parameter 0.11 inverse

Bohr radii). Scalar-relativistic total energy calculations were calculated using the atomic
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zero-order regular approximation as defined in Eqs. (55) and (56) of Ref. 70. Experimental

and computationally relaxed lattice parameters are compared in Table 1 and are in close

agreement with one another.

Table 1: Comparison of experimental lattice parameters of MAPbI3 and PbI2 with lattice
parameters relaxed by DFT-PBE+TS, DFT-HSE06+TS and DFT-PBE0+TS.

a b c
MAPbI3 orthorhombic, exp., T=100 K67 8.8657 12.6293 8.5769
MAPbI3 orthorhombic, DFT-PBE+TS 9.00 12.71 8.47
MAPbI3 orthorhombic, DFT-HSE06+TS 8.96 12.68 8.47
MAPbI3 orthorhombic, DFT-PBE0+TS 8.95 12.66 8.47
PbI2, exp., room temperature74 4.55 4.55 6.979
PbI2, exp., room temperature76 4.557 4.557 6.979
PbI2, comp., DFT-PBE+TS 4.55 4.55 7.16
PbI2, comp., DFT-HSE06+TS 4.56 4.56 7.09
PbI2, comp., DFT-PBE0+TS 4.56 4.56 7.11

The harmonic vibrational free energies of the isolated molecular species MAe and HI were

calculated using finite displacements of the nuclei of 0.0025 Å, using an existing script77 im-

plemented in the FHI-aims package, which also provides the rotational free energy contribu-

tion. The vibrational free energies of MAPbI3 and PbI2 were obtained using finite-difference

phonon calculations as implemented in the PHONOPY package,78 with an atomic displace-

ment parameter of 0.02 Å. Due to the large number of individual first-principles calculations

necessary to determine the free energies (especially for MAPbI3) in the finite-difference based

QHM approach, vibrational and phonon calculations were carried out using DFT-PBE+TS,

which is computationally affordable for this task. For the HSE06+TS and PBE0+TS hybrid

functionals, PBE+TS vibrational energy and entropy terms were used as fixed corrections.

In order to account for the thermal expansion of MAPbI3 and PbI2, the QHM was used.

As mentioned above, for MAPbI3, we use the molecular arrangement of the low-temperature

orthorhombic phase as the most plausible short-range order pattern to apply the QHM

and later apply an entropy correction term to account for configurational disorder. For

the QHM, we scale the computationally relaxed orthorhombic lattice (Table 1) by uniform
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factors, i.e., we model the volume expansion while keeping the cell fixed at the local cell

shape known from the orthorhombic phase). We note that the computational orthorhombic

cell’s lattice parameters deviate from exactly equal lattice parameters by 2.8%. However, it

is important to note that local fluctuations will always occur in the soft lattice of a halide

perovskite and our simple scaling of the computationally determined unit cell is therefore a

justifiable approximation of experimental reality within the confines of the QHM. At each

volume probed for phonon calculations of MAPbI3, all cell-internal atomic positions were

fully relaxed. Volumetric scaling factors of 0.99 to 1.06 were used. The case of PbI2 is

somewhat more complicated, in that it has a hexagonal crystal structure with two non-

equivalent axes. Therefore, we sampled free energy landscape over a two-dimensional grid

of scaling factors of the two independent lattice parameters a and c. Specifically, a was

scaled by length scaling factors (LFs) between 0.98 and 1.05. The overall unit cell volume

V was scaled by a separate volume scaling factor (VF) between 0.99 and 1.1, defining the

respective values for the c lattice parameters associated with probed each pair of (a, V ). In

Figure 1, the resulting grids of free-energy values are shown for three different temperatures

considered for the QHM. As expected, the predicted volume and lattice spacing a increase

with increasing temperature. The actual minimum free-energy values of a and V as a function

of temperature were determined from a smooth bivariate spline interpolation of free-energy

landscapes on (a, V ) grids analogous to those displayed in Figure 1.

Results and Discussion

Internal energies

Using the total energies associated with the DFT-relaxed structures (no temperature or

entropy corrections), decomposition energies of MAPbI3 were calculated straightforwardly

as

∆e = e(PbI2) + e(HI) + e(CH3NH2)− e(MAPbI3). (6)

12



Figure 1: Gibbs free energy of PbI2 at three representative temperatures at fixed volume
and lattice parameter a in the harmonic approximation: (a) 100K, (b) 300K , and (c) 500K,
plotted as a function of the in-plane length scaling factor (LF) and the volume scaling factor
(VF). Energies are normalized by subtracting the minimum energy at each temperature.

The resulting ∆e values for the three different density functionals are listed in Table 2.

Clearly, MAPbI3 is stable against decomposition absent vibrational energy and entropy

corrections, consistent with its experimental stability at low temperature. The variation

in predicted reaction energies between three different DFT methods is less than 0.1 eV per

formula unit. The hybrid functionals (PBE0+TS and HSE06+TS) calculate a slightly higher

(less favorable) internal energy change for the decomposition reaction than the PBE+TS

functional does.

Gibbs free energies of solid and gaseous species

We next consider the impact of finite temperature and (for gaseous species) finite partial

pressure contributions to the Gibbs free energy difference associated with reaction (2). Specif-

ically, we consider the impact of phonons at varying unit cell volumes in the solid materials
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Table 2: Total energy change ∆e associated with the decomposition reaction Eq. (2) as
calculated using each of three DFT methods, per MAPbI3 formula unit (12 atoms). Note
that the positive sign indicates that MAPbI3 is stable against decomposition at the DFT
total energy level.

Method
Reaction internal energy
change (eV / formula unit)

PBE + TS 2.403
HSE06 + TS 2.487
PBE0 + TS 2.465

and vibrational, rotational and ideal-gas translational degrees of freedom for the molecular

species in equilibrium with their gas phase, as summarized in the appendix (Eqs. (A.1–A.7)).

The Gibbs free energy change of reaction varies with respect to three independent variables:

temperature, total gas pressure ptot, and the composition of the gas (fixed by the mole frac-

tion of hydrogen iodide, x). Thus, in order to graph the equilibrium total pressure as a

function of temperature, we must choose a value of x. While it would be sensible enough to

choose x = 1
2

as a default choice, this value is not optimal for the purposes of comparing our

calculated pressures to experimental KEMS and KEML results, as the gas mixture inside a

Knudsen cell is not equimolar, but is governed by the Knudsen effusion condition,79,80 which

is given in equation (7):

pi =
dmi

dt

1

Af

√
2πkBT

Mi

, (7)

where pi, Mi, and dmi

dt
are the partial pressure, molecular weight, and mass effusion rate of

species i, A is the area of the effusion orifice, and f is a geometric correction factor. We can

reformulate equation (7) in terms of the particle effusion rate rather than the mass effusion

rate (dni

dt
= 1

Mi

dmi

dt
) and thus obtain

pi =
dni

dt

1

Af

√
2πkBTMi. (8)

Because each formula unit of MAPbI3 decomposes into one molecule each of HI and

MAe (in addition to the solid PbI2), we know that the particle effusion rates of these species
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are equal (dnHI

dt
= dnMA

dt
) when the Knudsen cell has reached a steady-state condition (i.e.

neither gas is accumulating in the cell). As such, we may calculate the quotient of the partial

pressures according to

pHI

pMA

=

√
MHI

MMA

, (9)

which dictates the value of x as

x =
pHI

pHI + pMA

=

(
1 +

√
MMA

MHI

)−1

=

√
MHI√

MHI +
√
MMA

= 0.670. (10)

The inclusion of the vibrational free energy contributions introduces a zero-point energy

term. The zero-point energy for each reactant and product is reported in Table 3. The

lattice parameters of MAPbI3 and PbI2 are kept fixed for this step of the analysis, i.e.,

quasiharmonic contributions related to thermal expansion are not yet included. The zero-

point energy contributions disfavor the stability of MAPbI3 by about 0.28 eV.

Table 3: Zero-point vibrational energy correction calculated for each species at the DFT-
PBE+TS level of theory and using fixed lattice parameters (fully relaxed at the Born-
Oppenheimer surface, i.e., not yet including any corrections due to finite temperature and/or
the QHA), as well as the associated zero-point energy correction to the total reaction energy.

Species
Zero-point energy
(eV / formula unit)

MA 1.689
HI 0.141
PbI2 0.037
MAPbI3 2.146
Reaction energy
change

-0.279

In addition to zero-point energy corrections, finite-temperature free energy terms result

from the vibrational/rotational and phonon calculations. These terms cause the decompo-

sition products to be increasingly favored over MAPbI3 as temperature increases. Figure 2

shows the reactant and product free energies vs. temperature, at four different, exemplary

product gas pressures, this time also including the quasiharmonic terms for MAPbI3 and
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PbI2. The point at which the reactant and product free energies cross, for a given gas pres-

sure, represents equilibrium at that pressure. The equilibrium temperature depends on the

partial pressures of the product gases due to the pressure dependence of the translational free

energy of the gas. Above the equilibrium temperature, MAPbI3 is unstable and is predicted

to decompose. As seen in Figure 2, low product gas pressures correspond to low equilib-

rium temperatures, while high pressures result in high equilibrium temperatures. Figure 2

indicates that the equivalent product gas pressures associated with MAPbI3 decomposition

are indeed small (less than 0.1 Pa) around 400 K (the upper limit of the range investigated

by Ciccioli et al.). Even modest counterpressures of the product gases MAe and HI would

increase the decomposition temperature of MAPbI3 by a substantial amount, far outside the

anticipated operating temperatures of typical MAPbI3 based devices.

Figure 2 also compares the change that results for the Gibbs free energy when including

or excluding the entropy correction Eq. (5) that accounts approximately for MA+ cationic

configurational disorder. Although the difference appears small on the y-axis scale (several

eV) plotted in Figure 2, it does cause a shift of the prospective equilibrium temperature to

measurably higher values (around ∼10 K), as discussed in more detail further below.

Impact of the density functional approximation used

In the left panel of Figure 3, the equilibrium pressure of MAPbI3 and its degradation prod-

ucts is plotted as a function of temperature, showing different computational approaches

alongside the experimental data reported by Ciccioli et al.14,34 This plot is the central result

of the present work, since it allows us to directly compare the impact of different compu-

tational approximations on the accuracy of predicted temperature-pressure equilibria. As

noted above, the DFT-PBE+TS approach including the entropy correction (blue dashed

curve) yields higher equilibrium temperatures than without the entropy correction (blue

solid curve), shifted by about 10 K. Although this shift is small, it is significant on the scale

of the data of Ciccioli et al. The dashed blue curve (DFT-PBE+TS with entropy correction)
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Figure 2: Gibbs free energy of MAPbI3 (orange and blue curves, without and with entropy
correction Eq. (5), respectively) and decomposition products vs temperature, at four selected
pressures (green, red, purple, and brown curves, for p=10−5 Pa, 0.001 Pa, 0.1 Pa, and 10 Pa,
respectively). The partial pressures of HI and MAe are chosen according to Eq. (10), and
the reported pressure p is their sum. Free energies are defined in reference to the calculated
DFT energy at the Born-Oppenheimer surface (EDFT ). All values are calculated using the
DFT-PBE+TS level of theory.

is significantly closer to the experimental data than the solid curve without the entropy cor-

rection, but it still corresponds to equilibrium temperatures that are visibly underestimated

(or, correspondingly, equilibrium partial pressures of the gaseous decomposition products HI

and MAe that are visibly overestimated).

As described in the methods section, we considered the impact of two other density func-

tionals (HSE06+TS and PBE0+TS) on the predicted temperature/pressure equilibrium.

Specifically, we employed the total energies of the reactants and products for structures that
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were fully relaxed at the target density functional, but kept the vibrational and rotational

free energy corrections determined at the DFT-PBE+TS level of theory. Remarkably, ei-

ther the HSE06+TS hybrid density functional or the PBE0+TS hybrid density functional

produce predicted temperature/pressure equilibria that are almost precisely consistent with

the experimental data, as long as the entropy correction is included. The original derivation

of the PBE0 hybrid density functional does suggest a generally better performance of this

functional than that of the simpler (and computationally cheaper) semilocal PBE density

functional.54,81 Similarly, the HSE06 density functional and its predecessors were originally

derived with the aim of achieving similar accuracy to the PBE0 functional, but at antici-

pated lower cost of a short-range screened hybrid density functional.50,51 It is therefore not

surprising that the hybrid functionals yield somewhat improved thermodynamic predictions

for the stability of MAPbI3, compared to the simpler PBE+TS functional. In summary,

our results suggest that using total energies and static structures derived from the hybrid

PBE0+TS or HSE06+TS functionals, combined with quasiharmonic vibrational and rota-

tional entropy corrections from the more affordable PBE+TS density functional, can yield

accurate stability predictions for MAPbI3. Given the general nature of the underlying ap-

proaches, we expect that this trend will also hold for hybrid organic-inorganic perovskites

beyond MAPbI3, the case for which detailed experimental reference data are available.

Impact of the Quasi-Harmonic Correction

A final point concerns the impact of the QHM. As mentioned above, this approximation al-

lows one to predict temperature-dependent unit cell volumes and, thus, relaxes the restriction

of free-energy calculations to a fixed unit cell. The underlying free energy is, however, still

computed in the harmonic approximation, since anharmonic motion of the atoms themselves

is not accounted for. For the purposes of this paper, the most important role of the QHM is

the overall correction that it imparts to the free energies of the solids in Eq. (2) and, thus,

to the calculated temperature-pressure equilibrium curve of MAPbI3 decomposition. As a
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Figure 3: Equilibrium total pressure vs. temperature, for various DFT methods, includ-
ing harmonic contributions with and without considering the volume expansion of the
solid phases (labeled “with QHM” and “without QHM”, respectively). The graphs look
nearly identical, illustrating the relatively minor role of the volume-dependent terms for the
temperature-pressure equilibrium with the gas phase species. For the calculated and KEML
results, the partial pressure ratio was determined by Eq. (10). For the KEMS results, the
partial pressures are measured independently, so no such assumption is necessary. KEML
and KEMS results were taken from ref. 14.

second result, however, one can also derive the QHM-corrected unit cell volumes themselves,

albeit leaving out true anharmonic effects, such as molecular rotation. For example, Saidi

and Choi20 used the QHM for this purpose for MAPbI3.

Figure 4 compares different temperature-dependent experimental and computational re-

sults for the unit cell volumes of MAPbI3 (Figure 4a) and PbI2 (Figure 4b). Commenting on

PbI2 first, there is a practically constant offset between the computational and experimental

data, but the trend with temperature is otherwise identical within the temperature range

covered by the experimental literature data shown in Fig 4. The offset of a few percent

between the DFT-PBE+TS data and the experiments is within the range that is typical

of experiment-computation discrepancies for unit cell volumes and the temperature trend is

essentially the same. The situation for MAPbI3 is more complex and likely indicative of the

limits of the QHM for anharmonic structural degrees of freedom. In the low-temperature
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(orthorhombic) regime below ∼160 K, the slope of the computational and experimental vol-

umes as a function of temperature agrees. The experimental data are only separated from the

computational data by different constant offsets, as in the case of PbI2. The offset between

our computational results and those of Saidi and Choi20 is also constant and attributed

to different density functionals used (DFT-PBE+TS here vs. DFT-PBEsol by Saidi and

Choi). The trend of the computational data is otherwise nearly exactly the same over the

entire temperature range plotted. In contrast, the experimental unit cell volume experiences

a discontinuous change at the orthorhombic-tetragonal phase transition at ∼160 K. This

change cannot be captured by the QHM and is likely associated with a freeing-up of the

molecular conformation to a larger ensemble in which the molecules can rotate.44 This is the

very rotation that, for the Gibbs free energy, we (as well as by Saidi and Choi) capture via

the qualitative entropy term of Eq. (5), but which does not enter the QHM unit cell vol-

ume determination. As expected, volume changes above the phase transition temperature

of ∼160 K can therefore not be captured in their entirety by the QHM alone.

Interestingly, and as shown in Table 4, the actual QHM energy contributions (i.e., those

contributions that are not already captured as harmonic terms and which are genuinely

attributable to the volume expansion) only make a minute difference to the actual free energy

differences of relevance in the thermodynamic temperature-pressure equilibrium between

MAPbI3 and its decomposition products in Eq. (2). The overall energy scale of Gibbs free

energies in Figure 2 is of the order of several eV, whereas the energy changes due to the QHM

in Table 4 are roughly two orders of magnitude smaller. In fact, the entropy correction

in Eq. (5) itself is larger than the overall QHM correction, making this term the more

important one compared to the volume-change related energy differences. Thus, even the

simple harmonic approximation at static volumes together with the configurational entropy

correction would, according to our results, have captured the majority of the contribution

necessary to predict the temperature-pressure stability equilibrium of Figure 3. The right

panel of Figure 3, which omits the effect of volume expansion, shows that the resulting
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changes are very small.

Figure 4: Calculated (DFT-PBE+TS with QHM) and experimental unit cell volumes for
MAPbI3 and PbI2. (a) MAPbI3 cell volume vs temperature. (b) PbI2 cell volume vs tem-
perature. (1) Data from Ref. 20. (2) Data from Ref. 55. (3) Data from Ref. 82. (4) Data
from Ref. 83. (5) Data from Refs. 76, 84, 85.

Table 4: QHM free energy corrections per formula unit for MAPbI3 and PbI2 at various
temperatures, along with the resulting reaction energy correction.

Temperature
(K)

MAPbI3 QHM
free energy
correction (eV)

PbI2 QHM
free energy
correction (eV)

Reaction QHM
free energy cor-
rection (eV)

300 -0.0178 -0.0092 0.0086
350 -0.0216 -0.0118 0.0098
400 -0.0255 -0.0149 0.0106
450 -0.0294 -0.0184 0.0111
500 -0.0340 -0.0221 0.0119
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Conclusion

In this work, we demonstrate that applying a set of computationally affordable models to

the thermodynamic stability limits of the paradigmatic hybrid organic-inorganic semicon-

ductor MAPbI3 can model temperature-pressure equilibrium data in close agreement with

experimental reference data. Specifically, remarkably good accuracy is achieved when us-

ing (i) total energies for static structures predicted at the level of the dispersion corrected

hybrid density functionals PBE0+TS or HSE06+TS, (ii) harmonic free-energy corrections

for gaseous and solid species at the more affordable, dispersion corrected semilocal DFT-

PBE+TS level of theory, (iii) the low-temperature local order of molecular species in the

orthorhombic phase of MAPbI3 to approximate residual short-range order, combined with

a simple entropy correction to account for molecular orientational degrees of freedom and

(iv) quasiharmonic corrections to account for thermal expansion effects. In contrast, just

using the computationally cheaper PBE+TS approximation for (i), i.e., the internal energies,

would not produce the same quality of computational results. Although still more expensive

than semilocal DFT calculations such as PBE, hybrid DFT calculations can now be carried

out with affordable efficiency and with high precision up to very large system sizes, e.g.,

up to 3,383 atoms in a perovskite structure in Ref. 86. Interestingly, the quasiharmonic

corrections (while important to predict qualitatively correct volume expansion trends for the

low-temperature phase) do not appear to impact the overall predicted temperature-pressure

equilibria of MAPbI3 and its decomposition products strongly. We have thus validated a

computational approach that is expected to be helpful to predict thermodynamic stability

criteria for the much larger space of other hybrid organic-inorganic semiconductors, although

we note that any necessary qualitative entropy corrections for molecular rotations will be

system-dependent (e.g., depend on the number and freedom of molecular rotors present).

Importantly, the underlying reaction equilibria also offer an approach to actively stabilize

these materials against decomposition by offering reactants such as methylamine, HI and I2

at sufficiently high partial pressures to establish or re-establish appropriate thermodynamic
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equilibrium conditions that stabilize the hybrid perovskite in operando.
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Appendix: Thermodynamic Formalism

Although the formalism to compute thermodynamic equilibria between solids and gaseous

species is well established in physical chemistry, we here summarize the full formalism to

identify all of the specific choices made in the present work. Importantly, our results ul-

timately connect to the total pressure measured in a KEMS or KEML experiment, which

is not always the target property in a textbook derivation. The total pressure, ptot of the

decomposition gas mixture in equilibrium with the solid phases is the main formula derived

in this appendix.

The Gibbs free energy change associated with the decomposition of one formula unit of
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MAPbI3 according to (2) is given by Eq. (A.1):

∆g = gPbI2 + gHI + gMAe − T ·∆smix − gMAPbI3. (A.1)

Here, gi denotes the Gibbs free energy per formula unit of each component i (solid or gaseous)

involved in the reaction equilibrium. Additionally, we consider the entropy of mixing per gas

molecule of the gaseous species, ∆smix (see below), assuming equilibrium with a mixed-gas

atmosphere. For each of the solid species (MAPbI3 and PbI2), gi is expressed as a sum of

the internal energy at a T=0 K (e0) and an additional free energy term which captures the

vibrational free energy of the solid (fvib). The pressure-volume term of the free energy is

negligible at the relatively low pressures considered here, so the fvib term is considered to be

a function of temperature but not pressure. For the gaseous species, gi is expressed as a sum

of the internal energy at T=0 K (e0), the translational free energy of the gas (ftrans), and

the rotational and vibrational free energies, which are combined into the term (frv).
87 ftrans

is a function of both temperature and pressure, and frv is a function of only temperature:

∆g = e0,P bI2 + fPbI2(T ) + e0,HI + ftrans,HI(T, p) + frv,HI(T )+

e0,MAe + ftrans,MAe(T, p) + frv,MAe(T )− T ·∆smix − e0,MAPbI3 − fMAPbI3(T ). (A.2)

In order to solve Eq. (A.2) for equilibrium pressure, the pressure-dependent translational

free energy terms may be isolated and written out as:

ftrans,HI + ftrans,MAe = kBT

[
ln

((
MHIkBT

2πh̄2

)3/2
kBT

pHI

)
+ ln

((
MMAekBT

2πh̄2

)3/2
kBT

pMAe

)]
,

(A.3)
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such that

kBT

[
ln

((
MHIkBT

2πh̄2

)3/2
kBT

pHI

)
+ ln

((
MMAekBT

2πh̄2

)3/2
kBT

pMAe

)]
=

e0,MAPbI3 + fMAPbI3(T )− e0,P bI2 − fPbI2(T )

− e0,HI − frv,HI(T )− e0,MAe − frv,MAe(T ) + T ·∆smix. (A.4)

It is convenient to consolidate the right-hand side of Eq. (A.4) into a single term, denoted

Σe:

Σe = e0,MAPbI3+fMAPbI3(T )−e0,P bI2−fPbI2(T )−e0,HI−frv,HI(T )−e0,MAe−frv,MAe(T )+T ·∆smix.

(A.5)

Substituting Σe into Eq. (A.4) allows for the isolation of the pressure-dependent term:

ln

(
M

3/2
HI M

3/2
MAek

5
BT

5

8π3h̄6pHIpMAe

)
=

Σe

kBT
=⇒ M

3/2
HI M

3/2
MAek

5
BT

5

8π3h̄6pHIpMAe

= exp

(
Σe

kBT

)
(A.6)

or

pHIpMAe =
M

3/2
HI M

3/2
MAek

5
BT

5

8π3h̄6
exp

(
− Σe

kBT

)
. (A.7)

In the case of a mixture of nHI and nMAe particles of HI and MAe, respectively, where

x, the mole fraction of HI, is given by x = nHI/(nHI + nMAe), statistical mechanics87 gives

the entropy of mixing as follows:

Smix = −kB(nHI · ln(x) + nMAe · ln(1− x)). (A.8)

The ∆smix of Eq. (A.5) is not the entropy given by Eq. (A.8) (the total entropy of mixing

of the gas mixture), but rather the incremental entropy of mixing associated with releasing

one molecule each of HI and MAe into the mixed-gas phase. Its value is calculated according
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to

∆smix =
∂Smix

∂nHI

∆nHI +
∂Smix

∂nMAe

∆nMAe = s̄HI∆nHI + s̄MAe∆nMAe, (A.9)

where ∆nHI = ∆nMAe = 1 refer to the number of molecules of HI and MAe released per

formula unit of MAPbI3 decomposed. s̄HI and s̄MAe are the partial molecular entropies of

HI and MAe, which can be found by taking partial derivatives of the entropy of mixing of

Eq. (A.8):

s̄HI =
∂Smix

∂nHI

(A.10)

s̄MAe =
∂Smix

∂nMAe

(A.11)

To take these derivatives, we express Eq. (A.8) in terms of nHI and nMAe rather than in

terms of N and x, where x is the mole fraction of HI:

Smix = −
(
nHI + nMAe

)
kB

(
nHI

nHI + nMAe

· ln nHI

nHI + nMAe

+
nMAe

nHI + nMAe

· ln nMAe

nHI + nMAe

)
,

(A.12)

Smix = −kB(nHI ln
nHI

nHI + nMAe

+ nMAe ln
nMAe

nHI + nMAe

). (A.13)

Now, we differentiate with respect to nHI to find s̄HI :

s̄HI = −kB
[

ln
nHI

nHI + nMAe

+ nHI
nHI

nHI + nMAe

(
1

nHI + nMAe

− nHI

(nHI + nMAe)2

)
+

nMAe
nHI + nMAe

nMAe

−nMAe

(nHI + nMAe)2

]
, (A.14)

s̄HI = −kB
[

ln
nHI

nHI + nMAe

+

(
1− nHI

nHI + nMAe

)
− nMAe

nHI + nMAe

]
= −kB ln

nHI

nHI + nMAe

.

(A.15)

When this process is repeated, but the derivative is taken with respect to nMAe, to find s̄MAe,

a similar result is found:

s̄MAe = −kB ln
nMAe

nHI + nMAe

. (A.16)

Now that we have found the formulas for s̄HI and s̄MAe, we may substitute x and 1− x (the
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mole fractions of HI and MAe) for nHI/(nHI + nMAe) and nMAe/(nHI + nMAe):

s̄HI = −kB lnx, (A.17)

s̄MAe = −kB ln (1− x). (A.18)

These formulas for the partial molar entropies of HI and MAe may now be substituted

into Eq. (A.9) to find the entropy of mixing per formula unit of reaction ∆smix:

∆smix = −kB(ln x+ ln (1− x)) (A.19)

For any given gas composition, Eq. (A.19) allows the calculation of Σe (which is now a

function of both temperature and composition) according to Eq. (A.5). Also, because

the ratio of partial pressures in an ideal gas mixture equals the molar ratio between the

constituent gases,

pHI = ptotx, (A.20)

pMAe = ptot(1− x). (A.21)

Substituting Eqs. (A.20), (A.21) into equation (A.7) results in a formula for the total

equilibrium pressure for any gas composition x:

ptot =

√
1

x(1− x)

m
3/2
HIm

3/2
MAek

5
BT

5

8π3h̄6
exp

(
− Σe

2kBT

)
(A.22)

Appendix: Computational Settings

Numerical settings for all DFT calculations are summarized in Table A.1.
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Table A.1: Computational settings used for DFT calculations reported in this work, where
“numerical settings” summarizes pre-tabulated basis sets and numerical choices provided
with the FHI-aims code. “XC” stands for the exchange-correlation functional used.

Calculation XC Numerical settings k-grid

Relaxations
MAPbI3 PBE+TS Tight 6×6×6
PbI2 PBE+TS Tight 12×12×9
MAe PBE+TS Tight
HI PBE+TS Tight
QHM (phonon) calculations
MAPbI3 PBE+TS Tight 6×6×6
PbI2 PBE+TS Tight 12×12×9
Molecular vibrational calculations
MAe PBE+TS Tight
HI PBE+TS Tight
PBE0 single-point calculations
MAPbI3 PBE0+TS Intermediate 4×4×4
PbI2 PBE0+TS Intermediate 10×10×8
MAe PBE0+TS Intermediate
HI PBE0+TS Intermediate
HSE06 single-point calculations
MAPbI3 HSE06+TS Intermediate 4×4×4
PbI2 HSE06+TS Intermediate 10×10×8
MAe HSE06+TS Intermediate
HI HSE06+TS Intermediate
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