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ABSTRACT

The increasing availability of multimodal data
holds many promises for developments in mil-
limeter-wave (mmWave) multiple-antenna sys-
tems by harnessing the potential for enhanced
situational awareness. Specifically, inclusion of
non-RF modalities to complement RF-only data
in communications-related decisions like beam
selection may speed up decision making in situ-
ations where an exhaustive search, spanning all
candidate options, is required by the standard.
However, to accelerate research in this topic,
there is a need to collect real-world datasets
in a principled manner. This article presents an
experimentally obtained dataset, composed of
23 GB of data, which aids in beam selection in
vehicle-to-everything mmWave bands, with the
goal of facilitating machine learning (ML) in the
wireless communication required for autonomous
driving. Beyond this specific example, the article
describes methodologies of creating such data-
sets that use time synchronized and heteroge-
neous types of LIDAR, GPS, and camera images,
paired with the RF ground truth data of selected
beams in the mmWave band. While we use beam
selection as the primary demonstrator, we also
discuss how multimodal datasets may be used
in other ML-based PHY-layer optimization areas,
such as beamforming and localization.

INTRODUCTION

Interest in using large-scale multimodal datasets
has surged within the past few years given the
widespread availability of small form-factor sen-
sors and decreasing data storage costs. Such data-
sets may include historical and real-time streaming
samples of camera images, GPS coordinates,
light detection and ranging (LIDAR) pointclouds,
radar signals, infrared signals, and acoustic signals,
to name a few. These sensors may have a wide
range of applications that include biomedical
sensing, autonomous vehicles, and the ubiquitous
Internet of Things. However, effective utilization
of the collected information to extract meaning-
ful context from the operational environment
remains an open challenge, particularly when real-
time execution is needed.

Diversity of data sources for wireless PHY
optimization use cases. Classical wireless data-
sets use radio frequency (RF) data for applications
such as channel estimation and interference detec-

tion, generally with multiple- input multiple-out-

put (MIMO) systems that utilize antenna arrays.

While rapid advances in machine learning (ML)

have demonstrated benefits of using RF data,

recent results indicate the exciting possibility of
leveraging non-RF data as well to improve system

performance and increase solution robustness [1].

Non-RF modalities can complement tasks where

rich environmental representations circumvent the

shortcomings of RF data, albeit at increasing data
collection costs and management overhead.
Challenges in creating multimodal datasets.

Naturally, the creation of multimodal datasets
comes with its own set of challenges. Depending
on the application of a multimodal dataset, data
samples may need to be synchronized, particularly
for use with ML techniques that require a uniform
input size. This requires meticulous consideration
of the timescale characteristics of the different
sensor types, including device startup delay and
sampling frequency. These samples should have
accurate labels and timestamps based on a com-
mon timescale, and in the likely scenario that dif-
ferent device capture frequencies do not align,
sensor-specific “gaps” in the dataset should imme-
diately be addressed for synchronization. Final-
ly, any collected raw data needs to be checked
for compatibility with a given task. For example,
LiDAR pointclouds vary in size, which is unde-
sirable for deep learning (DL)-based approaches
that require input tensors of fixed size. Hence,
preprocessing steps may be necessary to com-
press and standardize data representations. Our
contributions are as follows:

+ We discuss how multimodal data can be
used for beam selection for wireless links,
specifically concerning beamforming in the
millimeter-wave (mmWave) band.

+ We survey different existing multimodal data-
sets that have the potential to contribute to
emerging research directions.

+ We describe a novel generalized process for
collecting multimodal datasets using both
our dataset, e-FLASH, and the collection pro-
cess behind e-FLASH to illustrate this process.
e-FLASH, which consists of heterogeneous
LiDAR, camera, and GPS sensor-generated
real-world data, was collected for the pur-
pose of beam selection in mmWave bands.
We make this dataset publicly available [4]
to accelerate community contributions in the
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exciting research area of mmWave commu-
nication.

+ We conduct preliminary experiments that
utilize multimodal data for beam selection,
showing the potential to achieve low-la-
tency high-reliability communication within
mmWave systems.

USE CASES OF MULTIMODAL DATASETS

Multimodal data may be leveraged to speed up
the utilization of heavily congested RF bands (Fig.
1). As an example, modalities such as camera
images and LiDAR are leveraged to provide con-
textual information and/or guide existing RF-on-
ly approaches. Earlier works such as [2, 3] have
demonstrated that it is possible to increase accu-
racy of beam selection by using multimodal data-
sets. The contextual awareness drastically reduces
inference time for optimal beam selection. These
initial studies motivate us to identify different
PHY-layer topics in mmWave and MIMO systems,
describing how multimodal data in general can
address research challenges in these topics. An
overview of some state-of-the-art (SOTA) tech-
niques is presented in Table 1.

BEAM SELECTION

Propagation in the mmWave spectrum is severely
limited due to the increased path loss of RF sig-
nals in high carrier frequencies. To mitigate this
propagation characteristic, directional links that
offer the strongest signal strength in the domi-
nant signal lobe between the transmitter (Tx) and
receiver (Rx) pair are used, but they must be care-
fully aligned. This alignment process, known as
beam selection, is essential and must be repeated
frequently in mobile environments to ensure con-
tinuous connectivity. Several prior efforts use a
combination of RF and non-RF data, such as light-
based sensors [5, 6], to perform beam selection.
Such techniques exploit the benefit of variety of
light-based modalities (e.g., LIDAR and images)
to either offset the sole reliance on RF data or
increase beam selection efficiency.

BEAMFORMING

Beamforming focuses on the generation of multi-

ple elements in a Tx antenna array with the goal of

creating constructive interference at the Rx while

producing destructive interference elsewhere,

which is then paired with beam steering and selec-

tion steps in a system for optimal performance.

While there is myriad research available on vari-

ous beamforming techniques, they are either:

+ Solely validated on simulation studies [8]

+ Have the potential to be improved using
DL-based data-driven approaches [7]

In either case, SOTA techniques may benefit if their

outcomes are demonstrated on a real-world dataset.

LOCALIZATION

Localization is the prediction of a device’s place-
ment in space through the use of one or more
wireless transmitters. Specific to scenarios involv-
ing mmWave links, [9] uses pre-existing auto-
motive radars and Van Atta arrays to build a
low-power tag that may be localized with high
accuracy over an extended range. In [10], the
authors use signal-to-noise ratio (SNR) measure-
ments to construct an ML-based system that per-
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FIGURE 1. Use cases and overview of real-world FLASH [2], e-FLASH, and synthetic Raymobtime [3] datasets.

Application Modalities Methods Paper
Beam selection RF, image Cemmpuizar vi§ ien;iecp Alrabeiah et al. [5]
learning
Beam selection RF, LIDAR Deep learning, fusion Dias et al. [6]
Beamformin: RF Channel measurements, Roh et al. [7]
s hybrid RF/baseband system '
Hybrid beamforming,
Beamforming RF, radar sub-arrayed radar Liu et al. [8]
techniques, minimization
Localization RF, radar Reflector array Soltanaghaei et al. [9]
Localization RF Deep learning Koike-Akino et al. [10]
Localization RF Channel measurements Palacios et al. [11]

TABLE 1. Survey of literature leveraging the use of different modalities for solving mmWave challenges.

forms only location-based classification, location
and orientation classification, and coordinate esti-
mation. In [11], channel state information (CSI)
from commercial off-the-shelf mmWave routers
is used for localization and then to optimize net-
work operations. We believe that all of these
approaches stand to benefit from the inclusion of
LiDAR and GPS data, given the significant envi-
ronmental context awareness achievable beyond
what has been demonstrated with only the classi-
cal parameters of CSI and SNR.

CLASSIFICATION OF EXISTING MULTIMODAL
DATASETS FOR WIRELESS PHY

We survey available simulation and real-world
multimodal datasets consisting of primarily non-
RF data that address different problems in the
mmWave band.

SIMULATION DATASETS

Raymobtime: The Raymobtime dataset [3]
consists of a high-fidelity virtual vehicle-to-infra-
structure (V21) deployment for modeling 5G
and mmWave MIMO channel propagation. The
dataset is obtained from a simulated urban can-
yon region, where buildings flank the two sides
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The first step in collecting
a multimodal dataset is
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our case, e-FLASH addresses
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BS: Talon AD7200 J f T Velodyne LIDAR

I T

Rx: Talon AD7200 |

FIGURE 2. The experimental setup of e-FLASH data collection.

of a road. Using the Simulator for Urban Mobil-
ity (SUMO) software, a variety of moving vehi-
cles are generated to form traffic patterns near
a roadside Tx. Image, LiIDAR, and ray tracing
(RT) data are collected by Blender, Blender Sen-
sor Simulation (BlenSor), and Remcom Wireless
Insite, respectively. Synchronized samples of
LiDAR pointclouds, GPS coordinates, and camera
images are collected for each scene, in which an
active Rx is designated to one of the three vehicle
types. Overall, 256 beam configurations, consist-
ing of 32 codebook elements at the Rx and eight
elements at the Tx, are collected, cumulatively
giving over 6000 scenes (55 GB data).

ViWi: The Vision-Wireless (ViWi) framework
utilizes 3D modeling and RT in combination
with wireless data for the purpose of facilitating
vision-aided mmWave wireless communication
[12]. Simulated outdoor environments containing
objects such as buildings, cars, and people are gen-
erated with Blender, while RT is done with Rem-
com Wireless Insite. The initial version of ViWi
features four sets of raw data, consisting of visual,
LiDAR, and wireless data (e.g., depth maps, sig-
nal angles of departure, and channel gains), and a
data-generating package. An extended version of
this dataset, named ViWi Vision-Aided mmWave
Beam Tracking (ViWi-BT), contains an additional
13 pairs of consecutive beam indices with corre-
sponding street view images in a new heavy-traffic
downtown environment. ViWi-BT contains 281,000
training samples, 120,468 validation samples, and
10,000 test samples for ML-based beam tracking.

REAL-WORLD DATASETS

Image-Based mmWave Beamforming: The
dataset collected by Salehi et al. [1] uses camera
images to complement beamforming optimiza-
tion between two mmWave antenna arrays. The
Tx and Rx antenna arrays are placed on mobile
sliders and are set to move to five distinct positions
with an obstacle in between the arrays to represent
the radiation pattern under both line-of-sight (LoS)
and non-LoS (NLoS) conditions. Two GoPro Hero4
cameras synchronized with mmWave radios are
used to observe movement in the environment.
The corresponding raw images are fed through a
binary classifier to detect the locations of the Tx
and Rx in the image and are later passed to a sec-
ond classifier to direct one of 13 beam directions
at both the Tx and Rx. The dataset contains over
3750 samples (2.85 GB), which are used to predict
the optimal beam pairing using raw input images.

FLASH: The Federated Learning for Automated
Selection of High-band mmWave Sectors (FLASH)
dataset is a real-world multimodal dataset wherein
sensory data from LiDAR, camera, and GPS sen-
sors participate in federated learning to speed up
beam selection in mmWave vehicular networks
[2]. Overall, this multimodal dataset is collected
in real time with sensors mounted on an auton-
omous vehicle in an urban canyon environment
in a variety of LoS and NLoS scenarios. Using
the locally collected data, obstacles are detect-
ed within the immediate surroundings, and their
locations are used to make guided inferences for
selecting the best mmWave sector. The sensor
suites in FLASH contain three sensors:

* T6-channel LIDAR

* A side-facing camera

+ GPS

The labels in FLASH are time synchronized RF
ground truth of the received signal strength at
each mmWave beam. Overall, the dataset con-
tains 31,923 samples (~20 GB processed data),
covering a wide variety of real-world vehicle-to-
base station (BS) LoS and NLoS scenarios.

MULTIMODAL DATASET CREATION FRAMEWORK

In this section, we present a step-by-step meth-
odology of collecting a multimodal dataset, using
the extended FLASH (e-FLASH) dataset as a guid-
ing example. e-FLASH is an extension of the orig-
inal FLASH dataset with the addition of two new
sensors that provide richer environmental repre-
sentation, which we detail in the Sensors subsec-
tion. Additionally, e-FLASH provides a structured
way of representing the multimodal data in the
portable Hierarchical Data Format 5 (HDF5) for-
mat with self-explanatory metadata. The e-FLASH
dataset is available for community use [4].

DATA COLLECTION ENVIRONMENT

The first step in collecting a multimodal dataset
is to choose the right data collection environ-
ment. In our case, e-FLASH addresses the sector
selection problem in the mmWave band, which
will support low-latency communication via short-
range links within high-traffic regions. Thus, we
set up the data collection in an environment con-
taining a two-lane 6-m-wide alleyway between
high-rise buildings located 4 m from the road and
multiple building material types, vegetation, and
weather conditions.

SENSORS

The selection of the right number of proper sen-
sors is crucial to defining a well-structured problem
using multimodal data. Using a number of modal-
ities allows for both a more complete represen-
tation of the environment, which may improve
inference performance, and greater flexibility
in the selective contribution of the situationally
favored modality for overall performance optimi-
zation. Most modern cars come pre-equipped with
at least GPS tracking systems, which perform well
in LoS environments. Although vehicular LIiDAR
systems are less common, they are more depend-
able in NLoS scenarios. However, low-light con-
ditions and reflections from strong sunlight can
hamper the performance of LIDAR systems [13].
For e-FLASH, we consider five different sensors
which capture data via three different modalities
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FIGURE 3. Summary of different categories in the e-FLASH dataset.

that are representative of sensor types found in
modern vehicular systems to record various repre-
sentations of the environment for mmWave beam
selection. The sensor suite consists of one side-fac-
ing GoPro Hero4 Silver camera, one front-fac-
ing GoPro Hero9 Black camera, two Velodyne
VLP-16 LIDAR sensors, one Ouster OS164 LIDAR
sensor, and a GPS system onboard a 2017 Lin-
coln MKZ Hybrid autonomous car. The sampling
frequencies are 30 fps for the cameras, 10 Hz
for the LIiDARs, and 1 Hz for the GPS. The GPS
and LiDAR sensors are connected to an onboard
computer in the vehicle using low-latency Eth-
ernet cables and assigned unique IP addresses.
The computer runs the Robot Operating System
(ROS) suite, which reads measurements instanta-
neously. The GoPro cameras are also connected
using Wi-Fi and USB cables for Hero4 and Hero9,
respectively, for simultaneous operation. We use
a customized Python code employing OpenCV
to control the camera recordings, labeling them
with the appropriate timestamps. All sensors are
connected to the same computer for common
reference timestamping.

In e-FLASH, we use mmWave radios to collect
the RF ground truth corresponding to each multi-
modal sensor input. Two TP-Link Talon AD7200
tri-band routers, which use Qualcomm QCA9500
IEEE 802.11ad Wi-Fi chips with an antenna array
consisting of 32 elements to communicate at the
60 GHz band, are set to function as the BS, with
a coverage angle and height of 168.57° and 1.5
m, respectively, and the Rx. We use a default
codebook of sector IDs 1-31 and 61-63, with
IDs 32-60 undefined, and the open source Linux
Embedded Development Environment (LEDE) and
Nexmon firmware patching released by [14] to
access the PHY-layer characteristics of the rout-
ers, using the following process. First, propriety IP
addresses are assigned to each router. Then the
open source iPerf3 tool is used to set the Tx-Rx
pair as “client” and “server,” respectively, and
generate the stream to be transmitted. We use
patched LEDE firmware to send full-buffer TCP
traffic, recording the time-synchronized RF ground
truth data at 1-1.5 Hz via data transmission rate
and received signal strength indication (RSSI) for
each mmWave beam sampled. The throughput is
approximately ~1.5 Gb/s with a 2 GHz channel
at the 60 GHz center frequency.

DATA CATEGORIES

The inclusion of diverse scenarios in the collected
datasets is necessary to create a comprehensive

solution that addresses every aspect of the prob-
lem. We diversify possible scenarios in categories,
as shown in Fig. 3. For each category, we define
specific variations, or scenarios, and collect 10
episodes, or trials, of each scenario, with each
episode lasting approximately 15 s. To start each
collection, we arrange the testbed according to
the signal propagation conditions (LoS or NLoS)
and obstacles present (none, pedestrian, or car).
We set up the server/client and ensure that the
transmission traffic is observed at the Rx, which is
set up in the road lane specified by the “BS Loca-
tion” with respect to the collection vehicle. Then
we start recording the non-RF data on all sensors
while driving the collection vehicle at the desig-
nated “Car Speed” and assign unique names that
describe the ongoing category. In total, we collect
70 episodes over four categories.

SYNCHRONIZATION

The synchronization process is crucial when cre-
ating a multimodal dataset for DL-based applica-
tions that expect constant input sizes. In e-FLASH,
individual modalities use the same reference
clock to record real-time observations with dif-
ferent sampling frequencies. On the other hand,
the beam sweeping mechanism used in the Talon
AD7200 routers is triggered whenever a drop in
RSSl is observed. Given the information above,
we design a synchronization procedure with four
steps as follows:

1. We identify the image and LiDAR sensor
information between two consecutive RF
measurement timestamps.

2. We pair the LIDAR sample with the closest
image sample.

3. We estimate missing GPS sensor samples by
interpolation.

4. We assign the same RSSI measurement to all
sensor modality samples in the range.

With this scheme, we extract a total of 10,853 sam-

ples (~23 GB raw data) from the raw data.

PoST-PROCESSING

The use of sensors that generate continuous rep-
resentations of the environment inevitably gen-
erates a large amount data in raw formats which
contain some information that may not be used.
Therefore, it is essential to perform post-process-
ing steps on the raw data to convert the data to
more portable formats with high data efficacy.

In e-FLASH, we incorporate post-processing
steps that extract the relevant features from raw
data to generate a processed dataset. Note that

The synchronization process
is crucial when creating
a multimodal dataset for
DL-based applications
that expect constant input
sizes. In e-FLASH, individual
modalities use the same
reference clock to record
real-time observations

with different sampling

frequencies.

IEEE Communications Magazine ¢ November 2022

39



BB Top-1 Accuracy = [ESE Beam Selection Time (ms)

802.11ad

ILLLL

GPS Camera LiDAR GPS GPS Camera GPS
Camera LiDAR LiDAR Camera
LiDAR

100

=]

(=]
-
<

S
o

Top-1 Accuracy
(=23
=

o th -
Beam Selection Time (ms)

b2
(=]

FIGURE 4. Comparing the top-1 accuracy and beam selection time of single and multiple modalities. The red horizon-
tal line denotes the beam selection time of the IEEE 802.11ad standard.

Lifelong Learning

Transfer Learning
BS1

Previously
Learned &
Knowledge .

Existing Knowledge is Refined %\

Transferred from Env, to Env, Previous Knowledge is Maintained

FIGURE 5. Conceptual overview of transferring the learning from different environments (imilar to the categories
in e-FLASH dataset) and lifelong learning to serve users on infrastructures with different proprietary service
providers.

the raw GPS measurements are in decimal degrees
with 13-digit precision, while the LIDAR data range
is set to £80 m. In order to resolve the measure-
ment scale conflicts, we define a fixed origin and
calculate the distances of GPS positioning record-
ings to arrange a Cartesian coordinate system.

Meanwhile, LIDAR pointclouds are a collec-
tion of (x, y, z) points that indicate the location
of detected objects in a coordinate system with
the LiDAR sensor location being the origin. As a
result, the size of pointcloud files scales with the
number of objects in the environment. Therefore,
we apply a post-processing step on the LIDAR
data as follows [3]: We quantize recorded space
such that pointclouds are mapped to a rigidly
defined representation where dimensionality is
fixed, and the role of each object is identified with
unique numerical indicators.

DEEP-LEARNING-BASED FUSION FOR FAST BEAM SELECTION

In this section, we present a feasibility study of using
a DL-based framework on e-FLASH, where we lever-
age all five sensor inputs and evaluate the end-to-
end latency improvement over the IEEE 802.11ad
standard from the beam selection performance in
vehicle-to-everything (V2X) communication. We
assume that most modern vehicles, particularly ones
with onboard LiDAR systems for autonomous driv-
ing, already have the required computational power
to process this specific task and other similar tasks.

COLLABORATIVE LEARNING ON E-FLASH

As part of a supervised learning scheme, it is
assumed that the training and test sets follow the
same distribution. In order to achieve a general-
ized model, the training set must have a rich rep-

resentation of different scenarios, such as the four
categories described earlier. We demonstrate this
by considering a collaborative learning scheme,
where multiple vehicles contribute to the com-
mon training set by sharing data from local repos-
itories to the BS.

The proposed system consists of vehicles in
an urban canyon region, where buildings flank
the sides of the road with roadside BSs in an
mmWave V2X setup. We use a back-channel-
based framework [2] to collect the data from
all vehicles and train on the collective data in a
collaborative fashion. We then use a DL-based
fusion network with stochastic gradient descent-
based training and a learning rate of 0.0001 over
the cloud, where multimodal sensor data with RF
ground truth is transmitted collectively from the
vehicle to the cloud. In brief, the designed neural
network consists of three unimodal architectures
(each with 4-9 convolutional and 2-4 fully con-
nected layers) and a fusion network of 5 more
fully connected layers with up to ~105 million
parameters [2]. The trained model is later trans-
mitted from the cloud to each individual vehicle,
which selects the best beam for the mmWave
radios in inference time. For the most complex
case utilizing fusion of all three modalities, the
time complexity of this framework with 13 layers
using 80 percent of data, Nya,, samples for train-
ing is on the order of 0.8 x Niu [15].

EXPERIMENTAL EVALUATION

The preliminary results of predicting best beams
on the e-FLASH dataset are presented in Fig. 4.
We use three out of the five available modali-
ties present in the e-FLASH dataset and consid-
er different combinations where only one, two,
or three modalities are present. Using time-syn-
chronized samples of three sensor modalities,
we train a fusion architecture that employs con-
catenation at the feature level to predict the
optimum sector [2] and report the prediction
accuracy. We show that LIDAR performs better
than the other two sensors by 7.18-53.86 per-
cent in top-1 accuracy. Our initial results show
the effectiveness of a DL-based fusion over the
individual modalities with 8.17 percent improve-
ment with respect to best single modality (i.e.,
LiDAR). Moreover, we observe that unimodal
scenarios achieve 62.32 percent average top-1
accuracy, whereas the fusion of two and three
modalities improves the performance by up to
82.14 and 90.84 percent, respectively. We also
analyze the end-to-end latency of the proposed
beam selection scheme over the IEEE 802.11ad
standard, showing that the sensor-based beam
selection achieves 54.28-85.71 percent lower
latency than the current IEEE 802.11ad standard
while targeting >99 percent accuracy.

POTENTIAL RESEARCH DIRECTIONS

We present some specific scenarios with open
research problems that can benefit from the data
in e-FLASH.

ADAPTIVE BEAM SELECTION USING TRANSFER LEARNING

The general idea of transfer learning is to prop-
agate the knowledge from one learning task to
another for an efficient outcome. The proposed
beam selection task can be formulated to adapt
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to new environments within different datasets by
consolidating the knowledge from previously seen
environments. For example, an architecture pre-
viously trained on the simulation-based Raymob-
time dataset can be adapted for the real-world
e-FLASH dataset. The pre-trained model weights
of one dataset or category can be loaded as the
starting point for training the other datasets or cat-
egories. We show an overview of the proposed
idea for adaptive beam selection using transfer
learning in Fig. 5.

LIFELONG LEARNING FOR ADAPTIVE BEAM
SELECTION OF V/ARIANT CODEBOOKS

The goal of lifelong learning is to develop a core fea-
ture extractor that can be used for a set of different
tasks by only branching the input and output layers.
Consider a scenario, such as that in Fig. 5, where
single/multiple vehicles are using an ML module
to speed up the beam selection. The road contains
three BSs with proprietary service providers. As a
result, each of these BSs have unique mmWave
codebooks with different numbers of beams and
radiation patterns. Using lifelong learning, we may
derive a model that is able to adapt to all three tasks
without changing the core ML model architecture.

CONCLUSION

This article introduces a step-by-step multimodal
dataset collection process through the e-FLASH
dataset, a large multimodal dataset consisting of
camera image, GPS, and LiDAR data supported
with RF ground truth, for the purpose of mmWave
band communication. The dataset contains
10,853 samples, consisting of seven unique real-
world LoS and NLoS vehicular network scenarios
that are structured, synchronized, labeled, and
ready for use in ML-aided applications. While we
describe two use cases of this dataset in detail for
beam selection in mmWave bands, we also out-
line other topics where this dataset can accelerate
research, including beamforming and localiza-
tion. Given the number of potential applications,
we believe e-FLASH will become a benchmark
dataset for the emerging area of multimodal data
fusion for wireless communication.
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