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Abstract. Over the last decade, hybrid perovskite research has evolved to a point where the
literature contains an enormous volume of chemical and physical information. However, many
essential materials design challenges remain open for researchers to address. The dispersed nature
of the large, rapidly growing body of hybrid perovskite materials data poses a barrier to systematic
discovery efforts, which can be solved by materials property databases - either by high-throughput
or by systematic, accurate human-curated efforts. This opinion article discusses the necessity,
challenges, and requirements of building such data libraries. In light of using machine learning
(ML) and related tools to solve specific problems, the importance of information related to

different material attributes and properties is also highlighted.



Hybrid Halide Perovskites.

Hybrid halide perovskites are a group of semiconductors made of metal halide octahedral
frameworks and organic cations. Three-dimensional perovskites share the chemical formulas
ABXj, where A is a small organic cation, B is a divalent metal (e.g., Pb**, Sn?*, Cd*" or Cu?"),
and X = Cl, Br, or I (e.g., methylammonium lead iodide, (CH3NH3)Pbls; Figure 1A) and adopt a
lattice framed by octahedra BXs*",which are connected by sharing corners. The B-site may also be
occupied by non-divalent cations (e.g., by equal amounts of Ag” and Bi*"), as long as the overall
charge balance is kept. For larger organic cations, the three-dimensional connectivity of the
inorganic octahedra can be reduced to two, one, or even zero dimensions, with organic cations
interspersed. The term “perovskite” still applies to these lower-dimensional crystal structures as
long as the characteristic network of corner-sharing octahedra is retained. Hybrid perovskites show
excellent structural tunability and remarkable optoelectronic properties, while simultaneously
being easy to synthesize. [1,2] This combination has resulted in thousands of research publications
in the last two decades, with promising applications in thin-film photovoltaics, superfluorescence,
lasing, light-emitting diodes (LEDs), photodetectors, and spintronics. [3-9] Though they have
successfully produced research output, their industrial footprint is only just emerging. Challenges
of hybrid perovskites, such as poor environmental stability and compositional toxicity of some
prominent compounds (e.g., those containing lead), might be to blame. [10] One way to overcome
these challenges is to design modified or entirely new materials with well-selected properties. This
step is still primarily driven by scientific intuition and requires trial-and-error cycles. The recent
acceleration in utilizing artificial intelligence (Al) and machine learning (ML) in solving problems
related to chemical and material sciences can make the material discovery step fast and more

efficient. [11-15] This approach requires a collection of data that is reliable, accessible, and



machine-readable. The difficulty of applying these methods to solve problems in hybrid perovskite

research is the limited availability of such databases.
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Figure 1. A) Idealized crystal structure of a three-dimensional (3D) perovskite framework with
inorganic (Pb-I octahedra); organic cations such as methylammonium (MA) or formamidinium
(FA) can fit into the cuboctahedral void. B) Timeline and a few selected developments in hybrid
perovskite photovoltaics research. [3, 17-20] C) Schematic of material design approaches.

How can a database address material design challenges?

As photoabsorbers in solar cells, solution-processed hybrid perovskites have comparable power
conversion efficiencies (PCEs) to those of more expensive crystalline silicon, making them a
potential candidate for widespread adoption for renewable energy harvesting. [16] This success
can be attributed to an intuitive design process. For example, Figure 1B shows five key reports in

this direction. Perovskite solar cells became a research subject after 2009, when Kojima and



colleagues reported 3.8% photoconversion efficiency (PCE), using MAPbI; (MA: CH3NH;3") as
the sensitizer in a dye-sensitized solar cell (DSSC). [3] 12 years after, in 2021, Jeong and
colleagues achieved 25.6% PCE from a stable perovskite thin-film cell using a combination of
MAPbDI; and FAPbI; (FA: HC(NH2),") in the absorber layer and formate anions (HCOO") to
passivate the surface defects. [17] Clearly, many modifications have happened in these 12 years,
which can be traced back to hundreds of published reports. As three examples, in 2012, Lee and
colleagues reported the first solid-state cell with MAPDbI>CI as the photoabsorber, improving the
operational stability and PCE over the previously reported DSSC. [18] Then, in 2014, Eperon and
colleagues improved the PCE to 14.2% by using FAPDI; in the absorber layer. [19] Then, in 2016,
Seo and colleagues found that adding formate anions to the surface of perovskite cells improved
their stability and performance. [20] These reports are not isolated but are the outcome of a
continuous intuitive design process aimed toward gaining control over hybrid perovskites’
physical and chemical properties, spanning over a decade and hundreds of research labs around
the globe. [21] Tracking these rapid developments and utilizing the newfound knowledge is

challenging.

The growth of perovskite solar cell PCE is astonishing; however, the material design challenges
are far from over. Though the cells incorporating FAPbl; or MAPbI; have achieved appreciable
PCE, they can deliver their peak performance for a shorter period than a silicon-based cell. [3,17]
The problem is inherently linked to their low formation energies, owing to the ionic bonding
between the organic and inorganic components. [22] The ionic bonding makes the crystallization
of FAPDI; realizable at low temperatures; it also makes the material susceptible to degradation in
the presence of polar solvents like water, which is abundant in the ambient air. [23] Even in the

absence of any solvent, chemical reactions involving halides can form gaseous products that



escape, leaving a degraded material behind. [24] These contradictory desired properties make the
intuitive design challenging and require significant modification of the chemical compositions to
introduce new functionalities. This situation is not unique to perovskites alone; designing optimum
compositions often requires decades of research and is the principal bottleneck in the journey of

materials from research labs to the market. [25]

An alternative approach to material design, and perhaps, a solution to shorten the lab-to-market
timeframe, is “inverse design.” [26-28] Figure 1C schematically shows the difference between
this process and a traditional (or forward) design approach. As a concept, inverse design is
analogous to reverse engineering. The goal is to find materials with a desired combination of
properties. This is achieved in two steps — 1) learning correlations between different properties and
attributes of materials and 2) combining only the necessary attributes related to a target set of
properties to obtain a new material. Though the concept of inverse design is old, modern Al-based
methods provide a faster way to realize it. This is because any useful property’s relationship with
the attributes is usually complex and multi-dimensional, which statistical models are better at
deciphering than humans. Importantly, to begin with, the process needs an ample information
space where the correlations exist. The excellent structural and compositional tunability of the
hybrid perovskites makes the inverse design approach particularly well-suited for the search for
new and improved perovskite compositions. However, the hybrid perovskites information space
is fragmented and exists in different publications, books, and materials databases. It is inefficient
for an Al pipeline, where structured homogenized data is a crucial requirement. A curated hybrid

perovskite database will make this space far more accessible.

What are the challenges in building databases?



If a large volume of data can be created from a single source, it is expected to be uniform and well-
behaved. Such data are ideal for statistical analyses. High-throughput density functional theory
(DFT) simulations have yielded excellent results in building large material databases. [29-32]
These databases, in turn, have proven helpful in multiple discoveries in catalysis, phosphors,
thermoelectrics, and battery research. [33-36] However, such high-throughput DFT databases are
rare for hybrid perovskites, [49] possibly because of the associated high computational cost and
manifold structural degrees of freedom, limiting the straightforward application of approximate
DFT methods using a restricted number of structure prototypes, unless high-quality experimental
crystal structures already exist. The complexities include modeling tens to many hundreds of atoms
in the unit cell, an organic-inorganic interface, and strong relativistic modulation of electronic
properties. [37-40] Also, for properties related to optoelectronic performances, e.g., electron-hole
recombination probability, ion migration, carrier transport, and participation of defect states, the

computational costs are significant even for building small-scale simulation datasets.

On the other hand, obtaining experimental materials data in a high-throughput fashion (high
throughput experimentation; HTE) is a resource-intensive task. [41,42] In recent years, the use of
Al in HTE is gaining attention because they hold great potential for automating the optimization
process and decreasing the overall resources required. [43] As a result, multiple exciting
developments in materials discovery and processing have been reported. [44-49]. For hybrid
perovskites, HTE was recently used to build photoluminescence (PL) datasets, assess thin film
quality, and synthesize new perovskite compositions. [50-53] These advancements hold great
promise, but they still need to be expanded by the scope and types of data they can produce. It may
take a few more years for these methods to get optimized at a scale where complicated experiments

for structure or optoelectronic property determination could be reliably carried out.



What are the “important” data for hybrid perovskites?

The alternative to performing high-throughput data acquisition is to compile it from different
sources. This approach is, in principle, the most desirable, since it would build on the full breadth
of existing work. Conversely, it is bound to be slow because data collected from segregated sources
will have different shapes, annotations, and associated errors. To make a collection of such data
useful for comparison, rigorous work must be done to bring consistency. This makes it necessary
to prioritize certain information over others while building a database. Thankfully, existing

knowledge of the materials and the standing challenges can provide clear directions.
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Figure 2. The left panel shows the compositional diversity and a few related critical applications
of hybrid perovskites. The right panel shows the steps for building a database and its potential
usage.

For example, the observed properties will always have a relationship with the arrangement of the
atoms in a crystalline system, i.e., the “atomic structure.” Understanding materials’ structure-
property relationship allows systematic alteration of desired properties. Additionally, in many
cases, the composition can also be correlated with observed properties. [54] The composition of a

material is easier to obtain and can be used to determine the structure itself. [55] This makes the



structures and compositions of hybrid perovskites the two most important assets for any data

collection.

Figure 2 (left panel) provides a glimpse of the hybrid perovskite compositional space. For these
materials, many additional attributes of the overall composition can be considered, which might
be useful for discovering correlations. Though the original term “perovskite” refers to a crystal
structure with a three-dimensional connected octahedral framework, the hybrid perovskite
composition space has evolved over time to include many related structures in which the corner-
sharing octahedral connectivity exists but does not, or not strictly, exhibit three-dimensional
connectivity throughout the crystal. [56] Thus, current definitions include any crystalline material
with a corner-sharing octahedral network as members of the extended family of hybrid perovskites.
This includes structures with different metal and halides, M—X (M = Ge**, Sn**, Pb*", Ag", Bi’**,
Sb’**and others; X = CI, Br, I), and different cations, A (A = MA, FA, Cs*, Rb™ and ammonium
cations). The choices of these two sublattices determine the connectivity of the M—X octahedra or
so-called "dimensionality" (e.g., 3D, 2D, quasi-2D, 1D, and 0D; D = dimensional) of the hybrid
structure, specifically, of the interconnections of inorganic component (note that the resulting
structures can still be realized as three-dimensional crystals in most cases). Also, other metal
halides with octahedral motifs are often frequently grouped among "perovskite-like" materials, but
the actual perovskite term is reserved for corner-sharing, not (for example) edge-sharing or face-

sharing networks of octahedra.

The dimensionality and the M—X combination determine the electronic properties, such as the
band gap, which is essential for semiconducting applications. [57] However, it often gets modified
by the properties of the cation A. For the organic sublattice, the variations are near about endless;

there exist cations that differ in length (e.g., butylammonium vs. hexadecyl ammonium) [58,59],



in chirality (e.g., R-2-methyl-butylammonium vs. 2-methyl-butylammonium) [7], in branching
(e.g., iso-butylammonium vs. cyclobutylammonium) [60,61], in aromaticity (e.g., phenyl-
ammonium vs. naphthyl-ammonium) [62,63], in composition (e.g., propylammonium vs.
iodopropylammonium) [64,65] and in sometimes much greater complexity of incorporated,

organic-semiconductor like conjugated cations. [39,66-68]

These differences also modulate other structural, optical, electrical, thermal, and magnetic
responses of the hybrid structure. To name a few, the solubility of the cations determines the
formability of a target perovskite phase; the dielectric constants of the sublattices influence
excitonic properties; the conjugation in the cation molecule influence optical and transport
properties; orientation, arrangement, and dynamics of the cations influence the phase stability of

the material.

The properties can also be tuned by varying the synthesis methods. Depending on the experimental
conditions, different structural morphologies or phases can be realized without changing the
overall composition. For example, crystallite size and shape can be varied to obtain plate-like,

cubic, octahedral, or dodecahedral morphologies that differ in stability and optical properties. [69]

Apart from these compositional differences, another essential piece of information is how they
were obtained. This is because the experimental measurement of any property generally has an
error associated with it, and a single property can be measured using different experimental
methods with different associated errors. In many cases, the errors are not explicitly reported and
are assumed to be understood by a reader. Additionally, factors such as sample state, temperature,

and pressure can significantly impact experimental results.

How to build the database?



The information mentioned above is reported in published articles and requires careful collection,

extraction, and standardization before incorporating into a database.

Article collection. With the rise in the use of big data in natural science research, several scientific
journal publishers have started to provide application programming interfaces (APIs) to facilitate
the automated collection of articles. [70,71] Given a few keywords for a targeted domain, these

tools allow the automated download of a large number of articles in a short time.

Data extraction. From the collected articles, information needs to be extracted and repurposed for
storage in the database. In contrast to a manual workflow, an automated alternative to this step

could be faster, more efficient, and more affordable.

Published articles can be thought to be collections of tables, texts, and figures (see Figure 3A). For
example, the presentation of a composition-property relationship can vary significantly with the
form of display adopted in the article. There exist ML-based open-source software tools for
automatic extraction. For example, natural language processing (NLP) and computer vision (CV)
can be used to extract information from texts (paragraphs or tables) and figures, respectively.
[72,73] Commercial language models and character recognition tools can also be used for these
purposes. [74,75] However, extraction from formats that require context for interpretation, or have
a certain degree of abstraction, such as texts or graphs, usually requires some additional supervised

domain/subject-aware tuning for these methods to work efficiently.

FAIR principle. Extracted data are little impactful and usable as they are. It usually requires a few
additional steps before they can be absorbed into a database and shared. These steps can be
designed following the FAIR principle (Figure 3B). [76] FAIR stands for Findable, Accessible,
Interoperable, and Reusable and provides a framework for making scientific data accessible and

usable by the research community. Unique digital object identifiers (DOIs) can be assigned to

10



individual datasets to make data findable. This allows the data to be easily located and accessed
by others. Data can also be made more accessible by building a user-friendly web interface or

providing APIs that allow users to search for and retrieve the information they need. [31,77-79]

Data standardization. The interoperability between different datasets and systems can be
achieved by standardizing data formats and metadata. When data is collected from multiple
sources, it is common to have different shapes and attributes, even if it carries the same underlying
meaning (Figure 3C). For example, the optical properties of a material, such as its absorption or
emission spectra, can be expressed in intensity versus photon energy diagrams or intensity versus
wavelength diagrams. These are essentially the same information, but they will have different

values in one of the axes, making it difficult to compare between different sources.

To address this issue, data standardization involves defining standard formats and conventions for
representing scientific data. This allows different datasets to be easily compared and combined
and ensures that the data can be easily understood and interpreted by researchers and machines

alike.

Date Dissemination. Dissemination of the collected data allows researchers to compare and build
upon the work of others. To ensure long-term stability and access, it is important to carefully
consider the licensing terms under which the data is shared. This can help ensure that the data is

reusable and that the resources required to host, maintain, and curate the database are sustainable.
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Figure 3. (A) Collection and extraction steps for different data types. Abbreviations used: API -
Application Programming Interface; NLP - Natural Language Processing; CNN - Convolutional
Neural Network. Schematics of (B) the FAIR principle and (C) Data standardization.

How to use databases efficiently?

In the last few years, there have been several efforts to find composition-property relationships in
hybrid perovskites using ML. Table 1 lists a few examples where labeled data was used for this
purpose. Such methods fall under the broad class of supervised learning (Figure 4A-top panel). A
set of systems and measured properties are supplied to an ML model as input. A successful training
process replicates the property values within an acceptable error limit. The model can then be used
to predict properties of a system that could not be acquired by other means. A more detailed

discussion of different ML models typically used in material sciences can be found in previously

published reviews. [13,80]
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Figure 4. (A) Schematic showing general workflows for typical machine learning (ML, e.g.,
supervised models; bottom left panel, and generative models; right panel) and how databases can
fit into it. The subscripts t, e, m, and, I stand for true, experimental, modelled, and learned. (B) The
strategy of choosing descriptors for ML models.

Similar to computational methods like DFT, supervised learning requires a description of the
system for initialization. Descriptors are numerical values that represent the systems. While for
theoretical computations, some descriptors are well known and standardized, e.g., atomic structure
or electron density, for ML methods, there is no standard descriptor, varying instead depending on
the objective. Cases of simple descriptors for a given property are rare, although they exist. [7]

More generally, multiple descriptors are pursued to describe the systems using experimental or
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computational data. However, choosing appropriate descriptors that balance the trade-off between

the model not being generalized and not being fast enough to get trained is crucial.

Figure 4B outlines a strategy for choosing descriptors. Generally, a hybrid approach that combines
physical intuition and available data can be more beneficial than selecting all available
information. [81] This is because though any observed property is expected to depend on several
material attributes, the attributes that can be linked to the property through physical laws will have
a larger impact. The availability of such descriptors in a database is expected to speed up the

workflow.

For example, for quasi-2D perovskites (i.e., layered perovskites with inorganic layers that are
thicker than a monolayer), the number of inorganic layers dictates the band gap and emission
energy. [82] The distortions in the inorganic layer, induced by the organic cations, fine-tune the
emission energy further. However, it is difficult to predict which combination of cations would
result in which color output. Wang et al. attempted to tackle this problem using a probabilistic
model with experimental composition-emission energy data. [83] Interestingly, they could also
predict a set of compositions suitable for deep-blue emitters, which are relevant for blue-emitting

diodes.

The presence of Pb in compositions like MAPDI; is regarded as a drawback for its toxicity.
Consequently, replacing Pb with other less-toxic elements without compromising the
optoelectronic properties is a standing challenge. [84] Though elements like Sn, Ge, Ag, Bi, In,
etc. have shown some promise as possible substituents, the examples of such compounds are very
few compared to the Pb-based ones. While it is well known that the ionic radii determine the
formation of perovskite-like structures, empirical descriptors like the Goldsmith tolerance factor

have a low success rate. Li et al. found a correlation between the ionic radii and formation energy

14



from a computational dataset generated by high-throughput DFT. [85] The trained classification
model promises to provide better guidance for future experiments on discovering new lead-free

compositions than the empirical parameters.

For lower-dimensional hybrid perovskites, it is known that the cation impacts the dimensionality
of the inorganic sublattice. However, it is usually difficult to predict the outcome without carrying
out the experiment and resolving the crystal structure. This is because organic cations are usually
flexible and can orient themselves in many different ways during crystallization, resulting in
different dimensionalities which may not be helpful for a specific application. Lyu et al. used a
dataset of organic cations to train a probabilistic model to predict whether a specific cation will
form a 2D structure. [86] Using a quantitative equation structured on the key features of the model,
the authors could experimentally synthesize four new hybrid perovskite compositions with

targeted dimensionality.

The relative humidity is known to be detrimental to the PCE of thin-film devices. The PL intensity,
another optoelectronic response, is relatively easier to measure than PCE. Howard et al. found a
correlation between PCE and relative humidity using a PL-relative humidity dataset. [87] The
model could then be used to predict which films have higher moisture resistivity ahead of time and
should be used for optoelectronic devices. Then, using an X-ray diffraction dataset, Oviedo et al.
could predict dimensionality and space groups of perovskites from powder X-ray diffraction

patterns. [88]

The PCE of solar cells depends on the band gap of the absorber material. A smaller band gap
absorbs a higher fraction of the solar spectrum, resulting in higher PCE. Alloying at A, B, and X
sites for ABX3 composition has proven to be an effective strategy for optimizing the bandgap of

3D perovskites. However, the nonlinear behavior of the bandgap with changing composition
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makes the ideal composition for a required bandgap difficult to predict. Li et al. used reported
experimental data to train a neural network to predict compositions with an ideal band gap for a
solar cell. [89] The same technique could then be used to predict the band gap of unknown
compositions and, finally, to optimize other device parameters, such as the transport layers, for
obtaining higher PCE. Also, similar attempts to optimize material composition for an ideal band
gap were carried out by Marchenko et al. and Lu et al. for different types of hybrid perovskites.

[90,91]

Among all these exciting advances, there remain many unexplored properties that are
technologically important. A few of them are listed in Table 2. For example, broadband emission
originating from self-trapped excitons is relevant for developing white-light-emitting LEDs. It is
known that structural distortions influence the formation and stabilization of such trapped excitons.
[92] However, designing specific materials with high quantum yields is challenging. Similarly,
optimizing dopant concentrations for tuning electrical or emissive properties, [93] designing
compositions for specific exciton binding energies, [94] high PL or electroluminescent quantum
yields, [95] higher non-linear susceptibilities, [96], etc. remain yet to be explored. Since the

physical phenomena are well understood, choosing descriptors is expected to take little effort.

Additionally, the application of generative models (Figure 4A-right panel), such as generative
adversarial networks or diffusion models, has been limited in the hybrid perovskite research
domain. [97-100] In these approaches, the goal is to generate an observation from an approximated
information space rather than replicate the exact observation as seen in an experiment. Unlike
supervised methods, they do not require labeled datasets. They might help in data augmentation,
which can expand initial datasets and help in making a supervised follow-up model more

generalized. These approaches can also enable the inverse design of hybrid perovskite

16



compositions for many other exciting applications. However, experimental verification of such
prediction results will also need to occur. While models trained on small datasets can provide
examples for proof-of-concept, generalization and accurate prediction of experimental outcomes

would likely require much larger datasets that are relatively rare to come by.

Table 1. Use of data for predicting properties of hybrid perovskites. Abbreviations used: exp —

experimental; sim — simulated; aug — augmented.

Number of Best
Compositional
Problem Property key feature datapoints in performing Reference
space
training set model
Quasi-2D
Search for blue Emission Cation 106
LoAn1PbaXans1 Random forest [100]
emitter energy composition (exp.)
withn <5
Search for
Decomposition 354 Kernel ridge
stable Pb-free 3D A2BB’Xs Composition [102]
energy (sim.) regression
perovskite
Size, shape,
Cation
aromaticity, 86
selection Dimensionality 2D, 1D, 0D Decision tree [103]
number of H- (exp.)
strategy
bond donors
5
Stability of 3D MAPbI3 Relative Recurrent
PL intensity (2 exp. +3 [104]
perovskite film and MAPbBr; humidity neural network
aug.)
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Rapid
structural

analysis

Search for
photovoltaic

absorber

Space group

Photo
conversion

efficiency

Band gap

3D, 2D, 0D
with B = Pb,
Sn, Sb, Bi, Ag,

Cu

3D ABX;

Quasi-2D/2D

3D ABX;

4279

(115 exp. + 164

PXRD pattern
sim. + 4000
aug.)
Composition,
333
Band gap,
exp.
device structure (exp)
Number of
515
layers, M—X—
(exp.)
M angle
Tolerance
factor,
octahedral
factor, ionic 212
charges, (sim.)
electron

affinity, orbital

18

radii

Convolutional
[105]
neural network
Deep neural
[106]
network
Gradient
[107]
boosting
Gradient
[108]
boosting



Table 2. A list of important properties relevant to the applications of hybrid perovskites and
physically intuitive descriptors.

Unexplored property Potential descriptors for supervised learning

Broadband emission Cation structure, dimensionality, distortion factors, composition
Exciton binding energy Composition, band gap, dimensionality, dielectric constants

PL quantum yield Emission energy, dimensionality, morphology, film roughness
(PLQY)

External quantum PLQY, film morphology, device structure, composition
efficiency (EQE)

Phase transition Composition, dimensionality, distortion factors, decomposition
temperature energy

Photon upconversion Excitation energy, space group, composition

Where to find curated hybrid perovskite data?

There exist at least two general databases that are focused on hybrid perovskite data. The schematic
in Figure 5A lists the different information available in these databases. For example, the
perovskite database provides extensive solar cell device data collection. [21] The database hosts
all important device-related parameters for more than 20,000 reported devices. The database is

ideal for finding a correlation between PCE and other device parameters.

On the other hand, the HybriD? database (developed in our group) hosts structural, optical, and
electrical characterization data of different hybrid perovskites. [101] The database currently hosts

over 1500 datasets on 550 hybrid materials which are manually curated, and verified. The most
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important limiting factor is the human curation of materials data, but simultaneously, the
anticipated reliability of validated data would be ideal for learning composition-property
relationships. The data collected in HybriD? database is also incorporated into the much broader,

curated SpringerMaterials database, significantly enhancing its reach.

In addition, multiple specialized databases provide collection properties that might be relevant to
hybrid perovskites. Some of these are listed in Table 3. For example, the Cambridge Structural
Database (CSD), Inorganic Crystal Structure Database (ICSD), and Crystallography Open
Database (COD) contain XRD-derived crystal structures of most of the reported hybrid perovskite
compositions. [102-104] Importantly, CSD can be used with a Python-based API, and a
subscription service for filtering and extracting crystal structure from the database. The organic
material database (OMDB) contains data on the properties of many organic amines that are the
precursor to the cations. [105] The SpringerMaterials and the Novel Materials Discovery
(NOMAD) database provides experimental and computational data on many different classes of
materials. [101, 106] Then, databases like Automatic FLOW library (AFLOWLIB), Open
Quantum Materials Database (OQMD), and Materials project contain computational datasets of

different semiconductor materials. [29-31]
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Figure 5. Types of data in existing curated hybrid halide perovskite databases — the perovskite
database and HybriD? database. [21,101]

Table 3. Types of data relevant to hybrid perovskite research and databases

Type of data Database name Reference
Experimental crystal structure | Cambridge Structural Database (CSD) [102]
Inorganic Crystal Structure Database (ICSD) [103]
Crystallography Open Database (COD) [104]
Organic amines’ property Organic Materials Database (OMDB) [105]
Experimental and | SpringerMaterials database [101]

computational data on

! ) Novel Materials Discovery (NOMAD) database | [106]
semiconductors and solids

Computational ~ data  on | The Materials Project database [31]
electronic/thermodynamic
properties of semiconductors

Open Quantum Materials Database (OQMD) [30]

Automatic FLOW LIBrary (AFLOWLIB) [29]

Concluding Remarks.

Hybrid perovskite research is leading to immense amounts of high-quality materials research data
and is poised to benefit from ML methods for materials discovery. The availability of optimized,
curated databases that collect and disseminate this data will greatly enhance the value of hybrid
perovskite research in the future. The recent progress of specialized tools for information

extraction and database generation is promising. However, the lack of standardized rules for data
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reporting makes automated extraction challenging. During the period of writing this article, the
general large language processing models such as chatGPT and its successors became widely
known and usable through OpenAl’s web interface and APIL. It will be interesting to see if such a
general model connecting massive amounts of information will be capable of subsuming the
difficult problem of automated, high-quality materials data collection and dissemination (see
Outstanding Questions). In the authors' current experience, the level of detail captured in scientific
publications as yet still eludes the full grasp of generalized Al, but combining general Al with
detailed curation may eventually and drastically help speed up data accessibility in the hybrid

perovskite community and beyond.
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Glossary.

Photo conversion efficiency (PCE): PCE is a measure of a photovoltaic cell's ability to convert
light into electricity. It's calculated by dividing the electrical power output (in watts) by the incident

light power (in watts/m?). When expressed as a percentage, the formula is PCE = Pou/Pin * 100%.

Dye-Sensitized Solar Cell (DSSC): DSSCs are a type of thin-film solar cell comprising a porous
layer of titanium dioxide nanoparticles coated with a photosensitive dye. They offer an efficient,

low-cost alternative to traditional silicon solar cells.

Density functional theory (DFT): DFT is a quantum mechanical theory that is typically used to
investigate the electronic properties of many-body systems, particularly atoms, molecules, and
crystals, using computational calculations. It uses functionals, often approximated, of the

electron density.

Machine learning (ML): ML is a subset of artificial intelligence that provides systems the ability
to learn and improve from experience without being explicitly programmed. It involves the use of
algorithms and statistical models to perform tasks by relying on patterns and inference instead of

explicit instructions.

Photoluminescence quantum yield (PLQY): PLQY is a measure of the efficiency of luminescence
(emission of light) after the optical excitation of a material. It's calculated as the ratio of the number
of photons emitted to the number of photons absorbed. PLQY = (Photons emitted) / (Photons

absorbed).
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External quantum efficiency (EQE): EQE is a measure of the effectiveness of a device in
converting incident photons into electrons (or current). It is expressed as the ratio of the number
of charge carriers collected to the number of incident photons, often expressed as a percentage.

EQE = (Charge carriers collected)/(Incident photons) * 100%.

Application program interface (API): An API is a set of rules and protocols for building and
interacting with software applications. It defines methods of communication between various
software components, enabling different software systems to interact with each other. In essence,

it's a contract between different software components on how to interact.

Natural language processing (NLP): NLP is a field of artificial intelligence that focuses on the
interaction between humans and computers using natural language. The ultimate objective of NLP
is to read, decipher, understand, and make sense of human language in a valuable way. It involves

techniques to convert human language into data that a computer can understand and process.

Convolutional Neural Network (CNN): CNN is a class of deep neural networks often used in image
and video processing. They are designed to automatically and adaptively learn spatial hierarchies
of features from the input data, utilizing layers of filters that scan input data for recognizable and

often hierarchical features.

Data Augmentation in Machine Learning: Data augmentation is a strategy in machine learning that
increases the diversity of data available for training models, without actually collecting new data.
Techniques can include transformations like rotations or flips for image data, or synonym
replacement and sentence shuffling in text data. This can help improve model robustness and

performance.
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