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Abstract. Over the last decade, hybrid perovskite research has evolved to a point where the 

literature contains an enormous volume of chemical and physical information. However, many 

essential materials design challenges remain open for researchers to address. The dispersed nature 

of the large, rapidly growing body of hybrid perovskite materials data poses a barrier to systematic 

discovery efforts, which can be solved by materials property databases - either by high-throughput 

or by systematic, accurate human-curated efforts. This opinion article discusses the necessity, 

challenges, and requirements of building such data libraries. In light of using machine learning 

(ML) and related tools to solve specific problems, the importance of information related to 

different material attributes and properties is also highlighted. 
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Hybrid Halide Perovskites. 

Hybrid halide perovskites are a group of semiconductors made of metal halide octahedral 

frameworks and organic cations. Three-dimensional perovskites share the chemical formulas 

ABX3, where A is a small organic cation, B is a divalent metal (e.g., Pb2+, Sn2+, Cd2+, or Cu2+), 

and X = Cl, Br, or I (e.g., methylammonium lead iodide, (CH3NH3)PbI3; Figure 1A) and adopt a 

lattice framed by octahedra BX64−,which are connected by sharing corners. The B-site may also be 

occupied by non-divalent cations (e.g., by equal amounts of Ag+ and Bi3+), as long as the overall 

charge balance is kept. For larger organic cations, the three-dimensional connectivity of the 

inorganic octahedra can be reduced to two, one, or even zero dimensions, with organic cations 

interspersed. The term “perovskite” still applies to these lower-dimensional crystal structures as 

long as the characteristic network of corner-sharing octahedra is retained. Hybrid perovskites show 

excellent structural tunability and remarkable optoelectronic properties, while simultaneously 

being easy to synthesize. [1,2] This combination has resulted in thousands of research publications 

in the last two decades, with promising applications in thin-film photovoltaics, superfluorescence, 

lasing, light-emitting diodes (LEDs), photodetectors, and spintronics. [3-9] Though they have 

successfully produced research output, their industrial footprint is only just emerging. Challenges 

of hybrid perovskites, such as poor environmental stability and compositional toxicity of some 

prominent compounds (e.g., those containing lead), might be to blame. [10] One way to overcome 

these challenges is to design modified or entirely new materials with well-selected properties. This 

step is still primarily driven by scientific intuition and requires trial-and-error cycles. The recent 

acceleration in utilizing artificial intelligence (AI) and machine learning (ML) in solving problems 

related to chemical and material sciences can make the material discovery step fast and more 

efficient. [11-15] This approach requires a collection of data that is reliable, accessible, and 
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machine-readable. The difficulty of applying these methods to solve problems in hybrid perovskite 

research is the limited availability of such databases.  

 

Figure 1. A) Idealized crystal structure of a three-dimensional (3D) perovskite framework with 
inorganic (Pb-I octahedra); organic cations such as methylammonium (MA) or formamidinium 
(FA) can fit into the cuboctahedral void. B) Timeline and a few selected developments in hybrid 
perovskite photovoltaics research. [3, 17-20] C) Schematic of material design approaches. 

How can a database address material design challenges? 

As photoabsorbers in solar cells, solution-processed hybrid perovskites have comparable power 

conversion efficiencies (PCEs) to those of more expensive crystalline silicon, making them a 

potential candidate for widespread adoption for renewable energy harvesting. [16] This success 

can be attributed to an intuitive design process. For example, Figure 1B shows five key reports in 

this direction. Perovskite solar cells became a research subject after 2009, when Kojima and 
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colleagues reported 3.8% photoconversion efficiency (PCE), using MAPbI3 (MA: CH3NH3+) as 

the sensitizer in a dye-sensitized solar cell (DSSC). [3] 12 years after, in 2021, Jeong and 

colleagues achieved 25.6% PCE from a stable perovskite thin-film cell using a combination of 

MAPbI3 and FAPbI3 (FA: HC(NH2)2+) in the absorber layer and formate anions (HCOO-) to 

passivate the surface defects. [17] Clearly, many modifications have happened in these 12 years, 

which can be traced back to hundreds of published reports. As three examples, in 2012, Lee and 

colleagues reported the first solid-state cell with MAPbI2Cl as the photoabsorber, improving the 

operational stability and PCE over the previously reported DSSC. [18] Then, in 2014, Eperon and 

colleagues improved the PCE to 14.2% by using FAPbI3 in the absorber layer. [19] Then, in 2016, 

Seo and colleagues found that adding formate anions to the surface of perovskite cells improved 

their stability and performance. [20] These reports are not isolated but are the outcome of a 

continuous intuitive design process aimed toward gaining control over hybrid perovskites’ 

physical and chemical properties, spanning over a decade and hundreds of research labs around 

the globe. [21] Tracking these rapid developments and utilizing the newfound knowledge is 

challenging.  

The growth of perovskite solar cell PCE is astonishing; however, the material design challenges 

are far from over. Though the cells incorporating FAPbI3 or MAPbI3 have achieved appreciable 

PCE, they can deliver their peak performance for a shorter period than a silicon-based cell. [3,17] 

The problem is inherently linked to their low formation energies, owing to the ionic bonding 

between the organic and inorganic components. [22] The ionic bonding makes the crystallization 

of FAPbI3 realizable at low temperatures; it also makes the material susceptible to degradation in 

the presence of polar solvents like water, which is abundant in the ambient air. [23] Even in the 

absence of any solvent, chemical reactions involving halides can form gaseous products that 
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escape, leaving a degraded material behind. [24] These contradictory desired properties make the 

intuitive design challenging and require significant modification of the chemical compositions to 

introduce new functionalities. This situation is not unique to perovskites alone; designing optimum 

compositions often requires decades of research and is the principal bottleneck in the journey of 

materials from research labs to the market. [25]  

An alternative approach to material design, and perhaps, a solution to shorten the lab-to-market 

timeframe, is “inverse design.” [26-28] Figure 1C schematically shows the difference between 

this process and a traditional (or forward) design approach. As a concept, inverse design is 

analogous to reverse engineering. The goal is to find materials with a desired combination of 

properties. This is achieved in two steps – 1) learning correlations between different properties and 

attributes of materials and 2) combining only the necessary attributes related to a target set of 

properties to obtain a new material. Though the concept of inverse design is old, modern AI-based 

methods provide a faster way to realize it. This is because any useful property’s relationship with 

the attributes is usually complex and multi-dimensional, which statistical models are better at 

deciphering than humans. Importantly, to begin with, the process needs an ample information 

space where the correlations exist. The excellent structural and compositional tunability of the 

hybrid perovskites makes the inverse design approach particularly well-suited for the search for 

new and improved perovskite compositions. However, the hybrid perovskites information space 

is fragmented and exists in different publications, books, and materials databases. It is inefficient 

for an AI pipeline, where structured homogenized data is a crucial requirement. A curated hybrid 

perovskite database will make this space far more accessible. 

 

What are the challenges in building databases? 
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If a large volume of data can be created from a single source, it is expected to be uniform and well-

behaved. Such data are ideal for statistical analyses. High-throughput density functional theory 

(DFT) simulations have yielded excellent results in building large material databases. [29-32] 

These databases, in turn, have proven helpful in multiple discoveries in catalysis, phosphors, 

thermoelectrics, and battery research. [33-36] However, such high-throughput DFT databases are 

rare for hybrid perovskites, [49] possibly because of the associated high computational cost and 

manifold structural degrees of freedom, limiting the straightforward application of approximate 

DFT methods using a restricted number of structure prototypes, unless high-quality experimental 

crystal structures already exist. The complexities include modeling tens to many hundreds of atoms 

in the unit cell, an organic-inorganic interface, and strong relativistic modulation of electronic 

properties. [37-40] Also, for properties related to optoelectronic performances, e.g., electron-hole 

recombination probability, ion migration, carrier transport, and participation of defect states, the 

computational costs are significant even for building small-scale simulation datasets.   

On the other hand, obtaining experimental materials data in a high-throughput fashion (high 

throughput experimentation; HTE) is a resource-intensive task. [41,42]  In recent years, the use of 

AI in HTE is gaining attention because they hold great potential for automating the optimization 

process and decreasing the overall resources required. [43] As a result, multiple exciting 

developments in materials discovery and processing have been reported. [44-49]. For hybrid 

perovskites, HTE was recently used to build photoluminescence (PL) datasets, assess thin film 

quality, and synthesize new perovskite compositions. [50-53] These advancements hold great 

promise, but they still need to be expanded by the scope and types of data they can produce. It may 

take a few more years for these methods to get optimized at a scale where complicated experiments 

for structure or optoelectronic property determination could be reliably carried out. 
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What are the “important” data for hybrid perovskites? 

The alternative to performing high-throughput data acquisition is to compile it from different 

sources.  This approach is, in principle, the most desirable, since it would build on the full breadth 

of existing work. Conversely, it is bound to be slow because data collected from segregated sources 

will have different shapes, annotations, and associated errors. To make a collection of such data 

useful for comparison, rigorous work must be done to bring consistency. This makes it necessary 

to prioritize certain information over others while building a database. Thankfully, existing 

knowledge of the materials and the standing challenges can provide clear directions.  

 

Figure 2. The left panel shows the compositional diversity and a few related critical applications 
of hybrid perovskites. The right panel shows the steps for building a database and its potential 
usage. 

For example, the observed properties will always have a relationship with the arrangement of the 

atoms in a crystalline system, i.e., the “atomic structure.” Understanding materials’ structure-

property relationship allows systematic alteration of desired properties. Additionally, in many 

cases, the composition can also be correlated with observed properties. [54] The composition of a 

material is easier to obtain and can be used to determine the structure itself. [55] This makes the 
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structures and compositions of hybrid perovskites the two most important assets for any data 

collection.   

Figure 2 (left panel) provides a glimpse of the hybrid perovskite compositional space. For these 

materials, many additional attributes of the overall composition can be considered, which might 

be useful for discovering correlations. Though the original term “perovskite” refers to a crystal 

structure with a three-dimensional connected octahedral framework, the hybrid perovskite 

composition space has evolved over time to include many related structures in which the corner-

sharing octahedral connectivity exists but does not, or not strictly, exhibit three-dimensional 

connectivity throughout the crystal. [56] Thus, current definitions include any crystalline material 

with a corner-sharing octahedral network as members of the extended family of hybrid perovskites. 

This includes structures with different metal and halides, M–X (M = Ge2+, Sn2+, Pb2+, Ag+, Bi3+, 

Sb3+and others; X = Cl-, Br-, I-), and different cations, A (A = MA, FA, Cs+, Rb+, and ammonium 

cations). The choices of these two sublattices determine the connectivity of the M–X octahedra or 

so-called "dimensionality" (e.g., 3D, 2D, quasi-2D, 1D, and 0D; D = dimensional) of the hybrid 

structure, specifically, of the interconnections of inorganic component (note that the resulting 

structures can still be realized as three-dimensional crystals in most cases). Also, other metal 

halides with octahedral motifs are often frequently grouped among "perovskite-like" materials, but 

the actual perovskite term is reserved for corner-sharing, not (for example) edge-sharing or face-

sharing networks of octahedra. 

The dimensionality and the M–X combination determine the electronic properties, such as the 

band gap, which is essential for semiconducting applications. [57] However, it often gets modified 

by the properties of the cation A. For the organic sublattice, the variations are near about endless; 

there exist cations that differ in length (e.g., butylammonium vs. hexadecyl ammonium) [58,59], 
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in chirality (e.g., R-2-methyl-butylammonium vs. 2-methyl-butylammonium) [7], in branching 

(e.g., iso-butylammonium vs. cyclobutylammonium) [60,61], in aromaticity (e.g., phenyl-

ammonium vs. naphthyl-ammonium) [62,63], in composition (e.g., propylammonium vs. 

iodopropylammonium) [64,65] and in sometimes much greater complexity of incorporated, 

organic-semiconductor like conjugated cations. [39,66-68]  

These differences also modulate other structural, optical, electrical, thermal, and magnetic 

responses of the hybrid structure. To name a few, the solubility of the cations determines the 

formability of a target perovskite phase; the dielectric constants of the sublattices influence 

excitonic properties; the conjugation in the cation molecule influence optical and transport 

properties; orientation, arrangement, and dynamics of the cations influence the phase stability of 

the material. 

The properties can also be tuned by varying the synthesis methods. Depending on the experimental 

conditions, different structural morphologies or phases can be realized without changing the 

overall composition. For example, crystallite size and shape can be varied to obtain plate-like, 

cubic, octahedral, or dodecahedral morphologies that differ in stability and optical properties. [69]  

Apart from these compositional differences, another essential piece of information is how they 

were obtained. This is because the experimental measurement of any property generally has an 

error associated with it, and a single property can be measured using different experimental 

methods with different associated errors. In many cases, the errors are not explicitly reported and 

are assumed to be understood by a reader. Additionally, factors such as sample state, temperature, 

and pressure can significantly impact experimental results.  

How to build the database? 
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The information mentioned above is reported in published articles and requires careful collection, 

extraction, and standardization before incorporating into a database.  

Article collection. With the rise in the use of big data in natural science research, several scientific 

journal publishers have started to provide application programming interfaces (APIs) to facilitate 

the automated collection of articles. [70,71] Given a few keywords for a targeted domain, these 

tools allow the automated download of a large number of articles in a short time. 

Data extraction. From the collected articles, information needs to be extracted and repurposed for 

storage in the database. In contrast to a manual workflow, an automated alternative to this step 

could be faster, more efficient, and more affordable.  

Published articles can be thought to be collections of tables, texts, and figures (see Figure 3A). For 

example, the presentation of a composition-property relationship can vary significantly with the 

form of display adopted in the article. There exist ML-based open-source software tools for 

automatic extraction. For example, natural language processing (NLP) and computer vision (CV) 

can be used to extract information from texts (paragraphs or tables) and figures, respectively. 

[72,73] Commercial language models and character recognition tools can also be used for these 

purposes. [74,75] However, extraction from formats that require context for interpretation, or have 

a certain degree of abstraction, such as texts or graphs, usually requires some additional supervised 

domain/subject-aware tuning for these methods to work efficiently. 

FAIR principle. Extracted data are little impactful and usable as they are. It usually requires a few 

additional steps before they can be absorbed into a database and shared. These steps can be 

designed following the FAIR principle (Figure 3B). [76] FAIR stands for Findable, Accessible, 

Interoperable, and Reusable and provides a framework for making scientific data accessible and 

usable by the research community. Unique digital object identifiers (DOIs) can be assigned to 
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individual datasets to make data findable. This allows the data to be easily located and accessed 

by others. Data can also be made more accessible by building a user-friendly web interface or 

providing APIs that allow users to search for and retrieve the information they need. [31,77-79] 

Data standardization. The interoperability between different datasets and systems can be 

achieved by standardizing data formats and metadata. When data is collected from multiple 

sources, it is common to have different shapes and attributes, even if it carries the same underlying 

meaning (Figure 3C). For example, the optical properties of a material, such as its absorption or 

emission spectra, can be expressed in intensity versus photon energy diagrams or intensity versus 

wavelength diagrams. These are essentially the same information, but they will have different 

values in one of the axes, making it difficult to compare between different sources. 

To address this issue, data standardization involves defining standard formats and conventions for 

representing scientific data. This allows different datasets to be easily compared and combined 

and ensures that the data can be easily understood and interpreted by researchers and machines 

alike. 

Date Dissemination. Dissemination of the collected data allows researchers to compare and build 

upon the work of others. To ensure long-term stability and access, it is important to carefully 

consider the licensing terms under which the data is shared. This can help ensure that the data is 

reusable and that the resources required to host, maintain, and curate the database are sustainable.  
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Figure 3. (A) Collection and extraction steps for different data types. Abbreviations used: API - 
Application Programming Interface; NLP - Natural Language Processing; CNN - Convolutional 
Neural Network. Schematics of (B) the FAIR principle and (C) Data standardization. 

 

How to use databases efficiently? 

In the last few years, there have been several efforts to find composition-property relationships in 

hybrid perovskites using ML. Table 1 lists a few examples where labeled data was used for this 

purpose. Such methods fall under the broad class of supervised learning (Figure 4A-top panel). A 

set of systems and measured properties are supplied to an ML model as input. A successful training 

process replicates the property values within an acceptable error limit. The model can then be used 

to predict properties of a system that could not be acquired by other means. A more detailed 

discussion of different ML models typically used in material sciences can be found in previously 

published reviews. [13,80]  
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Figure 4. (A) Schematic showing general workflows for typical machine learning (ML, e.g., 
supervised models; bottom left panel, and generative models; right panel) and how databases can 
fit into it. The subscripts t, e, m, and, l stand for true, experimental, modelled, and learned. (B) The 
strategy of choosing descriptors for ML models.  

Similar to computational methods like DFT, supervised learning requires a description of the 

system for initialization. Descriptors are numerical values that represent the systems. While for 

theoretical computations, some descriptors are well known and standardized, e.g., atomic structure 

or electron density, for ML methods, there is no standard descriptor, varying instead depending on 

the objective. Cases of simple descriptors for a given property are rare, although they exist. [7] 

More generally, multiple descriptors are pursued to describe the systems using experimental or 
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computational data. However, choosing appropriate descriptors that balance the trade-off between 

the model not being generalized and not being fast enough to get trained is crucial.  

Figure 4B outlines a strategy for choosing descriptors. Generally, a hybrid approach that combines 

physical intuition and available data can be more beneficial than selecting all available 

information. [81] This is because though any observed property is expected to depend on several 

material attributes, the attributes that can be linked to the property through physical laws will have 

a larger impact. The availability of such descriptors in a database is expected to speed up the 

workflow. 

For example, for quasi-2D perovskites (i.e., layered perovskites with inorganic layers that are 

thicker than a monolayer), the number of inorganic layers dictates the band gap and emission 

energy. [82] The distortions in the inorganic layer, induced by the organic cations, fine-tune the 

emission energy further. However, it is difficult to predict which combination of cations would 

result in which color output. Wang et al. attempted to tackle this problem using a probabilistic 

model with experimental composition-emission energy data. [83] Interestingly, they could also 

predict a set of compositions suitable for deep-blue emitters, which are relevant for blue-emitting 

diodes. 

The presence of Pb in compositions like MAPbI3 is regarded as a drawback for its toxicity. 

Consequently, replacing Pb with other less-toxic elements without compromising the 

optoelectronic properties is a standing challenge. [84] Though elements like Sn, Ge, Ag, Bi, In, 

etc. have shown some promise as possible substituents, the examples of such compounds are very 

few compared to the Pb-based ones. While it is well known that the ionic radii determine the 

formation of perovskite-like structures, empirical descriptors like the Goldsmith tolerance factor 

have a low success rate. Li et al. found a correlation between the ionic radii and formation energy 
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from a computational dataset generated by high-throughput DFT. [85] The trained classification 

model promises to provide better guidance for future experiments on discovering new lead-free 

compositions than the empirical parameters. 

For lower-dimensional hybrid perovskites, it is known that the cation impacts the dimensionality 

of the inorganic sublattice. However, it is usually difficult to predict the outcome without carrying 

out the experiment and resolving the crystal structure. This is because organic cations are usually 

flexible and can orient themselves in many different ways during crystallization, resulting in 

different dimensionalities which may not be helpful for a specific application. Lyu et al. used a 

dataset of organic cations to train a probabilistic model to predict whether a specific cation will 

form a 2D structure. [86] Using a quantitative equation structured on the key features of the model, 

the authors could experimentally synthesize four new hybrid perovskite compositions with 

targeted dimensionality. 

The relative humidity is known to be detrimental to the PCE of thin-film devices. The PL intensity, 

another optoelectronic response, is relatively easier to measure than PCE. Howard et al. found a 

correlation between PCE and relative humidity using a PL-relative humidity dataset. [87] The 

model could then be used to predict which films have higher moisture resistivity ahead of time and 

should be used for optoelectronic devices. Then, using an X-ray diffraction dataset, Oviedo et al. 

could predict dimensionality and space groups of perovskites from powder X-ray diffraction 

patterns. [88]  

The PCE of solar cells depends on the band gap of the absorber material. A smaller band gap 

absorbs a higher fraction of the solar spectrum, resulting in higher PCE. Alloying at A, B, and X 

sites for ABX3 composition has proven to be an effective strategy for optimizing the bandgap of 

3D perovskites. However, the nonlinear behavior of the bandgap with changing composition 
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makes the ideal composition for a required bandgap difficult to predict. Li et al. used reported 

experimental data to train a neural network to predict compositions with an ideal band gap for a 

solar cell. [89] The same technique could then be used to predict the band gap of unknown 

compositions and, finally, to optimize other device parameters, such as the transport layers, for 

obtaining higher PCE. Also, similar attempts to optimize material composition for an ideal band 

gap were carried out by Marchenko et al. and Lu et al. for different types of hybrid perovskites. 

[90,91] 

Among all these exciting advances, there remain many unexplored properties that are 

technologically important. A few of them are listed in Table 2. For example, broadband emission 

originating from self-trapped excitons is relevant for developing white-light-emitting LEDs. It is 

known that structural distortions influence the formation and stabilization of such trapped excitons. 

[92] However, designing specific materials with high quantum yields is challenging. Similarly, 

optimizing dopant concentrations for tuning electrical or emissive properties, [93] designing 

compositions for specific exciton binding energies, [94] high PL or electroluminescent quantum 

yields, [95] higher non-linear susceptibilities, [96], etc. remain yet to be explored. Since the 

physical phenomena are well understood, choosing descriptors is expected to take little effort.  

Additionally, the application of generative models (Figure 4A-right panel), such as generative 

adversarial networks or diffusion models, has been limited in the hybrid perovskite research 

domain. [97-100] In these approaches, the goal is to generate an observation from an approximated 

information space rather than replicate the exact observation as seen in an experiment. Unlike 

supervised methods, they do not require labeled datasets. They might help in data augmentation, 

which can expand initial datasets and help in making a supervised follow-up model more 

generalized. These approaches can also enable the inverse design of hybrid perovskite 



 17 

compositions for many other exciting applications. However, experimental verification of such 

prediction results will also need to occur. While models trained on small datasets can provide 

examples for proof-of-concept, generalization and accurate prediction of experimental outcomes 

would likely require much larger datasets that are relatively rare to come by.   

 

Table 1. Use of data for predicting properties of hybrid perovskites. Abbreviations used: exp – 

experimental; sim – simulated; aug – augmented. 

Problem Property 
Compositional 

space 
key feature 

Number of 

datapoints in 

training set 

Best 

performing 

model 

Reference 

Search for blue 

emitter 

Emission 

energy 

Quasi-2D 

L2An−1PbnX3n+1 

with n ≤ 5 

Cation 

composition 

106 

(exp.) 
Random forest  [100] 

Search for 

stable Pb-free 

perovskite 

Decomposition 

energy 
3D A2BB’X6 Composition 

354 

(sim.) 

Kernel ridge 

regression 
 [102] 

Cation 

selection 

strategy 

Dimensionality 2D, 1D, 0D 

Size, shape, 

aromaticity, 

number of H-

bond donors 

86 

(exp.) 
Decision tree  [103] 

Stability of 

perovskite film 
PL intensity 

3D MAPbI3 

and MAPbBr3 

Relative 

humidity 

5 

(2 exp. + 3 

aug.) 

Recurrent 

neural network 
 [104] 
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Rapid 

structural 

analysis 

Space group 

3D, 2D, 0D 

with B = Pb, 

Sn, Sb, Bi, Ag, 

Cu 

PXRD pattern 

4279 

(115 exp. + 164 

sim. + 4000 

aug.) 

Convolutional 

neural network 
 [105] 

Search for 

photovoltaic 

absorber 

Photo 

conversion 

efficiency 

3D ABX3 

Composition, 

Band gap, 

device structure 

333 

(exp.) 

Deep neural 

network 
 [106] 

Band gap 

Quasi-2D/2D 

Number of 

layers, M–X–

M angle 

515 

(exp.) 

Gradient 

boosting 
 [107] 

3D ABX3 

Tolerance 

factor, 

octahedral 

factor, ionic 

charges, 

electron 

affinity, orbital 

radii 

212 

(sim.) 

Gradient 

boosting 
 [108] 
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Table 2. A list of important properties relevant to the applications of hybrid perovskites and 
physically intuitive descriptors. 

Unexplored property Potential descriptors for supervised learning 

Broadband emission Cation structure, dimensionality, distortion factors, composition 

Exciton binding energy Composition, band gap, dimensionality, dielectric constants 

PL quantum yield 

(PLQY) 

Emission energy, dimensionality, morphology, film roughness 

External quantum 

efficiency (EQE) 

PLQY, film morphology, device structure, composition 

Phase transition 

temperature 

Composition, dimensionality, distortion factors, decomposition 

energy 

Photon upconversion Excitation energy, space group, composition 

 

Where to find curated hybrid perovskite data? 

There exist at least two general databases that are focused on hybrid perovskite data. The schematic 

in Figure 5A lists the different information available in these databases. For example, the 

perovskite database provides extensive solar cell device data collection. [21] The database hosts 

all important device-related parameters for more than 20,000 reported devices. The database is 

ideal for finding a correlation between PCE and other device parameters.  

On the other hand, the HybriD3 database (developed in our group) hosts structural, optical, and 

electrical characterization data of different hybrid perovskites. [101] The database currently hosts 

over 1500 datasets on 550 hybrid materials which are manually curated, and verified. The most 
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important limiting factor is the human curation of materials data, but simultaneously, the 

anticipated reliability of validated data would be ideal for learning composition-property 

relationships. The data collected in HybriD3 database is also incorporated into the much broader, 

curated SpringerMaterials database, significantly enhancing its reach. 

In addition, multiple specialized databases provide collection properties that might be relevant to 

hybrid perovskites. Some of these are listed in Table 3. For example, the Cambridge Structural 

Database (CSD), Inorganic Crystal Structure Database (ICSD), and Crystallography Open 

Database (COD) contain XRD-derived crystal structures of most of the reported hybrid perovskite 

compositions. [102-104] Importantly, CSD can be used with a Python-based API, and a 

subscription service for filtering and extracting crystal structure from the database. The organic 

material database (OMDB) contains data on the properties of many organic amines that are the 

precursor to the cations. [105] The SpringerMaterials and the Novel Materials Discovery 

(NOMAD) database provides experimental and computational data on many different classes of 

materials. [101, 106] Then, databases like Automatic FLOW library (AFLOWLIB), Open 

Quantum Materials Database (OQMD), and Materials project contain computational datasets of 

different semiconductor materials. [29-31]  
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Figure 5. Types of data in existing curated hybrid halide perovskite databases – the perovskite 
database and HybriD3 database. [21,101]  

Table 3. Types of data relevant to hybrid perovskite research and databases 

Type of data Database name Reference 

Experimental crystal structure Cambridge Structural Database (CSD) [102] 

Inorganic Crystal Structure Database (ICSD) [103] 

Crystallography Open Database (COD) [104] 

Organic amines’ property Organic Materials Database (OMDB) [105] 

Experimental and 
computational data on 
semiconductors and solids 

SpringerMaterials database [101] 

Novel Materials Discovery (NOMAD) database [106] 

Computational data on 
electronic/thermodynamic 
properties of semiconductors 

The Materials Project database [31] 

Open Quantum Materials Database (OQMD) [30] 

Automatic FLOW LIBrary (AFLOWLIB) [29] 

 

 

Concluding Remarks.  

Hybrid perovskite research is leading to immense amounts of high-quality materials research data 

and is poised to benefit from ML methods for materials discovery. The availability of optimized, 

curated databases that collect and disseminate this data will greatly enhance the value of hybrid 

perovskite research in the future. The recent progress of specialized tools for information 

extraction and database generation is promising. However, the lack of standardized rules for data 
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reporting makes automated extraction challenging. During the period of writing this article, the 

general large language processing models such as chatGPT and its successors became widely 

known and usable through OpenAI’s web interface and API. It will be interesting to see if such a 

general model connecting massive amounts of information will be capable of subsuming the 

difficult problem of automated, high-quality materials data collection and dissemination (see 

Outstanding Questions). In the authors' current experience, the level of detail captured in scientific 

publications as yet still eludes the full grasp of generalized AI, but combining general AI with 

detailed curation may eventually and drastically help speed up data accessibility in the hybrid 

perovskite community and beyond.  
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Glossary. 

Photo conversion efficiency (PCE): PCE is a measure of a photovoltaic cell's ability to convert 

light into electricity. It's calculated by dividing the electrical power output (in watts) by the incident 

light power (in watts/m2). When expressed as a percentage, the formula is PCE = Pout/Pin * 100%. 

Dye-Sensitized Solar Cell (DSSC): DSSCs are a type of thin-film solar cell comprising a porous 

layer of titanium dioxide nanoparticles coated with a photosensitive dye. They offer an efficient, 

low-cost alternative to traditional silicon solar cells. 

Density functional theory (DFT): DFT is a quantum mechanical theory that is typically used to 

investigate the electronic properties of many-body systems, particularly atoms, molecules, and 

crystals, using computational calculations. It uses functionals, often approximated, of the 

electron density.  

Machine learning (ML): ML is a subset of artificial intelligence that provides systems the ability 

to learn and improve from experience without being explicitly programmed. It involves the use of 

algorithms and statistical models to perform tasks by relying on patterns and inference instead of 

explicit instructions.  

Photoluminescence quantum yield (PLQY): PLQY is a measure of the efficiency of luminescence 

(emission of light) after the optical excitation of a material. It's calculated as the ratio of the number 

of photons emitted to the number of photons absorbed. PLQY = (Photons emitted) / (Photons 

absorbed). 
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External quantum efficiency (EQE): EQE is a measure of the effectiveness of a device in 

converting incident photons into electrons (or current). It is expressed as the ratio of the number 

of charge carriers collected to the number of incident photons, often expressed as a percentage. 

EQE = (Charge carriers collected)/(Incident photons) * 100%. 

Application program interface (API): An API is a set of rules and protocols for building and 

interacting with software applications. It defines methods of communication between various 

software components, enabling different software systems to interact with each other. In essence, 

it's a contract between different software components on how to interact. 

Natural language processing (NLP): NLP is a field of artificial intelligence that focuses on the 

interaction between humans and computers using natural language. The ultimate objective of NLP 

is to read, decipher, understand, and make sense of human language in a valuable way. It involves 

techniques to convert human language into data that a computer can understand and process. 

Convolutional Neural Network (CNN): CNN is a class of deep neural networks often used in image 

and video processing. They are designed to automatically and adaptively learn spatial hierarchies 

of features from the input data, utilizing layers of filters that scan input data for recognizable and 

often hierarchical features. 

Data Augmentation in Machine Learning: Data augmentation is a strategy in machine learning that 

increases the diversity of data available for training models, without actually collecting new data. 

Techniques can include transformations like rotations or flips for image data, or synonym 

replacement and sentence shuffling in text data. This can help improve model robustness and 

performance. 


