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Receiver Functions for 2016-2021 Show Slab Seismicity Most
Abundant Where Low Velocity Zone Present at the Top of
Slab, LAB of Slab Characterized by Variable Anisotropy

The young (<20 Myr old) Nazca plate currently subducting
beneath western Colombia is a mosaic of former micro-
plates separated by extinct spreading ridges. These extinct
ridges have previously been shown to be associated with
unusual sub-slab anisotropy (ldarraga-Garcia et al. 2016)
and a change between shallow angle and normal angle
subduction (Vargas & Mann, 2013). These changes have led
to the proposal that the traces of these ridges extend into
the subducted slab as the Calderas and Malpelo Tears.
Within the segment of slab bounded by these tears slab
seismicity appears extremely intense to the north and
hearly hon-existent to the south.

To investigate how these prior geophysical observations
relate to structural features within the slab, we have used
data for 3,022 >5.0 Mw teleseismic earthquakes occurring
between 1 January 2016 and 31 December 2021 and
located between 30" and 95" distance from the 24
seismometers of the Servicio Geologico Colombiano’s Red
Sismologica Nacional de Colombia permanent seismic
network to calculate receiver functions (RFs; Ligorria &
Ammon, 1999) in three different frequency bands. We
assessed the resulting 200,000+ RFs to ensure they met a
number of quality standards (e.g. highest amplitude in the
initial peak on the radial component, lack of significant long
period offsets, both radial and transverse components
having >50% variance reduction), and found a total of
15,738 usable pairs of radial and transverse RFs.

RFs are sensitive to velocity changes across boundaries in
the subsurface that are small compared to the dominant
wavelength of the seismic data used to calculate the RFs. In
the frequency domain, an RF is a Gaussian low-pass filter
and increasing the “a"-parameter used to calculate an RF
raises the frequencies contributing to the RF, lowering the
dominant wavelength and making the RF more sensitive to
more abrupt boundaries. We used “a’-parameters of 0.5, 1.0
and 2.5 to calculate our RFs, corresponding to peak
frequencies of 0.24 Hz, 0.5 Hz, and 1.2 Hz, respectively. For
S-wave velocities of 4.5 km/s, this translates to sensitivities
to ~20 km, ~5-10 km, and ~1-5 km thick boundaries.
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By first applying a moveout correction using the IASP91
velocity model to correct for differences in the angle of
incidence between each RF and then averaging radial RFs at
each station, we obtain estimates of the isotopic velocity
structure beneath each station. We find good evidence for a
low seismic velocity feature bounded by a negative
(fast-over-slow material) RF arrival on top and a positive
(slow-over-fast material) arrival on bottom where the Slab2
model (Hayes et al. 2018) predicts the top of the slab should
lie. This feature is observed in the north where the slab is
most seismically active. We also find broader, negative
arrivals most prominent on the 0.24 Hz and 0.5 Hz RFs
where the bottom of a ~10 Myr old, ~50 km thick slab
should lie.

Calculation of the P-wave to S-wave velocity ratio (Vp/Vs)
from earthquake sources within the slab shows that the
low-velocity feature imaged by the RFs corresponds to the
earthquake source region and that this region has

unusually high Vp/Vs, requiring hydration and/or
serpentinization. We interpret this to indicate the seismically
active slab in the north is more hydrated than that in the
south, and that the greater seismicity in the north is likely

a result of the slab remaining hydrated to a greater depth in
the north.

Examination of the negative arrival at the base of the slab
shows that it is consistently most prominent on the 0.24 Hz
and 0.5 Hz RFs and that this feature is not present at stations
sampling the slab at >~400 km depth. This suggests that the
feature represents the Lithosphere-Asthenosphere
Boundary (LAB) of the slab. By averaging both the radial and
transverse RFs for RFs coming from the down-dip, up-dip,
northeast-strike, and southwest-strike directions for each
station we find that the LAB exhibits an anisotropic pattern
that cannot be explained purely by the dip of the slab. This
indicates that there is a contrast in the direction of fast and
slow anisotropy across the LAB. Quantitative analysis of this
contrast is beyond the scope of this study, however we note
that the contrast’s character varies greatly between stations,
indicating complex mantle flow possibly related to the tears.
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with the Young Nazca Lithosphere Subducting beneath Colombia
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Station PAL 0.5 Hz Sensitivity Radial RFs by Quadrant
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observed amplitudes of the
radial and transverse
arrivals marking the slab
LAB. Cyan indicates a
positive arrival polarity and
magenta indicates a
negative arrival polarity.
Rays in the down-dip (1207),
up-dip (300°), northeast-
strike (30°), and southwest
-strike (2107) represent the
radial component arrivals at
each station; rays rotated
45° clockwise represent the
same directions’ arrivals on
the transverse component.
Dipping example is for a
slab dipping southeast.
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