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Current progress and future directions

fers a unique molecular window into the physiological

and pathological processes in the human body. Howev-
er, the applications of MRSI have been limited by a number
of long-standing technical challenges due to the high dimen-
sionality and low signal-to-noise ratio (SNR). Recent tech-
nological developments integrating physics-based modeling
and data-driven machine learning that exploit the unique
physical and mathematical properties of MRSI signals have
demonstrated impressive performance in addressing these
challenges for rapid high-resolution quantitative MRSI. This
article provides a systematic review of recent progress in the
context of MRSI physics and offers perspectives on promis-
ing future directions.

M agnetic resonance spectroscopic imaging (MRSI) of-

Introduction

MR spatiospectral imaging techniques allow for the nonin-
vasive visualization and quantification of molecule-specific
physiological processes in living animals and humans that
are inaccessible by conventional anatomical and functional
imaging methods. MRSI, in particular, integrates the con-
cepts of spatial encoding used in MRI and spectral encod-
ing used in MR spectroscopy (MRS) to produce spatially
resolved 1D or multidimensional spectra. These spectra
allow the simultaneous detection, quantification, and map-
ping of numerous endogenous molecules in the human body,
providing important insights into the biochemical processes
in vivo. This molecular imaging capability, since its incep-
tion in 1975 [1], [2], promised to significantly impact many
basic science studies (including understanding fundamental
physiological processes) and clinical applications (including
diagnosis, prognosis, and treatment monitoring for cancer,
stroke, epilepsy, and many other neurological and psychiatric
diseases) [3], [4], [5].

However, several long-standing technical challenges have
hindered the progress and applications of in vivo MRSI,
including low sensitivity, poor resolution, low imaging speed,
contamination from nuisance signals, and sensitivity to
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system imperfections. The fundamental reasons underlying

these challenges are

1) the inherently low abundance of the molecules of interest
in MRSI, e.g., metabolites and neurotransmitters having
3—4 orders of magnitude lower concentrations than the
water molecules imaged by MRI

2) the high dimensionality of the imaging problem due to the
need to encode and decode both spatial and spectral
dimensions with high resolutions.

While significant efforts have been devoted to tackle these

challenges, the performance of in vivo MRSI still falls short

of the SNR, resolution, speed, and robust-

ness desired or required by many practical

applications.
Recent advances in ultrahigh-field sys-

Physiologically meaningful
high-dimensional FIDs/

Using Learned Models” section, where integrated physics-
based and machine learning strategies for metabolite quanti-
fication are reviewed. Finally, the “Future Directions” section
presents our perspectives on future research directions.

MRSI physics

Atomic nuclei with an odd number of protons and/or an odd
number of neutrons possess a physical property, known as nu-
clear spin, which gives rise to a nonzero magnetic moment and
thus detectable MR signals after an RF excitation. The nucleus
of the hydrogen atom is the simplest in nature, consisting of just
one proton and no neutron. Because hydro-
gen is the most common element found in
the human body, proton MRI has been wide-
ly used for anatomical and functional imag-

tems, high-sensitivity radio-frequency (RF) spectra we acquired ing using mainly the MR signals from water
receiver arrays, and computational imaging should reside in or close protons ("H). MRSI, on the other hand, is de-
methods have presented new opportuni- to a low-dimensional signed to measure MR signals from "H and/
ties to address the technological challenges subspace. or other nuclei (e.g., *'P) in a range of mol-

associated with in vivo MRSI, reinvigo-

rating this “old” but relatively unexploited

field. Recent years have observed a substantial growth in the
efforts pushing toward rapid and high-resolution MRSI (mil-
limeter resolution on humans instead of the conventional cen-
timeter resolution) [6]. Particularly, computational methods
that exploit the rich prior information for spectroscopy signals
derived from MR physics have been developed to address sev-
eral key issues on recovering high-dimensional spatiospectral
functions from limited and/or noisy data [7], [8], [9], [10],
[11] and quantifying molecular parameters (e.g., concentra-
tions and relaxation times) from the spatiospectral function to
derive quantitative biomarkers for physiological functions and
diseases [12], [13], [14].

We present, in this article, a systematic review of recent
progress in the context of MRSI physics and related imag-
ing problems and provide our perspectives on directions and
opportunities for future pursuit. We expect that further tech-
nology developments that effectively integrate spin physics
and machine learning have the potential to transform MRSI
from a slow, low-SNR, and poor-resolution modality into a
practical high-resolution in vivo molecular and metabolic
imaging tool for many scientific and clinical applications.
These advancements may also benefit and inspire innovations
in other high-dimensional spatiospectral imaging modalities.

This review is organized as follows. The “MRSI Phys-
ics” section introduces basic physical principles underlying
MRSI and defines the key challenges associated with in vivo
high-dimensional MRSI. The “Physics-Based Spatiospec-
tral Priors” section reviews physics-based modeling of spec-
troscopic signals and data-driven low-dimensional model
learning approaches inspired by the physics models. The
“Spatiospectral Reconstruction Using Learned Models” sec-
tion discusses spatiospectral image reconstruction methods
integrating physics-based and learned models. The “Dynamic
MRSI Using Learned Models” section extends the discussion
to dynamic MRSI, followed by the “Spectral Quantification

ecules [e.g., N-acetylaspartate (NAA), cho-

line (Cho), creatine (Cr), etc.]. These signals
are properly encoded in data acquisition and decoded in data
processing to achieve multiplexed molecular imaging. In this
section, we will first review the physical mechanisms underly-
ing the generation of different resonance frequencies and the
spatiospectral encoding strategies used in MRSI. Then, we will
introduce the resulting high-dimensional spatiospectral imag-
ing problem and the unique challenges associated with MRSI.

Chemical shift and MRS

In a typical MRI experiment, the object of interest is common-
ly represented as a spatial function p(r), whose values at a
spatial location r depend on the abundance of water molecules
(often referred to as spin density) and a few other biophysical
parameters of tissue water, e.g., T1, T2, and y (susceptibility).
A detailed discussion on this can be found in [15]. However,
there can be many different molecules other than water present
in the object. Furthermore, one molecule can have the same nu-
cleus (e.g., 'H’s) in different functional groups, which are sur-
rounded by varying numbers of orbiting electrons. These orbit-
ing electrons “locally” perturb the magnetic field experienced
by the nuclei. This effect, called electron shielding, illustrated
in Figure 1(a), makes different nuclei in the same or different
molecules resonate at a range of frequencies specified by

f=¥Bo(l -0) %)

where By is the strength of the main magnetic field that the
object experiences, ¥ is the gyromagnetic ratio (only nucleus
dependent), and o is the electron shielding constant (depen-
dent on the nuclei and molecules as well as the position of a nu-
cleus in a molecule). This frequency dispersion gives rise to the
chemical shift phenomenon fundamental to MR spectroscopy.
As an example, different protons in NAA (one of the most
abundant metabolites in the brain) exhibit several frequencies,
producing a unique resonance structure [Figure 1(b)]. Different
molecules have their unique resonance structures.
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Considering the chemical shift distribution in each imaging
voxel, the image function of interest becomes a spatiospectral
function p(r, f). Mapping this function allows one to obtain
spatially resolved spectra, from which we can measure vari-
ous molecules and quantify their relative abundance, providing
useful insight into the physiological conditions of the tissues/
organs of interest.

In practical MRSI acquisition with pulse excitations, we use
an RF coil to pick up time-domain signals called free induction
decays (FIDs). Therefore, we often use the Fourier counterpart
of p(r, f), ie., p(r,1), to represent the spatiotemporal func-
tion of interest (where ¢ denotes the FID dimension, sometimes
referred to as the spin clock). Thus, the imaging data collected
are in (k, f)-space and related to p(r, r) by

s(Kp, 1g) = fv p(r, 1) e~ PIT AN T g ekp, 1) (2)

where V denotes the imaging volume of interest; Af(r) denotes
the macroscopic Bo field inhomogeneity distribution (due to
system imperfection and object-induced magnetic field pertur-
bation); k, = (pxAkx, pyAky, p:Ak;) and t, = gAt denote the
sampling location in the high-dimensional (k, 7)-space, respec-
tively (Akx, Aky, Ak, and At are the corresponding sampling
intervals); and € (-) represents the measurement noise (modeled
as complex white Gaussian). Based on (2), the MRSI problem
is to recover p(r, ) from a set of (k, 7)-space measurements
{s(kp, t‘,)}f:’:QLq:l, also known as the spatiospectral encod-
ings. Coil sensitivity can be included in (2) such that s(-) be-
comes sc(-). Without the loss of generality, we ignore the coil
index in the following discussion. An illustration of the spatio-
spectral imaging problem is shown in Figure 2.

Challenges for MRS

As shown in (2) and Figure 2, MRSI is a high-dimensional
imaging problem due to the need to encode and decode
both spatial and spectral information. Because A needs
to be small enough to satisfy the Nyquist sampling require-
ment along the spectral dimension (i.e., 1-2-kHz band-
width for 3 T and even higher for ultrahigh-field systems),
it is not realistic to cover extended k-space during each
readout. Therefore, a standard approach is to acquire all
the time points needed for a single location or a few k-space
locations after each excitation and repeat the process many
times. Furthermore, many FID () points (on the order of
hundreds) need to be acquired to achieve sufficient spectral
resolutions for accurately differentiating signals from dif-
ferent molecules. As a result, the imaging time for an MRSI
experiment is long and grows exponentially as the desired
spatiospectral resolution increases in the conventional Fou-
rier imaging paradigm.

Another fundamental challenge with MRSI is low SNR.
The MR signal from each molecule is proportional to the bulk
magnetization M?,, given by [15]

_ ')/27’-12Nm

0
Mz = 4KT;

3)

where N, is the number of polarized spins that can be used to
generate detectable MR signals for the mth molecule; % is the
Planck constant; K is the Boltzmann constant; and 7 is the
absolute temperature. As N,, values for the molecules of inter-
est in MRSI, e.g., metabolites such as NAA, Cr, and Cho and
neurotransmitters such as glutamate (Glu) and y-aminobutyric
acid (GABA), are typically three orders of magnitude smaller
than that for water, much weaker signals from these molecules
are expected. As a result, a common practice is to prescribe
large voxel sizes (poor spatial resolution) to maintain sufficient
SNRs within a clinically feasible scan time.

A related important issue (which is often less discussed)
is the large dynamic range for signals from different molec-
ular components due to their concentration differences.
An outstanding example is the strong nuisance water and
subcutaneous lipid signals in 'H-MRSI, which can signifi-
cantly affect our ability to reliably reconstruct and quan-
tify metabolite signals of interest. Therefore, strong prior
information is needed to address the dimensionality, SNR,
and dynamic range challenges to enable fast high-resolution
high-SNR MRSI for practical applications. The well-estab-
lished chemical and physical knowledge for the spectro-
scopic signals and advanced data-driven machine learning
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FIGURE 1. An illustration of chemical shift and the resulting frequency
distribution. (a) The electron orbiting around the nucleus (denoted by the
arrow on the circle) can be viewed as a small current, which generates

a magnetic moment g, that opposes the main magnetic field B,, thus
perturbing the magnetic field experienced “locally” by the nucleus and
generating a small frequency shift. (b) The resonance structure of the
molecule NAA (from quantum mechanical simulation) as a result of the
chemical shift phenomenon.
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tools to leverage this knowledge present new opportunities
to tackle these challenges.

Physics-based spatiospectral priors

Strong physics-based priors can be imposed on p(r, 1) for in

vivo MRSI based on extensive studies on the signal charac-

teristics of the molecules of interest. Specifically, each time/
frequency point does not need to be treated as an indepen-
dent unknown during the imaging process. Given that there
are only a finite number of frequencies originating from
nuclear magnetic resonance-sensitive molecules in vivo [4],
one straightforward choice is to model the signals as a linear
combination of complex exponentials, each capturing a par-
ticular frequency
K
p(0)= 2 cxe” ™ “)
k=1

where Br = ar+ibi is a complex coefficient modeling both

the decaying behaviors of FIDs and the frequency values.

While this model has often been used in the analysis of solu-

tion MR data in chemistry studies [11], [16], its utility in in vivo

MRSI has been limited because of the following:

1) Each molecule can have a number of frequency peaks, and
there are many different molecules that can be simultane-
ously detected; thus, K can be large, making this constraint
less effective, especially for 'H-MRSL

2) The frequency components from the same molecule have a
strong dependence according to quantum mechanics (QM) [4].
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Therefore, a better model for in vivo MRSI data at each
spatial voxel can be introduced, i.e.,

M " P 3
pr, 1) = Z Con(F) o (£) €T+ 1288 (E)0 (5)

m=1

where ¢, is the molecular concentrations and ¢,, denotes a
basis whose Fourier transform is the spectral structure of a
specific molecule. ¢, can be predicted by QM simulations
provided with the chemical shifts and J-coupling constants
for a particular molecule (from a chemical database), and it
is experiment independent. 7%,, and &f,» are experiment-
dependent and molecule-specific apparent relaxation pa-
rameters and additional frequency shifts. As can be seen,
the model order reduces from K (the number of frequencies)
to M (the number of molecules), a significantly smaller de-
grees of freedom (DOF).

While one can attempt to directly estimate ¢ (r), 72, (r),
and &f.(r) from the noisy and often limited s(k,7), the
strong nonlinearity of the estimation problem requires a
high SNR that is usually not available for in vivo MRSI,
thus limiting the achievable spatial resolution. However, the
physics-based model in (5) underlies the inherent variations
of spectroscopic signals that motivate the development of
low-dimensional modeling and machine learning approach-
es to enable better tradeoffs in speed, resolution, and SNR
(SRS) for MRSI. We review these developments in the fol-
lowing sections.

Fourier
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FIGURE 2. An illustration of the imaging problem with MRSI. Left: The desired high-dimensional spatiospectral function is in the (r, ) domain where
we aim to recover high-resolution spectra at each voxel. Right: Data are acquired in the (k, r)}space where FIDs are sampled for individual k-space
locations. This imaging problem is inherently higher dimensional than conventional MRI, where only k-space is sampled. Furthermore, the signals from
molecules of interest (e.g., NAA, Cr, Cho, etc.) are three orders of magnitude weaker than water (plots on the top of the middle column), making the

problem more challenging. Glx: glutamate + glutamine; ml: myoinositol.
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Subspace models

Under physiological conditions, the parameters ¢, 72,,(r), and
&fm (r) have values in a narrow range (e.g., 72.m ~ 30—100 ms),
and M is usually small, i.e., 10—15 for in vivo "H-MRSI. There-
fore, the physiologically meaningful high-dimensional FIDs/
spectra we acquired should reside in or close to a low-dimen-
sional space. One approach to exploiting this low dimensional-
ity is to approximate the high-dimensional p(r, ) using the
partial separability (PS) model [7], [8], [17]

L

pr, 1) =D wi(r)vi(t)

=1

(©6)

which represents the FIDs/spectra at individual voxels as
linear combinations of a small set of basis functions {v;(f)},
and thus, in a low-dimensional subspace. The PS model leads
to low-rank structures for the discretized representation of
p(r, 1), which has been used for denois-
ing [18] or superresolution reconstruction
[19]. Such a low-rank filtering approach
requires the joint estimation of both the
spatial coefficients {u;(r)} and subspace
bases {vi(f)} (subspace pursuit). Subspace
pursuit often requires relatively high-SNR
data, which is well beyond that of in vivo
MRSI data acquired using accelerated acquisition schemes.
Alternatively, we can leverage physics-based priors to pre-
learn {v;} from high-SNR training data and transform the
MRSI problem into the recovery of {u;}, which is signifi-
cantly lower dimensional than p(r,f), thus enabling more
flexible designs of data acquisition and physics-motivated
low-rank reconstruction to address the SRS challenges. We
will focus on this type of reconstruction method in this re-
view, and more detailed discussions on data acquisition can
be found in [20], [21], [22].

5 Hz df
5 Hz Line Broadening

Learning a nonlinear
low-dimensional model
can offer a more efficient
representation of general
in vivo MR spectra.

While subspace learning has been well studied in machine
learning [23], the unique physical properties of each FID allow
for unique training data generation and learning strategies [8].
More specifically, we can draw samples from prespecified dis-
tributions of ¢, T5.m, and &f,, and synthesize a large number
of FIDs from which the subspace structure can be determined,
e.g., through principal component analysis, independent com-
ponent analysis, or other dimensionality reduction techniques.
The parameter distributions can be specified using literature
data with empirical distribution assumptions (e.g., Gaussian
distributions with lower and upper bounds) [24], [25]. In addi-
tion, spectral fitting using (5) or its variants can be applied to
experimentally acquired high-SNR training data to extract
empirical distributions of the molecular parameters [8], [12]
or to supplement the synthetic data. The subspace learned this
way incorporates strong physics prior; captures the inherent
molecular spectral features of interest; and is less susceptible
to experimental artifacts than a direct appli-
cation of dimensionality reduction to noisy
experimental data.

Nonlinear manifold models

Linear subspace models have been dem-
onstrated to be highly effective and en-
able flexible sampling of (k, f)-space for
the determination of spatial coefficients. Their effectiveness
degrades when the range of spectral parameters increases,
which motivates more general models. This is illustrated in
Figure 3. We generated spectra of Glu with varying ranges
of ¢, T5, and §f and compared the representation accuracy
between linear subspace and a nonlinear manifold model [26].
As can be seen, as the ranges of 73 and 8f increase, the ap-
proximation errors of subspace increase, as shown by the er-
ror spectra in black, while the nonlinear model maintains high
accuracy for the same order. Therefore, learning a nonlinear
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FIGURE 3. Linear versus nonlinear low-dimensional models of spectroscopic signals. (a) An approximation of the Glu spectra using subspaces learned
from an ensemble of simulated data. The accuracy reduces as the ranges for the spectral parameters used to generate the training and testing data in-
crease (from the top to the bottom rows). (b) An approximation by the nonlinear model learned from the same data, with the same model order of three.

The color coding is specified in the figure legend.
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low-dimensional model can offer a more efficient represen-
tation of general in vivo MR spectra. As large quantities of
training samples can be generated using the physics-based
method described previously, data-driven learning of nonlin-
ear low-dimensional representations is possible, leveraging
recent progress in deep learning.

Nonlinear dimensionality reduction has been used for clas-
sifying single-voxel spectroscopy (SVS) data and demonstrat-
ed superior performance than linear dimensionality reduction
[27], [28]. But these works did not focus on representation
accuracy and did not consider the use of low-dimensional
representations for image reconstruction. A deep autoen-
coder (DAE)-based approach was proposed recently to learn
an accurate low-dimensional representation for ensembles of
spectroscopic signals (FIDs) [26]. Denoting each voxel FID
as a vector p, an encoder E(-;6.) and a decoder D(-;64)
network can be learned such that a low-dimensional embed-
ding encoded from E(-) can accurately reconstruct p, i.e.,
p = D(E(p; 6.);64).

The idea has been extended to multi-echo time (multi-TE)
spectroscopic data [29], and the improved representation effi-
ciency of learned nonlinear low-dimensional models over lin-
ear subspace models has been shown for not only 'H but also
other nuclei data [25], [26], [29]. Figure 4 provides a conceptu-
al illustration of physics-model-based training data generation
incorporating QM priors and empirical distributions of spec-
tral parameters and data-driven learning of low-dimensional
representations for high-dimensional spectroscopic signals.
These learned low-dimensional models enabled new ways to
formulate the recovery of the high-dimensional image func-
tion (as well as spatiospectral reconstruction) from noisy or
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often sparsely sampled spatiospectral encodings, which are
reviewed in the next sections.

Spatiospectral reconstruction using learned models

Subspace-based reconstruction

Using the discretized representation, i.e., representing p(r, f)
at a set of sampled locations {r, 4} Z}?: 1, the subspace model
in (6) can be rewritten in a matrix form p = UV [17], where
Ue CVF and V € 9 are matrix notations for the spatial
coefficients and learned subspace. Accordingly, the recon-
struction problem can be formulated as estimating the un-
known spatial coefficients (with a significantly lower number
of DOF than p) [17]

U =argmin|d — Q{FBO(UV)} F+ARMU, V) (D)

where B captures the By field inhomogeneity-induced linear
phases (i.e., Buy = e"z”Af“”)"“); F is a spatial Fourier transform
operator; and Q denotes a (k, 7)-space sampling operator. Note
that ¢’ can be different from ¢ as truncated FID sampling can
be easily implemented. The vector d contains all the noisy spa-
tiospectral encodings. R(-) is a regularization that can be used
to impose spatial constraint on U or the images at an individual
FID time point, e.g., an edge-preserving penalty [20] or spar-
sity constraint [30], and A is the regularization parameter. The
final reconstruction p can be formed as p = UV. This joint
subspace and spatial constrained reconstruction has achieved
impressive improvement in resolution, SNR, and speed for
both 'H and X-nuclei MRSI in brain and muscle applications
over traditional methods [9], [20], [31].

Basis
Functions

Casorati
Matrix

B

=

X = f(h(X; w,); wy)

DAE

FIGURE 4. Physical-model-driven data generation and low-dimensional representation learning for MRSI data. Both QM-simulated resonance structures
of individual molecules (metabolite basis, top of the left column) and spectral parameters sampled from empirical distributions (from literature values

or experimental data, bottom of the left column) are fed into a spectral fitting model to generate a large quantity of training data (X). These data can be
either formed into a Casorati matrix from which a set of basis can be estimated (upper branch, linear subspace model) or used to train a DAE to capture a
nonlinear low-dimensional manifold where high-dimensional spectroscopic signals reside.
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It is possible to extend (7) to jointly update both U and
V [30], which is a special form of low-rank matrix recovery.
These types of generic low-rank-model-based methods have
been successful in several MRI applications, e.g., dynamic
imaging [32], [33], MR relaxometry [34] and hyperpolar-
ized *C-MRSI [35], where SNR is not a major bottleneck.
However, they do not work well when using MRSI data with
very low SNRs for subspace pursuit and are not flexible for
incorporating future development of physics-motivated sub-
space learning. Substantial bias may be present in the recon-
structed spectra due to errors of subspace estimation from
very noisy data, especially for less dominant but important
spatiospectral features [20]. A comparison of reconstruc-
tions from simulated MRSI data produced by direct low-
rank filtering and using a learned subspace is shown in
Figure 5 to demonstrate this effect. Locally low-rank mod-
els offer better representation accuracy and capability than
global low-rank models [33], [34], [36], [37] but are still lim-
ited by the SNR challenge and subspace estimation errors in
MRSTI applications.

Nonlinear manifold constrained reconstruction

As discussed previously, generalizing the linear subspace
model to nonlinear low-dimensional manifold models can
enable more accurate approximation of general spectroscopic
signal variations, thus reducing potential modeling errors for
diverse physiological and pathological conditions. A key is-
sue is how to integrate such a learned nonlinear model into
the reconstruction formulation. One approach is to incor-
porate a “network representation error” penalty term into a
regularized reconstruction formalism

N
p = argmin|d — Q{FBOp} |5+ 41 2 [C(pn) = pup
n=1

+A2R(p) ®)
with C() representing the learned DAE D(E(:; 0e);64).
While the first term imposes data consistency the same as pre-
vious formulations, the second term enforces the prior that the
desired FIDs of interest at each voxel, p,, should yield small
representation errors for the learned low-dimensional model
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FIGURE 5. Reconstructions (simulated data) with and without using a prelearned subspace. The first column shows metabolite maps (Cr) from different
cases [rows 1-4: 1) gold standard, 2) Fourier reconstruction, 3) low-rank filtering, and 4) reconstruction using a learned subspace], and the subsequent
columns show localized spectra from two voxels. Direct low-rank filtering (jointly estimating the spatial coefficients and subspace) produced significantly
larger errors (black curves) than learned subspace, especially in small features with a distinct spectral pattern (green dot). Relative ¢, errors were

included (err.) for quantitative comparison.
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captured by C. If C reduces to a linear network, this regular-
ization can be viewed as penalizing the error for projection
onto a learned subspace, a softened version of the explicit sub-
space model in (7)—(12). R(-) is an additional regularization
term that can be flexibly incorporated and used to impose
spatial constraints, either handcrafted or learned (see the next
section for more discussion).

Similar to the reconstruction strategies discussed previously
for the learned subspace, because we kept the forward encod-
ing model and the learned C is imposing a prior on the underly-
ing true FIDs, once pretrained, C can be used synergically with
different acquisition designs. This is an important difference
with another popular unrolling approach in which an unrolled
network is motivated from but does not exactly solve a regu-
larized least squares problem (the regularization term cannot
be explicitly defined) and the network typically needs to be
retrained for different acquisition schemes. However, the dis-
advantage of actually solving the optimization problem in (8)
is the need to invert the deep network (involving backpropaga-
tion) for each reconstruction, and thus, higher computational
cost compared to the trained end-to-end mapping network that
requires only forward pass at the inference stage. Figure 6 pro-
vides an example to demonstrate the superior denoising recon-
struction performance by using the learned nonlinear model
(over linear subspace) for an in vivo '"H-MRSI data.

Noisy

To effectively take advantage of the learned nonlinear
model without significantly compromising computational
efficiency, projected gradient descent (PGD)-based algo-
rithms can be considered. For example, the recently proposed
RAIISE (Learning Nonline-Ar Representation and Projec-
tion for Fast Constrained MRSI Reconstruction) method [38]
seeks to learn a projection network to extract low-dimension-
al embedding from high-dimensional noisy FIDs and use
it in an accelerated PGD algorithm. More specifically, the
network-constrained reconstruction can be formulated as

p = argmin|d — Q{FB O p} |5 + AR (p) ©)
PEDZ)
where p € D(Z;604) enforces the prior that the underly-
ing signals should yield a low-dimensional representation
Z (residing on a low-dimensional manifold) and D(-; 6a)
is the decoder from the representation network C. The
PGD update step can be realized via a projection operator
Proj(-):= D(P(-;0,); 64), where P(:) is a learned projector
that recovers the latent representations from noisy FIDs and
is trained as follows:

J
6, = argmin 3" €1(E(x;;0.), P(X;: 6,))
P j=1

+Aex(x), D(P(X};0,); 04)) (10)
where x; and X; are individual train-
ing FIDs and their noisy counterparts,
respectively. A range of SNRs were
considered to generate X; for training
Cr P(-;6,) parameterized by 6,, €1, and
€2 assess the “projection” errors for the
low-dimensional features as well as the
full signals, respectively, and A balanc-
es the two losses. The encoder E(.) and

Linear
Subspace

decoder D(.) are from the representa-
tion network discussed previously. The
projector can be trained with different
structures adapted to the data character-
istics (single or multi-TE FIDs), and €
/ and €> can be chosen separately. It has
been demonstrated that by leveraging

Nonlinear
Manifold

FIGURE 6. A set of in vivo results from reconstructions using learned subspace (linear subspace)
and nonlinear models (nonlinear manifold). The latter produced metabolite maps with less noise
contamination and better recovered tissue-dependent features (as indicated by the red arrows) as well
as spectra with sharper line shapes (third column, blue arrows). A more thorough quantitative analysis

without a gold standard can be found in [29].

GPU acceleration, RAIISE achieved
similar or slightly better denoising per-
formance for both single-TE and multi-
TE MRSI with dramatically improved
/ computation time compared to directly
minimizing || C (px) — px [ in the regu-
larization formulation of (8) [38].

Infegrating learned spatial and
spectral priors

While the effectiveness of learned spec-
tral priors incorporating both physics
modeling and machine learning has
been well documented, the investigations
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into learned spatial priors have been scarce. One of the major
challenges is the difficulty in acquiring high-resolution high-
SNR MRS images as the “gold standard” for either supervised
training as commonly done in deep learning-based MRI re-
construction or self-supervised representation learning. One
solution is to simulate spatial distributions of spectra by com-
bining anatomical images and metabolite concentrations and
line shapes from tissue/brain-region-specific literature values
and/or experimental data. For example, a dense U-Net trained
completely by synthetic data was used to produce high-resolu-
tion metabolite maps from the low-resolution counterpart plus
a T1-weighted MR image [10]. The main issue, however, is that
the synthetic spatial distributions of metabolites may not cap-
ture sufficient variations in real data, especially those related
to different pathological conditions.

An alternative approach is to construct generic network-
based image representations that do not require high-SNR
high-resolution data for the supervised training of image map-
ping. Recently, efforts have been made to combine subspace
constraint and generative network-based image representation.
The work in [39] used deep image prior (DIP) to model the
spatial function U as U = f(Z; 6), where f(:; 0) is a network
with trainable parameters 6, and the reconstruction in (7) is
then changed to

6 = argmin|d — Q{FB O (f(Z; 0)V)} |>. (1
With a chosen network architecture (e.g., U-net in [39]), the
parameter O is estimated from noisy data, with Z being an
anatomical image. This method assumes that the network
can account for the contrast difference between the desired
spatial coefficient maps and an MR image to leverage high-
resolution anatomical prior information. However, DIP can
overfit noise by allowing all the network parameters to be
updated, and with an anatomical image being the input,
the network may introduce undesirable bias into the spatial
reconstruction. Thus, choosing a proper early stopping cri-
terion to balance the two factors may be challenging [40].
Another strategy is to leverage a generative network model
pretrained using anatomical multicontrast MRIs with suf-
ficient representation power for images with different con-
trasts and solve for the latent variable Z instead of network
parameters 6 during reconstruction. As Z is usually lower
dimensional than the voxel-wise image representation, noise
reduction is possible. For example, a generative adversarial
network (GAN)-regularized subspace reconstruction can be
formulated as [41]

U, Z = argmin| d — Q{FBO(UV)} [, + 4| U~ f(Z; 0) |}
’ (12)

where f(Z;0) is a pretrained GAN (e.g., using T1 and T2-
weighted images). This problem can be solved using alternating
minimization, and the step for updating Z is a GAN inversion
problem, which is an active research topic at the intersection
of inverse problem and deep learning. While different GAN

designs can be considered for f(-;0), StyleGAN combined
with intermediate layer optimization has been shown to
achieve the best inversion performance [42]. A more compre-
hensive review on this topic can be found in [43].

One important feature of these reconstruction methods is
the integration of the physical spatiospectral encoding model
and deep learning priors, in contrast to training an end-to-end
network for direct mapping from noisy data/images to recon-
structions. As a result, the pretrained model can work for any
sampling pattern, sequence parameters, and different resolution
and SNRs, without the need for retraining for each case. Mean-
while, the computation time required for the network param-
eter update or GAN inversion is one limitation/consideration.

Dynamic MRSI using learned models

Typical MRSI experiments produce spatially resolved spectra
that reflect a “steady-state” molecular profile, which may not
be sufficient to capture the complex in vivo metabolic activities
that are time varying in nature. To this end, dynamic MRSI, by
introducing an additional time axis (world clock) and produc-
ing time-resolved spectra, offers the opportunity to noninva-
sively visualize metabolism in real time and thus significantly
richer biological insights. For example, dynamic *'P-MRSI has
been used to study depletion and resynthesis of phosphocre-
atine (PCr) during exercise—recovery or ischemia—reperfusion
to assess mitochondrial function in the muscle [44], [45]. Dy-
namic "*C- and ?H-MRS]I, using isotope-enriched endogenous
molecules, has become popular to map the imbalance between
oxidative phosphorylation and glycolysis pathways in cancer
applications [46], [47].

Figure 7 provides an illustration for such a high-dimen-
sional imaging problem. As one would expect, introducing an
additional temporal dimension to the already SNR-, speed-
and resolution-limited modality further exacerbated these
challenges. Therefore, existing studies have been limited by
insufficient spatial and/or temporal resolutions, resulting in
inaccurate characterization of heterogeneous metabolism.
Low-dimensional models with learned priors offer a promis-
ing path to addressing these challenges, which we review in
this section.

Low-rank tensor models with learned subspaces

To tackle the increased dimensionality problem, the PS model
in (6) can be generalized to represent new image functions of
interest p(r, t, T'), with T denoting the additional time dimen-
sion (T=1,2,...,Nr) [9], [49]

M L S
ﬁ(r, t, T) = Z Z Z C/n,l,sum(r)vl(t)gs(T) (13)
m=11l=1s=1

where N7 is the total number of time frame; {g,(7)} 5_1 de-
note the basis functions that span the space of temporal varia-
tions; and {cm,l,s}%’f _;S: 1 are the model coefficients. Equation
(13) implies a low-rank tensor structure (generalized from the
low-rank matrices) that exploits the spatial-spectral-temporal
correlations in dynamic MRSI data with {c...s} referred to as
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the core tensor [49], [50]. M, L, and S are the respective model
orders (typically much smaller than N;and Q). Similarly as the
spectral basis {v/(7)} can be learned by incorporating a phys-
ics-based model, the temporal basis {gs(7)} can be predeter-
mined from temporal training data [9], leaving only {un(r)}
and {cm.1s} as the unknowns in the imaging problem. Equation
(13) can be further adapted into a molecule-dependent tensor
model [51]

M m Sm

L
ﬁ(r, 1, T) = Z Sm(r) Z Z Cm,l,s(r)Vm,l([)gm,s(T)) (14)

m=1 I=1s=1

where M is the number of molecules of interest; L, and S,, are
the spectral and temporal model orders of the mth molecule;
cm,,s(r) combines the core tensor coefficients and molecule-
dependent spatial basis and s, (r) incorporates spatial priors.
This model offers up to two orders-of-magnitude reduction in
the DOF [51] compared to the canonical truncated Fourier se-
ries representation, and thus, significantly improved resolution
and SNR tradeoffs. Furthermore, the model in (14) provides

the flexibility to incorporate molecule-specific physics- and
biochemistry-based priors [44].

The spectral basis can be obtained as described in the
“Subspace Models” section, and the temporal basis can be
derived by exploiting existing physiological and metabolic
knowledge. More specifically, the temporal variations of the
spatially resolved spectra are often the results of metabolic
processes in living organs, which can be approximated by
a set of parametric curves specified by some time constants
[51], e.g., the exponential recovery of PCr after ischemia or
exercise. The variable s, (r) can be used to impose molecule-
specific spatial support and distribution priors from available
high-resolution reference images, further improving the per-
formance (see [51] for more details). Accordingly, the dynam-
ic MRSI reconstruction can be formulated as follows:

Cl?l = argIPCI]HH d - A {(Sm O Cm) ® Vm ® Gm} ”% + A«R({Cm})
(15)

where A describes the forward model as discussed previously
(capturing the field inhomogeneity effects and spatiospectral

Glc Glx Lac

71.8 min

54.3 min

-5 ppm

p(rfiT)

Glc GIx Lac

[ T(min),
/(ppm)

Metabolic Dynamics

15 30 45 60 75 90 105
Time (min)

FIGURE 7. The dynamic MRSI problem (dynamic 2H-MRSI of a rat brain in this case). The center cube illustrates the high-dimensional image function of
interest. Orange lines taken from different frequencies (/) and a single time point (7) yield various metabolite maps (top left, spatial dimension); the
blue plane represents time-resolved spectra (top right, spectral-temporal dimensions) at a single voxel (r); and lines from different f’s and a single

r capture metabolic dynamics (bottom right). The low-rank tensor-based reconstruction with learned manifold constraints produced an impressive
combination of SRS [48], i.e., a 1.8-min frame rate at a resolution of 17 x 17 x 5 matrix size over 28 x 28 x 24 mm? field of view (FOV). Glc: glucose;

Lac: lactate.
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encoding process), and C, Vi, G and s, are tensor forms of
{emis(@}, {vmi(®)}, {gms(T)} and {sm(r)}, respectively, where
Cn€ CVESny, e % G,e CV, and s, € CV*'.
© and ® denote column-wise and tensor products. The al-
gorithm in [51] first performed a series of reconstruction of
time-dependent spatial coefficients (using per-estimated V.,),
i.e., {€m(T)}, and then fit the temporal variations to biochem-
ical models for each molecule to determine G... Finally, (15)
was solved using an estimated spectral and temporal basis.
R({Cu}) imposes regularization to encourage spatial smooth-
ness or sparsity.

Considering the unique properties of the dynamic spec-
troscopic signals, (14) can be reformulated by imposing strict
separability between the spatiospectral and spatiotemporal
variations [48], i.e.,

M Ln Sm
[3(1', f, T) = Z {( Z am,l(r) Vm,l(ﬂ)( Z bm,s(r)gm,s(T))}’
s=1

m=1\I=1
(16)

where a1 and b, s are the new spatial coefficients for the spec-
tral and temporal bases, respectively. With this model, the num-
ber of unknowns at each voxel is reduced from Z)i— L X S
to ZM_1(Lm+Sn). This does not necessarily increase the
modeling error for dynamic MRSI specifically because it is ac-
curate to assume all FID/frequency points corresponding to the
same molecule should share the same dynamics at each voxel.
Using matrix notations for am; and b, a similar regularized
least squares problem to (15) can be formulated.

Combining low-rank tensor and manifold modeling

As in the “static” MRSI case, it is straightforward to incorpo-
rate nonlinear manifold constraints on spectral variations into
the reconstruction problems in (15) or (16). For example, the
learned network can be used to regularize individual FIDs at
every time point, i.e.,

. R ) Nr N
Cu,p= arg(mqlpn}H d—A{p}+211 Y. D lIConr) — purl?

T=1n=1
+ LR{Cn}),

st. p=(6nOC)OV,®Gn. (17)
This formulation assumes that the desired FIDs at each voxel
and each time point (i.e., pnr) reside on the same learned
manifolds and can be solved using alternating minimization.
Note that the ensemble temporal variations are still captured
by the linear subspace model. To further exploit the prior in-
formation available along individual dimensions, the subspace
model for temporal variations can be generalized to nonlinear
manifolds as well. To this end, the separability representation
in (16) offers the additional flexibility to learn and incorporate
low-dimensional manifold constraints on molecule-specific
temporal dynamics. Specifically, a set of molecule-dependent
DAEs, denoted as G (-), was trained (using both synthetic and
experimental dynamic data) and integrated into the following
low-rank tensor-based reconstruction problem [48]:

~ N Nr N
An By = argmin|d—Alp} [;+241 20 3 | Clpan—purl

T=1n=1

M
+/12 Z || gm(Bme) - Bme

m=1

2
F>

SLp= > (AnV): (BuGo) (18)

m=1

where A,, and B,, are matrix forms of {a./(r)} and {bms(r)}
with A, € CV** and B, € CV*5". < denotes the operation
defined in (16), and A1 and A are regularization parameters
controlling the tradeoff between data consistency and mani-
fold (spectral and temporal) representation errors. Additional
regularization terms on the spatial distribution of a,,; and b,
may also be included. The problem in (18) can be solved via al-
ternating minimization of A,, and B, which also involves the
backpropagation of the learned networks. Details of the exact
algorithm can be found in [48].

While parallelizable, the reconstruction can be com-
putationally demanding due to the need to invert multiple
networks for signals at many time points. The formulation
used in RAIISE (described in the “Nonlinear Manifold
Constrained Reconstruction” section) may be helpful in
addressing this issue. A set of denoising dynamic “H-MRSI
results is shown in Figure 8 to illustrate the capability of the
low-rank tensor-model-based reconstruction using learned
spectral and temporal subspaces. Comparisons of estimated
metabolite maps, spatially resolved spectra, and temporal
dynamics from standard Fourier reconstruction, direct low-
rank tensor truncation, and learned-subspace-based meth-
ods were made.

The motion issue

The formulations discussed previously do not fully consider
motions (involuntary or voluntary) during the time window
when the dynamic metabolic activities are monitored. This
may be an issue when the imaging time is long (e.g., more than
just a few minutes) and/or the organ of interest is more suscep-
tible to motion. Prospective and retrospective motion tracking
and correction may be used to mitigate its effects [22], [52].
Another possibility is to incorporate motion models into the
T dimension, which might lead to an increased model order
and degradation in the accuracy of capturing metabolite dy-
namics. A new dimension can be introduced to represent dif-
ferent motion phases for motion-resolved dynamic MRSI using
a higher order tensor model [50].

Spectral quantification using learned models

With the ability to reconstruct high-SNR high-resolution
spatiotemporal functions from noisy data, a key remaining
challenge is to extract and quantify individual molecular com-
ponents from the spatially resolved FIDs or MR spectra, re-
ferred to as the spectral quantification problem. An apparent
choice is to use a parametric model similar to (5) and perform
parameter estimation voxel by voxel, e.g., through a nonlinear
least squares (NLLS) fitting [53]
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6'm, Tgm, fm, ,B =
SIP S AT+ 27 8futy
Z Pn.q — z Cm (Pm (tq’)€7r11 2+ i280futy h([q’; ﬁ)

q=1 m=1

2

(19)

where pn is the reconstructed FID at the nth voxel, and
h(ty; B) is a molecule-independent modulation function to
account for additional spectral distortion, e.g., due to resid-
ual intravoxel Bo inhomogeneity, eddy current effects, etc.
A Gaussian line shape function is often used for A(f). Com-
monly used NLLS solvers such as quasi-Newton methods or
variable projection (VARPRO) [53] can be used to solve (19),
but the problem is highly nonlinear and sensitive to noise and
model mismatch. It can be time consuming to solve these vox-
el-wise NLLS equations for high-resolution acquisitions and
computationally expensive to incorporate spatial constraints.
Learning-based methods have been recently proposed to ad-
dress these challenges.

Following a similar motivation from (5) for constructing
the subspace model, a union-of-subspaces (UoSS) approach
was described for spectral quantification [12]. Specifically,

Glc Glx Lac

Subspace Tensor Fourier

Subspace +
Manifold

the FID signals corresponding to individual molecular com-
ponents can be assumed to reside on their own subspaces
spanned by {v;, (1)}, i.e.,

Lm

M
o= D u,(r)v,(t). (20)

m=11Iln=1

The basis {vi,(#)} (V» in matrix form) can be learned using
the strategy described in the “Physics-Based Spatiospectral
Priors” section with ensemble molecule-specific FIDs, either
synthesized or obtained from an initial NLLS estimation of
the spectral parameters from the reconstruction p (r, ). Quan-
tification can then be done by solving a UoSS fitting

2

M
{(Un) = arg%ir)l + D AnRn(Un) (21)

F om=1

M
ﬁ_ Z Ume
m=1

where U, is a molecule-specific spatial coefficient that can
be converted into concentration values (see [12] for more
details). This formulation offers stronger robustness against
model mismatch owing to the representation power of the
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FIGURE 8. A set of dynamic 2H-MRSI results from a rat brain by the standard Fourier reconstruction (Fourier); a direct low-rank tensor filter-

ing of the noisy data (Tensor); a tensor reconstruction with learned subspaces (Subspace); and joint subspace model and manifold regularization
(Subspace+Manifold) [48]. For each method, maps of three metabolites (columns 1-3), localized spectra at a particular time point (fourth column) and
temporal dynamics for the same voxel (fifth column) are shown. The learned subspace methods produced improved metabolite maps and lower errors
for the spectra and temporal dynamics. Manifold regularization further improved the temporal fidelity. Both the tensor and subspace methods used the
same model order (L, =6 and S, = 30). Colors for different curves are noted in the plot. a.u.: arbitrary unit.
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subspace model at individual voxels and less sensitivity to
noise by transforming the nonlinear fitting into low-dimen-
sional linear problems. It also allows for the easier incorpo-
ration of spatial priors on individual components through
R (). The extension of this UoSS approach to “local” sub-
spaces has also been recently explored [54]. This method
was motivated by the linear tangent space concept in smooth
manifold recovery, which allows a further reduction in the
DOF in U.

Going beyond subspace models, deep
convolutional neural networks (CNNs)
have been used to learn a nonlinear map-
ping from noisy FIDs/spectra to spectral

The notion of voxel-
hy-voxel fitting should
continue to he challenged

practical experimental conditions. These “software” advances
are highly synergistic with the on-going ‘“hardware’/instru-
mentation developments, e.g., higher field systems; better field
inhomogeneity monitoring and shimming devices; and more
sensitive coils. We expect to see that synergistic developments
in advanced data acquisition and processing will significantly
enhance the capability and clinical utility of next-generation
MRSI technologies.

One area that will see more innovations
is MRSI data processing using deep learn-
ing networks trained using high-resolution
images. Currently, the lack of high-quality
MRSI training data makes supervised

parameters [13], [55] or clean line shape- by new ways to integrate training, commonly used in learning-based
corrected metabolite-only spectra [14], [24] spatial constraints with image reconstruction, not directly applica-
for simplified quantification. A self-super- deep learning-hased ble. One potential direction is to construct
vised training strategy was proposed in solutions an MRSI atlas from highly dedicated exper-

[13] where a CNN-based regressor C(-; 6)
(where 6 is the network parameter) was
concatenated with a physics-based parametric model f(f; @)
to resynthesize spectra from the parameters produced by the
CNN. Errors between the resynthesized and original spectra
were minimized, which can be formulated as the following
optimization problem:

6 = argmin| p — f(1; C(p: 6)) [ (22)
where the spectral parameter o was replaced by the CNN
output. This strategy does not require ground truth values for
training, which are difficult to obtain from practical in vivo
MRS/MRSI data. Processing time reduction was emphasized
rather than estimation accuracy compared to the standard
voxel-wise fitting method. Generalizability may be an issue if
there are spectral distortion and contamination not captured by
the training data.

Since a parametric model is still used to resynthesize the
final fits, the parameter estimation accuracy still needs to be
carefully investigated in the presence of model mismatch.
Instead of training a network that directly maps noisy data to
spectral parameters, [24] proposed to learn a CNN that is able
to extract metabolite-only line shape-corrected spectra from
noisy data with macromolecule and baseline “contaminations”
and line shape distortion. Estimation of metabolite concentra-
tions from the corrected metabolite-only spectra can then be
easily done using a linear least-squares fit to a metabolite basis.
All these methods are voxel wise and thus difficult to incor-
porate spatial constraints. The learned mapping can be sensi-
tive to changes in acquisition parameters, such as the spectral
bandwidth, resolution, SNR, etc.

Future directions

Recent advances in computational MRSI using physics-based
machine learning have demonstrated a good potential for ad-
dressing high-dimensional MRSI reconstruction and quanti-
fication problems, achieving impressive performance in the
combination of SRS and robustness to system imperfection and

imental data (with many averages followed

by artifact correction and registration), to
which statistical variations in concentrations, linewidths, and
other spectral parameters as well as geometry may be intro-
duced for synthetic MRSI data generation as was done in
[10], [48] but with more realistic variations. Another potential
direction of pursuit is developing learning strategies that do not
require companion high-SNR/*clean” data.

Unsupervised and self-supervised learning strategies have
gained attraction for image denoising and reconstruction appli-
cations [56], [57], [58], [59]. These formulations may offer some
inspiration for learning and using models with only noisy MRSI
data. As water spectroscopic images are often acquired in an
MRSI scan, e.g., through a separate or simultaneous nonwater-
suppressed acquisition [21], [22], approaches to leverage these high-
dimensional multicontrast water images beyond just extracting Bo
and B maps to introduce effective spatial constraints should be
of great interest. The generative-model-based methods discussed
in the “Integrating Learned Spatial and Spectral Priors” section
represent some initial attempts, while more work can be done.

While the topics related to spatial-spectral-temporal
reconstruction have been the main emphasis in this review,
we note that spectral quantification as a critical step toward
quantitative MRSI for clinical and basic science applications
remains under investigated. A number of sophisticated para-
metric models have been presented, mostly for SVS, but they
often yield significant voxel-to-voxel estimation variations and
are computationally demanding for high-resolution data. The
notion of voxel-by-voxel fitting should continue to be chal-
lenged by new ways to integrate spatial constraints with deep
learning-based solutions. In dynamic or multidimensional
MRSI scenarios, quantification is usually done for individual
points along time or other additional dimensions (e.g., different
TEs). Novel methods for joint quantification, e.g., models and
algorithms that simultaneously fit the time-resolved spectra in
dynamic MRSI (with a reduced number of parameters), should
be developed with potentially significant practical impact.

‘We have focused this review on MRSI, but the methodolo-
gies discussed here are also adaptable to other high-dimensional
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spatiospectral imaging problems, where physics-based models
and/or simulations can be used to describe the signal changes
from which low-dimensional representations of the intrinsic
variations may be learned. The authors in [60] proposed to use
a fully connected feedforward network trained using simulated
data to perform voxel-wise quantification of PCr concentra-
tion, exchange rate, and other system-related parameters from
Z-spectra data generated by chemical exchange saturation
transfer imaging. The learning-based method demonstrated
advantages in both performance and computational cost.

Applications of physics-based machine learning to other
quantitative MRI problems have also been explored (see the
other reviews in this issue). Similar strategies may also be
extended to other spatiospectral imaging modalities besides
MR, e.g., mass spectrometry imaging [61]. Beyond addressing
the reconstruction and quantitative analysis problems within a
single modality, we also expect to see more progress in con-
necting and fusing imaging information from different modali-
ties across spatiotemporal scales by integrating physics-based
modeling and data-driven learning.
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