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Magnetic resonance spectroscopic imaging (MRSI) of-
fers a unique molecular window into the physiological 
and pathological processes in the human body. Howev-

er, the applications of MRSI have been limited by a number 
of long-standing technical challenges due to the high dimen-
sionality and low signal-to-noise ratio (SNR). Recent tech-
nological developments integrating physics-based modeling 
and data-driven machine learning that exploit the unique 
physical and mathematical properties of MRSI signals have 
demonstrated impressive performance in addressing these 
challenges for rapid high-resolution quantitative MRSI. This 
article provides a systematic review of recent progress in the 
context of MRSI physics and offers perspectives on promis-
ing future directions.

Introduction
MR spatiospectral imaging techniques allow for the nonin-
vasive visualization and quantification of molecule-specific 
physiological processes in living animals and humans that 
are inaccessible by conventional anatomical and functional 
imaging methods. MRSI, in particular, integrates the con-
cepts of spatial encoding used in MRI and spectral encod-
ing used in MR spectroscopy (MRS) to produce spatially 
resolved 1D or multidimensional spectra. These spectra 
allow the simultaneous detection, quantification, and map-
ping of numerous endogenous molecules in the human body, 
providing important insights into the biochemical processes 
in vivo. This molecular imaging capability, since its incep-
tion in 1975 [1], [2], promised to significantly impact many 
basic science studies (including understanding fundamental 
physiological processes) and clinical applications (including 
diagnosis, prognosis, and treatment monitoring for cancer, 
stroke, epilepsy, and many other neurological and psychiatric 
diseases) [3], [4], [5]. 

However, several long-standing technical challenges have 
hindered the progress and applications of in vivo MRSI, 
including low sensitivity, poor resolution, low imaging speed, 
contamination from nuisance signals, and sensitivity to 
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system imperfections. The fundamental reasons underlying 
these challenges are
1)	 the inherently low abundance of the molecules of interest 

in MRSI, e.g., metabolites and neurotransmitters having 
3–4 orders of magnitude lower concentrations than the 
water molecules imaged by MRI

2)	 the high dimensionality of the imaging problem due to the 
need to encode and decode both spatial and spectral 
dimensions with high resolutions. 

While significant efforts have been devoted to tackle these 
challenges, the performance of in vivo MRSI still falls short 
of the SNR, resolution, speed, and robust-
ness desired or required by many practical 
applications.

Recent advances in ultrahigh-field sys-
tems, high-sensitivity radio-frequency (RF) 
receiver arrays, and computational imaging 
methods have presented new opportuni-
ties to address the technological challenges 
associated with in vivo MRSI, reinvigo-
rating this “old” but relatively unexploited 
field. Recent years have observed a substantial growth in the 
efforts pushing toward rapid and high-resolution MRSI (mil-
limeter resolution on humans instead of the conventional cen-
timeter resolution) [6]. Particularly, computational methods 
that exploit the rich prior information for spectroscopy signals 
derived from MR physics have been developed to address sev-
eral key issues on recovering high-dimensional spatiospectral 
functions from limited and/or noisy data [7], [8], [9], [10], 
[11] and quantifying molecular parameters (e.g., concentra-
tions and relaxation times) from the spatiospectral function to 
derive quantitative biomarkers for physiological functions and 
diseases [12], [13], [14]. 

We present, in this article, a systematic review of recent 
progress in the context of MRSI physics and related imag-
ing problems and provide our perspectives on directions and 
opportunities for future pursuit. We expect that further tech-
nology developments that effectively integrate spin physics 
and machine learning have the potential to transform MRSI 
from a slow, low-SNR, and poor-resolution modality into a 
practical high-resolution in vivo molecular and metabolic 
imaging tool for many scientific and clinical applications. 
These advancements may also benefit and inspire innovations 
in other high-dimensional spatiospectral imaging modalities.

This review is organized as follows. The “MRSI Phys-
ics” section introduces basic physical principles underlying 
MRSI and defines the key challenges associated with in vivo 
high-dimensional MRSI. The “Physics-Based Spatiospec-
tral Priors” section reviews physics-based modeling of spec-
troscopic signals and data-driven low-dimensional model 
learning approaches inspired by the physics models. The 
“Spatiospectral Reconstruction Using Learned Models” sec-
tion discusses spatiospectral image reconstruction methods 
integrating physics-based and learned models. The “Dynamic 
MRSI Using Learned Models” section extends the discussion 
to dynamic MRSI, followed by the “Spectral Quantification 

Using Learned Models” section, where integrated physics-
based and machine learning strategies for metabolite quanti-
fication are reviewed. Finally, the “Future Directions” section 
presents our perspectives on future research directions.

MRSI physics
Atomic nuclei with an odd number of protons and/or an odd 
number of neutrons possess a physical property, known as nu-
clear spin, which gives rise to a nonzero magnetic moment and 
thus detectable MR signals after an RF excitation. The nucleus 
of the hydrogen atom is the simplest in nature, consisting of just 

one proton and no neutron. Because hydro-
gen is the most common element found in 
the human body, proton MRI has been wide-
ly used for anatomical and functional imag-
ing using mainly the MR signals from water 
protons (1H). MRSI, on the other hand, is de-
signed to measure MR signals from 1H and/
or other nuclei (e.g., 31P) in a range of mol-
ecules [e.g., N-acetylaspartate (NAA), cho-
line (Cho), creatine (Cr), etc.]. These signals 

are properly encoded in data acquisition and decoded in data 
processing to achieve multiplexed molecular imaging. In this 
section, we will first review the physical mechanisms underly-
ing the generation of different resonance frequencies and the 
spatiospectral encoding strategies used in MRSI. Then, we will 
introduce the resulting high-dimensional spatiospectral imag-
ing problem and the unique challenges associated with MRSI.

Chemical shift and MRSI
In a typical MRI experiment, the object of interest is common-
ly represented as a spatial function ( ),rt  whose values at a 
spatial location r depend on the abundance of water molecules 
(often referred to as spin density) and a few other biophysical 
parameters of tissue water, e.g., ,T1  ,T2  and |  (susceptibility). 
A detailed discussion on this can be found in [15]. However, 
there can be many different molecules other than water present 
in the object. Furthermore, one molecule can have the same nu-
cleus (e.g., 1H’s) in different functional groups, which are sur-
rounded by varying numbers of orbiting electrons. These orbit-
ing electrons “locally” perturb the magnetic field experienced 
by the nuclei. This effect, called electron shielding, illustrated 
in Figure 1(a), makes different nuclei in the same or different 
molecules resonate at a range of frequencies specified by

	 ( )f B 10c v= - � (1)

where B0  is the strength of the main magnetic field that the 
object experiences, c  is the gyromagnetic ratio (only nucleus 
dependent), and v  is the electron shielding constant (depen-
dent on the nuclei and molecules as well as the position of a nu-
cleus in a molecule). This frequency dispersion gives rise to the 
chemical shift phenomenon fundamental to MR spectroscopy. 
As an example, different protons in NAA (one of the most 
abundant metabolites in the brain) exhibit several frequencies, 
producing a unique resonance structure [Figure 1(b)]. Different 
molecules have their unique resonance structures.

Physiologically meaningful 
high-dimensional FIDs/
spectra we acquired 
should reside in or close 
to a low-dimensional 
subspace.
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Considering the chemical shift distribution in each imaging 
voxel, the image function of interest becomes a spatiospectral 
function ( , ).frt  Mapping this function allows one to obtain 
spatially resolved spectra, from which we can measure vari-
ous molecules and quantify their relative abundance, providing 
useful insight into the physiological conditions of the tissues/
organs of interest.

In practical MRSI acquisition with pulse excitations, we use 
an RF coil to pick up time-domain signals called free induction 
decays (FIDs). Therefore, we often use the Fourier counterpart 
of ( , ),frt  i.e., ( , ),trtu  to represent the spatiotemporal func-
tion of interest (where t denotes the FID dimension, sometimes 
referred to as the spin clock). Thus, the imaging data collected 
are in (k, t)-space and related to ( , )trtu  by

	 ( , ) ( , ) ( , )s t t e e d tk r r k( )
p q

V

i f t i
p q

2 2r k rq pt e= +Trc r- -u# � (2)

where V denotes the imaging volume of interest; ( )f rT  denotes 
the macroscopic B0  field inhomogeneity distribution (due to 
system imperfection and object-induced magnetic field pertur-
bation); , ,( )p k p k p kk p x x y y z zT T T=  and t q tq T=  denote the 
sampling location in the high-dimensional (k, t)-space, respec-
tively ( , ,k k kx y zT T T  and tT  are the corresponding sampling 
intervals); and ( )$e  represents the measurement noise (modeled 
as complex white Gaussian). Based on (2), the MRSI problem 
is to recover ( , )trtu  from a set of (k, t)-space measurements 
{ , } ,( )s tk ,

,
p q p q

P Q
1 1= =  also known as the spatiospectral encod-

ings. Coil sensitivity can be included in (2) such that (·)s  be-
comes (·)sc . Without the loss of generality, we ignore the coil 
index in the following discussion. An illustration of the spatio-
spectral imaging problem is shown in Figure 2.

Challenges for MRSI
As shown in (2) and Figure 2, MRSI is a high-dimensional 
imaging problem due to the need to encode and decode 
both spatial and spectral information. Because tT  needs 
to be small enough to satisfy the Nyquist sampling require-
ment along the spectral dimension (i.e., 1–2-kHz band-
width for 3 T and even higher for ultrahigh-field systems), 
it is not realistic to cover extended k-space during each 
readout. Therefore, a standard approach is to acquire all 
the time points needed for a single location or a few k-space 
locations after each excitation and repeat the process many 
times. Furthermore, many FID (t) points (on the order of 
hundreds) need to be acquired to achieve sufficient spectral 
resolutions for accurately differentiating signals from dif-
ferent molecules. As a result, the imaging time for an MRSI 
experiment is long and grows exponentially as the desired 
spatiospectral resolution increases in the conventional Fou-
rier imaging paradigm.

Another fundamental challenge with MRSI is low SNR. 
The MR signal from each molecule is proportional to the bulk 
magnetization M ,z m

0  given by [15]

	 M
KT

N
4,z m

s

m0
2 2'c

= � (3)

where Nm  is the number of polarized spins that can be used to 
generate detectable MR signals for the mth molecule; '  is the 
Planck constant; K is the Boltzmann constant; and Ts  is the 
absolute temperature. As Nm  values for the molecules of inter-
est in MRSI, e.g., metabolites such as NAA, Cr, and Cho and 
neurotransmitters such as glutamate (Glu) and aminobutyric-c  
acid (GABA), are typically three orders of magnitude smaller 
than that for water, much weaker signals from these molecules 
are expected. As a result, a common practice is to prescribe 
large voxel sizes (poor spatial resolution) to maintain sufficient 
SNRs within a clinically feasible scan time. 

A related important issue (which is often less discussed) 
is the large dynamic range for signals from different molec-
ular components due to their concentration differences. 
An outstanding example is the strong nuisance water and 
subcutaneous lipid signals in 1H-MRSI, which can signifi-
cantly affect our ability to reliably reconstruct and quan-
tify metabolite signals of interest. Therefore, strong prior 
information is needed to address the dimensionality, SNR, 
and dynamic range challenges to enable fast high-resolution 
high-SNR MRSI for practical applications. The well-estab-
lished chemical and physical knowledge for the spectro-
scopic signals and advanced data-driven machine learning 
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FIGURE 1. An illustration of chemical shift and the resulting frequency 
distribution. (a) The electron orbiting around the nucleus (denoted by the 
arrow on the circle) can be viewed as a small current, which generates 
a magnetic moment en  that opposes the main magnetic field ,B0  thus 
perturbing the magnetic field experienced “locally” by the nucleus and 
generating a small frequency shift. (b) The resonance structure of the 
molecule NAA (from quantum mechanical simulation) as a result of the 
chemical shift phenomenon. 
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tools to leverage this knowledge present new opportunities 
to tackle these challenges.

Physics-based spatiospectral priors
Strong physics-based priors can be imposed on ( , )trtu  for in 
vivo MRSI based on extensive studies on the signal charac-
teristics of the molecules of interest. Specifically, each time/
frequency point does not need to be treated as an indepen-
dent unknown during the imaging process. Given that there 
are only a finite number of frequencies originating from 
nuclear magnetic resonance-sensitive molecules in vivo [4], 
one straightforward choice is to model the signals as a linear 
combination of complex exponentials, each capturing a par-
ticular frequency

	 ( )t c ek
t

k

K

1

kt = b

=

-/ � (4)

where a ibk k kb = +  is a complex coefficient modeling both 
the decaying behaviors of FIDs and the frequency values. 
While this model has often been used in the analysis of solu-
tion MR data in chemistry studies [11], [16], its utility in in vivo 
MRSI has been limited because of the following:
1)	 Each molecule can have a number of frequency peaks, and 

there are many different molecules that can be simultane-
ously detected; thus, K can be large, making this constraint 
less effective, especially for 1H-MRSI.

2)	 The frequency components from the same molecule have a 
strong dependence according to quantum mechanics (QM) [4].  

Therefore, a better model for in vivo MRSI data at each 
spatial voxel can be introduced, i.e.,

	 ( , ) ( ) ( )t c t er r / ( ) ( )
m

m

M

m
t T i f t

1

2r r,m m2t z= rd

=

- +)

u / � (5)

where cm  is the molecular concentrations and mz  denotes a 
basis whose Fourier transform is the spectral structure of a 
specific molecule. mz  can be predicted by QM simulations 
provided with the chemical shifts and J-coupling constants 
for a particular molecule (from a chemical database), and it 
is experiment independent. T ,m2

)  and fmd  are experiment-
dependent and molecule-specific apparent relaxation pa-
rameters and additional frequency shifts. As can be seen, 
the model order reduces from K (the number of frequencies) 
to M (the number of molecules), a significantly smaller de-
grees of freedom (DOF). 
While one can attempt to directly estimate ( ), ( ),c Tr r,m m2

)  
and ( )f rmd  from the noisy and often limited ( , ),s tk  the 
strong nonlinearity of the estimation problem requires a 
high SNR that is usually not available for in vivo MRSI, 
thus limiting the achievable spatial resolution. However, the 
physics-based model in (5) underlies the inherent variations 
of spectroscopic signals that motivate the development of 
low-dimensional modeling and machine learning approach-
es to enable better tradeoffs in speed, resolution, and SNR 
(SRS) for MRSI. We review these developments in the fol-
lowing sections.
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FIGURE 2. An illustration of the imaging problem with MRSI. Left: The desired high-dimensional spatiospectral function is in the ( , )fr  domain where 
we aim to recover high-resolution spectra at each voxel. Right: Data are acquired in the ( , )k t space-  where FIDs are sampled for individual k space-  
locations. This imaging problem is inherently higher dimensional than conventional MRI, where only k space-  is sampled. Furthermore, the signals from 
molecules of interest (e.g., NAA, Cr, Cho, etc.) are three orders of magnitude weaker than water (plots on the top of the middle column), making the 
problem more challenging. Glx: glutamate + glutamine; mI: myoinositol. 
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Subspace models
Under physiological conditions, the parameters ,cm  ( ),T r,m2

)  and 
( )f rmd  have values in a narrow range (e.g., ),T 30 100 ms,m2 + -)  

and M is usually small, i.e., 10–15 for in vivo 1H-MRSI. There-
fore, the physiologically meaningful high-dimensional FIDs/
spectra we acquired should reside in or close to a low-dimen-
sional space. One approach to exploiting this low dimensional-
ity is to approximate the high-dimensional ( , )trtu  using the 
partial separability (PS) model [7], [8], [17]

	 ( , ) ( ) ( )t u v tr rl
l

L

l
1

t =
=

u / � (6)

which represents the FIDs/spectra at individual voxels as 
linear combinations of a small set of basis functions { ( )},v tl  
and thus, in a low-dimensional subspace. The PS model leads 
to low-rank structures for the discretized representation of 

( , ),trtu  which has been used for denois-
ing [18] or superresolution reconstruction 
[19]. Such a low-rank filtering approach 
requires the joint estimation of both the 
spatial coefficients { ( )}u rl  and subspace 
bases { ( )}v tl  (subspace pursuit). Subspace 
pursuit often requires relatively high-SNR 
data, which is well beyond that of in vivo 
MRSI data acquired using accelerated acquisition schemes. 
Alternatively, we can leverage physics-based priors to pre-
learn { }vl  from high-SNR training data and transform the 
MRSI problem into the recovery of { },ul  which is signifi-
cantly lower dimensional than ( , ),trtu  thus enabling more 
flexible designs of data acquisition and physics-motivated 
low-rank reconstruction to address the SRS challenges. We 
will focus on this type of reconstruction method in this re-
view, and more detailed discussions on data acquisition can 
be found in [20], [21], [22].

While subspace learning has been well studied in machine 
learning [23], the unique physical properties of each FID allow 
for unique training data generation and learning strategies [8]. 
More specifically, we can draw samples from prespecified dis-
tributions of ,cm  ,T ,m2

)  and fmd  and synthesize a large number 
of FIDs from which the subspace structure can be determined, 
e.g., through principal component analysis, independent com-
ponent analysis, or other dimensionality reduction techniques. 
The parameter distributions can be specified using literature 
data with empirical distribution assumptions (e.g., Gaussian 
distributions with lower and upper bounds) [24], [25]. In addi-
tion, spectral fitting using (5) or its variants can be applied to 
experimentally acquired high-SNR training data to extract 
empirical distributions of the molecular parameters [8], [12] 
or to supplement the synthetic data. The subspace learned this 
way incorporates strong physics prior; captures the inherent 
molecular spectral features of interest; and is less susceptible 

to experimental artifacts than a direct appli-
cation of dimensionality reduction to noisy 
experimental data.

Nonlinear manifold models
Linear subspace models have been dem-
onstrated to be highly effective and en-
able flexible sampling of (k, t)-space for 

the determination of spatial coefficients. Their effectiveness 
degrades when the range of spectral parameters increases, 
which motivates more general models. This is illustrated in 
Figure 3. We generated spectra of Glu with varying ranges 
of c, ,T2

)  and fd  and compared the representation accuracy 
between linear subspace and a nonlinear manifold model [26]. 
As can be seen, as the ranges of T2

)  and fd  increase, the ap-
proximation errors of subspace increase, as shown by the er-
ror spectra in black, while the nonlinear model maintains high 
accuracy for the same order. Therefore, learning a nonlinear 

(a) (b)

5 Hz df
5 Hz Line Broadening

10 Hz df
10 Hz Line Broadening

5 4 3 2 1 0 5 4 3 2 1 0
ppmppm

Ground Truth Subspace/Manifold Error

FIGURE 3. Linear versus nonlinear low-dimensional models of spectroscopic signals. (a) An approximation of the Glu spectra using subspaces learned 
from an ensemble of simulated data. The accuracy reduces as the ranges for the spectral parameters used to generate the training and testing data in-
crease (from the top to the bottom rows). (b) An approximation by the nonlinear model learned from the same data, with the same model order of three. 
The color coding is specified in the figure legend. 

Learning a nonlinear 
low-dimensional model 
can offer a more efficient 
representation of general 
in vivo MR spectra.

Authorized licensed use limited to: University of Illinois. Downloaded on May 23,2023 at 04:29:28 UTC from IEEE Xplore.  Restrictions apply. 



106 IEEE SIGNAL PROCESSING MAGAZINE   |   March 2023   |

low-dimensional model can offer a more efficient represen-
tation of general in vivo MR spectra. As large quantities of 
training samples can be generated using the physics-based 
method described previously, data-driven learning of nonlin-
ear low-dimensional representations is possible, leveraging 
recent progress in deep learning.

Nonlinear dimensionality reduction has been used for clas-
sifying single-voxel spectroscopy (SVS) data and demonstrat-
ed superior performance than linear dimensionality reduction 
[27], [28]. But these works did not focus on representation 
accuracy and did not consider the use of low-dimensional 
representations for image reconstruction. A deep autoen-
coder (DAE)-based approach was proposed recently to learn 
an accurate low-dimensional representation for ensembles of 
spectroscopic signals (FIDs) [26]. Denoting each voxel FID 
as a vector ,t  an encoder (·; )E ei  and a decoder (·; )D di  
network can be learned such that a low-dimensional embed-
ding encoded from (·)E  can accurately reconstruct ,t  i.e., 

; ;( ( ) ).D E e d.t t i i  
The idea has been extended to multi-echo time (multi-TE) 

spectroscopic data [29], and the improved representation effi-
ciency of learned nonlinear low-dimensional models over lin-
ear subspace models has been shown for not only 1H but also 
other nuclei data [25], [26], [29]. Figure 4 provides a conceptu-
al illustration of physics-model-based training data generation 
incorporating QM priors and empirical distributions of spec-
tral parameters and data-driven learning of low-dimensional 
representations for high-dimensional spectroscopic signals. 
These learned low-dimensional models enabled new ways to 
formulate the recovery of the high-dimensional image func-
tion (as well as spatiospectral reconstruction) from noisy or 

often sparsely sampled spatiospectral encodings, which are 
reviewed in the next sections.

Spatiospectral reconstruction using learned models

Subspace-based reconstruction
Using the discretized representation, i.e., representing ( , )trtu  
at a set of sampled locations { , } ,tr ,

,
n q n q

N Q
1=l l

l
 the subspace model 

in (6) can be rewritten in a matrix form UVt = t  [17], where 
CU N L! #  and CV L Q! # lt  are matrix notations for the spatial 

coefficients and learned subspace. Accordingly, the recon-
struction problem can be formulated as estimating the un-
known spatial coefficients (with a significantly lower number 
of DOF than )t  [17]

	 ( , )argmin RU d FB UV U V2
2

U
9 mX= - +t t t^ h" , � (7)

where B captures the B0  field inhomogeneity-induced linear 
phases (i.e., );eB ( )

nq
i f t2 rn q= Tr

l
l  F is a spatial Fourier transform 

operator; and X  denotes a (k, t)-space sampling operator. Note 
that ql can be different from q as truncated FID sampling can 
be easily implemented. The vector d contains all the noisy spa-
tiospectral encodings. (·)R  is a regularization that can be used 
to impose spatial constraint on U or the images at an individual 
FID time point, e.g., an edge-preserving penalty [20] or spar-
sity constraint [30], and m  is the regularization parameter. The 
final reconstruction tt  can be formed as .UVt =t t t  This joint 
subspace and spatial constrained reconstruction has achieved 
impressive improvement in resolution, SNR, and speed for 
both 1H and X-nuclei MRSI in brain and muscle applications 
over traditional methods [9], [20], [31].
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FIGURE 4. Physical-model-driven data generation and low-dimensional representation learning for MRSI data. Both QM-simulated resonance structures 
of individual molecules (metabolite basis, top of the left column) and spectral parameters sampled from empirical distributions (from literature values 
or experimental data, bottom of the left column) are fed into a spectral fitting model to generate a large quantity of training data ( ).X  These data can be 
either formed into a Casorati matrix from which a set of basis can be estimated (upper branch, linear subspace model) or used to train a DAE to capture a 
nonlinear low-dimensional manifold where high-dimensional spectroscopic signals reside. 
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It is possible to extend (7) to jointly update both U and 
V [30], which is a special form of low-rank matrix recovery. 
These types of generic low-rank-model-based methods have 
been successful in several MRI applications, e.g., dynamic 
imaging [32], [33], MR relaxometry [34] and hyperpolar-
ized 13C-MRSI [35], where SNR is not a major bottleneck. 
However, they do not work well when using MRSI data with 
very low SNRs for subspace pursuit and are not flexible for 
incorporating future development of physics-motivated sub-
space learning. Substantial bias may be present in the recon-
structed spectra due to errors of subspace estimation from 
very noisy data, especially for less dominant but important 
spatiospectral features [20]. A comparison of reconstruc-
tions from simulated MRSI data produced by direct low-
rank filtering and using a learned subspace is shown in 
Figure 5 to demonstrate this effect. Locally low-rank mod-
els offer better representation accuracy and capability than 
global low-rank models [33], [34], [36], [37] but are still lim-
ited by the SNR challenge and subspace estimation errors in 
MRSI applications.

Nonlinear manifold constrained reconstruction
As discussed previously, generalizing the linear subspace 
model to nonlinear low-dimensional manifold models can 
enable more accurate approximation of general spectroscopic 
signal variations, thus reducing potential modeling errors for 
diverse physiological and pathological conditions. A key is-
sue is how to integrate such a learned nonlinear model into 
the reconstruction formulation. One approach is to incor-
porate a “network representation error” penalty term into a 
regularized reconstruction formalism

	
C{ }

( )

argmin

R

d FB n n
n

N

2
2

1 2
2

1

2

9t t

t

tm

m

tX= - +

+

-
t

=

t ^ h/
�

(8)

with C )($  representing the learned DAE ·; ; .( )( )D E e di it t  
While the first term imposes data consistency the same as pre-
vious formulations, the second term enforces the prior that the 
desired FIDs of interest at each voxel, ,nt  should yield small 
representation errors for the learned low-dimensional model 
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FIGURE 5. Reconstructions (simulated data) with and without using a prelearned subspace. The first column shows metabolite maps (Cr) from different 
cases [rows 1–4: 1) gold standard, 2) Fourier reconstruction, 3) low-rank filtering, and 4) reconstruction using a learned subspace], and the subsequent 
columns show localized spectra from two voxels. Direct low-rank filtering (jointly estimating the spatial coefficients and subspace) produced significantly 
larger errors (black curves) than learned subspace, especially in small features with a distinct spectral pattern (green dot). Relative 2,  errors were 
included (err.) for quantitative comparison. 
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captured by C. If C  reduces to a linear network, this regular-
ization can be viewed as penalizing the error for projection 
onto a learned subspace, a softened version of the explicit sub-
space model in (7)–(12). (·)R  is an additional regularization 
term that can be flexibly incorporated and used to impose 
spatial constraints, either handcrafted or learned (see the next 
section for more discussion). 

Similar to the reconstruction strategies discussed previously 
for the learned subspace, because we kept the forward encod-
ing model and the learned C  is imposing a prior on the underly-
ing true FIDs, once pretrained, C can be used synergically with 
different acquisition designs. This is an important difference 
with another popular unrolling approach in which an unrolled 
network is motivated from but does not exactly solve a regu-
larized least squares problem (the regularization term cannot 
be explicitly defined) and the network typically needs to be 
retrained for different acquisition schemes. However, the dis-
advantage of actually solving the optimization problem in (8) 
is the need to invert the deep network (involving backpropaga-
tion) for each reconstruction, and thus, higher computational 
cost compared to the trained end-to-end mapping network that 
requires only forward pass at the inference stage. Figure 6 pro-
vides an example to demonstrate the superior denoising recon-
struction performance by using the learned nonlinear model 
(over linear subspace) for an in vivo 1H-MRSI data.

To effectively take advantage of the learned nonlinear 
model without significantly compromising computational 
efficiency, projected gradient descent (PGD)-based algo-
rithms can be considered. For example, the recently proposed 
RAIISE (Learning Nonline-Ar Representation and Projec-
tion for Fast Constrained MRSI Reconstruction) method [38] 
seeks to learn a projection network to extract low-dimension-
al embedding from high-dimensional noisy FIDs and use 
it in an accelerated PGD algorithm. More specifically, the 
network-constrained reconstruction can be formulated as

	 { } ( )argmin Rd FB
( )D

2
2

Z
9t t tmX= - +

!t

t � (9)

where ( ; )D Z d!t i  enforces the prior that the underly-
ing signals should yield a low-dimensional representation 
Z (residing on a low-dimensional manifold) and (·; )D di  
is the decoder from the representation network C. The 
PGD update step can be realized via a projection operator 

(·; ) )( ) ( ; ,D PProj dp$ | i i=  where (·)P  is a learned projector 
that recovers the latent representations from noisy FIDs and 
is trained as follows:

	
( ( ; ), ( ; ))

( , ( ( ; ); ))

argmin
J

E P

D P

1 x x

x x

p
j

J

j e j p

j j p d

1

2

1
p

i i i

i ime

e=

+

i
=

t u

u

/
�

(10)

where x j  and x ju  are individual train-
ing FIDs and their noisy counterparts, 
respectively. A range of SNRs were 
considered to generate x ju  for training 

(·; )P pi  parameterized by ,pi  ,1e  and 
2e  assess the “projection” errors for the 

low-dimensional features as well as the 
full signals, respectively, and m  balanc-
es the two losses. The encoder (.)E  and 
decoder (.)D  are from the representa-
tion network discussed previously. The 
projector can be trained with different 
structures adapted to the data character-
istics (single or multi-TE FIDs), and 1e  
and 2e  can be chosen separately. It has 
been demonstrated that by leveraging 
GPU acceleration, RAIISE achieved 
similar or slightly better denoising per-
formance for both single-TE and multi-
TE MRSI with dramatically improved 
computation time compared to directly 
minimizing C ( )n n 2

2t t-  in the regu-
larization formulation of (8) [38].

Integrating learned spatial and 
spectral priors
While the effectiveness of learned spec-
tral priors incorporating both physics 
modeling and machine learning has 
been well documented, the investigations 

Noisy

Linear
Subspace

Nonlinear
Manifold

Cr
NAA

NAA Cr

5 4 3 2 1 0
ppm

0 01 0.7

FIGURE 6. A set of in vivo results from reconstructions using learned subspace (linear subspace) 
and nonlinear models (nonlinear manifold). The latter produced metabolite maps with less noise 
contamination and better recovered tissue-dependent features (as indicated by the red arrows) as well 
as spectra with sharper line shapes (third column, blue arrows). A more thorough quantitative analysis 
without a gold standard can be found in [29]. 
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into learned spatial priors have been scarce. One of the major 
challenges is the difficulty in acquiring high-resolution high-
SNR MRS images as the “gold standard” for either supervised 
training as commonly done in deep learning-based MRI re-
construction or self-supervised representation learning. One 
solution is to simulate spatial distributions of spectra by com-
bining anatomical images and metabolite concentrations and 
line shapes from tissue/brain-region-specific literature values 
and/or experimental data. For example, a dense U-Net trained 
completely by synthetic data was used to produce high-resolu-
tion metabolite maps from the low-resolution counterpart plus 
a T1-weighted MR image [10]. The main issue, however, is that 
the synthetic spatial distributions of metabolites may not cap-
ture sufficient variations in real data, especially those related 
to different pathological conditions.

An alternative approach is to construct generic network-
based image representations that do not require high-SNR 
high-resolution data for the supervised training of image map-
ping. Recently, efforts have been made to combine subspace 
constraint and generative network-based image representation. 
The work in [39] used deep image prior (DIP) to model the 
spatial function U as ( ; ),fU Z i=  where (·; )f i  is a network 
with trainable parameters ,i  and the reconstruction in (7) is 
then changed to

	 ( ; ) .argmin fd FB Z V 2
2

9i iX= -
i

t t^ h" , � (11)

With a chosen network architecture (e.g., U-net in [39]), the 
parameter i  is estimated from noisy data, with Z being an 
anatomical image. This method assumes that the network 
can account for the contrast difference between the desired 
spatial coefficient maps and an MR image to leverage high-
resolution anatomical prior information. However, DIP can 
overfit noise by allowing all the network parameters to be 
updated, and with an anatomical image being the input, 
the network may introduce undesirable bias into the spatial 
reconstruction. Thus, choosing a proper early stopping cri-
terion to balance the two factors may be challenging [40]. 
Another strategy is to leverage a generative network model 
pretrained using anatomical multicontrast MRIs with suf-
ficient representation power for images with different con-
trasts and solve for the latent variable Z instead of network 
parameters i  during reconstruction. As Z is usually lower 
dimensional than the voxel-wise image representation, noise 
reduction is possible. For example, a generative adversarial 
network (GAN)-regularized subspace reconstruction can be 
formulated as [41]

	 , ( ; )argmin fd FB U U ZVU Z
, F2

2 2

U Z
9 imX= - + -t t t^ h" , 		

� (12)

where ( ; )f Z i  is a pretrained GAN (e.g., using T1 and T2-
weighted images). This problem can be solved using alternating 
minimization, and the step for updating Z is a GAN inversion 
problem, which is an active research topic at the intersection 
of inverse problem and deep learning. While different GAN  

designs can be considered for (·; ),f i  StyleGAN combined 
with intermediate layer optimization has been shown to 
achieve the best inversion performance [42]. A more compre-
hensive review on this topic can be found in [43]. 

One important feature of these reconstruction methods is 
the integration of the physical spatiospectral encoding model 
and deep learning priors, in contrast to training an end-to-end 
network for direct mapping from noisy data/images to recon-
structions. As a result, the pretrained model can work for any 
sampling pattern, sequence parameters, and different resolution 
and SNRs, without the need for retraining for each case. Mean-
while, the computation time required for the network param-
eter update or GAN inversion is one limitation/consideration.

Dynamic MRSI using learned models
Typical MRSI experiments produce spatially resolved spectra 
that reflect a “steady-state” molecular profile, which may not 
be sufficient to capture the complex in vivo metabolic activities 
that are time varying in nature. To this end, dynamic MRSI, by 
introducing an additional time axis (world clock) and produc-
ing time-resolved spectra, offers the opportunity to noninva-
sively visualize metabolism in real time and thus significantly 
richer biological insights. For example, dynamic 31P-MRSI has 
been used to study depletion and resynthesis of phosphocre-
atine (PCr) during exercise–recovery or ischemia–reperfusion 
to assess mitochondrial function in the muscle [44], [45]. Dy-
namic 13C- and 2H-MRSI, using isotope-enriched endogenous 
molecules, has become popular to map the imbalance between 
oxidative phosphorylation and glycolysis pathways in cancer 
applications [46], [47]. 

Figure 7 provides an illustration for such a high-dimen-
sional imaging problem. As one would expect, introducing an 
additional temporal dimension to the already SNR-, speed- 
and resolution-limited modality further exacerbated these 
challenges. Therefore, existing studies have been limited by 
insufficient spatial and/or temporal resolutions, resulting in 
inaccurate characterization of heterogeneous metabolism. 
Low-dimensional models with learned priors offer a promis-
ing path to addressing these challenges, which we review in 
this section.

Low-rank tensor models with learned subspaces
To tackle the increased dimensionality problem, the PS model 
in (6) can be generalized to represent new image functions of 
interest ( , , ),t Trtu  with T denoting the additional time dimen-
sion ( , , , )T N1 2 Tf=  [9], [49]

	 ( , , ) ( ) ( ) ( )t T c u v t g Tr r, ,m l s
s

S

l

L

m

M

m l s
111

t =
===

u /// � (13)

where NT  is the total number of time frame; { ( )}g Ts s
S

1=  de-
note the basis functions that span the space of temporal varia-
tions; and { }c , , , ,

, ,
m l s m l s

M L S
1=  are the model coefficients. Equation 

(13) implies a low-rank tensor structure (generalized from the 
low-rank matrices) that exploits the spatial–spectral–temporal 
correlations in dynamic MRSI data with { }c , ,m l s  referred to as 
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the core tensor [49], [50]. M, L, and S are the respective model 
orders (typically much smaller than NT and Q). Similarly as the 
spectral basis { ( )}v tl  can be learned by incorporating a phys-
ics-based model, the temporal basis { ( )}g Ts  can be predeter-
mined from temporal training data [9], leaving only { ( )}u rm  
and { }c , ,m l s  as the unknowns in the imaging problem. Equation 
(13) can be further adapted into a molecule-dependent tensor 
model [51]

	 ( , , ) ( ) ( ) ( ) ( )t T s c v t g Tr r r, , , ,m
m

M

m l s
s

S

l

L

m l m s
1 11

mm

t =
= ==

u e o/ // � (14)

where M is the number of molecules of interest; Lm  and Sm  are 
the spectral and temporal model orders of the mth molecule;  

( )c r, ,m l s  combines the core tensor coefficients and molecule-
dependent spatial basis and ( )rsm  incorporates spatial priors. 
This model offers up to two orders-of-magnitude reduction in 
the DOF [51] compared to the canonical truncated Fourier se-
ries representation, and thus, significantly improved resolution 
and SNR tradeoffs. Furthermore, the model in (14) provides 

the flexibility to incorporate molecule-specific physics- and 
biochemistry-based priors [44]. 

The spectral basis can be obtained as described in the 
“Subspace Models” section, and the temporal basis can be 
derived by exploiting existing physiological and metabolic 
knowledge. More specifically, the temporal variations of the 
spatially resolved spectra are often the results of metabolic 
processes in living organs, which can be approximated by 
a set of parametric curves specified by some time constants 
[51], e.g., the exponential recovery of PCr after ischemia or 
exercise. The variable ( )s rm  can be used to impose molecule-
specific spatial support and distribution priors from available 
high-resolution reference images, further improving the per-
formance (see [51] for more details). Accordingly, the dynam-
ic MRSI reconstruction can be formulated as follows:

	 A ({ }){( ) }argmin Rd Cs C V GC
{ }

m m m m m m2
2

C
9 7 7 m= - +t 		

� (15)

where A  describes the forward model as discussed previously 
(capturing the field inhomogeneity effects and spatiospectral 
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encoding process), and , ,C V Gm m m  and sm  are tensor forms of  
{ ( )},{ ( )},{ ( )}c v t g Tr, , , ,m l s m l m s  and { ( )},s rm  respectively, where  

, , ,C C CC V Gm
N L S

m
L Q

m
S Nm m m m T! ! !# # # #l  and .Csm

N 1! #   
9  and 7  denote column-wise and tensor products. The al-
gorithm in [51] first performed a series of reconstruction of 
time-dependent spatial coefficients (using per-estimated ),Vm   
i.e., { ( )},Tc ,m lt  and then fit the temporal variations to biochem-
ical models for each molecule to determine .Gm  Finally, (15) 
was solved using an estimated spectral and temporal basis. 

({ })R Cm  imposes regularization to encourage spatial smooth-
ness or sparsity.

Considering the unique properties of the dynamic spec-
troscopic signals, (14) can be reformulated by imposing strict 
separability between the spatiospectral and spatiotemporal 
variations [48], i.e.,

	 ( , , ) ( ) ( ) ( ) ( )t T a v t b g Tr r r, , , ,m l
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where a ,m l  and b ,m s  are the new spatial coefficients for the spec-
tral and temporal bases, respectively. With this model, the num-
ber of unknowns at each voxel is reduced from L Sm

M
m m1 #R =  

to ( ).L Sm
M

m m1R +=  This does not necessarily increase the 
modeling error for dynamic MRSI specifically because it is ac-
curate to assume all FID/frequency points corresponding to the 
same molecule should share the same dynamics at each voxel. 
Using matrix notations for a ,m l  and ,b ,m s  a similar regularized 
least squares problem to (15) can be formulated.

Combining low-rank tensor and manifold modeling
As in the “static” MRSI case, it is straightforward to incorpo-
rate nonlinear manifold constraints on spectral variations into 
the reconstruction problems in (15) or (16). For example, the 
learned network can be used to regularize individual FIDs at 
every time point, i.e.,
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This formulation assumes that the desired FIDs at each voxel 
and each time point (i.e., ),n Tt  reside on the same learned 
manifolds and can be solved using alternating minimization. 
Note that the ensemble temporal variations are still captured 
by the linear subspace model. To further exploit the prior in-
formation available along individual dimensions, the subspace 
model for temporal variations can be generalized to nonlinear 
manifolds as well. To this end, the separability representation 
in (16) offers the additional flexibility to learn and incorporate 
low-dimensional manifold constraints on molecule-specific 
temporal dynamics. Specifically, a set of molecule-dependent 
DAEs, denoted as G ( ),m $  was trained (using both synthetic and 
experimental dynamic data) and integrated into the following 
low-rank tensor-based reconstruction problem [48]:
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where Am  and Bm  are matrix forms of { ( )}a r,m l  and { ( )}b r,m s  
with CAm

N Lm! #  and .CBm
N Sm! #  % denotes the operation 

defined in (16), and 1m  and 2m  are regularization parameters 
controlling the tradeoff between data consistency and mani-
fold (spectral and temporal) representation errors. Additional 
regularization terms on the spatial distribution of a ,m l  and b ,m s  
may also be included. The problem in (18) can be solved via al-
ternating minimization of Am  and ,Bm  which also involves the 
backpropagation of the learned networks. Details of the exact 
algorithm can be found in [48]. 

While parallelizable, the reconstruction can be com-
putationally demanding due to the need to invert multiple 
networks for signals at many time points. The formulation 
used in RAIISE (described in the “Nonlinear Manifold 
Constrained Reconstruction” section) may be helpful in 
addressing this issue. A set of denoising dynamic 2H-MRSI 
results is shown in Figure 8 to illustrate the capability of the 
low-rank tensor-model-based reconstruction using learned 
spectral and temporal subspaces. Comparisons of estimated 
metabolite maps, spatially resolved spectra, and temporal 
dynamics from standard Fourier reconstruction, direct low-
rank tensor truncation, and learned-subspace-based meth-
ods were made.

The motion issue
The formulations discussed previously do not fully consider 
motions (involuntary or voluntary) during the time window 
when the dynamic metabolic activities are monitored. This 
may be an issue when the imaging time is long (e.g., more than 
just a few minutes) and/or the organ of interest is more suscep-
tible to motion. Prospective and retrospective motion tracking 
and correction may be used to mitigate its effects [22], [52]. 
Another possibility is to incorporate motion models into the 
T  dimension, which might lead to an increased model order 
and degradation in the accuracy of capturing metabolite dy-
namics. A new dimension can be introduced to represent dif-
ferent motion phases for motion-resolved dynamic MRSI using 
a higher order tensor model [50].

Spectral quantification using learned models
With the ability to reconstruct high-SNR high-resolution 
spatiotemporal functions from noisy data, a key remaining 
challenge is to extract and quantify individual molecular com-
ponents from the spatially resolved FIDs or MR spectra, re-
ferred to as the spectral quantification problem. An apparent 
choice is to use a parametric model similar to (5) and perform 
parameter estimation voxel by voxel, e.g., through a nonlinear 
least squares (NLLS) fitting [53]
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where ntt  is the reconstructed FID at the nth voxel, and 
( ; )h tq bl  is a molecule-independent modulation function to 

account for additional spectral distortion, e.g., due to resid-
ual intravoxel B0  inhomogeneity, eddy current effects, etc. 
A Gaussian line shape function is often used for h(t). Com-
monly used NLLS solvers such as quasi-Newton methods or 
variable projection (VARPRO) [53] can be used to solve (19), 
but the problem is highly nonlinear and sensitive to noise and 
model mismatch. It can be time consuming to solve these vox-
el-wise NLLS equations for high-resolution acquisitions and 
computationally expensive to incorporate spatial constraints. 
Learning-based methods have been recently proposed to ad-
dress these challenges.

Following a similar motivation from (5) for constructing 
the subspace model, a union-of-subspaces (UoSS) approach 
was described for spectral quantification [12]. Specifically, 

the FID signals corresponding to individual molecular com-
ponents can be assumed to reside on their own subspaces 
spanned by { ( )},v tlm  i.e.,
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The basis { ( )}v tlm  (Vm  in matrix form) can be learned using 
the strategy described in the “Physics-Based Spatiospectral 
Priors” section with ensemble molecule-specific FIDs, either 
synthesized or obtained from an initial NLLS estimation of 
the spectral parameters from the reconstruction ( , ).r ttt  Quan-
tification can then be done by solving a UoSS fitting
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where Um  is a molecule-specific spatial coefficient that can 
be converted into concentration values (see [12] for more 
details). This formulation offers stronger robustness against 
model mismatch owing to the representation power of the 
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(Subspace+Manifold) [48]. For each method, maps of three metabolites (columns 1–3), localized spectra at a particular time point (fourth column) and 
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subspace model at individual voxels and less sensitivity to 
noise by transforming the nonlinear fitting into low-dimen-
sional linear problems. It also allows for the easier incorpo-
ration of spatial priors on individual components through 

.( )Rm $  The extension of this UoSS approach to “local” sub-
spaces has also been recently explored [54]. This method 
was motivated by the linear tangent space concept in smooth 
manifold recovery, which allows a further reduction in the 
DOF in .Um

Going beyond subspace models, deep 
convolutional neural networks (CNNs) 
have been used to learn a nonlinear map-
ping from noisy FIDs/spectra to spectral 
parameters [13], [55] or clean line shape-
corrected metabolite-only spectra [14], [24] 
for simplified quantification. A self-super-
vised training strategy was proposed in 
[13] where a CNN-based regressor C (·; )i  
(where i  is the network parameter) was 
concatenated with a physics-based parametric model ( ; )f t a  
to resynthesize spectra from the parameters produced by the 
CNN. Errors between the resynthesized and original spectra 
were minimized, which can be formulated as the following 
optimization problem:

	 C( ; ( ; ))argmin f t 2
2t ti i= -

i

t t t � (22)

where the spectral parameter a  was replaced by the CNN 
output. This strategy does not require ground truth values for 
training, which are difficult to obtain from practical in vivo 
MRS/MRSI data. Processing time reduction was emphasized 
rather than estimation accuracy compared to the standard 
voxel-wise fitting method. Generalizability may be an issue if 
there are spectral distortion and contamination not captured by 
the training data. 

Since a parametric model is still used to resynthesize the 
final fits, the parameter estimation accuracy still needs to be 
carefully investigated in the presence of model mismatch. 
Instead of training a network that directly maps noisy data to 
spectral parameters, [24] proposed to learn a CNN that is able 
to extract metabolite-only line shape-corrected spectra from 
noisy data with macromolecule and baseline “contaminations” 
and line shape distortion. Estimation of metabolite concentra-
tions from the corrected metabolite-only spectra can then be 
easily done using a linear least-squares fit to a metabolite basis. 
All these methods are voxel wise and thus difficult to incor-
porate spatial constraints. The learned mapping can be sensi-
tive to changes in acquisition parameters, such as the spectral 
bandwidth, resolution, SNR, etc.

Future directions
Recent advances in computational MRSI using physics-based 
machine learning have demonstrated a good potential for ad-
dressing high-dimensional MRSI reconstruction and quanti-
fication problems, achieving impressive performance in the 
combination of SRS and robustness to system imperfection and 

practical experimental conditions. These “software” advances 
are highly synergistic with the on-going “hardware”/instru-
mentation developments, e.g., higher field systems; better field 
inhomogeneity monitoring and shimming devices; and more 
sensitive coils. We expect to see that synergistic developments 
in advanced data acquisition and processing will significantly 
enhance the capability and clinical utility of next-generation 
MRSI technologies.

One area that will see more innovations 
is MRSI data processing using deep learn-
ing networks trained using high-resolution 
images. Currently, the lack of high-quality 
MRSI training data makes supervised 
training, commonly used in learning-based 
image reconstruction, not directly applica-
ble. One potential direction is to construct 
an MRSI atlas from highly dedicated exper-
imental data (with many averages followed 
by artifact correction and registration), to 

which statistical variations in concentrations, linewidths, and 
other spectral parameters as well as geometry may be intro-
duced for synthetic MRSI data generation as was done in 
[10], [48] but with more realistic variations. Another potential 
direction of pursuit is developing learning strategies that do not 
require companion high-SNR/“clean” data. 

Unsupervised and self-supervised learning strategies have 
gained attraction for image denoising and reconstruction appli-
cations [56], [57], [58], [59]. These formulations may offer some 
inspiration for learning and using models with only noisy MRSI 
data. As water spectroscopic images are often acquired in an 
MRSI scan, e.g., through a separate or simultaneous nonwater-
suppressed acquisition [21], [22], approaches to leverage these high-
dimensional multicontrast water images beyond just extracting B0  
and B1 maps to introduce effective spatial constraints should be 
of great interest. The generative-model-based methods discussed 
in the “Integrating Learned Spatial and Spectral Priors” section 
represent some initial attempts, while more work can be done.

While the topics related to spatial–spectral–temporal 
reconstruction have been the main emphasis in this review, 
we note that spectral quantification as a critical step toward 
quantitative MRSI for clinical and basic science applications 
remains under investigated. A number of sophisticated para-
metric models have been presented, mostly for SVS, but they 
often yield significant voxel-to-voxel estimation variations and 
are computationally demanding for high-resolution data. The 
notion of voxel-by-voxel fitting should continue to be chal-
lenged by new ways to integrate spatial constraints with deep 
learning-based solutions. In dynamic or multidimensional 
MRSI scenarios, quantification is usually done for individual 
points along time or other additional dimensions (e.g., different 
TEs). Novel methods for joint quantification, e.g., models and 
algorithms that simultaneously fit the time-resolved spectra in 
dynamic MRSI (with a reduced number of parameters), should 
be developed with potentially significant practical impact.

We have focused this review on MRSI, but the methodolo-
gies discussed here are also adaptable to other high-dimensional 

The notion of voxel-
by-voxel fitting should 
continue to be challenged 
by new ways to integrate 
spatial constraints with 
deep learning-based 
solutions.
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spatiospectral imaging problems, where physics-based models 
and/or simulations can be used to describe the signal changes 
from which low-dimensional representations of the intrinsic 
variations may be learned. The authors in [60] proposed to use 
a fully connected feedforward network trained using simulated 
data to perform voxel-wise quantification of PCr concentra-
tion, exchange rate, and other system-related parameters from 
Z-spectra data generated by chemical exchange saturation 
transfer imaging. The learning-based method demonstrated 
advantages in both performance and computational cost. 

Applications of physics-based machine learning to other 
quantitative MRI problems have also been explored (see the 
other reviews in this issue). Similar strategies may also be 
extended to other spatiospectral imaging modalities besides 
MR, e.g., mass spectrometry imaging [61]. Beyond addressing 
the reconstruction and quantitative analysis problems within a 
single modality, we also expect to see more progress in con-
necting and fusing imaging information from different modali-
ties across spatiotemporal scales by integrating physics-based 
modeling and data-driven learning.
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