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We re-examine the model proposed by Alexander et al. (Phys. Fluids, vol. 18, 2006,
062103) for the closing of a circular hole in a molecularly thin incompressible Langmuir
film situated on a Stokesian subfluid. For simplicity their model assumes that the surface
phase is inviscid which leads to the result that the cavity area decreases at a constant rate
determined by the ratio of edge tension to subfluid viscosity. We reformulate the problem,
allowing for a regularising monolayer viscosity. The viscosity-dependent corrections to the
hole dynamics are analysed and found to be non-trivial, even when the monolayer viscosity
is small; these corrections may explain the departure of experimental data from the
theoretical prediction when the hole radius becomes comparable to the Saffman–Delbrück
length. Through fitting, under these relaxed assumptions, we find the edge tension could
be as much as six times larger (∼4.0 pN) than reported previously.

Key words: Stokesian dynamics, thin films

1. Introduction

An understanding of the hydrodynamics of a quasi-two-dimensional fluid interface
coupled to a bulk three-dimensional (3-D) subphase is crucial to modelling the dynamics
of a wide variety of biological systems such as lipid membranes (Stone & McConnell
1995), bacterial biofilms (Petroff, Wu & Libchaber 2015) and algae colonies (Drescher
et al. 2009). One notable theoretical and experimental study of such a system was
conducted by Alexander et al. (2006), who examined the tension-driven closing of a cavity
punctured in a poly(dimethylsiloxane) (PDMS) monolayer situated on a flat water–air
interface. The authors derived an analytical solution for the axisymmetric fluid motion,
predicting that the area of the cavity decreases at a fixed rate that depends only on the
ratio of monolayer line tension to subphase viscosity; by fitting experimental data in a
linear regime of the area versus time plot, they obtained an estimate for the line tension.
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The same authors later reapplied this model along with improved experimental methods
to obtain a more accurate value for the monolayer line tension, which they reported to be
0.69 ± 0.02 pN in Zou et al. (2010).
The reduction of this problem to the fitting of a single parameter hinges on a crucial

assumption: the monolayer viscosity is vanishingly small. Although there is experimental
evidence supporting the claim that the film dynamics is dominated by subphase viscosity
rather than monolayer viscosity (Jarvis 1966; Mann et al. 1995), and although there are
strongly linear regimes in the experimental area versus time data in both Alexander et al.
(2006) and Zou et al. (2010), the data as a whole are visibly nonlinear, especially at later
times when the hole size is small. This indicates that the authors’ assumptions may not
hold as well as they initially believed and that other effects may be playing a role in the
closure process. One potential explanation for the nonlinearity is that monolayer viscosity
decelerates the interface when the hole becomes small.
Here we revisit the theoretical model proposed by Alexander et al. (2006) and amend

it by considering the effects of a regularising monolayer viscosity. This simple change
preserves much of the structure of the problem but introduces some notable differences.
We find that although the bulk equations are unchanged in the axisymmetric case,
the boundary conditions can depend strongly on this monolayer viscosity, especially in
regimes where the cavity radius is small relative to the Saffman–Delbrück length, that
is, the ratio of the two-dimensional (2-D) monolayer and 3-D bulk viscosities. In this
regime, the predicted dependence of cavity area on time becomes noticeably nonlinear,
which affects the fitting of experimental data and consequently suggests that these previous
studies have underestimated the edge tension by roughly one order of magnitude.
We begin with an overview of the physical system and experiments of Alexander et al.

(2006) and introduce our idealised model and its limitations in § 2. In § 3, we formulate the
model mathematically and demonstrate its solution in the annular geometry, focusing on
the case where the outer radius is much larger than the inner radius and analytical solutions
are available. The results of Alexander et al. (2006) are discussed as a limiting case of our
model. We then proceed to compare the results of both models against their experiments
in § 4 and conclude in § 5.

2. Physical system and model

The experimental system of Alexander et al. (2006) consisted of a subnanometer thin
PDMS layer resting on top of an aqueous substrate in a classic Langmuir trough. PDMS
is well-known in the polymer community for its relatively weak intermolecular forces,
leading to a low surface tension and very low surface viscosity (Jarvis 1966). Depending
on the density, the film may separate into coexisting gas and liquid phases; due to the line
tension, these liquid domains tend to be stable and round in shape. The experiments in
Alexander et al. (2006) involved using a platinum wire of diameter 0.13 mm to quickly
puncture liquid domains of characteristic size of approximately 0.01 mm2. The resulting
hole of polymer gas was observed to close up completely over the course of roughly
20 s.
The fluid dynamical model of Alexander et al. (2006) treats the liquid domain and

subphase as a coupled system of fluids governed by the Stokes equations and driven by
line tension. In particular, the liquid polymer domain is taken to be a 2-D incompressible
surface inviscid phase, so that its bulk dynamics are governed solely by a pressure
gradient. Our model relaxes this assumption and considers the liquid phase to be a viscous
Newtonian fluid. Both models are idealised and so neglect a diversity of physical effects

948 A1-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

55
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.550
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that have been observed to play a role in the dynamics of polymer Langmuir films. Some
of these effects include the following.

(i) Cavity polymer concentration and accretion on/evaporation of the edge of the liquid
domain. For polymer Langmuir films, the cavity is not a true vacuum but may
contain a sparse amount of molecules in a gas phase. Assuming no exchange of
molecules between the gas and liquid phases, the relaxation of the interface implies
that the polymer density inside the cavity increases over time. Thus, as the cavity
shrinks, there is potentially a gaseous pressure contribution that slows the interface.
In the experiments of Alexander et al. (2006), the polymer density inside the cavity
was found to be immeasurably small throughout the duration of the experiments.
We hence likewise only concern ourselves with the dilute gas limit in which the
cavity surface pressure vanishes. For non-dilute gases, our model can be modified
in a straightforward manner by assuming an equation of state for the cavity that
relates pressure and concentration of molecules. Mass transfer between phases may
similarly be accounted for with a generalisation of our model.

(ii) Electrostatic effects. The intermolecular forces between polymer molecules give
rise to a line tension between the liquid and gas phases, which Alexander et al.
(2006) identify as the primary driver of motion. The two phases in general
have different electrostatic potentials, and this may cause some distortion of the
domain. For the domain sizes considered by Alexander et al. (2006), the effect of
long-range electrostatic interactions is primarily to renormalise the line tension. The
leading-order correction is logarithmic, suggesting that the line tension may be taken
to be constant over a wide range of length scales (de Koker & McConnell 1993),
including those in which the experiments took place. We will therefore also assume
the line tension is a constant independent of domain size.

(iii) Polymer elasticity. A number of studies such as Khattari et al. (2002) model
Langmuir films as viscoelastic fluids. In general, such materials are, to leading
order, characterised not only by shear and dilitational viscosities but also by shear
and dilitational elasticities. For the polymer material in question with area A and
2-D tension Π , the Gibbs elasticity of the liquid phase KG = ∂Π/∂(logA) has
been measured to be approximately 40 mN m−1 (Mann & Langevin 1991), several
orders of magnitude larger than the scale defined by the line tension divided by the
characteristic length of the domain. The monolayer is thus taken to be effectively
incompressible in our analysis so that the dilitational viscosity and elasticity both
vanish. Here, in keeping with the study of Alexander et al. (2006), we elect to
focus on the simplest case where the motion is driven entirely by incompressible
fluid mechanics and not elasticity. The key difference of our approach from that
of Alexander et al. (2006) is that we do not assume the monolayer shear viscosity
vanishes. The cavity itself is notably extremely compressible, with a Gibbs elasticity
too small to measure.

We recognise that any subset of the non-fluid dynamical effects listed above could be
of importance in determining the cavity dynamics. Nonetheless, we find that the simplest
possible modification of the Alexander et al. (2006) model, namely the inclusion of a
monolayer viscosity without accounting for the above processes, leads to a mathematical
analysis that, while technical, visibly sharpens the fits of the experimental data.
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Figure 1. Schematic of an annular Langmuir monolayer domain D, with inner radius Ri and outer radius Ro,
situated on the upper surface of a Stokesian sublayer of infinite depth, whose motion generates a shear stress
on the monolayer. Where 0 < r < Ri or r > Ro, the surface is stress-free. The corresponding instantaneous
velocity fields both in the subphase u and at the surface U = u(z = 0) are shown; vectors are coloured by
depth.

3. Mathematical formulation

3.1. Geometry and equations of motion
Consider a molecularly thin (so essentially 2-D) fluid monolayer situated on a 3-D
half-space of Stokes fluid (figure 1). Let the subphase have flow field u, pressure p and
viscosity μ. We assume the subphase satisfies the incompressible Stokes equations

−∇3Dp + μ∇2
3Du = 0 and ∇3D · u = 0, (3.1a,b)

where ∇3D = (∂/∂x, ∂/∂y, ∂/∂z) is the 3-D gradient operator.
Let D be a subset of the z = 0 plane that a domain of the liquid phase occupies. For our

analysis, we take the monolayer liquid phase to be a Newtonian fluid with velocity U , 2-D
pressure P and shear viscosity η. (A more detailed treatment could consider other effects.)
Continuity of the flow field implies U = u(z = 0). The stress tensor of such a fluid is

σ = −PI + η(∇U + ∇UT), x ∈ D, (3.2)

where ∇ is the 2-D gradient operator in the xy-plane. The transverse motion of the
subphase generates a surface shear stress on the monolayer so that

∇ · σ = −∇P + ηΔU = μ
∂u
∂z

∣∣∣∣
z=0

and ∇ · U = 0, x ∈ D, (3.3a,b)

where � is the 2-D Laplacian in the xy-plane. Outside of the domain D (i.e. in its
complement DC), we assume the interface is stress-free:

0 = μ
∂u
∂z

∣∣∣∣
z=0

, x ∈ DC. (3.4)

The surface is assumed to be planar for all times, and the flow field of the interface U is
assumed to have no z-component. Lastly, we consider the one-dimensional interface ∂D,
where balancing stresses demands that

σ · n̂|∂D = γ κn̂|∂D, (3.5)

with n̂ is the local normal vector to the curve ∂D and κ is the local curvature.
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Following Alexander et al. (2006), we restrict ourselves to the axisymmetric case where
the domain of the monolayer is an annulus centered at the origin in the z = 0 plane. In
cylindrical coordinates (r, θ, z), the monolayer domainD = {(r, θ, 0) : 0 < Ri < r < Ro},
where Ro is allowed to be positive infinity. We further assume there are no azimuthal
stresses, so that the azimuthal component ofU vanishes. In this setting, (3.1a,b) simplifies
to

−∂p
∂r

+ μ

(
L1[u] + ∂2u

∂z2

)
= 0, (3.6)

−∂p
∂z

+ μ

(
L0[w] + ∂2w

∂z2

)
= 0, (3.7)

1
r

∂(ru)
∂r

+ ∂w
∂z

= 0, (3.8)

where u and w are the radial and z-components of u, respectively, and

Lν = ∂2

∂r2
+ 1

r
∂

∂r
− ν2

r2
. (3.9)

At the surface, we have(
−dP
dr

+ ηL1[U]
)

χ(Ri < r < Ro) = μ
∂u
∂z

∣∣∣∣
z=0

, (3.10)

where U(r) = u(r, z = 0) and χ is a characteristic function. Additionally, the
incompressibility condition for the monolayer takes the form

1
r

∂(rU)

∂r
= 0, Ri < r < Ro, (3.11)

from which we conclude

U(r) = F
r
, Ri < r < Ro, (3.12)

for some undetermined constant F; consequently, L1[U] vanishes for Ri < r < Ro. It is
important to note that this condition is not expected to hold on DC, particularly in the
cavity whose area A = πR2

i decreases with time. The stress balance at the monolayer
edges, (3.5), simplifies to

−P−
i = −P+

i − 2ηF
R2
i

− γ

Ri
, (3.13)

−P+
o = −P−

o − 2ηF
R2
o

+ γ

Ro
, (3.14)

where the superscript plus and minus represent limits from the right and left, respectively.
Since the cavity does not contain a significant concentration of molecules, the pressure
inside of the cavity is negligible. If we further assume the pressure at infinity vanishes,
(3.13) and (3.14) can be combined into a single equation for the internal pressure difference
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at the interfaces,

P−
o − P+

i = γ

(
1
Ro

+ 1
Ri

)
+ 2ηF

(
1
R2
i

− 1
R2
o

)
. (3.15)

In what follows, we primarily concern ourselves with the large Ro limit, where closed-form
solutions are obtainable. Taking Ro → ∞ in (3.15) gives

− P+
i = γ

Ri
+ 2ηF

R2
i

, (3.16)

where we have set the pressure at infinity to be zero.
The above equations form a closed problem for the instantaneous flow field. Dynamics

follow from the kinematic boundary condition, which relates the change in radius with
respect to time t and the fluid velocity at the boundary:

dRi

dt
= U(Ri) = F

Ri
, (3.17)

and similarly for Ro.
Before proceeding to the solution of the above equations, it is instructive to consider

their dimensionless versions. We choose the cavity radius Ri to be the length scale, V =
γ /(μRi) to be the velocity scale and μV to be the pressure scale. We also take Ro →
∞. Identifying dimensionless quantities with their dimensional counterparts, the resulting
momentum balance is (

−dP
dr

+ η

μRi
L[U]

)
χ(r > 1) = ∂u

∂z

∣∣∣∣
z=0

. (3.18)

The corresponding dimensionless stress balance at the inner radius is

− P+
i = 1 + 2ηF

μRi
. (3.19)

In both equations, we find the dimensionless parameter

β = η

μRi
= �SD

Ri
, (3.20)

where �SD = η/μ is the Saffman–Delbrück length for membranes (Saffman & Delbrück
1975). On length scales smaller than �SD, momentum travels primarily in the plane of
the surface phase, whereas for length scales larger than �SD, momentum travels through
the subphase as well. Note that β is also the ratio of the time scales τ1 = ηRi/γ and
τ2 = μR2

i /γ .
In view of the dimensionless equations, we now examine three distinct parameter

regimes.

(i) The inviscid case, β = 0. Here, the monolayer viscosity drops out of the problem
completely, and the solution follows the prescription of Alexander et al. (2006). In
the case where Ro → ∞, the sole length scale of the problem is Ri. The constant
F thus necessarily scales like VRi, presaging the general form of (3.41). Although
this case can be a valid approximation, its physicality comes into question when the
cavity radius approaches zero, as it predicts that U grows without bound.
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(ii) The subphase viscosity dominant case, 0 < β � 1. It is a consequence of the
axisymmetry of the problem that monolayer viscosity plays no role in the bulk,
regardless of the magnitude of β. This is because the radial annular flow U = F/r is
both incompressible and irrotational so thatL1[U] = 0. Thus, the bulk quantities are
unchanged from the first case, up to F. The effects of β > 0 only materialise at the
boundary, where an additional viscosity term emerges. If β is small, then momentum
is traveling primarily through the subphase.

(iii) The monolayer viscosity dominant case, β � 1. As line tension pulls the interface
closer to the origin, the system enters a regime where the cavity radius becomes
smaller than �SD. The monolayer viscosity η continues to play no role in the bulk.
However, surface viscous effects at the boundary are non-negligible as Ri goes to
zero, and closing of the cavity will be slowed.

3.2. General solution of the surface velocity and monolayer pressure
We turn to the solution of the axisymmetric problem formulated above. Although the
methods of this subsection are essentially equivalent to the streamfunction approach taken
by Alexander et al. (2006), we streamline the presentation by deriving a single integral
equation with singular kernel valid on the entirety of the surface, as opposed to three
separate equations on three separate intervals. As discussed in the previous section, the
equations here are all valid in all β regimes.
The axisymmetry of the problem makes it amenable to classical Hankel transform

methods. Define the Hankel transform of order ν ≥ −1/2 acting on a function f (r) to
be

Hν[ f ](k) =
∫ ∞

0
dr rf (r)Jν(kr), (3.21)

where k represents the wavenumber and Jν is a Bessel function of the first kind of order ν

(Piessens 2000). Recall the Hankel transform is equivalent to the Fourier transform of an
axisymmetric quantity and is obtained by integrating out the azimuthal variable. It is an
involution in the sense that for a broad class of functions (encompassing those we presently
study),

Hν[Hν[ f ](k)](r) =
∫ ∞

0
dk kHν[ f ](k)Jν(kr) = f (r), (3.22)

a result known as the Hankel inversion theorem. The action of Hν on the differential
operator Lν is particularly simple:

Hν[Lν[ f ]] = −k2Hν[ f ], (3.23)

analogous to the Fourier transform of the Laplacian of a quantity.
We begin by combining (3.1a,b) into a single equation for the subphase pressure p:

∇2
3Dp = L0[p] + ∂2p

∂z2
= 0. (3.24)

Hankel transforming this equation in r and using (3.23) shows

∂2H0[p]
∂z2

− k2H0[p] = 0. (3.25)

As the subphase has infinite depth, the most general solution to this equation is

H0[p] = B(k) ekz, (3.26)
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for some unknown B(k). Similarly, Hankel transforming (3.7) gives

− ∂H0[p]
∂z

+ μ

(
∂2H0[w]

∂z2
− k2H0[w]

)
= 0; (3.27)

substituting (3.26) reveals

H0[w] = B(k)
2μ

z ekz, (3.28)

where we have again made use of the fact that the subphase has infinite depth. Next, we
Hankel transform the incompressibility condition equation (3.8) and evaluate the result at
z = 0 to obtain

− kH1[U] + ∂H0[w]
∂z

∣∣∣∣
z=0

= 0, (3.29)

which allows us to express B(k) in terms of the Hankel transform of the surface velocity:

B(k) = 2μkH1[U]. (3.30)

Lastly, Hankel transforming (3.6) gives

kH0[p] + μ

(
∂2H1[u]

∂z2
− k2H1[u]

)
= 0, (3.31)

after using the relationH1[∂p/∂r] = −kH0[p]. Substituting (3.26) and using the fact that
U = u(z = 0) gives

H1[u] = ekz
(
H1[U] + B(k)z

2μ

)
= (1 + kz) ekzH1[U]. (3.32)

Differentiating with respect to z and evaluating at z = 0 then yields a simple relationship
between the surface shear stress and the surface velocity:

μ
∂H1[u]

∂z

∣∣∣∣
z=0

= 2μkH1[U]. (3.33)

We remark that the fact these quantities are related by a simple multiplicative factor in
Fourier space is suggestive of a more general convolutional form underlying the problem;
indeed, a Green’s function formulation based on this relation can be constructed and is
explored in depth in Jia, Irvine & Shelley (2022). Employing the equation of momentum
balance for the film, (3.10), and the inversion theorem, we proceed to write

U(r) = H1

[
1

2μk
H1

[(
−dP
dr

+ ηL1[U]
)

χ(Ri < r < Ro)

]]
. (3.34)

We first let Ri < r < Ro, so that (3.12) applies, resulting in the integral equation

F
r

= H1

[
1

2μk
H1

[
−dP
dr

χ(Ri < r < Ro)

]]

= − 1
2μ

∫ ∞

0
dk J1(kr)

∫ Ro

Ri
dr′ r′

dP
dr′

J1(kr′), (3.35)
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for dP/dr′. In the limit of Ro → ∞, one can verify using Formulas 6.552.6 and 6.693.1 of
Gradshteyn & Ryzhik (2007) that its solution is

− dP
dr

= 2μF

r
√
r2 − R2

i

, (3.36)

which, upon integration, gives

P = 2μF
Ri

sin−1
(
Ri

r

)
, (3.37)

where we have assumed P → 0 at infinity. It remains to use the boundary condition
equation (3.16) to solve for F, which we discuss in the next subsection.
The integral that appears in (3.35) is an example of a Weber–Schafheitlin discontinuous

integral (Watson 1922) that produces a different functional representation depending on
the interval in which it is evaluated. For completeness, we remark that substituting (3.36)
back into (3.35) and assuming 0 < r < Ri reveals that

U(r) = F
r

⎡
⎣1 −

√
1 −

(
r
Ri

)2
⎤
⎦ , (3.38)

inside of the cavity. As expected, the flow field is not incompressible in this region. The
fluid velocity is continuous at the surface, but it is not differentiable, a consequence of
the nature of the singularity in the kernel of (3.35). Equations (3.26), (3.28), (3.32), and
(3.30), along with the fact that

H1[U] = F sin kRi

k2Ri
, (3.39)

can be used to numerically evaluate the pressure and velocity in the subphase (modulo F)
in the large Ro limit. The exponential factor present in the Hankel transforms guarantees
these quantities are smooth in the bulk.

3.3. Time evolution of the cavity radius
Next, we use the stress balance at the annulus boundary to determine F. In keeping with
Alexander et al. (2006), we focus on the case where Ro → ∞, the cavity is an ideal
vacuum, and the external pressure at infinity vanishes. First, we consider the case of β = 0,
in which (3.16) reduces to the Young–Laplace condition

P−
o − P+

i = −πμF
Ri

. (3.40)

Using (3.37) to evaluate P−
o and P+

i reproduces the simple result of Alexander et al. (2006):

F = − γ

πμ
. (3.41)

As dA/dt = 2πF, the inviscid model predicts that the hole simply closes via ‘flow by
curvature’: the area of the cavity decreases linearly at a rate independent of Ri until it
fully closes. As a consequence, the radial surface velocity at the interface U(Ri) = F/Ri
diverges as the hole radius goes to zero in this model.
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Figure 2. (a) The constant F from (3.42), which determines the rate of decrease of the cavity area, as a function
of time for different values of the parameter β0 = η/(μRi,0), with Ri,0 the cavity radius at t = 0. Parameters:
γ = 0.01, μ = 1. Note that F(t∗) is not zero when η = 0, whereas F increases to zero linearly with a slope
proportional to η−2 when η > 0 and the hole radius is small compared with the Saffman–Delbrück length
�SD = η/μ. (b) Increasing monolayer viscosity slows down the closing of the cavity. Parameters as in (a). The
area of a sufficiently large cavity (i.e. one for which β � 1) initially decreases linearly in time with a slope
described in (4.1). As the cavity radius becomes comparable to �SD, the dynamics transition to a regime where
β is large and area changes quadratically in time, with Ri scaling as in (4.2).

Next, we consider the result for general β > 0. Using (3.37) to evaluate P in (3.15) gives

F = − γRi

πμRi + 2η
= − γ

πμ

(
1 + 2

π
β

)−1

. (3.42)

Note that β > 0 regularises F so that F → 0 as Ri → 0, whereas F is independent of Ri in
the β = 0 surface inviscid case (figure 2a). The kinematic boundary condition (3.17) can
then be integrated to obtain an explicit relation for the cavity radius as a function of time,

Ri(t) = 2η
πμ

[√
1 + πγμ(t∗ − t)

2η2
− 1

]
, (3.43)

where t∗ = (4ηRi,0 + πμR2
i,0)/(2γ ) = 2τ1,0 + (π/2)τ2,0 is the closing time of the cavity

written in terms of the initial radius Ri,0 = Ri(t = 0) or the two initial time scales τ1,0 =
ηRi,0/γ and τ2,0 = μR2

i,0/γ (cf. the definitions of τ1 and τ2 in § 3.1). The area as a function
of time is then πRi(t)2; figure 2(b) shows the cavity area as a function of time as monolayer
viscosity is varied. If (3.43) is substituted back into (3.42), we find an explicit relation for
F as a function of time:

F(t) = − γ

πμ

[
1 − 1√

1 + πγμ(t∗ − t)/(2η2)

]
. (3.44)

If η → 0 in this expression, we recover (3.41). On the other hand, fixing η and expanding
in small (t∗ − t)/τ2,0 gives the result

F(t) = − γ

πμ

[
πμγ (t∗ − t)

4η2
+ · · ·

]
= − γ

4μβ2
0

t∗ − t
τ2,0

+ · · · , (3.45)
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where β0 = τ1,0/τ2,0 = η/(μRi,0), demonstrating the rapid variation of F to zero as the
cavity closes in the case of a viscous monolayer with small β0 and regularising the
singularity present in the inviscid model.

4. Comparison with experiments

The surface inviscid result of linearly decreasing area found by Alexander et al. (2006) is
a valid approximation for early times if monolayer viscosity is indeed small, as figure 2(a)
illustrates. However, the predicted slope of −2γ /μ does not hold as well for intermediate
times in the presence of nonzero viscosity. The O(β0) perturbation to the slope at early
times can be found by calculating

dA
dt

∣∣∣∣
t=0

= 2πF|t=0 = −2γ
μ

(
1 − 2

π
β0 + · · ·

)
, (4.1)

where we have taken β0 to be sufficiently small. Thus, the line tension value obtained from
fitting data to the inviscid model is likely an underestimate.
In the opposite regime where the hole becomes sufficiently small and β → ∞, the

viscous stress dominates, and (3.42) shows that F ∼ −γ /(2μβ). Comparing this with
(3.45) reveals

Ri

Ri,0
∼ 1

2β0

t∗ − t
τ2,0

, (4.2)

in this limit. That is, the cavity area changes quadratically with time in this regime, and the
inviscid monolayer model consequently underestimates the closure time. The experimental
data in Figure 6 of Alexander et al. (2006) demonstrate a prominent quadratic-like slowing
when the hole is small that may be representative of a monolayer viscosity. Figure 3(a)
compares the authors’ original linear fit to the result of fitting to the modified area versus
time relation using (3.43); the modification allows for a more accurate description of a
broader range of data. The fit parameters were found to be a line tension of γ = 4.0 ×
10−12 N and monolayer viscosity of η = 3.2 × 10−7 kg s−1, for the value of μ = 1.063 ×
10−3 kg (m s)−1 used in Alexander et al. (2006). The corresponding Saffman–Delbrück
length is �SD = 0.3 mm, which gives a β that is O(1) at the initial time and confirms
that the layer should not be treated as inviscid. We note that the value of η obtained here is
smaller than or comparable to the measured surface viscosity of other Langmuir monolayer
systems (Joly 1964; Barentin et al. 1999). Previous canal viscometer measurements have
led to an estimate of η � 10−8 kg s−1 for PDMS monolayers (Jarvis 1966).
Figure 3(b) compares the same fit with the more recent experimental data from Zou

et al. (2010) (the experimental data in the original image were shifted horizontally to
maximise overlap, whereas the continuous red line that appears is the exact same as that
from figure 3a without any time shift); again, we see a strong agreement between the
modified theory and the experiment.

5. Conclusion

Effectively, two regimes comprise the closing of a (sufficiently large) cavity in our model
of a Langmuir film. The first is a tension-dominated regime where the area decreases
linearly in time. This is followed by a viscosity-dominated regime where the area decreases
quadratically in time just as the hole is about to close, effectively regularising the
singularity. The two regimes can be delineated by the dimensionless parameter β, which
is a ratio of the Saffman–Delbrück length to the cavity radius.
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Figure 3. (a) A reproduction of figure 6 of Alexander et al. (2006) showing five different runs of experimental
hole sizes as a function of time. As in the original paper, each run has been shifted horizontally to maximise
overlap. The data are nonlinear when the hole becomes small, which could possibly be an effect of monolayer
viscosity. The blue line is the linear fit that appeared in the paper originally; the red line is obtained by fitting
the data to (3.43), which uses monolayer viscosity as an additional fit parameter and more accurately describes
a broader range of data. The line tension and monolayer viscosity obtained from fitting are γ = 4.0 × 10−12 N
and η = 3.2 × 10−7 kg s−1. (b) A reproduction of figure 4 from Zou et al. (2010), comparing the same fit to
(3.43) from (a) (continuous red line) and additional experimental data. In the original image, the experimental
data were shifted in time to maximise overlap.

We applied our simple theory to the experiments of Alexander et al. (2006) and Zou
et al. (2010). By allowing for a monolayer viscosity in the model they proposed for the
closing of a Langmuir film, the improved theory matches the original experiment more
closely over a broader range of data. From fitting, we find a line tension of approximately
4.0 pN, which is the same order of magnitude as the previously reported values of 0.69 ±
0.02 pN from Zou et al. (2010) and 1.1 ± 0.3 pN from Mann, Hénon & Langevin (1992),
but is different enough to see that the effects of monolayer viscosity are perhaps not as
negligible for this system as the authors believed.
As mentioned previously, the vanishing of η from the bulk equations is a consequence

of the symmetries of this particular problem. The effects of monolayer viscosity in a
non-annular domain should be investigated as well; this is relevant to the problem at hand
because it is difficult to experimentally create a perfectly circular cavity. The flow field
of a disc-shaped monolayer of actively rotating colloidal magnets has also produced one
example of an axisymmetric system where monolayer viscosity plays a non-trivial role in
the bulk (Jia et al. 2022); presumably there are many others. It would be interesting to study
the effects of a surface viscosity on domain relaxation in non-axisymmetric Langmuir
films, akin to the work done by Alexander et al. (2007), or to further generalise our model
by adding a monolayer elasticity term.
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